JP2011136862A - Optical fiber drawing furnace and optical fiber drawing method - Google Patents

Optical fiber drawing furnace and optical fiber drawing method Download PDF

Info

Publication number
JP2011136862A
JP2011136862A JP2009297895A JP2009297895A JP2011136862A JP 2011136862 A JP2011136862 A JP 2011136862A JP 2009297895 A JP2009297895 A JP 2009297895A JP 2009297895 A JP2009297895 A JP 2009297895A JP 2011136862 A JP2011136862 A JP 2011136862A
Authority
JP
Japan
Prior art keywords
optical fiber
cylindrical heater
heater
cylindrical
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297895A
Other languages
Japanese (ja)
Other versions
JP5655304B2 (en
Inventor
Taku Yamazaki
卓 山崎
Iwao Okazaki
巌 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009297895A priority Critical patent/JP5655304B2/en
Publication of JP2011136862A publication Critical patent/JP2011136862A/en
Application granted granted Critical
Publication of JP5655304B2 publication Critical patent/JP5655304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber drawing furnace and an optical fiber drawing method which use an existing cylindrical heater and can simply achieve the uniformization of the temperature in the circumferential direction in heater heating. <P>SOLUTION: The optical fiber drawing uses the optical fiber drawing furnace equipped with a furnace core tube 3 through which an optical fiber preform 2 is supplied, a cylindrical heater 4 surrounding the furnace core tube, electrode units 5a, 5b to feed a power to the cylindrical heater, an insulating material 6 surrounding the outside of the cylindrical heater, and a furnace case surrounding the whole. In drawing, the cylindrical heater 4 is heated to a temperature of heating and melting the optical fiber preform; and terminals 9a, 9b of the cylindrical heater are connected and fixed to the electrode units 5a, 5b at positions of a thermally expanded state of the cylindrical heater, and the optical fiber preform 2 is heated and melted, so that the cylindrical heater 4 becomes in a true circular state when the optical fiber preform is heated and melted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光ファイバ母材から光ファイバを線引きするための線引き炉と線引き方法に関する。   The present invention relates to a drawing furnace and a drawing method for drawing an optical fiber from an optical fiber preform.

近年、光ファイバの低コスト化に伴い、光ファイバ母材が大型化すると共に、その線引き速度が速くなっている。また、線引き炉自体は、電極やガス流路の存在により、構造的に円周方向に沿って多少の不均一を避けることができない。このため、加熱溶融される光ファイバ母材に温度むらが生じ、溶融縮径されて線引きされる光ファイバの断面が真円とならず、楕円状に非円化する。この光ファイバの非円の程度を表わすために、一般に非円率「(長径−短径)/平均径」が用いられている。この、非円率が大きいと、光コネクタによる接続や融着接続で、接続損失が増大するという問題があった。   In recent years, as the cost of optical fibers has been reduced, the optical fiber preform has become larger and the drawing speed has been increased. Further, the drawing furnace itself cannot avoid some unevenness along the circumferential direction structurally due to the presence of electrodes and gas flow paths. For this reason, temperature unevenness occurs in the optical fiber preform that is heated and melted, and the cross section of the optical fiber that is drawn after being melted and contracted does not become a perfect circle but becomes an oval shape. In general, the non-circularity “(major axis−minor axis) / average diameter” is used to represent the degree of non-circularity of the optical fiber. When the non-circularity is large, there is a problem that connection loss increases due to connection by an optical connector or fusion connection.

上記の光ファイバの非円率を小さくするのに、例えば、特許文献1には、光ファイバ母材を炉心管を介して加熱するヒータ部の温度分布を調整することが開示されている。また、特許文献2には、光ファイバ母材を炉心管を介して加熱するヒータを、周方向に沿って加熱温度が均一化される形状とする構造のものが開示されている。例えば、図4に示すように、スリット103を入れて上下方向に蛇行する発熱部102を有する円筒状のヒータ101で、電源用の電極接続部104〜107を複数設けることにより、周方向の発熱が均一にする方法が一例として示されている。   In order to reduce the non-circularity of the optical fiber, for example, Patent Document 1 discloses adjusting the temperature distribution of a heater unit that heats an optical fiber preform through a furnace core tube. Patent Document 2 discloses a structure in which a heater for heating an optical fiber preform through a core tube is shaped so that the heating temperature is uniform along the circumferential direction. For example, as shown in FIG. 4, a cylindrical heater 101 having a heating part 102 meandering in the vertical direction with a slit 103 is provided, and a plurality of electrode connection parts 104 to 107 for power supply are provided, thereby generating heat in the circumferential direction. As an example, a method for making the thickness uniform is shown.

