JP2011133362A - Shaft system stability measuring method and operation method of rotary machine - Google Patents

Shaft system stability measuring method and operation method of rotary machine Download PDF

Info

Publication number
JP2011133362A
JP2011133362A JP2009293268A JP2009293268A JP2011133362A JP 2011133362 A JP2011133362 A JP 2011133362A JP 2009293268 A JP2009293268 A JP 2009293268A JP 2009293268 A JP2009293268 A JP 2009293268A JP 2011133362 A JP2011133362 A JP 2011133362A
Authority
JP
Japan
Prior art keywords
frequency
shaft system
stability
rotating machine
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009293268A
Other languages
Japanese (ja)
Inventor
Toshio Hirano
俊夫 平野
Masayuki Ichimonji
正幸 一文字
Hitoshi Sakakida
均 榊田
Kenichi Imai
健一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009293268A priority Critical patent/JP2011133362A/en
Publication of JP2011133362A publication Critical patent/JP2011133362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately evaluate the stability of a rotary shaft system, by extracting a characteristic vibration component of the rotary shaft system at operation. <P>SOLUTION: A method includes a first step of measuring vibration generated during operation of a rotary machine by a rotating section or a non-rotating section; a second step of performing frequency analysis by paying attention to a characteristic frequency of the rotary machine relative to a vibration signal measured in the first step; a third step of acquiring a frequency response, by executing equalization processing continuously for a prescribed time so that a frequency component of the characteristic frequency subjected to frequency analysis in the second step can be extracted; and a fourth step of evaluating stability of the rotary shaft system, from the frequency response obtained in the third step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、運転時における回転軸系の固有振動成分を検出して回転軸系の安定性を評価する回転機械の軸系安定性計測方法及び運転方法に関する。   The present invention relates to a shaft system stability measurement method and an operation method of a rotating machine that detects a natural vibration component of a rotation shaft system during operation and evaluates the stability of the rotation shaft system.

回転機械の回転軸系においては、さまざまな不安定化要因が存在しており、運転状態によって転軸の安定性が損なわれると、振動の増大を生じさせることがある。この回転軸の安定性が損なわれる要因としては、例えば軸受の荷重不足によるオイルウイップ、オイルホワールや、蒸気タービンで蒸気の旋回流に起因するスチームホワールなどの現象が見られる。   There are various destabilizing factors in the rotating shaft system of a rotating machine, and if the stability of the rotating shaft is impaired depending on the operating state, vibration may increase. Factors that impair the stability of the rotating shaft include, for example, oil whip and oil whirl due to insufficient bearing load, and steam whirl caused by the swirling flow of steam in the steam turbine.

これらの現象は、いずれも回転軸系の減衰率が低下することで生じるもので、回転機械の安全性を確保する上で回転軸系の安定性評価は非常に有効な手段である。   All of these phenomena are caused by a decrease in the attenuation rate of the rotating shaft system, and the stability evaluation of the rotating shaft system is a very effective means for ensuring the safety of the rotating machine.

しかるに、静止時の固有振動測定から求められる減衰率は構造物の値であって、不安定要因である軸受や蒸気流の効果が含まれていないため、直接評価に用いることはできない。   However, the damping rate obtained from the natural vibration measurement at rest is a value of the structure, and does not include the effects of bearings and steam flow, which are unstable factors, and cannot be used for direct evaluation.

一方、回転機械の運転中は、回転数やその整数倍の振動数における振動振幅が支配的であるため、通常の振動測定では回転軸系の安定性の評価に必要な自由振動成分を抽出することが困難である。   On the other hand, during the operation of the rotating machine, the vibration amplitude at the rotation speed and its integral multiple is dominant, so the normal vibration measurement extracts the free vibration component necessary for evaluating the stability of the rotating shaft system. Is difficult.

従来、回転軸系の安定性評価方法としては、電磁石を用いて運転中の回転軸に対して強制的に加振を行って、回転軸に自由振動を生じさせてその減衰率を測定する方法(例えば、特許文献1)や、加振を行わず、回転機械の運転中に発生する暗振動を用いた振動特性評価法(例えば、特許文献2)がある。   Conventionally, as a method for evaluating the stability of a rotating shaft system, an electromagnet is used to forcibly apply vibration to a rotating shaft that is in operation, thereby causing free vibration in the rotating shaft and measuring the attenuation rate. (For example, patent document 1) and the vibration characteristic evaluation method (for example, patent document 2) using the dark vibration which generate | occur | produces during a driving | running | working of a rotary machine without performing vibration.

特公平5−5057号公報Japanese Patent Publication No. 5-5057 米国特許7078434号公報US Patent No. 7078434

しかし、特許文献1に記載の減衰率測定方法では、大掛かりな加振装置が必要な上に、不釣り合い振動と同程度の大きな振動を発生させることになるため、回転機械の日常的な監視には適していない。   However, the attenuation factor measuring method described in Patent Document 1 requires a large-scale vibration device and generates a vibration as large as an unbalanced vibration. Is not suitable.

また、特許文献2に記載の振動特性評価法では、平常運転時における暗振動の固有振動数近傍は振動レベルが低く、ランダム応答となるため、リアルタイムの応答曲線から精度よく減衰比を評価することは困難である。   In addition, in the vibration characteristic evaluation method described in Patent Document 2, since the vibration level is low near the natural frequency of dark vibration during normal operation and a random response is obtained, the damping ratio is accurately evaluated from a real-time response curve. It is difficult.

本発明の目的は、運転時における回転軸系の固有振動成分を抽出して、回転軸系の安定性を精度よく評価することができる回転機械の軸系安定性計測方法及び運転方法を提供することにある。   An object of the present invention is to provide a shaft system stability measurement method and an operation method of a rotating machine that can extract the natural vibration component of the rotation shaft system during operation and accurately evaluate the stability of the rotation shaft system. There is.

本発明は上記のような目的を達成するため、次のような方法により回転機械の軸系安定性を計測するものである。   In order to achieve the above object, the present invention measures the shaft system stability of a rotating machine by the following method.

