JP2011132628A - Antimicrobial melt-blown nonwoven fabric - Google Patents

Antimicrobial melt-blown nonwoven fabric Download PDF

Info

Publication number
JP2011132628A
JP2011132628A JP2009292001A JP2009292001A JP2011132628A JP 2011132628 A JP2011132628 A JP 2011132628A JP 2009292001 A JP2009292001 A JP 2009292001A JP 2009292001 A JP2009292001 A JP 2009292001A JP 2011132628 A JP2011132628 A JP 2011132628A
Authority
JP
Japan
Prior art keywords
antibacterial
nonwoven fabric
fiber
particles
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009292001A
Other languages
Japanese (ja)
Inventor
Ryoichi Togashi
良一 富樫
Yasuhiro Asada
康裕 浅田
Tomoko Takano
朋子 高野
Kumiko Tsunematsu
久美子 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009292001A priority Critical patent/JP2011132628A/en
Publication of JP2011132628A publication Critical patent/JP2011132628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antimicrobial melt-blown nonwoven fabric having excellent spinning stability. <P>SOLUTION: The antimicrobial melt-blown nonwoven fabric providing low pressure drop and high capturing rate is obtained by kneading antimicrobial agent particles having nanometer sizes in a fiber. The antimicrobial melt-blown nonwoven fabric having the high spinning stability and the high antimicrobial properties comprises ultrafine fibers containing the antimicrobial agent particles not inhibiting the spinning stability. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は極細繊維不織布に関するもので特にマスク、フィルター、ワイパー等の用途で好適に利用可能な抗菌性メルトブロー不織布に関する。   The present invention relates to an ultrafine fiber nonwoven fabric, and more particularly to an antibacterial meltblown nonwoven fabric that can be suitably used in applications such as masks, filters, and wipers.

従来から、繊維製品への抗菌性付与技術は数多く知られているが、平均繊維径が5μmを下回る極細繊維不織布に抗菌性とエレクトレット性を付与した不織布となると、技術的課題が多くなり、その課題を解決した技術は下記の通り、満足できるものではなかった。このような技術に関する文献として、特許文献1にはエレクトレット不織布への抗菌剤粒子薬液付着加工方法が示されている。しかし、この材料は抗菌剤粒子薬液の影響を受けて繊維表面の電気抵抗値が小さくなるためエレクトレットの安定性に甚だ欠けるものであった。また特許文献2では、繊維径50μmの繊維中に抗菌剤粒子を粒子径としては非常に大きな0.5〜3.0μmの無機系抗菌性ゼオライト(結晶性アルミノケイ酸塩の抗菌性金属イオンで置換)を練り込んだ抗菌性不織布と別のエレクトレット不織布を積層したエアフィルターが提案されている。このケースでは抗菌加工された不織布に捕捉されたバクテリアに対しては抗菌効果が期待できるが、菌やウイルスは0.01〜数μmと非常に小さいため目の粗い抗菌加工された上流側の不織布では殆ど捕捉されずに下層のより緻密で捕集効率の高い抗菌性の無いエレクトレット不織布層に捕捉されため実用性に欠けた抗菌化技術であった。   Conventionally, many techniques for imparting antibacterial properties to textile products are known. However, when a nonwoven fabric is provided with antibacterial properties and electret properties on an ultra-fine fiber nonwoven fabric with an average fiber diameter of less than 5 μm, there are many technical issues. The technology that solved the problem was not satisfactory as described below. As a document relating to such technology, Patent Document 1 discloses an antibacterial agent chemical solution adhesion processing method on an electret nonwoven fabric. However, since this material has an electrical resistance value on the fiber surface that is affected by the chemical solution of the antibacterial agent particles, the electret stability is extremely poor. In Patent Document 2, an antibacterial agent particle is replaced with an inorganic antibacterial zeolite having a very large particle size of 0.5 to 3.0 μm (antibacterial metal ion of crystalline aluminosilicate) in a fiber having a fiber diameter of 50 μm. An air filter in which an antibacterial nonwoven fabric kneaded with an electret nonwoven fabric is laminated. In this case, antibacterial effect can be expected against bacteria trapped by the antibacterial processed nonwoven fabric, but the bacteria and viruses are very small, 0.01 to several μm, so the upstream nonwoven fabric processed with rough antibacterial processing However, the antibacterial technology lacked practicality because it was captured by the electret non-woven fabric layer having a higher density and higher collection efficiency and no antibacterial properties, while being hardly captured.

特許文献3には、体積抵抗率1013Ω・cm以上の合成有機重合体中に、ヒンダードアミンやヒンダードフェノールなどの熱安定剤(ラジカル捕捉剤)を0.01〜2重量%の範囲と無機系抗菌剤粒子を0.1〜4重量%含有させた抗菌性エレクトレット材料が記載されている。しかしゼオライトは天然性のものであるため破砕し分級してもその粒子径が広く分布した一次粒径が0.5〜3.0μmの物であるためポリマー吐出孔径が0.2mm程度の孔から吐出させた場合、粒子がポリマー中で凝集沈降して粒子径が大きくなり、ノズルの詰りが頻繁し到底繊維径2μm以下のメルトブロー不織布を製布することは出来ない技術であった。また特許文献4の実施例には、平均粒子径0.8μmの無機系抗菌剤粒子を含むポリマーをメルトブロー法で紡糸した平均繊維径1.5μmのエレクトレット抗菌性不織布が示されているが、繊維径0.8μm以下のメルトブロー不織布を得るために用いる抗菌剤粒子の粒子径や素材については何ら記載の無い技術であった。 In Patent Document 3, a synthetic organic polymer having a volume resistivity of 10 13 Ω · cm or more contains a heat stabilizer (radical scavenger) such as hindered amine or hindered phenol in the range of 0.01 to 2% by weight and inorganic. An antibacterial electret material containing 0.1 to 4% by weight of antibacterial agent particles is described. However, since zeolite is a natural material, even if it is crushed and classified, its particle size is widely distributed and the primary particle size is 0.5 to 3.0 μm. When ejected, the particles agglomerated and settled in the polymer to increase the particle size, and the nozzles were frequently clogged, making it impossible to fabricate a melt blown nonwoven fabric with a fiber diameter of 2 μm or less. Moreover, although the Example of patent document 4 shows the electret antibacterial nonwoven fabric of average fiber diameter 1.5micrometer which spun the polymer containing the inorganic antibacterial agent particle of average particle diameter 0.8micrometer by the melt blow method, This is a technique with no description of the particle diameter and material of the antibacterial agent particles used to obtain a melt blown nonwoven fabric having a diameter of 0.8 μm or less.

一方、特許文献6にナノメーターサイズの無機系抗菌剤粒子を練り込んだ抗菌繊維に関する技術が開示されているが、技術内容の説明では、使用する抗菌剤粒子としてリン酸ジルコニウム銀などの粒子径範囲0.01μm〜3μmの抗菌剤粒子を挙げているが、実施例に挙げているノバロンAG300(東亜合成化学工業(株))の粒子径は0.9μmであり、シーバイオ(海水化学研究所)は0.2μmで有ることがメーカー技術資料調査から分かる事から、0.2μm未満の抗菌剤粒子を用いた技術は開示されていなかった。   Meanwhile, Patent Document 6 discloses a technique related to antibacterial fibers in which nanometer-sized inorganic antibacterial particles are kneaded. However, in the description of the technical content, the particle diameter of silver phosphate silver or the like is used as the antibacterial agent particles to be used. Although antibacterial particles in the range of 0.01 μm to 3 μm are mentioned, the particle size of Novalon AG300 (Toa Gosei Chemical Co., Ltd.) mentioned in the examples is 0.9 μm, and Sea Bio (Seawater Chemical Laboratory) ) Was found to be 0.2 μm from the manufacturer technical data survey, no technology using antibacterial particles of less than 0.2 μm was disclosed.

一方、特許文献5には、繊維径が数nm〜数百nm(好ましくは50nm〜800nm)の繊維に分散剤含有ナノメーターオーダーの銀粒子を0.1〜1重量%練り込んだ抗菌繊維不織布の製法技術が開示されているが。このナノメーターオーダーの繊維を作成する技術は、ポリマーとナノメーターオーダーの銀粒子を溶剤に溶解および分散させた溶液を電界紡糸(エレクトロスピニング)する技術であって溶融紡糸方法とは異なる紡糸技術が採用されていた。またマイクロ繊維層は溶融紡糸されたポリプロピレン繊維中にナノメーターオーダーの銀粒子が0.1〜1重量%含まれると記載されているが、ここで用いられるナノメーターオーダーの銀粒子は、分散剤含有ナノメーターオーダーの銀粒子と称する物でポリプロピレン樹脂の融点より遙かに低い温度で溶融するものと記載されており、本発明で用いる溶融しないナノメーターオーダーの抗菌剤粒子を使用する技術とは全く異なる技術の物であった。これらの背景技術が示す通り、溶融紡糸法で樹脂中に練り込まれている抗菌剤粒子径は200nmまでであり、それより小さい粒子を用いて抗菌性メルトブロー不織布を安定生産する技術および低圧損・高捕集性なエレクトレット化抗菌性メルトブロー不織布を得る技術は開示されていなかった。   On the other hand, Patent Document 5 discloses an antibacterial fiber nonwoven fabric in which 0.1 to 1% by weight of a dispersant-containing nanometer-order silver particle is kneaded into a fiber having a fiber diameter of several nm to several hundred nm (preferably 50 nm to 800 nm). Although the manufacturing technology is disclosed. This nanometer-order fiber is produced by electrospinning a solution in which a polymer and nanometer-order silver particles are dissolved and dispersed in a solvent, and is different from the melt spinning method. It was adopted. The microfiber layer is described as containing 0.1 to 1% by weight of nanometer-order silver particles in the melt-spun polypropylene fiber. The nanometer-order silver particles used here are dispersants. Contains nanometer-order silver particles that are described as melting at a temperature much lower than the melting point of the polypropylene resin, and is a technique using non-melting nanometer-order antibacterial particles used in the present invention. It was a completely different technology. As these background technologies show, the antibacterial agent particle diameter kneaded into the resin by the melt spinning method is up to 200 nm, and the technology for stably producing an antibacterial meltblown nonwoven fabric using particles smaller than that, low pressure loss, A technique for obtaining an electret antibacterial meltblown nonwoven fabric having a high trapping property has not been disclosed.