特開平8−208262号公報JP-A-8-208262 特開平9−71433号公報JP-A-9-71433

通常、線引き装置における光ファイバ母材を加熱溶融する加熱部は、例えば、図3の模式図で示すように、光ファイバ母材2が収納される炉心管3の外側に円筒状のヒータ4を配して構成する。円筒状ヒータ4は、図4に示したのと同様なスリット4bを上下方向から交互に入れてジグザグ状に蛇行する発熱部4aとされているものとする。円筒状ヒータ4の一方の端部(下端)には一対の端子部9aと9bが180°隔てて対向するように設け、電力を供給する一対の電極部5a、5bに対して、取り付け位置10a、10bで固定部材11を用いて端子部間隔Lで接続固定し、電力供給回路への接続と取り付け固定を行うものとする。   Normally, the heating unit that heats and melts the optical fiber preform in the drawing apparatus includes, for example, a cylindrical heater 4 outside the core tube 3 in which the optical fiber preform 2 is accommodated, as shown in the schematic diagram of FIG. Arranged. The cylindrical heater 4 is assumed to be a heat generating portion 4a that zigzags in a zigzag manner by alternately inserting slits 4b similar to those shown in FIG. A pair of terminal portions 9a and 9b are provided at one end (lower end) of the cylindrical heater 4 so as to face each other with a 180 ° gap therebetween, and an attachment position 10a with respect to the pair of electrode portions 5a and 5b for supplying electric power. In 10b, the fixing member 11 is used for connection and fixing at the terminal portion interval L, and connection to the power supply circuit and attachment and fixing are performed.

円筒状ヒータ4は、円形で炉心管と同心状になるように組み付けられることから、常温においては、収納される光ファイバ母材2の外面と円筒状ヒータ4の内面4cとの間隔Sは周方向で均一で、円筒状ヒータ4の外径Dは一定である。しかしながら、円筒状ヒータ4は、2000℃程度までの温度になるので、この温度上昇による熱膨張による歪を解放するために径方向に変形する。   Since the cylindrical heater 4 is circular and is assembled so as to be concentric with the furnace core tube, at normal temperature, the interval S between the outer surface of the optical fiber preform 2 to be stored and the inner surface 4c of the cylindrical heater 4 is the circumference. Uniform in the direction, the outer diameter D of the cylindrical heater 4 is constant. However, since the cylindrical heater 4 has a temperature of up to about 2000 ° C., the cylindrical heater 4 is deformed in the radial direction in order to release strain caused by thermal expansion due to this temperature rise.

このとき、電極部5a,5bに接続固定された端子部9a,9b間を結ぶX−X方向での変形は抑制され、ヒータ7の外径Dは変化しない。しかし、この端子部9a,9b間の発熱部4aは、鎖線で示ようにY−Y方向に膨らんで外径DからEに変化する。この結果、光ファイバ母材2の外面と円筒状ヒータ4の内面4cとの間隔Sは、外径変化のない部分でS=S1、外径Eに変化する部分でS2となり、S=S1<S2で不均一になり、光ファイバ母材2の周方向での温度分布が不均一となり加熱溶融状態に偏りが生じる。このため、線引きされる光ファイバの非円率が大きくなる。   At this time, deformation in the XX direction connecting the terminal portions 9a, 9b connected and fixed to the electrode portions 5a, 5b is suppressed, and the outer diameter D of the heater 7 does not change. However, the heat generating portion 4a between the terminal portions 9a and 9b swells in the YY direction and changes from the outer diameter D to E as indicated by a chain line. As a result, the distance S between the outer surface of the optical fiber preform 2 and the inner surface 4c of the cylindrical heater 4 is S = S1 in a portion where the outer diameter does not change, and S2 in a portion where the outer diameter E changes, and S = S1 < It becomes non-uniform in S2, the temperature distribution in the circumferential direction of the optical fiber preform 2 becomes non-uniform, and the heated and melted state is biased. For this reason, the non-circularity of the optical fiber to be drawn increases.

この不均一な温度分布を均一化するために、上記特許文献1ではヒータを囲う断熱材を部分的に移動させて保温特性を調整したり、特許文献2ではヒータを固定する電極接続部を複数に分割したり、ヒータ断面積を部分的に変更するなどしている。しかし、これらの方法は、線引き炉の構造を複雑にし、また、既存の線引き炉に適用するには大幅に改造するなどの必要があり、コスト的にも高い設備となる。   In order to make this non-uniform temperature distribution uniform, the above-mentioned Patent Document 1 adjusts the heat retaining characteristics by partially moving the heat insulating material surrounding the heater, or Patent Document 2 has a plurality of electrode connection portions for fixing the heater. For example, the heater cross-sectional area is partially changed. However, these methods complicate the structure of the drawing furnace, and need to be significantly modified to be applied to an existing drawing furnace, resulting in high cost facilities.

本発明は、上述した実情に鑑みてなされたもので、既存の円筒状ヒータを用いて、簡単にヒータ加熱の周方向における温度分布の均一化を実現することが可能な光ファイバ線引き炉と光ファイバ線引き方法の提供を目的とする。   The present invention has been made in view of the above-described circumstances. An optical fiber drawing furnace and an optical device that can easily achieve uniform temperature distribution in the circumferential direction of heater heating using an existing cylindrical heater. The object is to provide a fiber drawing method.