(1)回転機械の運転時に発生する振動を回転部又は非回転部で計測する第1のステップと、この第1のステップで計測された振動信号に対し前記回転機械の固有振動数に着目して周波数分析を行う第2のステップと、この第2のステップにより周波数分析された前記固有振動数の周波数成分が抽出できるよう所定時間連続的に平均化処理を実施して周波数応答を得る第3のステップと、この第3のステップによって得られる周波数応答から回転軸系の安定性を評価する第4のステップとを備えて回転機械の軸系安定性を計測する。 (1) Focusing on the natural frequency of the rotating machine with respect to the vibration signal measured in the first step of measuring the vibration generated during the operation of the rotating machine at the rotating part or the non-rotating part. And a second step of performing frequency analysis, and a frequency response is obtained by performing averaging processing continuously for a predetermined time so that the frequency component of the natural frequency frequency-analyzed by the second step can be extracted. And a fourth step of evaluating the stability of the rotating shaft system from the frequency response obtained by the third step, and measuring the shaft system stability of the rotating machine.

(2)上記回転機械の軸系安定性計測方法において、前記第3のステップにより得られる周波数応答から当該周波数における減衰率を求める第5のステップを設け、前記第4のステップは、前記第5のステップで求められた減衰率の大きさから回転軸系の安定性を評価する。 (2) In the shaft system stability measurement method of the rotary machine, a fifth step is provided for obtaining an attenuation factor at the frequency from the frequency response obtained by the third step, and the fourth step is the fifth step. The stability of the rotating shaft system is evaluated from the magnitude of the attenuation rate obtained in the above step.

(3)上記回転機械の軸系安定性計測方法において、前記回転機械の現在までの運転条件の変化に対する前記第4のステップで評価される回転軸系の安定性の変化から、将来の回転軸系の安定性を推定する第6のステップを設ける。 (3) In the shaft system stability measurement method of the rotating machine, from the change in stability of the rotating shaft system evaluated in the fourth step with respect to the change in operating conditions of the rotating machine up to the present, a future rotating shaft A sixth step for estimating the stability of the system is provided.

(4)上記回転機械の軸系安定性計測方法により評価される回転軸系安定性の結果から回転機械の運転条件を調整して運転する。 (4) Operate by adjusting the operating conditions of the rotating machine from the result of the rotating shaft system stability evaluated by the shaft system stability measuring method of the rotating machine.

本発明によれば、運転時における回転軸系の固有振動成分を抽出して回転軸系の安定性を精度よく評価することができる。   According to the present invention, it is possible to accurately evaluate the stability of the rotating shaft system by extracting the natural vibration component of the rotating shaft system during operation.

本発明による回転機械の軸系安定性計測方法を説明するための第1の実施形態における一例を示す構成図。The block diagram which shows an example in 1st Embodiment for demonstrating the shaft-system stability measurement method of the rotary machine by this invention. 同実施形態における他の例を示す構成図。The block diagram which shows the other example in the embodiment. 従来の手法による回転軸の振動の解析結果を示すグラフ。The graph which shows the analysis result of the vibration of the rotating shaft by the conventional method. 本発明の第1の実施形態における回転軸の振動の周波数分析結果を示すグラフ。The graph which shows the frequency analysis result of the vibration of the rotating shaft in the 1st Embodiment of this invention. 同実施形態において、平均化処理時間1分の場合の減衰比推定誤差を示すグラフ。4 is a graph showing an attenuation ratio estimation error when the averaging processing time is 1 minute in the embodiment. 同じく平均化処理時間5分の場合の減衰比推定誤差を示すグラフ。Similarly, a graph showing an attenuation ratio estimation error when the averaging processing time is 5 minutes. 同実施形態において、平均化処理時間と最大誤差の関係を示すグラフ。4 is a graph showing the relationship between the averaging processing time and the maximum error in the embodiment. 同実施形態において、回転軸の安定性評価を説明するための周波数と振幅の関係を示す曲線図。In the same embodiment, the curve figure which shows the relationship between the frequency and amplitude for demonstrating stability evaluation of a rotating shaft. 同実施形態において、回転機械の安定性評価を説明するためのタービン出力と減衰率の関係を示す曲線図。In the same embodiment, the curve figure which shows the relationship between the turbine output and attenuation factor for demonstrating stability evaluation of a rotary machine. 本発明による回転機械の軸系安定性計測方法を説明するための第2の実施形態及び第3の実施形態におけるフィルタ処理による周波数と振幅との関係を示す図。The figure which shows the relationship between the frequency and amplitude by the filter process in 2nd Embodiment and 3rd Embodiment for demonstrating the shaft system stability measuring method of the rotary machine by this invention. 本発明による回転機械の運転条件決定方法を説明するための実施形態におけるタービン出力と減衰率の関係を示す図。The figure which shows the relationship between the turbine output and attenuation factor in embodiment for demonstrating the operating condition determination method of the rotary machine by this invention.

以下本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は、本発明による回転機械の軸系安定性計測方法を説明するための第1の実施形態における一例を示す構成図である。
(First embodiment)
FIG. 1 is a configuration diagram showing an example in the first embodiment for explaining a shaft system stability measuring method of a rotating machine according to the present invention.

図1において、1は回転機械で、この回転機械1の回転軸2はその両端部側に設けられた軸受3により回転自在に支持されている。このような回転機械1において、回転軸2の軸受3より外側の回転軸2に対応させて非接触式変位計4を図示しない支持体に支持させて設ける。   In FIG. 1, reference numeral 1 denotes a rotary machine, and a rotary shaft 2 of the rotary machine 1 is rotatably supported by bearings 3 provided at both ends thereof. In such a rotating machine 1, the non-contact displacement meter 4 is provided on a support body (not shown) so as to correspond to the rotating shaft 2 outside the bearing 3 of the rotating shaft 2.

この非接触式変位計4は、回転軸2の変位を検出するもので、その検出値は変換器5に取込まれて電圧信号に変換される。この変換器5より出力される電圧信号は、フィルタ6を介してFFTアナライザ7に入力され、周波数分析が行われる。   This non-contact type displacement meter 4 detects the displacement of the rotating shaft 2, and the detected value is taken into the converter 5 and converted into a voltage signal. The voltage signal output from the converter 5 is input to the FFT analyzer 7 through the filter 6 and subjected to frequency analysis.

