JP2011133152A - Energy saving system using underground heat - Google Patents

Energy saving system using underground heat Download PDF

Info

Publication number
JP2011133152A
JP2011133152A JP2009291820A JP2009291820A JP2011133152A JP 2011133152 A JP2011133152 A JP 2011133152A JP 2009291820 A JP2009291820 A JP 2009291820A JP 2009291820 A JP2009291820 A JP 2009291820A JP 2011133152 A JP2011133152 A JP 2011133152A
Authority
JP
Japan
Prior art keywords
heat
utilization system
outside air
heat exchange
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291820A
Other languages
Japanese (ja)
Inventor
Yukio Une
由紀男 畝
Hiroshi Ochiai
洋 落合
Toshihiro Fukumoto
年宏 福本
Koichi Marumoto
貢市 丸本
Kazuhisa Yoneda
和寿 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chudenko Corp
Original Assignee
Chudenko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chudenko Corp filed Critical Chudenko Corp
Priority to JP2009291820A priority Critical patent/JP2011133152A/en
Publication of JP2011133152A publication Critical patent/JP2011133152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and highly energy-saving system using underground heat which exchanges heat with outside air by using underground heat at constant temperature throughout the year. <P>SOLUTION: Outside air taken in from an air inlet 1 of a heat exchanger installed by an excavator exchanges heat with underground heat by using water 8 as a heat exchange medium while made to pass through a heat exchange pipe (inflow) 2 and a heat exchange pipe (outflow) 3. The outside air is cooled in summer and superheated in the winter, and is supplied from an air outlet 9 to a supply destination. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は一年を通して一定温度の地中熱を利用して、外気と熱交換を行うシステムに関するものである。 The present invention relates to a system for exchanging heat with outside air using geothermal heat at a constant temperature throughout the year.

建築基準法で定められた換気システムの多くは外気をそのまま導入しているため、空調機の処理負荷の増大及び居住者の快適性が損なわれている。 Many of the ventilation systems stipulated by the Building Standards Law introduce outside air as it is, which increases the processing load of the air conditioner and the comfort of residents.

地中熱を利用した二重管構造の熱交換器として以下の方式が提案されている。
特許公開2007−303693
The following method has been proposed as a heat exchanger having a double-pipe structure using underground heat.
Patent Publication 2007-303693

現状の地中熱利用システムは、安定した熱交換を行うためボーリング深度を深くする必要があり、高コストで搬送動力を多く要するものが大半を占めている。また、特許文献1の熱交換器は深度が浅く熱交換効率が低いため、省エネルギー性が少ない。 Current geothermal heat utilization systems require a deep boring depth for stable heat exchange, and most of them are expensive and require a large amount of conveying power. Moreover, since the heat exchanger of patent document 1 is shallow and heat exchange efficiency is low, there is little energy saving property.

そこで、本発明の課題は、浅い深度で省エネルギー性が高い地中熱利用システムを提供することにある。 Then, the subject of this invention is providing the geothermal heat utilization system with high energy saving property in shallow depth.

請求項1によれば、外気温度の影響を受けにくく、安定した熱交換量を確保できるので深度が浅くても省エネルギー性を高くすることができる。 According to the first aspect, since it is difficult to be affected by the outside air temperature and a stable heat exchange amount can be secured, the energy saving performance can be enhanced even when the depth is shallow.

請求項2によれば施工が既存の技術を応用できるため低コストで施工が可能である。 According to claim 2, construction can be performed at low cost because the existing technology can be applied.

夏季において下部チャンバー室に凝縮水が発生すると、流路面積が減少し風量が低下するため請求項3により排出する。 When condensed water is generated in the lower chamber in the summer, the channel area is reduced and the air volume is reduced, so that the discharge is performed according to claim 3.

外気取入口より請求項4の省エネ換気システムに取込まれた外気は、装置内を通過する間に、装置内に充満している水を熱交換媒体とし地中熱と熱交換を行い、夏季は冷却、冬季は加熱されて居室に供給されることにより居室の空調機処理負荷の軽減および室内空気環境を改善し、その後、排気口より排出される。 The outside air taken into the energy-saving ventilation system according to claim 4 from the outside air inlet, while passing through the inside of the device, exchanges heat with the ground using the water filled in the device as a heat exchange medium. Is cooled, heated in winter, and supplied to the room to reduce the load on the air conditioner processing in the room and improve the indoor air environment, and then discharged from the exhaust port.

空気熱源ヒートポンプ給湯器は夜間の安価な深夜電力による蓄熱運転を主体としているため、冬季の夜間低温時には、成績係数が低下するという問題があるが、請求項5の給湯システムにより熱交換した空気を室外機に吹付けることで冬季の成績係数を高めることが出来る。 The air heat source heat pump water heater mainly uses heat storage operation by cheap nighttime electric power at night, so there is a problem that the coefficient of performance decreases at the time of low temperature at night in the winter. The coefficient of performance in winter can be increased by spraying on the outdoor unit.