本発明による光ファイバ線引き装置及び線引き方法は、光ファイバ母材が供給される炉心管と、炉心管を囲む円筒状ヒータと、円筒状ヒータに電力を供給するための電極部と、円筒状ヒータの外側を囲む断熱材と、全体を囲む炉筐体を備えた光ファイバ線引き炉を用いた光ファイバの線引き装置及び方法である。この線引きで、前記の円筒状ヒータを光ファイバ母材が加熱溶融される温度に昇温し、円筒状ヒータが熱膨張した状態の位置で円筒状ヒータの端子部を電極部に接続固定し、光ファイバ母材の加熱溶融時に円筒状ヒータが真円状態となるようにして、光ファイバ母材を加熱溶融することを特徴とする。   An optical fiber drawing apparatus and a drawing method according to the present invention include a core tube supplied with an optical fiber preform, a cylindrical heater surrounding the core tube, an electrode unit for supplying power to the cylindrical heater, and a cylindrical heater. An optical fiber drawing apparatus and method using an optical fiber drawing furnace provided with a heat insulating material surrounding the outside and a furnace casing surrounding the whole. With this drawing, the cylindrical heater is heated to a temperature at which the optical fiber preform is heated and melted, and the terminal portion of the cylindrical heater is connected and fixed to the electrode portion at a position where the cylindrical heater is thermally expanded. The optical fiber preform is heated and melted such that the cylindrical heater is in a perfect circle when the optical fiber preform is heated and melted.

常温t0での円筒状ヒータの端子部間寸法をL、並びに円筒状ヒータ円筒部の外径寸法をD、円筒状ヒータ円筒部の昇温時の温度をt1、円筒状ヒータ端子部の昇温時の温度をt2、円筒状ヒータの熱膨張係数をαとしたとき、円筒状ヒータが電極部に接続固定される際の端子部間寸法L’を、
L’=L+[D×(t1−t0)×α]+[(L−D)×(t2−t0)×α]とする。
The dimension between the terminal portions of the cylindrical heater at room temperature t0 is L, the outer diameter dimension of the cylindrical heater cylindrical portion is D, the temperature when the cylindrical heater is heated is t1, and the temperature of the cylindrical heater terminal is increased. When the temperature at the time is t2 and the thermal expansion coefficient of the cylindrical heater is α, the dimension L ′ between the terminal portions when the cylindrical heater is connected and fixed to the electrode portion,
L ′ = L + [D × (t1−t0) × α] + [(LD) × (t2−t0) × α].

本発明によれば、通常の形状で作製された円筒状ヒータを、組付け時に、予め円筒状ヒータが加熱され熱膨張された状態の寸法に変位させた位置で、電極部に接続固定するだけの簡単な方法で、非円率を小さくすることができる。このため、既存設備の改造を要しないので、コスト増を伴うことなく容易に実施することができる。   According to the present invention, a cylindrical heater manufactured in a normal shape is simply connected and fixed to the electrode portion at the position where the cylindrical heater is displaced in advance to a dimension in which the cylindrical heater is heated and thermally expanded. With this simple method, the non-circularity can be reduced. For this reason, since it is not necessary to modify the existing equipment, it can be easily carried out without increasing the cost.

本発明における線引き炉の概略を説明する図である。It is a figure explaining the outline of the drawing furnace in this invention. 本発明の線引き炉に用いる円筒状ヒータの一例を説明する図である。It is a figure explaining an example of the cylindrical heater used for the drawing furnace of this invention. 本発明の課題を説明する円筒状ヒータの模式図である。It is a schematic diagram of the cylindrical heater explaining the subject of this invention. 従来技術を説明する図である。It is a figure explaining a prior art.

図1,2により本発明の実施の形態を説明する。図中、1は線引き炉、2は光ファイバ母材、3は炉心管、4は円筒状ヒータ、4aは発熱部、4bはスリット、4cはヒータ内面、5a,5bは電極部、6は断熱材、7は炉筐体、7aは上部筒、7bは下部筒、8は母材供給機構、9a,9bは端子部、10a,10bは取り付け位置、11は固定部材、12は絶縁部材、13,14はガス流入口、15はガス流出口を示す。   An embodiment of the present invention will be described with reference to FIGS. In the figure, 1 is a drawing furnace, 2 is an optical fiber preform, 3 is a core tube, 4 is a cylindrical heater, 4a is a heat generating part, 4b is a slit, 4c is an inner surface of the heater, 5a and 5b are electrode parts, and 6 is heat insulation. Material, 7 is a furnace casing, 7a is an upper cylinder, 7b is a lower cylinder, 8 is a base material supply mechanism, 9a and 9b are terminal portions, 10a and 10b are attachment positions, 11 is a fixing member, 12 is an insulating member, 13 , 14 is a gas inlet, and 15 is a gas outlet.