特開昭62−42716号公報JP 62-42716 A 特開平3−186309号公報Japanese Patent Laid-Open No. 3-186309 特開平5−190389号公報Japanese Patent Laid-Open No. 5-190389 特開2008−75226号公報JP 2008-75226 A 特開2008−95266号公報JP 2008-95266 A 特開平9−176949号公報JP-A-9-176949

本発明は、上記問題を解決した抗菌性メルトブロー不織布に関し、高性能な抗菌性、抗ウイルス性、抗アレルゲン性、消臭性、エレクトレット性を持った極細繊維不織布を提供することを課題とする。   The present invention relates to an antibacterial meltblown nonwoven fabric that solves the above problems, and an object thereof is to provide an ultrafine fiber nonwoven fabric having high performance antibacterial properties, antiviral properties, antiallergenic properties, deodorizing properties, and electret properties.

上記課題を達成するための本発明は、下記いずれかの構成を有するものである。
(1)一次粒子径が200nm未満の抗菌剤粒子を含む平均繊維径40μm以下の抗菌性メルトブロー不織布。
(2)抗菌剤粒子が硫化銀粒子または/およびシリカに添着された硫化銀粒子である(1)記載の抗菌性メルトブロー不織布。
(3)抗菌剤粒子の含有量が異なる複数の繊維群が混合されてなる(1)または(2)に記載の抗菌性メルトブロー不織布。
(4)平均繊維径が異なる複数の繊維群を有し、その内、平均繊維径6μm以上の繊維群は全繊維体積量の20%以上を占める(1)〜(3)のいずれかに記載の抗菌性メルトブロー不織布。
(5)エレクトレット化されたものである(1)〜(4)のいずれかに記載の抗菌性メルトブロー不織布。
(6)(1)〜(5)のいずれかに記載の抗菌性メルトブロー不織布を用いたフィルター。
(7)(1)〜(5)のいずれかに記載の抗菌性メルトブロー不織布を用いた濾過機器。
To achieve the above object, the present invention has one of the following configurations.
(1) An antibacterial meltblown nonwoven fabric having an average fiber diameter of 40 μm or less, including antibacterial particles having a primary particle diameter of less than 200 nm.
(2) The antibacterial meltblown nonwoven fabric according to (1), wherein the antibacterial agent particles are silver sulfide particles or / and silver sulfide particles impregnated with silica.
(3) The antibacterial meltblown nonwoven fabric according to (1) or (2), wherein a plurality of fiber groups having different antibacterial agent content are mixed.
(4) It has a plurality of fiber groups having different average fiber diameters, and among them, a fiber group having an average fiber diameter of 6 μm or more occupies 20% or more of the total fiber volume, according to any one of (1) to (3) Antibacterial melt blown nonwoven fabric.
(5) The antibacterial meltblown nonwoven fabric according to any one of (1) to (4), which is electretized.
(6) A filter using the antibacterial meltblown nonwoven fabric according to any one of (1) to (5).
(7) A filtration device using the antibacterial meltblown nonwoven fabric according to any one of (1) to (5).

本発明の抗菌性メルトブロー不織布は下記の優れた効果を有する。
(1)抗菌性、抗ウイルス、抗カビ性等の機能訴求は、繊維径0.1μmからの極細繊維糸紡糸においても紡糸性を阻害しない粒子径200nm以下の抗菌剤粒子によって行われるため均質性に優れたものを得ることができる。
(2)抗菌剤粒子の硫化銀粒子の硫黄には高い抗カビ性があり多品種のカビ菌に対して不活化性能を有する。また銀には高い抗菌性と抗ウイルス性がある。このため硫黄と銀を複合することで相乗効果による高い抗菌性、抗カビ性、抗ウイルス性(以後これらを抗菌性と称する)、抗アレルゲン性を得ることができる。
(3)またナノメーターオーダーの銀粒子には、酸素に作用して反応性の高い陰電荷酸素(酸素ラジカル)に変質させる触媒作用がある。このため直接、硫化銀と接触していない離れた位置に付着した菌やカビ菌、ウイルス、アレルゲンに対しても抗菌性が得られる。また悪臭成分に対しては消臭性を得ることができる。
(4)上記(1)〜(3)の効果は極細繊維表面に抗菌作用面、触媒作用面を有するため、少ない使用量で大きな抗菌性、抗アレルゲン性、消臭性を得ることができる。
(5)不織布の構造が、極太繊維群と極細繊維群が複数混合されたものであり、極細繊維は極太繊維に支えられて潰れにくい。このため、従来の1つの細い繊維径だけの繊維群だけで構成された不織布より低圧損で高い捕集性能を得る事ができる。
(6)繊維群で抗菌剤粒子含有量と平均繊維径が異なるため、高いエレクトレット性と高い抗菌性が得ることができる。
The antibacterial meltblown nonwoven fabric of the present invention has the following excellent effects.
(1) Functional appeal such as antibacterial, antiviral, antifungal, etc. is performed with antibacterial particles having a particle diameter of 200 nm or less that do not impair spinnability even in spinning of ultrafine fiber yarns with a fiber diameter of 0.1 μm. Can be obtained.
(2) Sulfur of silver sulfide particles of antibacterial agent particles has high antifungal properties and has inactivation performance against various types of fungi. Silver also has high antibacterial and antiviral properties. Therefore, by combining sulfur and silver, high antibacterial properties, antifungal properties, antiviral properties (hereinafter referred to as antibacterial properties) and antiallergenic properties due to synergistic effects can be obtained.
(3) In addition, nanometer-order silver particles have a catalytic action that acts on oxygen to transform it into highly reactive negatively charged oxygen (oxygen radicals). For this reason, antibacterial properties can be obtained against bacteria, molds, viruses, and allergens that are not directly in contact with silver sulfide. In addition, deodorizing properties can be obtained for malodorous components.
(4) Since the effects (1) to (3) have an antibacterial surface and a catalytic surface on the surface of the ultrafine fibers, a large antibacterial property, antiallergenic property and deodorizing property can be obtained with a small amount of use.
(5) The structure of the nonwoven fabric is a mixture of a plurality of extra-thick fiber groups and extra-fine fiber groups, and the extra-fine fibers are supported by the extra-thick fibers and are not easily crushed. For this reason, it is possible to obtain a higher collection performance with a lower pressure loss than a conventional nonwoven fabric composed of only one fiber group having a thin fiber diameter.
(6) Since the antibacterial agent particle content and the average fiber diameter are different in the fiber group, high electret properties and high antibacterial properties can be obtained.

以下、本発明に関する抗菌性メルトブロー不織布の好ましい実施の形態について詳細に説明する。本発明の抗菌剤粒子について説明する。抗菌剤粒子は有機重合体からなる繊維内に練り込まれて用いられている。抗菌剤粒子には、一次粒子径が200nm未満の金属イオンを発生する事ができる銅、亜鉛、銀などの金属をコロイド粒子化した物が好適に用いられ、硫化銀粒子、硫化銅粒子、硝酸銀粒子、酸化亜鉛粒子、酸化亜鉛アルミ合金粒子などを用いる事が出来る。これらの中でも硫化銀粒子と酸化亜鉛粒子が最適物質である。   Hereinafter, preferred embodiments of the antibacterial meltblown nonwoven fabric according to the present invention will be described in detail. The antibacterial agent particles of the present invention will be described. Antibacterial agent particles are kneaded into fibers made of organic polymers. As the antibacterial agent particles, colloidal particles of metals such as copper, zinc, and silver that can generate metal ions having a primary particle diameter of less than 200 nm are preferably used. Silver sulfide particles, copper sulfide particles, silver nitrate Particles, zinc oxide particles, zinc oxide aluminum alloy particles and the like can be used. Among these, silver sulfide particles and zinc oxide particles are the optimum substances.

硫化銀粒子は銀コロイドの硫化物であり硫黄原子に銀が結合されたものである。一次粒子径は200nmを下回るもの、好適には100nm以下、更に好適には50nm以下、最適には2nm〜50nm前後の大きさで用いられる。特に一次粒子径が2nm〜20nmのものであれば凝集も無く、ポリマーの流動性が良いため紡糸ノズル孔径0.05〜0.2mmの孔を塞ぐことがないため高い紡糸性を得ることができる。このため平均繊維径0.1μmを下回る極細繊維をも安定的に生産することができる。一次粒子は透過型電子顕微鏡を用いて樹脂または繊維の表面または切断面を観察し、重なりや凝集が無くそれ以上分割できない粒子を一次粒子とする。   Silver sulfide particles are silver colloidal sulfides in which silver is bonded to sulfur atoms. The primary particle diameter is less than 200 nm, preferably 100 nm or less, more preferably 50 nm or less, and most preferably 2 nm to 50 nm. In particular, when the primary particle diameter is 2 nm to 20 nm, there is no aggregation, and the polymer fluidity is good, so that the holes with a spinning nozzle hole diameter of 0.05 to 0.2 mm are not blocked, and high spinnability can be obtained. . For this reason, it is possible to stably produce ultrafine fibers having an average fiber diameter of less than 0.1 μm. For the primary particles, the surface or cut surface of the resin or fiber is observed using a transmission electron microscope, and particles that do not overlap or aggregate and cannot be further divided are defined as primary particles.

また銀と硫黄の取り合わせは、それぞれの抗菌性の弱点を補う上で非常に効果的である。すなわち銀は抗菌性と抗ウイルス性が高いが一部のカビ菌には弱い抗菌性を示す。一方、硫黄は抗ウイルス性に劣るが殆どのカビ菌、細菌、藻類までに高い抗菌性を示す。本発明で用いる抗菌剤粒子は銀に硫黄原子を結合させたものであるため、相乗効果でカビ菌、細菌、藻類に対する抗菌性と抗ウイルス性を同時に得ることができる。このため、空気のみならず液体濾過でも有効に使用する事が可能である。   The combination of silver and sulfur is very effective in making up for the weaknesses of each antibacterial property. In other words, silver has high antibacterial and antiviral properties, but weak antibacterial properties against some fungi. On the other hand, although sulfur is inferior in antiviral properties, it exhibits high antibacterial properties against most fungi, bacteria and algae. Since the antibacterial agent particles used in the present invention are obtained by binding a sulfur atom to silver, antibacterial and antiviral properties against fungi, bacteria and algae can be obtained simultaneously by a synergistic effect. For this reason, it can be used effectively not only with air but also with liquid filtration.