このFFTアナライザ7による周波数分析結果が演算装置8に取込まれると、この演算装置8では詳細を後述する演算処理により周波数分析結果に基づく回転軸2の安定性を評価する。   When the frequency analysis result obtained by the FFT analyzer 7 is taken into the arithmetic device 8, the arithmetic device 8 evaluates the stability of the rotating shaft 2 based on the frequency analysis result by arithmetic processing described later in detail.

図2は同実施形態の他の例を示す構成図である。   FIG. 2 is a configuration diagram showing another example of the embodiment.

図1では、回転機械1の回転軸2の両端部側に非接触式変位計4を設け、この非接触式変位計4により検出された回転軸2の変位を変換器5により電圧信号に変換してフィルタ6を介してFFTアナライザ7に入力するようにしたが、回転軸2の振動は軸受3に伝播されるので、図2では、回転軸2の両端部側を支持する軸受3に加速度ピックアップ9を接触させて設け、この加速度ピックアップ9で抽出された加速度を振動計10により電圧信号として増幅した上でフィルタ6を介してFFTアナライザ7に入力するようにしたものである。   In FIG. 1, a non-contact displacement meter 4 is provided on both ends of the rotating shaft 2 of the rotating machine 1, and the displacement of the rotating shaft 2 detected by the non-contact displacement meter 4 is converted into a voltage signal by the converter 5. However, since the vibration of the rotating shaft 2 is propagated to the bearing 3, the acceleration is applied to the bearing 3 supporting both ends of the rotating shaft 2 in FIG. A pickup 9 is provided in contact, and the acceleration extracted by the acceleration pickup 9 is amplified as a voltage signal by the vibration meter 10 and then input to the FFT analyzer 7 via the filter 6.

上記のように構成された本発明の第1の実施形態における回転機械の軸系安定性計測方法について説明する。   The shaft system stability measuring method of the rotating machine in the first embodiment of the present invention configured as described above will be described.

まず、従来の手法により回転軸2の振動をFFTアナライザ7で周波数分析した場合について述べる。   First, the case where the frequency of the vibration of the rotating shaft 2 is analyzed by the FFT analyzer 7 by a conventional method will be described.

図3は、回転機械の運転中に発生する回転軸2の振動をFFTアナライザ7で従来の手法により周波数分析した場合の周波数応答波形を示すもので、横軸は周波数、縦軸は振幅を表している。   FIG. 3 shows a frequency response waveform when the vibration of the rotating shaft 2 generated during the operation of the rotating machine is subjected to frequency analysis by the FFT analyzer 7 by a conventional method. The horizontal axis represents frequency and the vertical axis represents amplitude. ing.

通常、回転軸2の振動は不釣り合い振動が大きいので、図3に見られるように回転軸2の回転周波数fRにおける振幅が著しく大きく、それ以外の周波数成分は殆んど識別されることはなかった。 Usually, since the vibration of the rotating shaft 2 has a large unbalanced vibration, the amplitude at the rotation frequency f R of the rotating shaft 2 is remarkably large as seen in FIG. 3, and the other frequency components are hardly distinguished. There wasn't.

また、回転同期周波数や回転周波数の整数倍など異常時に振幅が成長する特定の周波数以外の振動数については注目することもなかった。   Further, no attention has been paid to frequencies other than a specific frequency at which the amplitude grows at the time of abnormality such as a rotation synchronization frequency or an integer multiple of the rotation frequency.

さらに、回転軸2の固有振動数については、危険速度通過時に注意されるが、これは回転周波数と一致するからであって、定常運転時においては共振問題が発生しない限り検討されることはなかった。   Furthermore, the natural frequency of the rotating shaft 2 is noted when passing through a critical speed, but this is because it coincides with the rotational frequency, and is not considered unless a resonance problem occurs during steady operation. It was.

しかしながら、回転軸2の固有振動数fn付近に着目すると、回転同期成分に比べると非常に低いレベルではあるものの、振幅のピークの存在を認めることができる。これは回転軸2の不釣り合い加振力に比べると小さいが、回転軸2の回転によってランダムに広い帯域周波数で加振がなされ、回転軸2に自由振動が発生して回転軸2の固有振動数が励起されたものと考えられる。 However, focusing on the vicinity of the natural frequency f n of the rotating shaft 2, the presence of an amplitude peak can be recognized although it is at a very low level compared to the rotational synchronization component. This is smaller than the unbalanced excitation force of the rotating shaft 2, but the rotation of the rotating shaft 2 randomly generates vibrations in a wide band frequency, and free vibration is generated in the rotating shaft 2, so that the natural vibration of the rotating shaft 2 is generated. It is thought that the number was excited.

次に本発明の第1の実施形態において、回転軸2の振動をFFTアナライザ7で周波数分析した場合について述べる。   Next, in the first embodiment of the present invention, the case where the frequency of the vibration of the rotating shaft 2 is analyzed by the FFT analyzer 7 will be described.

近年、測定器の性能が向上されるにつれて、ダイナミックレンジを大きくとることができるため、このような小さい振動でも比較的高精度に分析することが可能になってきている。   In recent years, as the performance of measuring instruments has been improved, the dynamic range can be increased, so that even such small vibrations can be analyzed with relatively high accuracy.

図4は、図3における固有振動数fn近傍を拡大して示したものである。図4に示す破線は、通常の分析時間で回転軸2の振動を周波数分析した場合の応答波形である。 FIG. 4 is an enlarged view of the vicinity of the natural frequency f n in FIG. The broken line shown in FIG. 4 is a response waveform when the frequency of the vibration of the rotating shaft 2 is analyzed in a normal analysis time.

通常の振動測定では、FFTアナライザ7の分析時間は数秒程度で、長くとも数分間とすることが一般的である。長時間の監視を行う場合も、前述のような短時間の測定を繰返すものであって、測定時間と分析時間が一致するものではなかった。   In normal vibration measurement, the analysis time of the FFT analyzer 7 is about several seconds, and is generally several minutes at the longest. Even when monitoring for a long time, the above-mentioned short-time measurement is repeated, and the measurement time does not coincide with the analysis time.