光ファイバの線引きは、図1に示すように、吊下げ支持される光ファイバ母材2の下部を加熱し、加熱溶融により細径となった下端から光ファイバ2aを溶融垂下させて所定の外径となるように線引きして行われる。このための線引き炉1は、光ファイバ母材2が供給される炉心管3を囲むようにして、加熱用の円筒状ヒータ4を配し、この円筒状ヒータ4の熱が外部に放散されないように断熱材6で囲い、その外側全体を炉筐体7で囲って構成される。   As shown in FIG. 1, the drawing of the optical fiber is performed by heating the lower part of the optical fiber preform 2 that is supported in a suspended state, and melting and dropping the optical fiber 2a from the lower end that has become a small diameter by heating and melting. It is done by drawing to a diameter. For this purpose, the drawing furnace 1 is provided with a heating cylindrical heater 4 so as to surround the furnace core tube 3 to which the optical fiber preform 2 is supplied, and is insulated so that the heat of the cylindrical heater 4 is not dissipated to the outside. It is surrounded by a material 6 and the entire outside thereof is surrounded by a furnace casing 7.

光ファイバ母材2は、模擬的に示す母材供給機構8により吊り下げ支持され、光ファイバの線引き進行にしたがって下方に順次移動制御される。炉筐体7は、ステンレス等の耐食性に優れた金属で形成され、中心部に高純度のカーボンで形成された円筒状の炉心管3が配される。炉筐体7の上部は、上部筒7aで形成され、光ファイバ母材2が封止状態で導入される。また、この上部筒7aには、ガス導入口13が設けられ、炉内の酸化・劣化を防ぐためにヘリウムガスやアルゴンガス等の不活性ガスが流入されるように構成されている。この不活性ガスは、光ファイバ母材2と炉心管3の隙間を通って、炉筐体7の下部筒7bから排出される。   The optical fiber preform 2 is suspended and supported by a simulated preform feeding mechanism 8 and is sequentially controlled to move downward as the optical fiber is drawn. The furnace casing 7 is made of a metal having excellent corrosion resistance such as stainless steel, and a cylindrical furnace core tube 3 made of high-purity carbon is arranged at the center. The upper part of the furnace housing 7 is formed by an upper cylinder 7a, and the optical fiber preform 2 is introduced in a sealed state. In addition, the upper cylinder 7a is provided with a gas inlet 13 so that an inert gas such as helium gas or argon gas can flow in to prevent oxidation and deterioration in the furnace. This inert gas passes through the gap between the optical fiber preform 2 and the furnace core tube 3 and is discharged from the lower tube 7 b of the furnace casing 7.

炉筐体7は、断熱材6により円筒状ヒータ4の熱で温度上昇しないようにする以外に、図では省略しているが、冷却水路等を設けて冷却することができる。これにより、炉筐体7は、稼動時においても常温近くに保たれ、熱膨張による寸法の変動は実質的にない状態とすることができる。また、この上記のガス導入口とは別に、炉筐体7にガス導入口14とガス排出口15を設け、円筒状ヒータ4および断熱材6が酸化による劣化を起こさないようにヘリウムガスやアルゴンガス等の不活性ガスを供給するようにする。   The furnace casing 7 can be cooled by providing a cooling water channel or the like, although not shown in the figure, except that the temperature of the furnace casing 7 is not increased by the heat of the cylindrical heater 4 by the heat insulating material 6. As a result, the furnace casing 7 can be kept near room temperature even during operation, and can be in a state in which there is substantially no variation in dimensions due to thermal expansion. In addition to the above gas inlet, a gas inlet 14 and a gas outlet 15 are provided in the furnace casing 7 so that the cylindrical heater 4 and the heat insulating material 6 do not deteriorate due to oxidation. An inert gas such as a gas is supplied.

また、炉筐体7には、円筒状ヒータ4に電力を供給するため一対の電極部5aと5bが、絶縁部材12を介して取り付け固定される。この電極部5a,5bは、円筒状ヒータ4に電力を供給する以外に、円筒状ヒータ4を固定支持する機能を備える。
円筒状ヒータ4は、一方の端部(本例では下端部)に電力供給のための一対の端子部9aと9bが、180°離れた対抗位置に設けられ、その取り付け位置(取り付け孔の中心)10a,10bで、ねじ等の固定部材11により、電極部5a,5bに取り付け固定される。
In addition, a pair of electrode portions 5 a and 5 b are attached and fixed to the furnace casing 7 via an insulating member 12 in order to supply electric power to the cylindrical heater 4. The electrode portions 5 a and 5 b have a function of fixing and supporting the cylindrical heater 4 in addition to supplying power to the cylindrical heater 4.
The cylindrical heater 4 is provided with a pair of terminal portions 9a and 9b for supplying power at one end portion (lower end portion in this example) at opposing positions 180 ° apart from each other. 10a and 10b are fixed to the electrode portions 5a and 5b by a fixing member 11 such as a screw.