また抗菌剤は、シリカ粒子やコロイダルシリカ粒子に硫黄原子と銀を錯化合物として結合させたシリカ添着硫化銀粒子の形態でも使用可能である。硫化銀粒子は黄色のものであるがシリカ添着硫化銀粒子は白色のため特に白色製品を得たい場合に好適に使用する事ができる。次に抗菌剤が有する触媒効果による抗菌性と消臭性について説明する。   The antibacterial agent can also be used in the form of silica-impregnated silver sulfide particles in which sulfur atoms and silver are bonded as complex compounds to silica particles or colloidal silica particles. Although the silver sulfide particles are yellow, the silica-impregnated silver sulfide particles are white and can be suitably used particularly when it is desired to obtain a white product. Next, antibacterial properties and deodorizing properties due to the catalytic effect of the antibacterial agent will be described.

ナノメーターサイズの銀は触媒作用を有する。触媒作用とは、空気中や液体中の酸素を陰電荷を持った酸素(酸素ラジカル)に変化させる効果を言う。この酸素ラジカルが菌の蛋白成分に取り込まれるか、OHラジカルを引き抜くかなどして死滅させるか、あるいは蛋白の分子鎖構造を変えて不活化すると考えられる。この触媒作用は、粒子径がナノメーターサイズとした硫化銀粒子やシリカ添着硫化銀粒子で認められ、繊維表面に露出したナノメーターサイズ銀成分粒子表面に酸素が触れることで得られる。この触媒作用の効果は、抗菌剤粒子に直接接触していない捕集菌やウイルス、アレルゲン(以後菌類と称する)に対しても、この酸素ラジカルが浮遊して作用することで抗菌性が得られる。また従来の金属イオンを用いた抗菌剤の多くは水分中に溶けだした金属イオンが作用して抗菌性を示すものであるが、この触媒作用は乾燥した空気中でも効果が発揮されるため、捕集した菌類を含むダストが乾燥状態でも湿った状態でも抗菌効果を得ることができる。さらに同じメカニズムで悪臭ガス物質に対しても触媒作用が及ぶため消臭性を得ることができる。   Nanometer-sized silver has a catalytic action. Catalytic action refers to the effect of changing oxygen in the air or liquid to oxygen with a negative charge (oxygen radical). It is thought that this oxygen radical is taken up by the protein component of the fungus or killed by drawing out the OH radical, or inactivated by changing the molecular chain structure of the protein. This catalytic action is recognized in the case of silver sulfide particles having a particle size of nanometer size or silica-added silver sulfide particles, and is obtained by contacting oxygen with the surface of nanometer size silver component particles exposed on the fiber surface. The effect of this catalytic action is that antibacterial properties are obtained by the action of the oxygen radicals floating on the collected bacteria, viruses and allergens (hereinafter referred to as fungi) that are not in direct contact with the antibacterial agent particles. . In addition, most antibacterial agents using conventional metal ions exhibit antibacterial properties by the action of metal ions dissolved in water, but since this catalytic action is effective even in dry air, The antibacterial effect can be obtained even when the dust containing the fungi is dry or moist. In addition, the same mechanism can provide a deodorizing property because of the catalysis of malodorous gas substances.

抗菌剤粒子として硫化銀粒子を用いた場合の添加量を説明する。硫化銀粒子の添加量は、不織布重量の0.008重量%〜0.2重量%以下である。0.008重量%以下では抗菌性が得られにくいが、0.2重量%超にすると凝集物が多くなりノズル詰まりやポリマー粘度上昇に伴う紡糸性ダウンが発生するようになる。また硫化銀粒子は導電性を有するため多く添加し過ぎると繊維表面の電気抵抗値が低下するためエレクトレット電荷の安定性が損なわれ、エレクトレット化抗菌性不織布を得る場合には弊害が出てくる。これらの関係から、好ましくは0.008重量%〜0.15%重量以下、最適には0.01重量%〜0.1重量%範囲の添加量で高い抗菌性とエレクトレット性、紡糸性を得ることができる。   The amount of addition when silver sulfide particles are used as the antibacterial agent particles will be described. The addition amount of silver sulfide particles is 0.008% to 0.2% by weight or less of the weight of the nonwoven fabric. If it is 0.008% by weight or less, it is difficult to obtain antibacterial properties, but if it exceeds 0.2% by weight, aggregates increase, resulting in nozzle clogging and a decrease in spinnability due to an increase in polymer viscosity. Further, since silver sulfide particles have electrical conductivity, if too much is added, the electrical resistance value of the fiber surface is lowered, so that the stability of the electret charge is impaired, and an adverse effect occurs when obtaining an electret antibacterial nonwoven fabric. From these relationships, high antibacterial properties, electret properties, and spinnability are obtained with an addition amount of preferably 0.008 wt% to 0.15 wt% or less, optimally 0.01 wt% to 0.1 wt%. be able to.

次に、抗菌性メルトブロー不織布は、特表平9−501604号公報に記載された方法でエレクトレット化すれば高性能なエレクトレット化抗菌性不織布とする事ができる。このためエレクトレット化抗菌性不織布を不織布としてマスクやフィルターに用いた場合には、微細塵や菌類をエレクトレット電荷で吸着するため高い捕集性が得られることに加え、捕集した細菌、カビ、ウイルス、アレルゲン物質を捕集した面で直に不活化できるため安全衛生度の高い商品とする事ができる。   Next, the antibacterial melt-blown nonwoven fabric can be made into a high-performance electret antibacterial nonwoven fabric by electretization by the method described in JP-A-9-501604. Therefore, when the electret antibacterial nonwoven fabric is used as a non-woven fabric for masks and filters, fine dust and fungi are adsorbed by electret charges, and in addition to high collection ability, collected bacteria, molds and viruses Since it can be directly inactivated in terms of collecting allergen substances, it can be made into a product with high safety and health.

従来の抗菌性を保持していないメルトブロー不織布と抗菌加工された不織布を積層した積層濾材では、抗菌加工された不織布に捕捉されたバクテリアに対しては抗菌性が期待できるが、菌やウイルスは0.01〜数μmと非常に小さいため目の粗い抗菌加工された上流側の不織布では殆ど捕捉されずに下層のより緻密で捕集効率の高い抗菌性の無いメルトブロー不織布に捕集されていた。このためカビ菌は徐々に増殖して空気下流側に浸透して胞子を濾材面から飛散させる問題が多々起こっていたが、本発明の様に極細繊維自身が抗菌性を持ったものでは、カビ菌の増殖が無くなるため空気下流側の汚染を防止する事ができる。このためビル用空調機や家庭用空気清浄器、自動車用キャビンフィルターなどとして好適に使用することができる。また、ワイパーとして使用すれば、高い塵捕集性が得られ、付着した細菌類やアレルゲン性物質を短時間に不活化するため手で触れても安全衛生度の高い商品とする事ができる。   In the laminated filter medium in which the conventional melt blown nonwoven fabric that does not retain antibacterial properties and the nonwoven fabric that has been subjected to antibacterial processing are laminated, antibacterial properties can be expected against bacteria trapped in the antibacterial processed nonwoven fabric, but 0 Since it was very small as .01 to several μm, it was hardly captured by the upstream nonwoven fabric subjected to rough antibacterial processing, and was collected by a melt blown nonwoven fabric having a higher density and higher antibacterial activity than the lower layer. For this reason, mold fungus gradually grew and permeated into the air downstream side, causing many problems to spore scatter from the filter medium surface. However, in the case where the ultrafine fiber itself has antibacterial properties as in the present invention, Since there is no growth of bacteria, contamination on the downstream side of the air can be prevented. For this reason, it can be suitably used as a building air conditioner, a domestic air cleaner, an automobile cabin filter, or the like. Moreover, if it is used as a wiper, high dust trapping properties can be obtained, and in order to inactivate attached bacteria and allergenic substances in a short time, a product with high safety and hygiene can be obtained even if touched by hand.

次に使用樹脂について説明する。本発明で用いる事が可能な有機重合体は、メルトブロー紡糸が可能なMFRが30〜2500の粘度を有し200℃前後の紡糸温度でも炭化する事のない曳糸性の高い樹脂が適する。ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイト系樹脂、ポリスチレン系樹脂、ポリ乳酸系樹脂、ポリエチレンテレフタレート系樹脂などを広く用いる事が出来るが、エレクトレット化不織布を得る場合には、中でもポリプロピレン系樹脂、ポリ乳酸系樹脂、ポリエチレン系樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイト系樹脂の単独または共重合樹脂を用いる事ができる。   Next, the resin used will be described. As the organic polymer that can be used in the present invention, a resin having a high spinnability that has a viscosity of 30 to 2500 MFR capable of melt blow spinning and does not carbonize even at a spinning temperature of around 200 ° C. is suitable. Polypropylene resin, polyethylene resin, polyamide resin, polyphenylene sulfite resin, polystyrene resin, polylactic acid resin, polyethylene terephthalate resin, etc. can be widely used, but when obtaining electret nonwoven fabric, A polypropylene resin, a polylactic acid resin, a polyethylene resin, a polycarbonate resin, or a polyphenylene sulfite resin can be used alone or as a copolymer resin.

メルトブロー不織布の利点は、繊維径0.05μm以上の極細繊維でも生産性高く生産出来るため非常に大きな繊維表面積を抗菌性作用面として活用できることにある。このため抗菌剤の添加量を少なくしても高い抗菌性を得られ、高捕集効率で菌類を捕集して直に不活化できる利点を有する。   The advantage of the melt blown nonwoven fabric is that a very large fiber surface area can be utilized as an antibacterial action surface because even ultrafine fibers having a fiber diameter of 0.05 μm or more can be produced with high productivity. For this reason, even if the addition amount of the antibacterial agent is reduced, high antibacterial properties can be obtained, and there is an advantage that the fungi can be collected with high collection efficiency and directly inactivated.