このように固有振動数fn近傍で振幅の増大が認められるものの、加振力が弱くかつランダム的であることから、この帯域での応答波形から固有振動数を正確に特定できるほど明確なピークを把握することができない。 Although an increase in amplitude is recognized in the vicinity of the natural frequency f n as described above, the excitation force is weak and random, so that the peak is clear enough to accurately identify the natural frequency from the response waveform in this band. I can't figure out.

このことも、これまで運転時の固有振動数に注意が払われなかった要因の一つであると考えられるが、ランダム加振による応答波形は平均化処理を多数繰返せば測定精度を向上させることができるので、長時間に亘ってFFTアナライザ7による分析を連続的に持続させたところ図4の実線で示すように明確なピーク波形を求めることができた。   This is also considered to be one of the factors for which attention has not been paid to the natural frequency during operation so far, but the response waveform by random excitation improves measurement accuracy by repeating the averaging process many times. Therefore, when the analysis by the FFT analyzer 7 was continuously continued for a long time, a clear peak waveform could be obtained as shown by the solid line in FIG.

この波形はランダム加振による回転軸2の自由振動の周波数応答を示すものであるから、最大点から固有振動数fnを求めるとともに応答波形にハーフパワー法を適用することによって減衰率ζを計算することができる。 Since this waveform shows the frequency response of the free vibration of the rotating shaft 2 by random excitation, the damping rate ζ is calculated by obtaining the natural frequency f n from the maximum point and applying the half power method to the response waveform. can do.

すなわち、ピークの1/2の振幅における応答波形の振動振幅Δfを固有振動数fnで割った値が1/2ζに一致することから、減衰率ζを計算することができる。この他、カーブフィッテングの手法を適用しても固有振動数fnや減衰率ζを求めることができる。 That is, since the value obtained by dividing the vibration amplitude Δf of the response waveform at the half amplitude of the peak by the natural frequency f n is equal to 1 / 2ζ, the damping rate ζ can be calculated. In addition, the natural frequency f n and the damping rate ζ can be obtained even by applying the curve fitting method.

上述した手法により、精度良く軸系の減衰率を評価するためには平均化処理を行う時間を適切に設定する必要がある。   In order to accurately evaluate the attenuation rate of the shaft system by the above-described method, it is necessary to appropriately set the time for performing the averaging process.

図5は、蒸気タービンを模擬した軸・軸受系に対するシミュレーション計算によって得られた軸振動データに対し、(1)周波数分析、(2)1分間の分析結果を平均化処理、(3)ハーフパワー法による減衰比推定を繰り返し行い、減衰比推定誤差をプロットしたものである。   Fig. 5 shows (1) frequency analysis, (2) averaging analysis results for 1 minute, and (3) half power for shaft vibration data obtained by simulation calculation for a shaft / bearing system simulating a steam turbine. Attenuation ratio estimation error is repeatedly performed, and attenuation ratio estimation errors are plotted.

シミュレーション計算では、軸にホワイトノイズ状の周波数特性を持ったランダムな加振力が作用していると仮定した。最大で0.4%程度の誤差が発生していることが分かる。   In the simulation calculation, it was assumed that a random excitation force with white noise-like frequency characteristics was acting on the axis. It can be seen that an error of about 0.4% occurs at the maximum.

同様に、図6は、5分間の平均化処理を行い、誤差をプロットしたもので、この場合、最大誤差は0.2%以下の精度となる。   Similarly, FIG. 6 shows an error plotted by performing an averaging process for 5 minutes. In this case, the maximum error is an accuracy of 0.2% or less.

図7は、平均化処理時間と最大誤差の関係をプロットしたもので、平均化処理時間が長くなればなるほど最大誤差は小さくなるが、20分で誤差0.1%以下とより十分な精度が得られることが分かる。   FIG. 7 is a plot of the relationship between the averaging process time and the maximum error. The longer the averaging process time is, the smaller the maximum error is. However, in 20 minutes, the error is 0.1% or less. You can see that

このシミュレーションでは、1回の周波数分析に4秒間のデータが必要になるので、5分(300秒)で75回、20分(1200秒)で300回の平均化処理を行っていることになる。このことから、平均化処理時間は少なくとも5分以上、好ましくは20分以上とすることが望ましい。ただし、評価対象機械の回転数や固有振動数が、蒸気タービンと大きく異なり、1回当たりの周波数分析時間が変わる場合には、平均化回数75回に相当する時間以上平均化処理を行えば実用上問題ない精度が得られ、平均化回数300回に相当する時間以上とすればより好ましい精度が得られる。   In this simulation, since data for 4 seconds is required for one frequency analysis, averaging processing is performed 75 times in 5 minutes (300 seconds) and 300 times in 20 minutes (1200 seconds). . Therefore, it is desirable that the averaging processing time is at least 5 minutes or more, preferably 20 minutes or more. However, when the frequency of analysis and the natural frequency of the machine to be evaluated are greatly different from those of the steam turbine and the frequency analysis time per time changes, it is practical to perform the averaging process for a time equivalent to 75 times of averaging. An accuracy with no problem can be obtained, and a more preferable accuracy can be obtained if the time is equal to or more than 300 times of averaging.

軸受3の荷重・潤滑油温度や、蒸気など内部を流れる流体の圧力・温度の変化によって、回転軸2の力学系が変化すると減衰率ζに変化が生じる。不安定振動は、自励振動とも呼ばれ、軸系の減衰が負になることによって生じる。数学的には運動方程式を複素固有値λiの実部の符号が負であれば安定、正になると不安定となる。 When the dynamic system of the rotating shaft 2 changes due to changes in the load / lubricating oil temperature of the bearing 3 and the pressure / temperature of the fluid flowing inside, such as steam, the damping ratio ζ changes. Unstable vibration is also called self-excited vibration, and is caused by negative damping of the shaft system. Mathematically, the equation of motion is stable if the sign of the real part of the complex eigenvalue λ i is negative, and unstable if it is positive.

回転軸2の角固有振動数をωiとすれば、λi=−ζiωiの関係が成り立ち、ωi>0であることから減衰率ζiの値から回転軸2の安定性を評価することができる。すなわち、通常の運転時には減衰率ζiの値は数%であるが、タービンの出力上昇などにより不安定な要因が生じてくるとこの値は次第に小さくなっていく。 If the angular natural frequency of the rotating shaft 2 and ω i, λ i = -ζ i ω i relation holds for, omega i> 0 the stability of the rotary shaft 2 from the value of the attenuation factor zeta i since it is the Can be evaluated. That is, during normal operation, the value of the damping rate ζ i is several percent, but when an unstable factor occurs due to an increase in the output of the turbine, the value gradually decreases.