本発明は、上述した光ファイバの線引き炉1の構成で、円筒状ヒータ4の取り付け構造に特徴を有するもので、その詳細を図2により説明する。図2に示す円筒状ヒータ4は、図3で説明したのと同様の構造のもので、同じ符号を付してある。円筒状ヒータ4は、カーボンの電気抵抗を使って発熱体が構成されている。この構造は、円筒の上下方向から交互にスリット4bを入れて、ジグザグ状に蛇行させて所定の断面と長さを有する発熱部4aとし、所定の抵抗値とされる。また、スリット4bを入れることにより、円筒状ヒータ4は、径方向に伸縮しやすい形状となっている。   The present invention has the above-described configuration of the optical fiber drawing furnace 1 and is characterized by the mounting structure of the cylindrical heater 4, and the details thereof will be described with reference to FIG. The cylindrical heater 4 shown in FIG. 2 has the same structure as that described with reference to FIG. The cylindrical heater 4 is configured as a heating element using the electrical resistance of carbon. In this structure, the slits 4b are alternately inserted from the upper and lower directions of the cylinder, meandering in a zigzag manner to form a heat generating portion 4a having a predetermined cross section and length, and a predetermined resistance value is obtained. Moreover, the cylindrical heater 4 becomes a shape which is easy to expand-contract in a radial direction by inserting the slit 4b.

円筒状ヒータ4の一方の端部(下端)には、一対の端子部9aと9bが180°隔てて対向するように設けられ、電源を供給する一対の電極部5a、5bに対して、取り付け位置10a、10bを所定の端子部間隔L’で接続固定される。これにより、円筒状ヒータ4は、電力供給回路への接続と取り付けが固定される。電極部5a、5bに接続された状態の円筒状ヒータ4には、電流が一方の端子部9aから両側の発熱部4aをパラレルに通って他方の端子部9bに流れ、発熱部4aを発熱させる。   A pair of terminal portions 9a and 9b are provided at one end (lower end) of the cylindrical heater 4 so as to face each other with a 180 ° separation, and are attached to a pair of electrode portions 5a and 5b for supplying power. The positions 10a and 10b are connected and fixed at a predetermined terminal portion interval L ′. Thereby, the connection and attachment of the cylindrical heater 4 to the power supply circuit are fixed. In the cylindrical heater 4 connected to the electrode portions 5a and 5b, current flows from one terminal portion 9a through the heat generating portions 4a on both sides in parallel to the other terminal portion 9b to cause the heat generating portion 4a to generate heat. .

ここで、円筒状ヒータ4が線引き炉内に取り付けられる前の常温の状態で、例えば、図3で説明したように、発熱部4aの外径Dが変形のない真円の状態で、そのときの端子部9a,9bの端子部間隔がLであったする。この円筒状ヒータ4を、電極部5a、5bに固定することなくフリーの状態で、所定の発熱温度(例えば、2000℃)に昇温したとすると、ヒータの熱膨張係数によって径方向に一様に熱膨張する。また、これにより端子部9aと9bの端子部間隔Lが広がる。   Here, in the state of room temperature before the cylindrical heater 4 is installed in the drawing furnace, for example, as described with reference to FIG. 3, the outer diameter D of the heat generating portion 4 a is in a perfectly circular state without deformation. It is assumed that the interval between the terminal portions 9a and 9b is L. If the cylindrical heater 4 is heated to a predetermined heat generation temperature (for example, 2000 ° C.) in a free state without being fixed to the electrode portions 5a and 5b, it is uniform in the radial direction due to the thermal expansion coefficient of the heater. Thermal expansion. This also increases the distance L between the terminal portions 9a and 9b.

本発明においては、上記の円筒状ヒータ4が径方向に一様に熱膨張し、端子部9aと9bの端子部間隔Lが広がった状態の寸法をL’とすると、この寸法L’を端子部間隔として、電極部5a,5bに接続固定する。すなわち、円筒状ヒータ4が光ファイバ母材を加熱溶融する温度に昇温され、真円を保って熱膨張した状態を仮想した位置で、円筒状ヒータの端子部9a,9bを電極部5a,5bに接続固定する。
この結果、線引き炉1が稼動されていない状態(加熱されていない状態)では、円筒状ヒータ4は、図2(B)に示すように、端子部9a,9bの方向に引き伸ばされた楕円状となり、端子部9a,9bのX−X方向の外径Dxは元の直径Dより大きくなり、これと90°位置が異なるY−Y方向の外径Dyは元の直径Dより小さくなる形状で保持される。
In the present invention, when the cylindrical heater 4 is thermally expanded uniformly in the radial direction and the terminal portion interval L between the terminal portions 9a and 9b is expanded, the dimension L ′ is defined as L ′. As the interval, it is connected and fixed to the electrode portions 5a and 5b. That is, the cylindrical heater 4 is heated to a temperature at which the optical fiber preform is heated and melted, and the terminal portions 9a, 9b of the cylindrical heater are connected to the electrode portions 5a, Connect and fix to 5b.
As a result, when the drawing furnace 1 is not operated (not heated), the cylindrical heater 4 has an elliptical shape stretched in the direction of the terminal portions 9a and 9b as shown in FIG. Thus, the outer diameter Dx in the XX direction of the terminal portions 9a and 9b is larger than the original diameter D, and the outer diameter Dy in the YY direction, which is 90 ° different from this, is smaller than the original diameter D. Retained.