メルトブロー不織布の製法は、例えば一例であるが、ノズル孔径0.2mm、ピッチ0.6mmで配置されたメルトブロー用のノズルダイを温度220℃に加熱し、1つのノズル孔あたり0.1g/分の割合で、原料樹脂を溶融させた状態で、ポリプロピレン繊維を吐出し、この吐出したポリプロピレン繊維に対して、温度240℃、ノズル幅1mあたり16Nm3/分の加熱気流を作用させて、繊維を牽引分岐させて極細繊維の流れを形成し、次いで、この極細繊維をメッシュ状エアーサクションコンベア上により捕集する方法で実施することができる。この他に、メルトブロー法の1種であるナノメルト紡糸法を挙げることができる。ナノメルト紡糸法とは、電圧を印加した回転するローラー表面に超低粘度溶融ポリマーを塗布、対局する位置に配置された印加電極間との電圧差によってポリマーを吸引飛散、自己分割化させて極細繊維を得る技術である。この方法に拠れば繊維径0.05〜1μmを主体とした不織布を製造することができるので望ましい。 The method for producing the melt blown nonwoven fabric is, for example, an example, but a melt blow nozzle die arranged with a nozzle hole diameter of 0.2 mm and a pitch of 0.6 mm is heated to a temperature of 220 ° C., and a rate of 0.1 g / min per nozzle hole. Then, the polypropylene fiber is discharged in a state where the raw material resin is melted, and a heated air stream is applied to the discharged polypropylene fiber at a temperature of 240 ° C. and a nozzle width of 16 Nm 3 / min to pull the fiber. It is possible to form a flow of ultrafine fibers, and then to collect the ultrafine fibers on a mesh air suction conveyor. In addition, a nano melt spinning method which is one type of melt blow method can be given. The nano melt spinning method is the application of ultra-low viscosity melted polymer to the surface of a rotating roller to which voltage is applied. Is the technology to get This method is desirable because a nonwoven fabric mainly having a fiber diameter of 0.05 to 1 μm can be produced.

本発明の抗菌性メルトブロー不織布は抗菌剤粒子を含む有機重合体をメルトブロー製法で紡糸した抗菌性メルトブロー不織布である。メルトブロー不織布としているのは、一般の溶融紡糸法による抗菌性繊維に関する公知文献、特開平9−176949号公報に記載されているように、樹脂を溶融して単にノズル吐出孔から吐出後時間をかけて冷却するプロセスでは抗菌剤粒子の凝集作用で繊維芯部に偏在することは避けがたいが、メルトブロー法は吐出されたポリマーがエアーで牽引される過程で分岐(分割)され極細化・急冷されるため、またポリマーに混ざり易いナノメーターサイズの抗菌剤粒子が用いられているため急冷と同時に繊維表面に抗菌剤が露出した状態で繊維化される。このため抗菌剤が偏在すると言うことが起こらないことによる。   The antibacterial melt blown nonwoven fabric of the present invention is an antibacterial melt blown nonwoven fabric obtained by spinning an organic polymer containing antibacterial agent particles by a melt blow manufacturing method. The melt blown non-woven fabric is made by melting the resin and simply taking the time after discharge from the nozzle discharge hole, as described in a publicly known document related to antibacterial fibers by a general melt spinning method, Japanese Patent Laid-Open No. 9-176949. In the process of cooling, it is unavoidable that the antibacterial agent particles are agglomerated in the fiber core, but in the melt blow method, the discharged polymer is branched (divided) in the process of being pulled by air, and is made ultrafine and rapidly cooled. For this reason, since nanometer-sized antibacterial particles that are easily mixed with the polymer are used, fiber formation is performed with the antibacterial agent exposed on the fiber surface simultaneously with rapid cooling. For this reason, the fact that antibacterial agents are unevenly distributed does not occur.

また抗菌性メルトブロー不織布の平均繊維径が40μm以下としているのは、メルトブロー製法が溶融したポリマーを吐出/細繊維化して不織布にするプロセスのため、一般の溶融紡糸のように吐出後冷却して分子鎖を延伸する工程がない。このため繊維は未延伸状態に近く非常に脆い性質のものである。この傾向は繊維径40μmを超える太繊維ほど顕著でプリーツ加工した場合には、屈曲部で繊維が簡単に破断する欠点が生じる。このため破断しない実用性を持った40μm以下の繊維を用いる。また抗菌性は細い繊維ほど抗菌性作用面を大きくなるため少ない抗菌剤使用量で高い抗菌性が得られるようになることから極細繊維ほど好ましい。このため好ましい平均繊維径は25μm以下、更に好ましくは10μm以下で用いるのが良く下限的には0.05μm以上が好ましい。   The average fiber diameter of the antibacterial meltblown nonwoven fabric is set to 40 μm or less because the meltblown process is a process of discharging / thinning the melted polymer into a nonwoven fabric. There is no step to stretch the chain. For this reason, the fibers are close to an unstretched state and are very brittle. This tendency is more conspicuous for thick fibers having a fiber diameter of more than 40 μm. When pleating is performed, there is a drawback that the fibers are easily broken at the bent portion. For this reason, a fiber of 40 μm or less having practicality that does not break is used. Further, the antibacterial property is more preferable as the fine fiber because the thinner the fiber, the larger the antibacterial action surface, and the higher antibacterial property can be obtained with a small amount of the antibacterial agent used. For this reason, the preferred average fiber diameter is 25 μm or less, more preferably 10 μm or less, and 0.05 μm or more is preferable as the lower limit.

しかし、細すぎると擦過で破れたり、巻き締まりで圧損が高くなるため0.1μm以上10μm以下、最適には0.1μm以上7μm以下にすると良い。   However, if it is too thin, it will be broken by rubbing, or the pressure loss will increase due to tightening, so that it is preferably 0.1 μm or more and 10 μm or less, optimally 0.1 μm or more and 7 μm or less.

しかし0.1μmから6μm以下の繊維で構成されたメルトブロー不織布は剛性がないため巻き潰れに拠る厚み減少が避けがたい。このため、コンベア上に捕集された段階のメルトブロー不織布圧損より巻き取った後の方が巻き締まって圧損が高くなる。   However, a melt-blown nonwoven fabric composed of fibers of 0.1 μm to 6 μm or less has no rigidity, so it is inevitable to reduce the thickness due to crushing. For this reason, the direction after winding up rather than the melt blown nonwoven fabric pressure loss of the stage collected on the conveyor winds up, and pressure loss becomes high.

しかし、本発明では平均繊維径の小さい繊維群に極太糸の繊維群を混合することで巻きつぶれを防止したため低圧損な抗菌性メルトブロー不織布を得ることができる。すなわち、本発明の抗菌性メルトブロー不織布は、平均繊維径が異なる複数の繊維群が混合された異繊度混合の抗菌性メルトブロー不織布にする事ができる。このような不織布の特徴は抗菌性と同時に低圧損・高捕集が得られることである。   However, in the present invention, the anti-bacterial melt-blown nonwoven fabric having a low pressure loss can be obtained because the ultra-thin fiber group is mixed with the fiber group having a small average fiber diameter to prevent the collapse. That is, the antibacterial meltblown nonwoven fabric of the present invention can be an antibacterial meltblown nonwoven fabric having a different fineness mixed with a plurality of fiber groups having different average fiber diameters. Such a nonwoven fabric is characterized by low pressure loss and high collection as well as antibacterial properties.

実際、その効果を圧損で示すと、平均繊維径1.2μmの繊維群(繊維径分布範囲0.1〜5μm)と平均繊維径15μm(繊維径分布範囲10〜25μm)の繊維群、すなわち平均繊維径の異なる2つの繊維群を混合した異繊度混合構造のエレクトレット化抗菌性メルトブロー不織布(目付12g/m)は、繊維径6μm以上の繊維が不織布を構成する全繊維体積量に占める体積率が40%で圧損12Pa、捕集効率93%の性能を持つものである。一方、繊維群が1つの従来のメルトブロー不織布で同じ捕集効率93%を同じ目付で達成するためには、平均繊維径1.7μm(繊維径分布範囲1〜7μm)の繊維群が必要で繊維径8μm以上の繊維を含まない極細繊維主体のメルトブロー不織布となる。しかし極細繊維主体で構成されたメルトブロー不織布は剛性が低いため不織布として巻き取った場合、巻き圧で潰れるため圧損が高くなるのを避けられず圧損が20Paと高いものに成らざるをえない。 In fact, when the effect is shown by pressure loss, a fiber group having an average fiber diameter of 1.2 μm (fiber diameter distribution range of 0.1 to 5 μm) and a fiber group having an average fiber diameter of 15 μm (fiber diameter distribution range of 10 to 25 μm), that is, an average The electret antibacterial melt-blown nonwoven fabric (weight per unit area: 12 g / m 2 ) having a mixed structure of two fibers with different fiber diameters is a volume ratio of fibers having a fiber diameter of 6 μm or more in the total fiber volume constituting the nonwoven fabric. Has a pressure loss of 12 Pa and a collection efficiency of 93%. On the other hand, a fiber group having an average fiber diameter of 1.7 μm (fiber diameter distribution range: 1 to 7 μm) is required to achieve the same collection efficiency of 93% with the conventional melt blown nonwoven fabric having one fiber group, and fibers It becomes a melt blown nonwoven fabric mainly composed of ultrafine fibers not containing fibers having a diameter of 8 μm or more. However, since melt blown nonwoven fabrics composed mainly of ultrafine fibers have low rigidity, when wound up as a nonwoven fabric, it is unavoidable that the pressure loss increases because it is crushed by the winding pressure, and the pressure loss must be as high as 20 Pa.

本発明のように不織布厚みを支える骨格繊維として極太繊維群を混合し、捕集性能を高める繊維として極細繊維群を骨格繊維に架橋させるように混合した異繊度混合の抗菌性メルトブロー不織布は、極太繊維群で仕切られた空間容積は巻き圧で潰れないため、その空間にある極細繊維群の嵩高性も保たれた物となる。この結果として非常に大きな繊維表面積を活用した高い抗菌性と低圧損・高捕集性な抗菌性メルトブロー不織布を得ることができるものである。   An antibacterial meltblown nonwoven fabric of different fineness mixed in such a manner that a very thick fiber group is mixed as a skeletal fiber that supports the thickness of the nonwoven fabric and mixed so that the ultrafine fiber group is cross-linked to the skeletal fiber as a fiber that enhances the collection performance. Since the space volume partitioned by the fiber group is not crushed by the winding pressure, the bulkiness of the ultrafine fiber group in the space is maintained. As a result, it is possible to obtain an antibacterial melt blown nonwoven fabric having a high antibacterial property utilizing a very large fiber surface area and having a low pressure loss and a high collection property.