図8はスチームホワールによって回転軸2の減衰が低下し、安定性が損なわれていく過程を示したものである。図8において、実線は安定な状態での波形であって、ピークの振幅は低く、裾野が広い波形を示しているが、不安定な状態に近づくと破線で示すようにピークの周波数(固有振動数fn´)は僅かに低下するとともに振幅が増大する。一方、波形の裾野が狭まった波形に変化し、減衰率が低下(この例では1/2に低下)していることを示している。 FIG. 8 shows a process in which the attenuation of the rotating shaft 2 is lowered by the steam whirl and the stability is impaired. In FIG. 8, the solid line is a waveform in a stable state, and the peak amplitude is low and the base is wide, but when approaching an unstable state, the peak frequency (natural vibration) is shown as indicated by a broken line. The number f n ′) slightly decreases and the amplitude increases. On the other hand, the bottom of the waveform changes to a narrow waveform, indicating that the attenuation factor is reduced (in this example, it is reduced to 1/2).

ここで、図1又は図2において、演算装置8はFFTアナライザ7によって求められた周波数分析結果に基づいて固有振動数fnや減衰率ζを求める。そして、この減衰率ζの変化を監視して安定性の状態を判定する。 Here, in FIG. 1 or FIG. 2, the arithmetic unit 8 obtains the natural frequency f n and the damping rate ζ based on the frequency analysis result obtained by the FFT analyzer 7. The change in the attenuation rate ζ is monitored to determine the stability state.

従来の監視では、回転軸2の振動振幅から判定を行うのが一般的であるが、上述したように不安定な兆候があっても、固有振動数の成分は回転周波数成分に比べて非常に小さいので、振動振幅には殆んど影響が現れない。このため、不安定現象が発生するまで、異常を検知することができない。   In conventional monitoring, it is common to make a determination from the vibration amplitude of the rotating shaft 2, but even if there is an unstable sign as described above, the natural frequency component is much higher than the rotational frequency component. Because it is small, there is almost no effect on the vibration amplitude. For this reason, an abnormality cannot be detected until an unstable phenomenon occurs.

これに対して本発明では、減衰率を監視することで、不安定現象の進行程度を定量的に評価することが可能であり、早期に不安定現象の兆候を検知して、未然に不安定振動の発生を回避できる。   On the other hand, in the present invention, it is possible to quantitatively evaluate the degree of progress of the unstable phenomenon by monitoring the attenuation rate. Generation of vibration can be avoided.

図9は、蒸気タービンにおいて過去の運転記録から出力と減衰率の関係をプロットしたものである。この実績値に基づいて出力Pに対する減衰率ζの近似曲線を求めると、図示するような曲線となる。   FIG. 9 is a plot of the relationship between output and attenuation rate from past operation records in a steam turbine. When an approximate curve of the attenuation rate ζ with respect to the output P is obtained based on this actual value, a curve as shown in the figure is obtained.

上述したように減衰率ζの符号が正から負に反転すると不安定を発生するので、横軸との交点が安定限界となる。すなわち、出力がPuを超えると不安定現象が発生するものと予測されるので、出力Pu以下で運転制限をかけることができる。 As described above, instability occurs when the sign of the attenuation rate ζ is reversed from positive to negative, and the intersection with the horizontal axis is the stability limit. That is, since it is predicted that an unstable phenomenon will occur when the output exceeds P u , it is possible to limit the operation below the output P u .

このように本発明の第1の実施形態では、回転機械の運転時に発生する振動のうち回転機械の固有振動fnに着目して周波数分析を行い、その周波数分析結果に対して連続的に平均化処理を実施することによって得られる周波数応答から該周波数の減衰率ζを求め、その減衰率ζの大きさを監視することにより、回転軸系の安定性を精度よく評価することができる。また、運転中の周波数応答から求められる該周波数の減衰率ζの変化を監視し、現在までの運転条件の変化に対する回転軸系の安定性の変化から、将来の回転軸系の安定性を推定することにより、回転機械1の安定性から異常な運転状態を回避して、回転機械の安全な運転を確保することができる。 As described above, in the first embodiment of the present invention, the frequency analysis is performed by paying attention to the natural vibration f n of the rotating machine among the vibrations generated during the operation of the rotating machine, and the frequency analysis result is continuously averaged. By calculating the attenuation rate ζ of the frequency from the frequency response obtained by performing the conversion processing and monitoring the magnitude of the attenuation rate ζ, the stability of the rotating shaft system can be accurately evaluated. In addition, by monitoring the change in the damping factor ζ of the frequency obtained from the frequency response during operation, the stability of the future rotating shaft system is estimated from the change in the stability of the rotating shaft system with respect to changes in the operating conditions up to now. By doing so, an abnormal operation state can be avoided from the stability of the rotating machine 1 and a safe operation of the rotating machine can be ensured.

(第2の実施形態)
図10は本発明による回転機械の軸系安定性計測方法を説明するための第2の実施形態におけるフィルタ処理による周波数と振幅との関係を示す図である。
(Second Embodiment)
FIG. 10 is a diagram showing the relationship between the frequency and the amplitude by the filter processing in the second embodiment for explaining the shaft system stability measuring method of the rotating machine according to the present invention.

本発明の第2の実施形態では、図1又は図2に示す構成において、フィルタ6に図10に示すような固有振動数fnを中心として透過周波数幅ΔfPのバンドパスフィルタを用いる。このとき、透過周波数幅ΔfPは透過領域に除去したい周波数が入らないように設定するが、少なくともハーフパワー法で必要な周波数幅Δf以上とる必要がある。 In the second embodiment of the present invention, in the configuration shown in FIG. 1 or FIG. 2, a bandpass filter having a transmission frequency width Δf P with the natural frequency f n as shown in FIG. At this time, the transmission frequency width Δf P is set so that the frequency to be removed does not enter the transmission region, but it is necessary to take at least the frequency width Δf required by the half power method.