この状態で、取り付け固定された円筒状ヒータ4は、所定の温度まで発熱して昇温されると、温度上昇による熱膨張による歪を解放するために径方向に膨らむ。しかし、端子部9a,9bのX―X方向では、電極部5a,5bに固定されていて変形が阻止されるため、Y−Y方向に膨らむ。この結果、所定の温度まで昇温したときに、鎖線で示すようにY−Y方向の外径がFとなる。このとき、変形が抑制されたX―X方向の外径Dxと、Y−Y方向の外径Fと、が等しくなるようにL’が設定されていれば、円筒状ヒータ4は真円になるように変形する。   In this state, when the cylindrical heater 4 attached and fixed generates heat to a predetermined temperature and is heated, the cylindrical heater 4 expands in the radial direction in order to release distortion due to thermal expansion due to the temperature increase. However, in the XX direction of the terminal portions 9a and 9b, the terminal portions 9a and 9b are fixed to the electrode portions 5a and 5b and are prevented from being deformed, and thus swell in the YY direction. As a result, when the temperature is raised to a predetermined temperature, the outer diameter in the YY direction becomes F as shown by the chain line. At this time, if L ′ is set so that the outer diameter Dx in the XX direction in which the deformation is suppressed and the outer diameter F in the YY direction are equal, the cylindrical heater 4 becomes a perfect circle. It transforms to become.

円筒状ヒータ4が真円状態を保って所定の加熱温度で稼動されていれば、X−X方向での光ファイバ母材2と円筒状ヒータ4の内面4cとの間隔S1と、Y−Y方向での光ファイバ母材2と円筒状ヒータ4の内面4cとの間隔S2は、S1=S2となる。これにより、光ファイバ母材2は、円筒状ヒータ4に対して均一な間隔Sで加熱される。この結果、光ファイバ母材2の周方向での温度分布は均一となり、線引きされる光ファイバの非円率を小さくすることができる。   If the cylindrical heater 4 is operated at a predetermined heating temperature while maintaining a perfect circular state, the distance S1 between the optical fiber preform 2 and the inner surface 4c of the cylindrical heater 4 in the XX direction, and YY The distance S2 between the optical fiber preform 2 and the inner surface 4c of the cylindrical heater 4 in the direction is S1 = S2. Thereby, the optical fiber preform 2 is heated at a uniform interval S with respect to the cylindrical heater 4. As a result, the temperature distribution in the circumferential direction of the optical fiber preform 2 is uniform, and the non-circularity of the drawn optical fiber can be reduced.

なお、常温t0での円筒状ヒータ4の端子部間寸法をL、並びに円筒状ヒータ円筒部の外径寸法をDとする。そして、円筒状ヒータ円筒部の昇温時の温度をt1、円筒状ヒータ4の端子部9a(9b)の昇温時の温度をt2、円筒状ヒータ4の熱膨張係数をαとする。この場合、上述した円筒状ヒータ4を電極部5a,5bに接続固定する際の端子部間寸法L’は、
L’=L+[D×(t1−t0)×α]+[(L−D)×(t2−t0)×α]
の式により算出することができる。なお、円筒状ヒータ4がカーボン製の場合、等方向カーボンの熱膨張係数は、使用温度領域で(4〜6)×10−6/℃程度の値となる。
Note that the dimension between the terminal portions of the cylindrical heater 4 at room temperature t0 is L, and the outer diameter dimension of the cylindrical heater cylindrical portion is D. The temperature when the cylindrical heater is heated is t1, the temperature when the terminal portion 9a (9b) of the cylindrical heater 4 is heated is t2, and the thermal expansion coefficient of the cylindrical heater 4 is α. In this case, the dimension L ′ between the terminal portions when the cylindrical heater 4 is connected and fixed to the electrode portions 5a and 5b is as follows.
L ′ = L + [D × (t1−t0) × α] + [(LD) × (t2−t0) × α]
It can be calculated by the following formula. When the cylindrical heater 4 is made of carbon, the thermal expansion coefficient of the isotropic carbon is a value of about (4-6) × 10 −6 / ° C. in the operating temperature range.

近年、光通信の伝送特性を高めるために、波長1.3μm帯伝送用の一般的なシングルモード光ファイバを用いて、波長1.55μm帯で光通信を行う場合、分散補償光ファイバを用いることが行われている。この分散補償光ファイバは、コア部にドーパントの添加によりクラッド部に対する比屈折率差を大きくされた構造を有し、また、コア径も一般的な光ファイバが8μm〜10μmであるのに対し、2μm〜6μmとなっている。   In recent years, in order to improve the transmission characteristics of optical communication, a dispersion-compensating optical fiber is used when optical communication is performed in a wavelength of 1.55 μm using a general single mode optical fiber for wavelength of 1.3 μm. Has been done. This dispersion compensating optical fiber has a structure in which the relative refractive index difference with respect to the cladding portion is increased by adding a dopant to the core portion, and the core diameter is 8 μm to 10 μm for a general optical fiber, whereas It is 2 μm to 6 μm.