このような異繊度混合構造である抗菌性メルトブロー不織布の製造は、次の様にして実施することができる。
(1)溶融粘度が3倍以上、好ましくは5倍以上異なるポリマーを2種以上混合してノズル孔径0.05〜0.2mmの孔から吐出後、高速加熱エアーで牽引する方法。この方法ではポリマー粘度に応じて牽引性や繊維分割性に差が生じるため繊維径の異なる繊維を均一に混合することができる。
(2)口径の異なるポリマー吐出孔を2種以上準備し、粘度の高いポリマーは大口径の孔から、粘度の低いポリマーは小口径からそれぞれ計量して吐出後、高速加熱エアーで牽引する方法。
(3)(2)に於いて同じ粘度のポリマーを、吐出量を変えて吐出後、高速加熱エアーで牽引する方法。
(4)2台のノズルヘッドを斜め下方に向き合う位置に配置し、極太、極細繊維をそれぞれのノズルで吐出量後、高速加熱エアー内で合流させる方法。上記いずれかの方法で実施する事ができる。中でも繊維群の平均繊維径差を大きく出来るのは(2)の方法である。
Production of the antibacterial meltblown nonwoven fabric having such a different fineness mixed structure can be carried out as follows.
(1) A method in which two or more polymers having different melt viscosities of 3 times or more, preferably 5 times or more are mixed and discharged from a hole having a nozzle hole diameter of 0.05 to 0.2 mm, and then pulled by high-speed heated air. In this method, a difference occurs in the traction property and fiber splitting property according to the polymer viscosity, so fibers having different fiber diameters can be mixed uniformly.
(2) A method in which two or more types of polymer discharge holes having different diameters are prepared, a polymer having a high viscosity is measured from a hole having a large diameter, and a polymer having a low viscosity is measured from a small diameter and discharged, and then pulled by high-speed heated air.
(3) A method in which the polymer having the same viscosity as in (2) is pulled with high-speed heated air after being discharged while changing the discharge amount.
(4) A method in which two nozzle heads are arranged at positions facing diagonally downward, and after the discharge amount of ultra-thick and ultra-fine fibers by each nozzle, they are merged in high-speed heated air. It can be implemented by any of the above methods. Among them, the method (2) can increase the average fiber diameter difference of the fiber group.

上記のいずれかの方法で製造される異繊度混合構造の抗菌性メルトブロー不織布の極太繊維群について説明する。骨格繊維となる極太繊維群の平均繊維径は、巻き圧で潰れない反発性が必要なことから6〜40μmが適当である。しかし太い繊維になるほど潰れは防止できるが厚みが増す弊害も発生する。またメルトブロー法で紡糸した場合には溶融吐出された繊維が捕集されるまでに十分に冷却されないと一緒に紡糸される極細糸に付着して溶かしてしまったり、極太糸同志で融着してしまうため嵩高性が出ない問題も発生する。これらの問題から適当な平均繊維径範囲は6〜40μmである。好適には6〜30μm、より好適には6〜25μm、最適には6〜25μmである。   The very thick fiber group of the antibacterial meltblown nonwoven fabric having a mixed structure of different fineness produced by any one of the above methods will be described. The average fiber diameter of the very thick fiber group serving as the skeletal fiber is suitably 6 to 40 μm because it needs to be repulsive so as not to be crushed by the winding pressure. However, the thicker the fibers, the more damage can be prevented, but there is also an adverse effect of increasing the thickness. In addition, when spinning by the melt blow method, if the melted and discharged fibers are not cooled sufficiently until they are collected, they will adhere to the very fine yarns that are spun together and melt, or they may be fused together by very thick yarns. Therefore, the problem that bulkiness does not appear also arises. Due to these problems, a suitable average fiber diameter range is 6 to 40 μm. The thickness is preferably 6 to 30 μm, more preferably 6 to 25 μm, and most preferably 6 to 25 μm.

一方、低圧損性と高い捕集性を両立するためには極細繊維群と極太繊維群の体積比率が重要となる。極太繊維群の体積比率の求め方は、異繊度混合構造の抗菌性メルトブロー不織布全体の繊維径分布を求め、繊維断面積に一定長さを掛けることで不織布を構成する全繊維の繊維体積総量を求め、全繊維の繊維体積総量に占める繊維径6μm以上の繊維だけの体積量の割合から求めるものである。   On the other hand, the volume ratio between the ultrafine fiber group and the ultrathick fiber group is important in order to achieve both low pressure loss and high collection ability. The method for determining the volume ratio of the very thick fibers is to obtain the fiber diameter distribution of the antibacterial melt-blown nonwoven fabric with a mixed structure of different fineness and multiply the fiber cross-sectional area by a certain length to obtain the total fiber volume of all the fibers that make up the nonwoven fabric. It is obtained from the ratio of the volume amount of only fibers having a fiber diameter of 6 μm or more in the total fiber volume of all fibers.

極太繊維群の体積比率が低い不織布は潰れ易く圧損上昇を防止できない。一方体積比率が高すぎる不織布は、不織布層内の空間容積が減るため圧損が高くなる。また捕集効率を高くすることも難しくなる。これらのバランスから、平均繊維径6μm以上の極太繊維群の繊維体積率を不織布全体繊維体積量の15〜85%の範囲内とすると低圧損性と高捕集性を実現することができる。好ましい体積率は20〜75%(平均繊維径6μm未満繊維の体積率25〜80%以下)、より好ましくは30〜70%(極細繊維群平均繊維径6μm未満繊維の体積率30〜70%以下)、最適には35〜65%(平均繊維径6μm未満繊維の体積率35〜65%以下)にすると良い。なお極太繊維群と次に繊維径の細い繊維群との平均繊維径差を2μm以上、好ましくは3μm以上、最適には5μm以上離すと捕集効率が高くでき低圧損化と両立出来るので適当である。   Nonwoven fabrics having a low volume ratio of very thick fibers are easily crushed and cannot prevent an increase in pressure loss. On the other hand, a nonwoven fabric with a too high volume ratio has a high pressure loss because the space volume in the nonwoven fabric layer is reduced. It also becomes difficult to increase the collection efficiency. From these balances, when the fiber volume ratio of the very thick fiber group having an average fiber diameter of 6 μm or more is within the range of 15 to 85% of the total nonwoven fabric fiber volume, low-pressure loss and high trapping property can be realized. A preferred volume ratio is 20 to 75% (volume ratio of fibers having an average fiber diameter of less than 6 μm is 25 to 80% or less), and more preferably 30 to 70% (volume ratio of fibers having an average fiber diameter of less than 6 μm is 30 to 70% or less. ), And optimally, 35-65% (volume ratio of fibers with an average fiber diameter of less than 6 μm is 35-65% or less). In addition, if the average fiber diameter difference between the very thick fiber group and the next thin fiber group is 2 μm or more, preferably 3 μm or more, and optimally 5 μm or more, the collection efficiency can be improved and low pressure loss can be achieved. is there.

次に極細繊維群について説明する。上記の方法で製造された異繊度混合構造である抗菌性メルトブロー不織布は複数の繊維群で構成されるが、より極細繊維化することで繊維表面積が拡大するため少ない抗菌剤量と樹脂量で抗菌性と高い捕集性能を得ることができる。このため一番細い極細繊維群の平均繊維径範囲を3.0〜4.0μm、好ましくは1.5〜3.0μm、より好ましくは0.8〜1.5μm、最適には0.3〜0.8μm、より最適には0.05〜0.3μmにすると良いが、繊維が細過ぎると強度低下が起こり擦過による破れが発生するため実用的には0.1μm〜2.0μm程度が適当である。   Next, the ultrafine fiber group will be described. The antibacterial meltblown nonwoven fabric, which has a mixed structure of different fineness, manufactured by the above method is composed of a plurality of fiber groups. And high collection performance can be obtained. Therefore, the average fiber diameter range of the thinnest ultrafine fiber group is 3.0 to 4.0 μm, preferably 1.5 to 3.0 μm, more preferably 0.8 to 1.5 μm, and most preferably 0.3 to 0.8μm, more preferably 0.05 to 0.3μm, but if the fiber is too thin, the strength will decrease and tearing will occur due to scratching, so practically 0.1μm to 2.0μm is appropriate. It is.

次によりエレクトレット性と高い抗菌性を実現する方法について説明する。例えば抗菌剤粒子として200nm未満の硫化銀粒子を大量に繊維内に練り込むと高い抗菌性が得られるが、一方でナノメーターオーダーの銀粒子による導電性が発現し抗菌剤添加量によってはエレクトレットの帯電性と安定性を阻害される場合がある。このため、エレクトレット性と抗菌性を両立させる手段として、エレクトレット効果による高捕集性発現に効果の高い極細繊維には硫化銀粒子の添加量を減らすかまたは添加しないでエレクトレット強化繊維とし、一方の極太繊維には抗菌剤を多めに添加して抗菌性と触媒作用効果を強調した繊維にすると、極細繊維による高捕集性と抗菌性が、極太繊維による中捕集性と高い抗菌性、更に嵩高化による低圧損性が実現された異繊度混合構造のエレクトレット化抗菌性メルトブロー不織布を得ることができる。また組み合わせは抗菌剤の種類を変えることもできるので抗菌性と高捕集性に優れた抗菌性メルトブロー不織布を提供する事ができる。   Next, a method for realizing electret properties and high antibacterial properties will be described. For example, high antibacterial properties can be obtained by kneading a large amount of silver sulfide particles of less than 200 nm in the fiber as antibacterial agent particles. On the other hand, conductivity is exhibited by nanometer-order silver particles. Chargeability and stability may be hindered. For this reason, as a means of achieving both electret and antibacterial properties, the ultrafine fibers that are highly effective in developing high trapping properties due to the electret effect are used as electret reinforced fibers without reducing or adding the amount of silver sulfide particles. Adding extra antibacterial agent to extra-thick fiber to make it a fiber that emphasizes antibacterial properties and catalytic effects, high-capacity and anti-bacterial properties with ultra-thin fibers, medium-capturing properties and high anti-bacterial properties with extra-thick fibers, An electret antibacterial meltblown nonwoven fabric having a mixed structure of different fineness in which low-pressure loss due to bulkiness is realized can be obtained. In addition, since the combination can change the type of antibacterial agent, it is possible to provide an antibacterial melt blown nonwoven fabric excellent in antibacterial property and high collection property.