上述したように、測定された振動データでは回転周波数fRにおける振幅の方が固有振動周波数fnにおける振幅よりも桁外れに値が大きい。測定器のダイナミックレンジには限界があるので、どうしても固有振動数成分の精度が劣化してしまう。 As described above, in the measured vibration data, the amplitude at the rotation frequency f R is much larger than the amplitude at the natural vibration frequency f n . Since the dynamic range of the measuring instrument is limited, the accuracy of the natural frequency component inevitably deteriorates.

そこで、本実施形態のようにフィルタ6に固有振動数fnを中心として透過周波数幅ΔfPのバンドパスフィルタを用いることにより、FFTアナライザ7には必要な周波数範囲の信号のみが入力されるので、大幅にダイナミックレンジが改善される。 Therefore, by using a bandpass filter having a transmission frequency width Δf P centered on the natural frequency f n as the center of the filter 6 as in the present embodiment, only signals in the necessary frequency range are input to the FFT analyzer 7. , Greatly improve the dynamic range.

このように本発明の第2の実施形態では、回転機械1の運転時に発生する振動を回転機械の固有振動周波数に着目して周波数分析を行うに際して、振動信号の入力に対してその周波数の周辺帯域に対してバンドパスフィルタ処理を施して、該周波数帯域のゲインを向上させることにより、周波数応答の精度が向上するので、平均化処理時間を短縮することができる。   As described above, in the second embodiment of the present invention, when frequency analysis is performed on the vibration generated during the operation of the rotating machine 1 while paying attention to the natural vibration frequency of the rotating machine, the periphery of the frequency is input to the input of the vibration signal. By performing band pass filter processing on the band to improve the gain of the frequency band, the accuracy of the frequency response is improved, so that the averaging processing time can be shortened.

(第3の実施形態)
本発明の第3の実施形態では、図1又は図2に示す構成において、フィルタ6に図10に示すような除去範囲Δfeのバンドエリミネーテドフィルタを用いる。
(Third embodiment)
In a third embodiment of the present invention, in the configuration shown in FIG. 1 or FIG. 2, a band eliminator Ted filter removal range Delta] f e as shown in FIG. 10 to the filter 6.

このようなバンドエリミネーテドフィルタを用いることにより、回転周波数成分など固有振動成分の抽出に不必要な周波数成分を除去して周波数分析を行うことができる。   By using such a band-eliminated filter, it is possible to perform frequency analysis by removing frequency components unnecessary for extraction of natural vibration components such as rotational frequency components.

このように本発明の第3の実施形態では、回転機械1の運転時に発生する振動を回転機械の固有振動周波数に着目して周波数分析を行うに際して、振動信号の入力に対してその周波数以外の周波数成分に対してバンドエリミネーテドフィルタ処理を施して、該周波数帯域のゲインを向上させることにより、第2の実施形態と同様に周波数応答の精度が向上するので、平均化処理時間を短縮することができる。   As described above, in the third embodiment of the present invention, when frequency analysis is performed by paying attention to the natural vibration frequency of the rotating machine for the vibration generated during the operation of the rotating machine 1, a frequency other than that frequency is input to the vibration signal. By applying band-eliminated filter processing to the frequency component and improving the gain of the frequency band, the accuracy of the frequency response is improved as in the second embodiment, so the averaging processing time is shortened. be able to.

(第4の実施形態)
本発明の第4の実施形態では、第1の実施形態において、図1又は図2に示すFFTアナライザ7で周波数分析を実施する際に、固有振動周波数fnを中心周波数とするズーミング処理を行う。
(Fourth embodiment)
In the fourth embodiment of the present invention, when performing frequency analysis with the FFT analyzer 7 shown in FIG. 1 or 2 in the first embodiment, zooming processing with the natural vibration frequency fn as the center frequency is performed.

このようなズーミング処理を行うと、元の分析条件に対して周波数分解能を保持したままサンプリング数を削減することができるので、一回当たりの分析時間を短縮することができる。したがって、同一の平均化回数であれば平均化の時間が短縮される。   When such zooming processing is performed, the number of samplings can be reduced while maintaining the frequency resolution with respect to the original analysis conditions, so that the analysis time per time can be shortened. Therefore, if the number of times of averaging is the same, the averaging time is shortened.

このように本発明の第4の実施形態では、回転機械1の運転時に発生する振動を回転機械の固有振動周波数に着目して周波数分析を行うに際して、該周波数の周辺帯域を分析範囲とするズーミング処理を行って周波数分解能を向上させることにより、平均化の処理時間を短縮し、異常を早期に検出することができる。   As described above, in the fourth embodiment of the present invention, when the frequency analysis is performed by paying attention to the natural vibration frequency of the rotary machine for the vibration generated during the operation of the rotary machine 1, the zooming with the peripheral band of the frequency as the analysis range is performed. By performing the processing to improve the frequency resolution, the averaging processing time can be shortened and an abnormality can be detected early.

(第5の実施形態)
本発明の第5の実施形態では、第1の実施形態において、図1又は図2に示す演算装置8で過去に得られた運転履歴から減衰率と運転条件を調整する。
(Fifth embodiment)
In the fifth embodiment of the present invention, in the first embodiment, the attenuation rate and the operation condition are adjusted from the operation history obtained in the past by the arithmetic device 8 shown in FIG. 1 or FIG.

図11は、軸受給油温度がL1の状態(×印)とL2の状態(・印)でそれぞれ減衰率ζを求め、タービン出力Pとの相関を示したものである。 FIG. 11 shows the correlation between the damping rate ζ and the turbine output P when the bearing oil supply temperature is L 1 (×) and L 2 (•).

図11において、それぞれのプロットから求めた近似曲線を破線と実線で記入してある。軸受給油温度がL1では出力の安定限界はPu1であるが、軸受給油温度をL2に変えると出力の安定限界はPu2に伸ばせることがわかる。したがって、軸受給油温度L1で運転していて、出力を増加させPu1に近づいてきたら軸受給油温度をL2に変えるよう運転条件を変更する。 In FIG. 11, approximate curves obtained from the respective plots are indicated by broken lines and solid lines. Although the stability limit of the output in the bearing oil supply temperature L 1 is P u1, stability limit of the output to alter the bearing oil supply temperature to the L 2 it can be seen that can stretch to P u2. Therefore, when operating at the bearing oil supply temperature L 1 , the operating condition is changed so as to change the bearing oil supply temperature to L 2 when the output increases and approaches Pu 1 .