分散補償光ファイバのような高屈折率のコア部を備える光ファイバでは、偏波分散(Polarization Mode Dispersion:PMD)が生じやすい。また、コア部にドーパントを添加すると、コアを形成するガラスが低粘度となるのでコア部が非円化しやすくなる。分散補償光ファイバのPMDは、非円率に比例して大きくなるため、分散補償光ファイバのような非屈折率差の大きい光ファイバでは、特に非円率を小さくする必要がある。   In an optical fiber having a core portion with a high refractive index such as a dispersion compensating optical fiber, polarization mode dispersion (PMD) is likely to occur. Further, when a dopant is added to the core portion, the glass forming the core has a low viscosity, so that the core portion is likely to be non-circular. Since the PMD of the dispersion compensating optical fiber increases in proportion to the non-circularity, it is particularly necessary to reduce the noncircularity in an optical fiber having a large non-refractive index difference such as a dispersion compensating optical fiber.

本発明では、上述したように、通常に用いられている円筒状ヒータの一対の端子部の電極部への接続固定する位置を、少し変更するだけの簡単な方法で実現することができる。このため、加熱部の改造やヒータの形状変更を行う必要がなく、したがって、コスト増を伴うことなく容易に実施することができ、特に、非円化が生じやすく、非円率を小さく抑える必要のある分散補償光ファイバの製造に適用すると有用である。   In the present invention, as described above, the position where the pair of terminal portions of the commonly used cylindrical heater are fixedly connected to the electrode portions can be realized by a simple method with a slight change. For this reason, it is not necessary to modify the heating part or change the shape of the heater, and therefore can be easily carried out without increasing the cost. In particular, non-circularity is likely to occur, and the non-circularity needs to be kept small. It is useful when applied to the manufacture of certain dispersion compensating optical fibers.

1…線引き炉、2…光ファイバ母材、3…炉心管、4…円筒状ヒータ、4a…発熱部、4b…スリット、4c…ヒータ内面、5a,5b…電極部、6…断熱材、7…炉筐体、7a…上部筒、7b…下部筒、8…母材供給機構、9a,9b…端子部、10a,10b…取り付け位置、11…固定部材、12…絶縁部材、13,14…ガス流入口、15…ガス流出口。 DESCRIPTION OF SYMBOLS 1 ... Drawing furnace, 2 ... Optical fiber preform, 3 ... Core tube, 4 ... Cylindrical heater, 4a ... Heat generating part, 4b ... Slit, 4c ... Heater inner surface, 5a, 5b ... Electrode part, 6 ... Heat insulation material, 7 ... furnace casing, 7a ... upper cylinder, 7b ... lower cylinder, 8 ... base material supply mechanism, 9a, 9b ... terminal part, 10a, 10b ... attachment position, 11 ... fixing member, 12 ... insulating member, 13,14 ... Gas inlet, 15 ... gas outlet.

Claims (3)

光ファイバ母材が供給される炉心管と、前記炉心管を囲む円筒状ヒータと、前記円筒状ヒータに電力を供給するための電極部と、前記円筒状ヒータの外側を囲む断熱材と、全体を囲む炉筐体を備えた光ファイバ線引き炉であって、
前記円筒状ヒータが前記光ファイバ母材を加熱溶融する温度に昇温され、前記円筒状ヒータが真円状態に熱膨張した状態の位置で、前記円筒状ヒータの端子部が前記電極部に接続固定されていることを特徴とする光ファイバ線引き炉。
A core tube to which an optical fiber preform is supplied, a cylindrical heater surrounding the core tube, an electrode portion for supplying power to the cylindrical heater, a heat insulating material surrounding the outside of the cylindrical heater, and the whole An optical fiber drawing furnace with a furnace casing surrounding
The cylindrical heater is heated to a temperature at which the optical fiber preform is heated and melted, and the cylindrical heater terminal portion is connected to the electrode portion at a position where the cylindrical heater is thermally expanded to a perfect circle. An optical fiber drawing furnace characterized by being fixed.
常温t0での前記円筒状ヒータの端子部間寸法をL、並びに前記円筒状ヒータ円筒部の外径寸法をD、前記円筒状ヒータ円筒部の昇温時の温度をt1、前記円筒状ヒータ端子部の昇温時の温度をt2、前記円筒状ヒータの熱膨張係数をαとしたとき、
前記円筒状ヒータが前記電極部に接続固定される際の端子部間寸法L’は、
L’=L+[D×(t1−t0)×α]+[(L−D)×(t2−t0)×α]
であることを特徴とする請求項1に記載の光ファイバ線引き炉。
The dimension between the terminal portions of the cylindrical heater at room temperature t0 is L, the outer diameter dimension of the cylindrical heater cylindrical portion is D, the temperature when the cylindrical heater cylindrical portion is heated is t1, and the cylindrical heater terminal When the temperature at the time of heating of the part is t2, and the thermal expansion coefficient of the cylindrical heater is α,
The dimension L ′ between the terminal portions when the cylindrical heater is connected and fixed to the electrode portion is:
L ′ = L + [D × (t1−t0) × α] + [(LD) × (t2−t0) × α]
The optical fiber drawing furnace according to claim 1, wherein
光ファイバ母材が供給される炉心管と、前記炉心管を囲む円筒状ヒータと、前記円筒状ヒータに電力を供給するための電極部と、前記円筒状ヒータの外側を囲む断熱材と、全体を囲む炉筐体を備えた光ファイバ線引き炉を用いた光ファイバ線引き方法であって、
前記円筒状ヒータを前記光ファイバ母材が加熱溶融される温度に昇温し、前記円筒状ヒータが熱膨張した状態の位置で前記円筒状ヒータの端子部を前記電極部に接続固定し、前記光ファイバ母材の加熱溶融時に前記円筒状ヒータが真円状態となるようにして、前記光ファイバ母材を加熱溶融することを特徴とする光ファイバ線引き方法。
A core tube to which an optical fiber preform is supplied, a cylindrical heater surrounding the core tube, an electrode portion for supplying power to the cylindrical heater, a heat insulating material surrounding the outside of the cylindrical heater, and the whole An optical fiber drawing method using an optical fiber drawing furnace provided with a furnace casing surrounding
The temperature of the cylindrical heater is raised to a temperature at which the optical fiber preform is heated and melted, and the terminal portion of the cylindrical heater is connected and fixed to the electrode portion at a position where the cylindrical heater is thermally expanded, An optical fiber drawing method, wherein the optical fiber preform is heated and melted such that the cylindrical heater is in a perfect circle when the optical fiber preform is heated and melted.
JP2009297895A 2009-12-28 2009-12-28 Optical fiber drawing furnace and optical fiber drawing method Active JP5655304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297895A JP5655304B2 (en) 2009-12-28 2009-12-28 Optical fiber drawing furnace and optical fiber drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297895A JP5655304B2 (en) 2009-12-28 2009-12-28 Optical fiber drawing furnace and optical fiber drawing method