本発明の抗菌性メルトブロー不織布は、各種エアフィルターや液体フィルター、ワイパー、生鮮食料のカバー材、医療材料、衣料材料として使用でき、他の繊維製品と複合しても使用することができる。特にエレクトレット化抗菌性メルトブロー不織布や抗菌性メルトブロー不織布をフィルターとして用いる場合には補強機能の高い支持不織布と積層して補強した抗菌性積層繊維製品とする事が望ましい。また支持不織布には抗菌性、抗カビ性、抗アレルゲン性、抗ウイルス性、消臭性、脱臭性などの機能を持った機能不織布を用いることで、機能が強化された抗菌性積層繊維製品とすることが出来る。例えば支持不織布に抗菌性抗アレルゲン性の支持不織布を積層した場合には、抗菌性積層繊維製品全体が抗菌性となるため、不織布全体で菌やカビ菌が不活化された状態となり交換に際し素手で触っても安全衛生性が高く、舞い上がったアレルゲンによる花粉症発症も防止出来るようになる。   The antibacterial melt blown nonwoven fabric of the present invention can be used as various air filters, liquid filters, wipers, fresh food cover materials, medical materials, and clothing materials, and can be used in combination with other textile products. In particular, when an electret antibacterial meltblown nonwoven fabric or an antibacterial meltblown nonwoven fabric is used as a filter, an antibacterial laminated fiber product reinforced by laminating with a support nonwoven fabric having a high reinforcing function is desirable. In addition, anti-bacterial laminated fiber products with enhanced functions by using functional non-wovens with antibacterial, antifungal, antiallergenic, antiviral, deodorant, deodorizing, etc. functions. I can do it. For example, when an antibacterial and anti-allergenic support nonwoven fabric is laminated on a support nonwoven fabric, the entire antibacterial laminated fiber product becomes antibacterial, so that the entire nonwoven fabric is inactivated with fungi and fungi and must be replaced with bare hands. Safety and hygiene is high even when touched, and it is possible to prevent the onset of hay fever due to soaring allergens.

またこれらのエレクトレット化抗菌性メルトブロー不織布や抗菌性メルトブロー不織布および抗菌性積層繊維製品は、フィルターユニットに仕上げて各種空気清浄機や空調機器、浄水器用に用いることで高い抗菌性を保持した濾過機器とすることができる   These electret antibacterial meltblown nonwoven fabrics, antibacterial meltblown nonwoven fabrics, and antibacterial laminated fiber products are filtered devices that have high antibacterial properties when used in various air purifiers, air conditioners, and water purifiers. can do

以下、実施例を用いて本発明をより具体的に説明する。なお、本実施例における評価方法を下記の通りである。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the evaluation method in a present Example is as follows.

<目付>
24℃60%RHの室温に8時間以上放置して、評価試料の質量を求め、その面積から1m当たりの質量に直して、それぞれの評価試料の目付として求める。サンプルング最小面積は0.01m以上とする。
<Unit weight>
The sample is allowed to stand at room temperature of 24 ° C. and 60% RH for 8 hours or longer, and the mass of the evaluation sample is obtained. The mass per 1 m 2 is corrected from the area and obtained as the basis weight of each evaluation sample. The minimum sampling area is 0.01 m 2 or more.

<捕集性能測定>
JIS B9908(2001)形式1試験法に準じた評価機器に評価試料をセットし、濾材貫通風速3.18m/minで上流側から一般外気を供給し、評価試料前後の粒子数をパーティクルカウンターを用いて測定し、下記式から捕集効率を求める。
η=(1−(C/C))×100
=評価フィルター通過後の粒径0.3〜0.5μmの粒子数
=評価フィルター通過前の粒径0.3〜0.5μmの粒子数。
<Measurement of collection performance>
An evaluation sample is set in an evaluation device conforming to JIS B9908 (2001) type 1 test method, general outside air is supplied from the upstream side at a filter medium penetration air velocity of 3.18 m / min, and the number of particles before and after the evaluation sample is measured using a particle counter. To obtain the collection efficiency from the following formula.
η = (1− (C O / C I )) × 100
C O = number of particles having a particle size of 0.3 to 0.5 μm after passing through the evaluation filter C I = number of particles having a particle size of 0.3 to 0.5 μm before passing through the evaluation filter.

<抗菌性試験方法−定量法>
JIS L19022008「繊維製品の抗菌性試験方法」に規定される定量試験(菌液吸収法)において菌液面をフィルムでカバーする方法で実施。混釈平板培養法により生菌数を測定して、静菌活性値を求める。なお、試験菌株は黄色ぶどう球菌Staphyiococcus ATCC 6538Pを用いた。また、無加工試料として標準白布(綿)を用い、界面活性剤(Tween80)0.05%を添加した試験菌液を使用した。判定基準 静菌活性値2.0以上で抗菌性有り。
<Antimicrobial test method-quantitative method>
In the quantitative test (bacterial solution absorption method) specified in JIS L1902 2008 “Antimicrobial test method for textile products”, the method is carried out by covering the liquid surface with a film. The number of viable bacteria is measured by the pour plate culture method to determine the bacteriostatic activity value. The test strain used was Staphylococcus staphylococcus ATCC 6538P. In addition, a standard white cloth (cotton) was used as an unprocessed sample, and a test bacterial solution to which 0.05% of a surfactant (Tween 80) was added was used. Judgment criteria Antibacterial activity with bacteriostatic activity value of 2.0 or more.

<抗ウイルス性試験方法>
日本分析食品分析センター抗ウイルス性試験方法(インフルエンザA型、H1N1)に準じて行う。
<Antiviral test method>
Performed according to the Japan Analytical Food Analysis Center Antiviral Test Method (Influenza A, H1N1).

<抗カビ性試験方法>
日本化学繊維検査協会、JIS Z29112000(湿式法)で実施する。カビ菌は以下の4種とした。
Aspergillus niger NBRC6341
Penicillium citrinum NBRC6352
Chaetomium globosum NBRC6347
Myrothecium verrucaria NBRC6113
判定基準
0:試料または試験片の接種した部分に菌糸の発育が認められない。
1:試料または試験片の接種した部分に認められる菌糸の発育部分の面積は、全面
積の1/3を超えない。
2:試料または試験片の接種した部分に認められる菌糸の発育部分の面積は、全面
積の1/3を超える。
<Anti-fungal test method>
Conducted by Japan Chemical Fiber Inspection Association, JIS Z2911 2000 (wet method). The following four types of fungi were used.
Aspergillus niger NBRC6341
Penicillium citrinum NBRC6352
Chaetmium globosum NBRC6347
Myrothecerium verrucaria NBRC 6113
Criterion 0: No hyphal growth is observed in the inoculated part of the sample or test piece.
1: The area of the growing part of the mycelium observed in the inoculated part of the sample or the test piece does not exceed 1/3 of the total area.
2: The area of the growth part of the mycelium recognized in the inoculated part of the sample or the test piece exceeds 1/3 of the total area.

<抗アレルゲン性>
ELISA法試験で実施した。アレルゲンはコナヒョウヒダニとスギ花粉を用いて実施した。
<Anti-allergenicity>
The ELISA method test was performed. The allergen was carried out using cypress leopard mite and cedar pollen.

<MFR試験方法>
JIS K7210に準じて実施する。
<メルトブロー不織布からの平均繊維径の求め方>
メルトブロー不織布表面をSEMで観察し、1エリアから200本以上の繊維をアトランダムに抽出し繊維幅を最短距離で測定する。この操作を3cm以上離れた3エリアで実施し、600本の繊維幅を算術平均して平均繊維径とする。
<MFR test method>
It carries out according to JIS K7210.
<How to find the average fiber diameter from melt blown nonwoven fabric>
The surface of the meltblown nonwoven fabric is observed with an SEM, and 200 or more fibers are randomly extracted from one area, and the fiber width is measured at the shortest distance. This operation is carried out in three areas separated by 3 cm or more, and the average fiber diameter is obtained by arithmetically averaging 600 fiber widths.

<繊維径分析と極太繊維群の体積比率の求め方>
異繊度混合構造の抗菌性メルトブロー不織布全体の繊維径分布を求め、繊維断面積に一定長さを掛けることで不織布を構成する全繊維の繊維体積総量を求め、全繊維の繊維体積総量に占める繊維径6μm以上の繊維だけの体積量の割合から求めるものである。
<Fiber diameter analysis and how to determine the volume ratio of very thick fibers>
The fiber diameter distribution of the whole antibacterial melt-blown nonwoven fabric with a different fineness mixed structure is obtained, and the fiber volume total amount of all the fibers constituting the nonwoven fabric is obtained by multiplying the fiber cross-sectional area by a certain length, and the fibers occupy the total fiber volume of all the fibers. It is determined from the volume ratio of only fibers having a diameter of 6 μm or more.

<抗菌剤粒子分析方法>
一次粒子径は透過型電子顕微鏡を用いて樹脂または繊維の表面または切断面を観察し、粒子の中から100個以上の、重なりや凝集が無くそれ以上分割できない粒子(一次粒子)一次をランダムに抽出し長径を測定して平均値で求める。含有量分析は、ICP発行分析法とX線回折法も併用して実施する。
(ポリプロピレン樹脂の調製)
チーグラーナッタ触媒を用いて重合されたポリプロピレン樹脂パウダーに熱安定剤としてチバスペシャルティーケミカルズ(株)の商品名 CHIMASSORB 944LDを0.1重量%とイルガノックス1425WLを0.2重量%、2,6−tブチル−P−クレゾールを0.05重量%、ステアリン酸カルシューム0.1重量%を混合・溶融押し出ししてチップ化したものに、
表1記載の抗菌剤粒子を混合・溶融押し出ししてチップ化したものを用いた。
<Antibacterial agent analysis method>
The primary particle size is determined by observing the surface or cut surface of the resin or fiber using a transmission electron microscope, and randomly selecting more than 100 particles (primary particles) that cannot be further divided without overlapping or agglomerating. Extract and measure the major axis to obtain the average value. The content analysis is performed using both the ICP issue analysis method and the X-ray diffraction method.
(Preparation of polypropylene resin)
Trade name of Ciba Specialty Chemicals Co., Ltd. 0.1% by weight of CHIMASSORB 944LD and 0.2% by weight of Irganox 1425WL as a heat stabilizer to polypropylene resin powder polymerized using a Ziegler-Natta catalyst To t-butyl-P-cresol 0.05 wt% and calcium stearate 0.1 wt% mixed and melt extruded into chips,
The antibacterial agent particles listed in Table 1 were mixed and melt extruded to form chips.