このように本発明の第5の実施形態では、軸系安定性を評価し、その結果から回転機械の運転条件、つまり安定限界を大きくするための運転条件として、軸受給油温度を調整することにより、不安定現象の発生を抑制するように運転条件が変更できるので、回転機械の安定を確保した運転が可能になる。   As described above, in the fifth embodiment of the present invention, the shaft system stability is evaluated, and by adjusting the bearing oil supply temperature as the operating condition of the rotating machine, that is, the operating condition for increasing the stability limit based on the result. Since the operating conditions can be changed so as to suppress the occurrence of the unstable phenomenon, it is possible to operate the rotary machine while ensuring the stability.

1…回転機械、2…回転軸、3…軸受、4…非接触式変位計、5…変換器、6…フィルタ、7…FFTアナライザ、8…演算装置、9…加速度ピックアップ、10…振動計   DESCRIPTION OF SYMBOLS 1 ... Rotary machine, 2 ... Rotary shaft, 3 ... Bearing, 4 ... Non-contact displacement meter, 5 ... Converter, 6 ... Filter, 7 ... FFT analyzer, 8 ... Arithmetic device, 9 ... Accelerometer, 10 ... Vibrometer

Claims (8)

回転機械の運転時に発生する振動を回転部又は非回転部で計測する第1のステップと、
この第1のステップで計測された振動信号に対し前記回転機械の固有振動数に着目して周波数分析を行う第2のステップと、
この第2のステップにより周波数分析された前記固有振動数の周波数成分が抽出できるよう所定時間連続的に平均化処理を実施して周波数応答を得る第3のステップと、
この第3のステップによって得られる周波数応答から回転軸系の安定性を評価する第4のステップと、
を備えることを特徴とする回転機械の軸系安定性計測方法。
A first step of measuring vibration generated during operation of the rotating machine at the rotating part or the non-rotating part;
A second step of performing frequency analysis on the vibration signal measured in the first step, focusing on the natural frequency of the rotating machine;
A third step of obtaining a frequency response by performing an averaging process continuously for a predetermined time so that a frequency component of the natural frequency subjected to frequency analysis by the second step can be extracted;
A fourth step of evaluating the stability of the rotating shaft system from the frequency response obtained by the third step;
A shaft system stability measuring method for a rotating machine, comprising:
請求項1記載の回転機械の軸系安定性計測方法において、
前記第3のステップにより得られる周波数応答から当該周波数における減衰率を求める第5のステップを設け、
前記第4のステップは、前記第5のステップで求められた減衰率の大きさから回転軸系の安定性を評価する
ことを特徴とする回転機械の軸系安定性計測方法。
In the shaft system stability measuring method of the rotary machine according to claim 1,
A fifth step of determining an attenuation factor at the frequency from the frequency response obtained by the third step is provided;
In the fourth step, the stability of the rotating shaft system is evaluated from the magnitude of the attenuation rate obtained in the fifth step.
請求項1又は請求項2記載の回転機械の軸系安定性計測方法において、
前記第1のステップで計測された振動信号が入力されると当該周波数の周辺帯域に対してバンドパスフィルター処理を施して、当該周波数帯域のゲインを向上させたことを特徴とする回転機械の軸系安定性計測方法。
In the shaft system stability measuring method of the rotating machine according to claim 1 or 2,
When the vibration signal measured in the first step is input, a bandpass filter process is performed on the peripheral band of the frequency to improve the gain of the frequency band. System stability measurement method.
請求項1又は請求項2記載の回転機械の軸系安定性計測方法において、
前記第1のステップで計測された振動信号が入力されると当該周波数の周辺帯域に対してバンドエルミネートドフィルター処理を施して、当該周波数帯域のゲインを向上させたことを特徴とする回転機械の軸系安定性計測方法。
In the shaft system stability measuring method of the rotating machine according to claim 1 or 2,
When the vibration signal measured in the first step is input, the rotating machine is characterized in that a band-eliminated filter process is performed on a peripheral band of the frequency to improve a gain of the frequency band. Of measuring the stability of the shaft system.
請求項1乃至請求項4のいずれかに記載の回転機械の軸系安定性計測方法において、
前記第3のステップで周波数分析を実施する際に、当該周波数の周辺帯域を分析範囲とするズーミング処理を行って周波数分解能を向上させたことを特徴とする回転機械の軸系安定性計測方法。
In the shaft system stability measuring method of the rotary machine in any one of Claims 1 thru | or 4,
A shaft system stability measurement method for a rotating machine, wherein when performing frequency analysis in the third step, a frequency resolution is improved by performing a zooming process in which a peripheral band of the frequency is an analysis range.
請求項1乃至請求項5のいずれかに記載の回転機械の軸系安定性計測方法において、
前記回転機械の現在までの運転条件の変化に対する前記第4のステップで評価される回転軸系の安定性の変化から、将来の回転軸系の安定性を推定する第6のステップを設けたことを特徴とする回転機械の軸系安定性計測方法。
In the shaft system stability measurement method of the rotary machine in any one of Claims 1 thru | or 5,
A sixth step is provided for estimating the future stability of the rotating shaft system from the change in stability of the rotating shaft system evaluated in the fourth step with respect to the change in operating conditions of the rotating machine to date. A method for measuring the stability of a shaft system of a rotating machine.
請求項1乃至請求項6のいずれかに記載の回転機械の軸系安定性計測方法により評価される回転軸系安定性の結果から回転機械の運転条件を調整して運転することを特徴とする回転機械の運転方法。   It operates by adjusting the operating condition of a rotating machine from the result of the rotating shaft system stability evaluated by the shaft system stability measuring method of the rotating machine according to any one of claims 1 to 6. How to operate a rotating machine. 請求項7記載の回転機械の運転方法において、
前記回転機械の運転条件の調整として、前記回転部の軸受給油温度を調整することを特徴とする回転機械の運転方法。
In the operating method of the rotary machine of Claim 7,
A method for operating a rotating machine, wherein the operating condition of the rotating machine is adjusted by adjusting a bearing oil supply temperature of the rotating part.
JP2009293268A 2009-12-24 2009-12-24 Shaft system stability measuring method and operation method of rotary machine Pending JP2011133362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293268A JP2011133362A (en) 2009-12-24 2009-12-24 Shaft system stability measuring method and operation method of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293268A JP2011133362A (en) 2009-12-24 2009-12-24 Shaft system stability measuring method and operation method of rotary machine