本発明に係る地中熱利用システムによれば、低コストで省エネ性を実現でき、高品質の室内空気環境を提供できる。 According to the underground heat utilization system according to the present invention, energy saving can be realized at low cost, and a high-quality indoor air environment can be provided.

次に、本発明を実施するための最良の形態を、地中熱利用システムのシステム図である図1を用いて詳細に説明する。 Next, the best mode for carrying out the present invention will be described in detail with reference to FIG. 1 which is a system diagram of a geothermal heat utilization system.

図1は、この発明の地中熱利用システムを示すシステム図である。本発明の実施形態の地中熱利用システムは、空気入口1と熱交換パイプ(流入)2と、熱交換パイプ(流出)3と、上部チャンバー室4と、下部チャンバー室5と、鋼管6と、送風機7と、空気出口9と、鋼管6と熱交換パイプ2及び熱交換パイプ3の間に水8を満充填した構造である。 FIG. 1 is a system diagram showing a geothermal heat utilization system of the present invention. The ground heat utilization system of the embodiment of the present invention includes an air inlet 1, a heat exchange pipe (inflow) 2, a heat exchange pipe (outflow) 3, an upper chamber room 4, a lower chamber room 5, a steel pipe 6, The air blower 7, the air outlet 9, the steel pipe 6, the heat exchange pipe 2 and the heat exchange pipe 3 are fully filled with water 8.

空気入口1より取込まれた空気は、上部チャンバー室4より熱交換パイプ(流入)2を熱交換しながら通過し、下部チャンバー室5を経由し、熱交換パイプ(流出)3を熱交換しながら通過し送風機7により空気出口9から需要先に供給される。 The air taken in from the air inlet 1 passes through the heat exchange pipe (inflow) 2 from the upper chamber chamber 4 while exchanging heat, and passes through the lower chamber chamber 5 to exchange heat in the heat exchange pipe (outflow) 3. Then, the air is passed and supplied to the customer from the air outlet 9 by the blower 7.

図2は熱交換器断面図である。 FIG. 2 is a sectional view of the heat exchanger.

満充填された水が自然対流することによって熱交換効率が向上することを、熱通過率を比較し確認した。計算結果を図3と図4に示す。 It was confirmed by comparing the heat transfer rate that the heat exchange efficiency was improved by natural convection of the fully filled water. The calculation results are shown in FIGS.

図5〜図11に2009年5月〜11月の時間ごとの平均温度変化グラフを示す。 The average temperature change graph for every time from May to November 2009 is shown in FIGS.

5月の空気出口平均温度は17.2℃、外気温度との差は1.5℃〜−5.5℃となった。 The average air outlet temperature in May was 17.2 ° C, and the difference from the outside air temperature was 1.5 ° C to -5.5 ° C.

6月の空気出口平均温度は20.2℃、外気温度との差は1.0℃〜−5.7℃となった。 The average air outlet temperature in June was 20.2 ° C, and the difference from the outside air temperature was 1.0 ° C to -5.7 ° C.

7月の空気出口平均温度は23.0℃、外気温度との差は0.1℃〜−3.3℃となった。 The average air outlet temperature in July was 23.0 ° C, and the difference from the outside air temperature was 0.1 ° C to -3.3 ° C.

8月の空気出口平均温度は24.2℃、外気温度との差は0.6℃〜−4.9℃となった。 The average air outlet temperature in August was 24.2 ° C, and the difference from the outside air temperature was 0.6 ° C to -4.9 ° C.

9月の空気出口平均温度は21.4℃、外気温度との差は1.8℃〜−5.2℃となった。 The average air outlet temperature in September was 21.4 ° C, and the difference from the outside air temperature was 1.8 ° C to -5.2 ° C.

10月の空気出口平均温度は17.3℃、外気温度との差は2.9℃〜−3.7℃となった。 The air outlet average temperature in October was 17.3 ° C, and the difference from the outside air temperature was 2.9 ° C to -3.7 ° C.

11月の空気出口平均温度は12.1℃、外気温度との差は2.5℃〜−1.3℃となった。 The average air outlet temperature in November was 12.1 ° C, and the difference from the outside air temperature was 2.5 ° C to -1.3 ° C.