Figure 2011132628
Figure 2011132628

Figure 2011132628
Figure 2011132628

(メルトブロー紡糸条件)
(メルトブロー紡糸条件と実施例/比較例の関係)
上記ポリプロピレン樹脂と表1および表2に記載されたメルトブロー紡糸条件A〜G(目付12g/m)、I〜J(目付50g/m)を適用して紡糸された繊維をメッシュ状エアーサクションコンベアにより捕集してメルトブロー不織布を作成した。なお表中のポリマー吐出量、ポリマー樹脂MFR、平均繊維径の行に記載された大および小の表示は、ノズル孔として大または小を用いたことを示している。メルトブロー条件Fのノズル孔に1個または3個と記載されているのは、ノズル孔径大の間にノズル孔径小が3個の配置されていることを示す。
(Melt blow spinning conditions)
(Relationship between melt blow spinning conditions and examples / comparative examples)
Mesh-spun air suction is applied to the above-mentioned polypropylene resin and fibers spun by applying the melt blow spinning conditions A to G (weight per unit of 12 g / m 2 ) and I to J (weight per unit of 50 g / m 2 ) described in Tables 1 and 2. A melt blown nonwoven fabric was prepared by collecting with a conveyor. In addition, the large and small display described in the row | line | column of the polymer discharge amount in the table | surface, polymer resin MFR, and an average fiber diameter has shown having used large or small as a nozzle hole. The description of one or three nozzle holes in the melt blow condition F indicates that three nozzle hole diameters are arranged between the nozzle hole diameters.

(エレクトレット化方法)
不織布に純水を噴射し完全に濡らした後、ニップロールで潰して水分付着率250%まで脱水後、100℃の乾燥機に30分間放置して乾燥するハイドロチャージ方法を用いた。
(Electretization method)
A hydrocharge method was used, in which pure water was sprayed onto the nonwoven fabric and completely wetted, then crushed with a nip roll, dehydrated to a moisture adhesion rate of 250%, and then dried in a dryer at 100 ° C. for 30 minutes.

Figure 2011132628
Figure 2011132628

抗菌剤粒子(1):一次粒子径10nmの硫化銀粒子
抗菌剤粒子(2):一次粒子径50nmのコロイダルシリカ添着硫化銀粒子(シリカ重量比率60%)
抗菌剤粒子(3):一次粒子径180nmのシリカ添着硫化銀粒子(シリカ重量比率80%)
抗菌剤粒子(4):一次粒子径250nmのシリカ添着硫化銀粒子(シリカ重量比率80%)。
Antibacterial agent particles (1): Silver sulfide particles having a primary particle size of 10 nm Antibacterial agent particles (2): Colloidal silica-impregnated silver sulfide particles having a primary particle size of 50 nm (silica weight ratio 60%)
Antibacterial agent particles (3): Silica-impregnated silver sulfide particles having a primary particle diameter of 180 nm (silica weight ratio 80%)
Antibacterial agent particles (4): Silica-impregnated silver sulfide particles having a primary particle diameter of 250 nm (silica weight ratio 80%).

(実施例1〜14)
表3について、それぞれの抗菌剤粒子添加率と繊維径/捕集効率、抗菌性(静菌活性値)、抗ウイルス不活化率、抗カビ性の評価結果を示す。試験結果の通り実施例1、2、6,10,11,12の関係から硫化銀粒子の添加量が増えるに従い、また実施例4,5,6、9の関係から繊維径が細くなるに従い抗菌性が増す事が分かる。また実施例13は、平均繊維径1.2μmの繊維群(体積割合60%、繊維径範囲0.1〜6μm)と平均繊維径15μmの繊維群(体積割合40%、繊維径範囲10〜25μm)の2つの繊維群で構成された圧損12Pa、捕集効率93%の異繊度混合構造のエレクトレット化抗菌性メルトブロー不織布である。一方、同じ捕集効率93%を繊維群一つで得るためには平均繊維径1.7μm、圧損20Paのエレクトレット化抗菌性メルトブロー不織布が必要であった。このことから異繊度混合構造が低圧損性に優れた抗菌性メルトブロー不織布で有る事が確認できた。また実施例14では、平均繊維径0.5μmの繊維群(体積割合37.5%、繊維径範囲0.05〜0.1μm)と平均繊維径15μmの繊維群(体積割合62.5%、繊維径範囲10〜25μm)の2つの繊維径分布を持った圧損19Pa、捕集効率99.8%の異繊度混合構造のエレクトレット化抗菌性メルトブロー不織布である。実施例13より更に抗菌性が高いことからこれも極細繊維の効果を確認することができる。
(Examples 1-14)
About Table 3, the evaluation result of each antibacterial agent particle addition rate, fiber diameter / collection efficiency, antibacterial property (bacteriostatic activity value), antiviral inactivation rate, and antifungal property is shown. As the test results show, the antibacterial activity increases as the amount of silver sulfide particles increases due to the relationship between Examples 1, 2, 6, 10, 11, and 12, and as the fiber diameter decreases due to the relationship between Examples 4, 5, 6, and 9. You can see that the nature increases. In Example 13, a fiber group having an average fiber diameter of 1.2 μm (volume ratio 60%, fiber diameter range 0.1 to 6 μm) and a fiber group having an average fiber diameter 15 μm (volume ratio 40%, fiber diameter range 10 to 25 μm). ) Is an electret antibacterial meltblown nonwoven fabric having a mixed structure of different fineness with a pressure loss of 12 Pa and a collection efficiency of 93%. On the other hand, an electret antibacterial meltblown nonwoven fabric having an average fiber diameter of 1.7 μm and a pressure loss of 20 Pa was required to obtain the same collection efficiency of 93% with one fiber group. From this, it was confirmed that the mixed structure of different fineness was an antibacterial melt blown nonwoven fabric excellent in low pressure loss. In Example 14, a fiber group having an average fiber diameter of 0.5 μm (volume ratio 37.5%, fiber diameter range 0.05 to 0.1 μm) and a fiber group having an average fiber diameter of 15 μm (volume ratio 62.5%, This is an electret antibacterial meltblown nonwoven fabric having a mixed structure of different fineness with a pressure loss of 19 Pa and a collection efficiency of 99.8%, with two fiber diameter distributions in the fiber diameter range of 10 to 25 μm. Since the antibacterial property is higher than that of Example 13, the effect of the ultrafine fiber can also be confirmed.

(実施例15)
平均繊維径が40μm、目付40g/mのエレクトレット化抗菌性メルトブロー不織布であり粒子径180nmのシリカ粒子に硫化銀が添着された抗菌剤粒子を0.2重量%含むため高い抗菌性が得られた。プリーツ加工を行った結果、プリーツ頂点部で一部の繊維に割れが発生していることから耐久性と実用性の面で限界の繊維径であることが分かった。
(実施例16)
実施例7と比較例1のサンプルを用いた6段階臭気官能評価では、実施例7のサンプルの臭気強度が2.8に対し比較例1のサンプルの臭気強度は3.7であり消臭効果が確認できた。
(Example 15)
It is an electret antibacterial melt-blown nonwoven fabric with an average fiber diameter of 40 μm and a basis weight of 40 g / m 2 , and contains 0.2% by weight of antibacterial particles in which silver sulfide is affixed to silica particles having a particle diameter of 180 nm, thereby providing high antibacterial properties. It was. As a result of pleating, it was found that the fiber diameter was the limit in terms of durability and practicality because cracks occurred in some fibers at the pleat apex.
(Example 16)
In the 6-step odor sensory evaluation using the samples of Example 7 and Comparative Example 1, the odor intensity of the sample of Example 7 was 2.8, whereas the odor intensity of the sample of Comparative Example 1 was 3.7, and the deodorizing effect Was confirmed.

(実施例17)
実施例7のサンプルに抗菌・抗ウイルス・抗アレルゲン加工された不織布(平均繊度5dtex、目付60g/m、静菌活性値5.4以上、抗ウイルス不活化率99.9%・スギ花粉不活化率99.1%、捕集効率2%以下)を積層した抗菌性積層繊維製品を濾材とし、この濾材を1.5m収納したフィルターユニット(サイズW300mm×L340mm×D40mm)を作成した。同様に比較例1のサンプルに機能のない不織布(平均繊度5dtex、目付60g/m、抗菌性0.1以下、抗ウイルス不活化率0%・スギ花粉不活化率0%、捕集効率2%以下)を積層した積層濾材を作成し、この濾材を1.5m収納したフィルターユニット(サイズW300mm×L340mm×D40mm)を作成した。この二つのフィルターを一般ビルの外気取り入れ口用空調機に装着し6ヶ月間の運転を行い、切り出した濾材の抗カビ性試験を行った。この結果、比較例の抗カビ性は3(発育有り)、実施例7の抗カビ性は0〜1でやや発育の気配が認められたが明らかに抗カビ性に優れていることが確認できた。
(Example 17)
Nonwoven fabric processed with antibacterial, antiviral, and antiallergen (average fineness 5 dtex, basis weight 60 g / m 2 , bacteriostatic activity value 5.4 or more, antiviral inactivation rate 99.9%, cedar pollen-free A filter unit (size W300 mm × L340 mm × D40 mm) containing 1.5 m 2 of the filter medium was prepared using an antibacterial laminated fiber product laminated with an activation rate of 99.1% and a collection efficiency of 2% or less. Similarly, a non-functional nonwoven fabric (average fineness 5 dtex, basis weight 60 g / m 2 , antibacterial property 0.1 or less, antiviral inactivation rate 0%, cedar pollen inactivation rate 0%, collection efficiency 2 % Or less) was prepared, and a filter unit (size W300 mm × L340 mm × D40 mm) containing 1.5 m 2 of the filter medium was prepared. These two filters were installed in an air conditioner for an outside air intake in a general building and operated for 6 months, and an antifungal test was conducted on the cut filter media. As a result, the antifungal property of the comparative example was 3 (there was growth), and the antifungal property of Example 7 was 0 to 1 and some signs of growth were observed, but it was clearly confirmed that the antifungal property was excellent. It was.