Publications (1)

Publication Number Publication Date
JP2011133362A true JP2011133362A (en) 2011-07-07

Family

ID=44346252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293268A Pending JP2011133362A (en) 2009-12-24 2009-12-24 Shaft system stability measuring method and operation method of rotary machine

Country Status (1)

Country Link
JP (1) JP2011133362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118419A (en) * 2014-12-19 2016-06-30 公立大学法人県立広島大学 Vibration analysis device and program for rotary machine
WO2024080159A1 (en) * 2022-10-14 2024-04-18 三菱重工マリンマシナリ株式会社 Vibration monitoring device, supercharger, and vibration monitoring method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108728A (en) * 1983-11-17 1985-06-14 Mitsubishi Heavy Ind Ltd Vibration-characteristics testing apparatus of rotary machine
JPH11174095A (en) * 1997-12-12 1999-07-02 Kawasaki Steel Corp Frequency characteristic zooming method and device thereof
JP2000074794A (en) * 1998-08-31 2000-03-14 Toshiba Corp Diagnosis device of abnormality of hydraulic machinery
JP2000193560A (en) * 1998-11-23 2000-07-14 General Electric Co <Ge> Apparatus and method for monitoring shaft cracking or incipient pinion slip in operating device
JP2005113805A (en) * 2003-10-08 2005-04-28 Mitsubishi Heavy Ind Ltd Apparatus for preventing unstable oscillation of shafting
JP2005330935A (en) * 2004-05-21 2005-12-02 Komatsu Ltd Hydraulic machine and system and method for monitoring integrity of hydraulic machine
JP2007285874A (en) * 2006-04-17 2007-11-01 Nsk Ltd Anomaly diagnosis apparatus and anomaly diagnosis method
JP2009229445A (en) * 2008-02-28 2009-10-08 Mitsubishi Heavy Ind Ltd Method of analyzing torsional vibration of power transmission system, analyzing device, analyzing program, and shafting device between engine and driven device
JP2009296746A (en) * 2008-06-04 2009-12-17 Panasonic Corp Motor control apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108728A (en) * 1983-11-17 1985-06-14 Mitsubishi Heavy Ind Ltd Vibration-characteristics testing apparatus of rotary machine
JPH11174095A (en) * 1997-12-12 1999-07-02 Kawasaki Steel Corp Frequency characteristic zooming method and device thereof
JP2000074794A (en) * 1998-08-31 2000-03-14 Toshiba Corp Diagnosis device of abnormality of hydraulic machinery
JP2000193560A (en) * 1998-11-23 2000-07-14 General Electric Co <Ge> Apparatus and method for monitoring shaft cracking or incipient pinion slip in operating device
JP2005113805A (en) * 2003-10-08 2005-04-28 Mitsubishi Heavy Ind Ltd Apparatus for preventing unstable oscillation of shafting
JP2005330935A (en) * 2004-05-21 2005-12-02 Komatsu Ltd Hydraulic machine and system and method for monitoring integrity of hydraulic machine
JP2007285874A (en) * 2006-04-17 2007-11-01 Nsk Ltd Anomaly diagnosis apparatus and anomaly diagnosis method
JP2009229445A (en) * 2008-02-28 2009-10-08 Mitsubishi Heavy Ind Ltd Method of analyzing torsional vibration of power transmission system, analyzing device, analyzing program, and shafting device between engine and driven device
JP2009296746A (en) * 2008-06-04 2009-12-17 Panasonic Corp Motor control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118419A (en) * 2014-12-19 2016-06-30 公立大学法人県立広島大学 Vibration analysis device and program for rotary machine
WO2024080159A1 (en) * 2022-10-14 2024-04-18 三菱重工マリンマシナリ株式会社 Vibration monitoring device, supercharger, and vibration monitoring method

Similar Documents

Publication Publication Date Title
Silva et al. Early fault detection of single-point rub in gas turbines with accelerometers on the casing based on continuous wavelet transform
Chandra et al. Fault detection in rotor bearing systems using time frequency techniques
JP5073533B2 (en) How to detect damage to engine bearings
Elbhbah et al. Vibration-based condition monitoring of rotating machines using a machine composite spectrum
Reddy et al. Detection and monitoring of coupling misalignment in rotors using torque measurements
JP5694361B2 (en) Method and apparatus for monitoring torsional vibration of a rotating shaft of a turbine engine
Nabhan et al. Bearing fault detection techniques-a review
JP4373350B2 (en) Shaft vibration monitoring system
KR20160008491A (en) Method and system for monitoring rotating blade health
WO2008117765A1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
US20170097323A1 (en) System and method for detecting defects in stationary components of rotary machines
JP2017129583A (en) Vibration monitoring systems
Pedotti et al. Fault diagnostics in rotary machines through spectral vibration analysis using low-cost MEMS devices
JP2012013079A (en) System and method for monitoring health of airfoil
JP2010256352A (en) Structural integrity monitoring system
Rehab et al. The influence of rolling bearing clearances on diagnostic signatures based on a numerical simulation and experimental evaluation
EP3055661B1 (en) A method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor
Babu et al. A review on application of dynamic parameters of journal bearing for vibration and condition monitoring
CN112525533A (en) Online detection method for contact angle of ball bearing of aero-engine
CN108361079B (en) Rotor vibration control method and control device
JP2011133362A (en) Shaft system stability measuring method and operation method of rotary machine
JP7394031B2 (en) Abnormality detection device and abnormality detection method for rolling bearings
Shan et al. A novel experimental research on vibration characteristics of the running high-speed motorized spindles
Rao et al. In situ detection of turbine blade vibration and prevention
JP2010210334A (en) Method for determining scour around bridge pier and system for evaluating soundness of bridge pier base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021