地中熱利用設備システム図Geothermal heat utilization equipment system diagram 熱交換器断面図Cross section of heat exchanger 熱通過率の算定Calculation of heat transfer rate 熱通過率の算定Calculation of heat transfer rate 2009年5月の時間平均温度変化グラフTime average temperature change graph of May 2009 2009年6月の時間平均温度変化グラフTime average temperature change graph for June 2009 2009年7月の時間平均温度変化グラフTime average temperature change graph of July 2009 2009年8月の時間平均温度変化グラフTime average temperature change graph of August 2009 2009年9月の時間平均温度変化グラフTime average temperature change graph of September 2009 2009年10月の時間平均温度変化グラフTime average temperature change graph of October 2009 2009年11月の時間平均温度変化グラフTime average temperature change graph of November, 2009

1 空気入口
2 熱交換パイプ(流入)
3 熱交換パイプ(流出)
4 上部チャンバー室
5 下部チャンバー室
6 鋼管
7 送風機
8 水
9 空気出口
1 Air inlet 2 Heat exchange pipe (inflow)
3 Heat exchange pipe (outflow)
4 Upper chamber room 5 Lower chamber room 6 Steel pipe 7 Blower 8 Water 9 Air outlet

Claims (5)

熱交換器内に比熱の高い水を入れることにより、外気温度の影響を少なくし安定した熱交換量を確保した熱交換器を有する地中熱利用システム。 A geothermal heat utilization system having a heat exchanger that secures a stable amount of heat exchange by reducing the influence of outside air temperature by putting water with high specific heat into the heat exchanger. 配電線工事で使用する掘削機により深度4m程度のボーリング掘削し請求項1を設置する地中熱利用システム。 A geothermal heat utilization system in which boring excavation with a depth of about 4 m is carried out by an excavator used for distribution line construction and the claim 1 is installed. 夏季に熱交換器の管の中で発生した凝縮水を手動のウイングポンプで排出する設備を有する請求項1に記載の地中熱利用システム。 The geothermal heat utilization system according to claim 1, further comprising a facility for discharging condensate generated in a heat exchanger tube in summer by a manual wing pump. 請求項1の地中熱利用システムを使用して、外気負荷を削減した省エネ換気システム。 The energy-saving ventilation system which reduced the external air load using the underground heat utilization system of Claim 1. 請求項1の地中熱利用システムを使用して、空気熱源ヒートポンプ給湯機の冬季の成績係数を向上する省エネ給湯システム。 The energy-saving hot-water supply system which uses the underground heat utilization system of Claim 1 and improves the coefficient of performance of the winter of an air heat source heat pump water heater.
JP2009291820A 2009-12-24 2009-12-24 Energy saving system using underground heat Pending JP2011133152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291820A JP2011133152A (en) 2009-12-24 2009-12-24 Energy saving system using underground heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291820A JP2011133152A (en) 2009-12-24 2009-12-24 Energy saving system using underground heat

Publications (1)

Publication Number Publication Date
JP2011133152A true JP2011133152A (en) 2011-07-07

Family

ID=44346088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291820A Pending JP2011133152A (en) 2009-12-24 2009-12-24 Energy saving system using underground heat

Country Status (1)

Country Link
JP (1) JP2011133152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137176A (en) * 2011-11-28 2013-07-11 Geo System Kk Underground heat exchanging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137176A (en) * 2011-11-28 2013-07-11 Geo System Kk Underground heat exchanging system

Similar Documents

Publication Publication Date Title
Soni et al. Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review
CN104728979B (en) A kind of Renovation of air-conditioning system method and apparatus of application all-weather solar heat supply
JP5067730B2 (en) Earth / Solar system
JP2012184912A (en) Air conditioning device using underground heat
Shao et al. Numerical investigation and thermal analysis of a refrigerant-heated radiator heating system coupled with air source heat pump
CN101929764A (en) Solar energy-air-geothermal energy three-heat-source heat pump air conditioning unit
WO2013089274A1 (en) Smart ecological air-conditioning system
CN204100645U (en) A kind of geothermal heat pump air-conditioner and hot-water heating system
JP2014031991A (en) Efficiency improvement device for heat pump air conditioner
JP2011133152A (en) Energy saving system using underground heat
CN202885138U (en) Double warm water air conditioning system
CN205279321U (en) Full heat energy air conditioning system based on new forms of energy
CN210602334U (en) Shallow geothermal utilization equipment for improving energy efficiency of ground source heat pump
CN202521766U (en) Secondary cooling heat pump unit
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
JP5999476B2 (en) Efficiency improvement device for heat pump air conditioner
CN108224648B (en) Capillary network radiation air conditioning system
WO2010147492A3 (en) Method of heating residential buildings and a heating system for residential buildings
CN203857602U (en) Central air conditioner exhaust heat recovery device
CN201014662Y (en) Air conditioner for regulating room temperature using underground cold water
CN104089318A (en) Heat supply system
CN1300526C (en) Energy saving and environmental protective in the four seasons cooling and warming air conditioner possessing hot water function
CN203163136U (en) Ground source heat pump air conditioning system provided with heat-pump water heater
Audenaert et al. Eco-economic analysis of different heating systems for a new housing project
CN203881001U (en) Underground water heat exchanging system