Figure 2011132628
Figure 2011132628

(比較例1)
表4について、抗菌剤粒子を含まない比較例1では抗菌性が確認出来なかった。
(比較例2)
繊維径が45μmと太いため冷却が遅く球晶が発達し十分な分子配向が得られなかった事に加え、抗菌剤の含有量が多いために繊維が非常にもろかった。プリーツ加工を行うと折り曲げ部で繊維切断が頻発し全損する場合もあり、実用性の無いものであった。
(Comparative Example 1)
About Table 4, antibacterial property was not able to be confirmed in the comparative example 1 which does not contain an antibacterial agent particle.
(Comparative Example 2)
Since the fiber diameter was as large as 45 μm, the cooling was slow and spherulites developed and sufficient molecular orientation could not be obtained. In addition, the fiber was very brittle due to the high content of the antibacterial agent. When the pleating process is performed, fiber cutting frequently occurs at the bent portion and the entire loss may occur, which is impractical.

(比較例3)
粒子径250nmと大きく抗菌剤添加率も多いためノズル詰まりが多発し紡糸を継続する事が出来なかった。極細繊維を紡糸するには抗菌剤の粒子径が大きすぎる事がわかった。
(Comparative Example 3)
Since the particle size was 250 nm and the antibacterial agent addition rate was large, nozzle clogging occurred frequently, and spinning could not be continued. It was found that the particle size of the antibacterial agent was too large to spin ultrafine fibers.

抗菌性メルトブロー不織布は特にマスク、フィルター、ワイパー等に利用可能である。特にマスク、フィルター用途で従来から使用されている抗菌性訴求商品は非抗菌性の極細繊維不織布に抗菌性の極太不織布を積層した不織布であったため、実用面での抗菌性には問題があった。しかし非抗菌性の極細繊維不織布を本発明の抗菌性メルトブロー不織布に変更することで菌、ウイルスの不活化が促進されるため感染の危険度レベルを1層低くくする事ができるため利用は拡大する。   Antibacterial meltblown nonwoven fabrics can be used particularly for masks, filters, wipers and the like. In particular, antibacterial appeal products that have been used for masks and filters in the past were non-antibacterial ultrafine fiber nonwoven fabrics laminated with antibacterial very thick nonwoven fabrics. . However, by changing the non-antibacterial ultrafine fiber nonwoven fabric to the antibacterial meltblown nonwoven fabric of the present invention, inactivation of bacteria and viruses is promoted, so that the risk level of infection can be lowered by one layer, so the use is expanded To do.

Claims (7)

一次粒子径が200nm未満の抗菌剤粒子を含む平均繊維径40μm以下であることを特徴とする抗菌性メルトブロー不織布。 An antibacterial meltblown nonwoven fabric having an average fiber diameter of 40 μm or less including antibacterial particles having a primary particle diameter of less than 200 nm. 抗菌剤粒子が硫化銀粒子または/およびシリカ添着硫化銀粒子である請求項1記載の抗菌性メルトブロー不織布。 The antibacterial meltblown nonwoven fabric according to claim 1, wherein the antibacterial agent particles are silver sulfide particles and / or silica-added silver sulfide particles. 抗菌剤粒子の含有量が異なる複数の繊維群が混合されてなる請求項1または2に記載の抗菌性メルトブロー不織布。 The antibacterial melt blown nonwoven fabric according to claim 1 or 2, wherein a plurality of fiber groups having different antibacterial agent content are mixed. 平均繊維径が異なる複数の繊維群を有し、その内、平均繊維径6μm以上の繊維群は全繊維体積量の20%以上を占める請求項1〜3のいずれかに記載の抗菌性メルトブロー不織布。 The antibacterial meltblown nonwoven fabric according to any one of claims 1 to 3, wherein the antibacterial meltblown nonwoven fabric has a plurality of fiber groups having different average fiber diameters, of which the fiber group having an average fiber diameter of 6 µm or more occupies 20% or more of the total fiber volume. . エレクトレット化されたものである請求項1〜4のいずれかに記載の抗菌性メルトブロー不織布。 The antibacterial meltblown nonwoven fabric according to any one of claims 1 to 4, which is electretized. 請求項1〜5のいずれかに記載の抗菌性メルトブロー不織布を用いたフィルター。 A filter using the antibacterial meltblown nonwoven fabric according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の抗菌性メルトブロー不織布を用いた濾過機器。 The filtration apparatus using the antibacterial melt blown nonwoven fabric in any one of Claims 1-5.
JP2009292001A 2009-12-24 2009-12-24 Antimicrobial melt-blown nonwoven fabric Pending JP2011132628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292001A JP2011132628A (en) 2009-12-24 2009-12-24 Antimicrobial melt-blown nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292001A JP2011132628A (en) 2009-12-24 2009-12-24 Antimicrobial melt-blown nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2011132628A true JP2011132628A (en) 2011-07-07

Family

ID=44345665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292001A Pending JP2011132628A (en) 2009-12-24 2009-12-24 Antimicrobial melt-blown nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2011132628A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538625A (en) * 2010-09-21 2013-10-17 ザ プロクター アンド ギャンブル カンパニー Wiping cloth containing fiber structure with reduced density
JP2014008498A (en) * 2012-07-03 2014-01-20 Calsonic Kansei Corp Air-conditioning filter
JP2014208318A (en) * 2013-04-16 2014-11-06 東洋紡株式会社 Antibacterial electret filter medium
JP2016017257A (en) * 2014-07-04 2016-02-01 光弘 高橋 Nanofiber member with antibacterial function and nanofiber antibacterial functional product using the same
JP2018040421A (en) * 2016-09-07 2018-03-15 株式会社東芝 Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator
CN111902199A (en) * 2018-03-30 2020-11-06 东丽株式会社 Multilayer filter material
CN112337199A (en) * 2020-10-09 2021-02-09 浙江吉利控股集团有限公司 Automobile air conditioner filter, air conditioner filter element and manufacturing method thereof
WO2021149606A1 (en) * 2020-01-23 2021-07-29 東レ株式会社 Electret melt-blown non-woven fabric, filter material and air filter obtained using same, and method for producing electret melt-blown non-woven fabric
KR20210096677A (en) * 2018-12-18 2021-08-05 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 Antibacterial nonwoven polyamide with zinc content

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538625A (en) * 2010-09-21 2013-10-17 ザ プロクター アンド ギャンブル カンパニー Wiping cloth containing fiber structure with reduced density
JP2014008498A (en) * 2012-07-03 2014-01-20 Calsonic Kansei Corp Air-conditioning filter
JP2014208318A (en) * 2013-04-16 2014-11-06 東洋紡株式会社 Antibacterial electret filter medium
JP2016017257A (en) * 2014-07-04 2016-02-01 光弘 高橋 Nanofiber member with antibacterial function and nanofiber antibacterial functional product using the same
JP2018040421A (en) * 2016-09-07 2018-03-15 株式会社東芝 Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator
CN111902199A (en) * 2018-03-30 2020-11-06 东丽株式会社 Multilayer filter material
JP2022515089A (en) * 2018-12-18 2022-02-17 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー Antimicrobial non-woven polyamide with zinc
KR20210096677A (en) * 2018-12-18 2021-08-05 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 Antibacterial nonwoven polyamide with zinc content
KR102542850B1 (en) 2018-12-18 2023-06-14 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 Antibacterial nonwoven polyamide with zinc content
JP7323620B2 (en) 2018-12-18 2023-08-08 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー Antimicrobial non-woven polyamide with zinc content
US11758909B2 (en) 2018-12-18 2023-09-19 Ascend Performance Materials Operations Llc Antimicrobial nonwoven polyamides with zinc content
WO2021149606A1 (en) * 2020-01-23 2021-07-29 東レ株式会社 Electret melt-blown non-woven fabric, filter material and air filter obtained using same, and method for producing electret melt-blown non-woven fabric
CN114945418A (en) * 2020-01-23 2022-08-26 东丽株式会社 Electret melt-blown nonwoven fabric, filter medium and air filter using same, and method for producing electret melt-blown nonwoven fabric
JP7468504B2 (en) 2020-01-23 2024-04-16 東レ株式会社 Electret melt-blown nonwoven fabric, filter medium and air filter using the same, and method for producing electret melt-blown nonwoven fabric
CN112337199A (en) * 2020-10-09 2021-02-09 浙江吉利控股集团有限公司 Automobile air conditioner filter, air conditioner filter element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2011132628A (en) Antimicrobial melt-blown nonwoven fabric
EP2881157B1 (en) Interlaced filtration barrier
Purwar et al. Electrospun Sericin/PVA/Clay nanofibrous mats for antimicrobial air filtration mask
JP5307772B2 (en) Nanofiber filter media
TWI601769B (en) Nonwoven web and fibers with electret properties, manufacturing processes thereof and their use
WO2016144721A1 (en) Composite filter media including a nanofiber layer formed directly onto a conductive layer
JP4932408B2 (en) Nonwoven fabric and filter medium for air filter using the same
JP6951482B2 (en) Filter media for air filters, their manufacturing methods, and air filters
WO2021000974A1 (en) Air filtration filter material
JP2007231500A (en) Nonwoven fabric for filter and method for producing the same
CN113710344A (en) Filter media comprising a polyamide nanofiber layer
JP5564934B2 (en) Antibacterial organic polymer products
US20180353883A1 (en) Nonwoven fabric and air filter including same
JP2015010313A (en) Filter medium and manufacturing method thereof
JPWO2003060216A1 (en) Electret body manufacturing method and manufacturing apparatus
WO2010055668A1 (en) Sheet-like assembly of fibers having small diameters, method for producing same, and apparatus for producing same
JP2017113670A (en) Filter medium for air filter and air filter
JP5022987B2 (en) Spunbond nonwoven fabric and air filter using the same
CN110960925A (en) Antistatic melt-blown composite antibacterial nanofiber non-woven fabric and preparation method thereof
JP4905340B2 (en) Electret fiber sheet
CN110393978A (en) A kind of antibacterial ordor removing non-woven filter material and its application
CN109648958B (en) Composite non-woven fabric and preparation method and application thereof
CN112439274A (en) Air conditioner purification filter screen and air conditioner
JP4737039B2 (en) Filter nonwoven fabric for air intake
JP2004243233A (en) Biodegradable filtering material