Publications (2)

Publication Number Publication Date
JP2011136862A true JP2011136862A (en) 2011-07-14
JP5655304B2 JP5655304B2 (en) 2015-01-21

Family

ID=44348687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297895A Active JP5655304B2 (en) 2009-12-28 2009-12-28 Optical fiber drawing furnace and optical fiber drawing method

Country Status (1)

Country Link
JP (1) JP5655304B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256415A (en) * 2012-06-13 2013-12-26 Fujikura Ltd Heating furnace for manufacturing optical fiber
CN114315126A (en) * 2021-12-06 2022-04-12 江苏法尔胜光电科技有限公司 Preparation process of superfine-diameter optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229316A (en) * 1993-02-03 1994-08-16 Kawasaki Heavy Ind Ltd Piston of two-cycle engine
JPH06231866A (en) * 1993-02-08 1994-08-19 Furukawa Electric Co Ltd:The Heating furnace
JPH07206464A (en) * 1994-01-24 1995-08-08 Furukawa Electric Co Ltd:The Drawing and heating furnace for optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229316A (en) * 1993-02-03 1994-08-16 Kawasaki Heavy Ind Ltd Piston of two-cycle engine
JPH06231866A (en) * 1993-02-08 1994-08-19 Furukawa Electric Co Ltd:The Heating furnace
JPH07206464A (en) * 1994-01-24 1995-08-08 Furukawa Electric Co Ltd:The Drawing and heating furnace for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256415A (en) * 2012-06-13 2013-12-26 Fujikura Ltd Heating furnace for manufacturing optical fiber
CN114315126A (en) * 2021-12-06 2022-04-12 江苏法尔胜光电科技有限公司 Preparation process of superfine-diameter optical fiber

Also Published As

Publication number Publication date
JP5655304B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
RU2612176C2 (en) Optical fibre producing method and device and optical fibre
US4400190A (en) Graphite element for use in a furnace for drawing optical fiber
JP2013512463A (en) Low loss optical fiber
JP5880522B2 (en) Optical fiber manufacturing method and optical fiber drawing furnace
KR0165211B1 (en) Apparatus for drawing optical fiber
JP5655304B2 (en) Optical fiber drawing furnace and optical fiber drawing method
WO2018042758A1 (en) Method for manufacturing optical fiber
US8330081B2 (en) Filament heating device for an optical fiber and related methods
JP5255306B2 (en) Optical fiber drawing method
JP2870058B2 (en) Optical fiber drawing furnace and drawing method
JP4093964B2 (en) Resistance furnace
WO2013002028A1 (en) Furnace for glass base material
CN102684058B (en) Two-frequency laser frequency regulator and control method thereof
JP5041425B2 (en) Optical fiber preform stretching apparatus and optical fiber preform manufacturing method
KR100563501B1 (en) Optical fiber preform-heating furnace
JP2002173333A (en) Heating furnace for drawing of optical fiber and drawing method
JPH092833A (en) Fiber drawing method of optical fiber and its fiber drawing furnace
Payne et al. A resistance-heated high temperature furnace for drawing silica-based fibres for optical communications
US20110042359A1 (en) Plasma heating device for an optical fiber and related methods
JP5321210B2 (en) Variable dispersion compensator
KR200286995Y1 (en) Electric furnace by using Indirect heating method
CN116239295A (en) Induction furnace with rotating susceptor for high precision waveguide glass draw
JP5260664B2 (en) Glass fiber drawing furnace
JP5757192B2 (en) Optical fiber drawing furnace
JP2013256415A (en) Heating furnace for manufacturing optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250