JP2011131224A - Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part - Google Patents

Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part Download PDF

Info

Publication number
JP2011131224A
JP2011131224A JP2009290866A JP2009290866A JP2011131224A JP 2011131224 A JP2011131224 A JP 2011131224A JP 2009290866 A JP2009290866 A JP 2009290866A JP 2009290866 A JP2009290866 A JP 2009290866A JP 2011131224 A JP2011131224 A JP 2011131224A
Authority
JP
Japan
Prior art keywords
hardness
build
welding
reinforcing bead
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009290866A
Other languages
Japanese (ja)
Inventor
Masahiro Ishide
雅裕 石出
Atsunori Mori
敦紀 毛利
Isao Kita
功 喜夛
Takashi Shinmyo
高史 新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009290866A priority Critical patent/JP2011131224A/en
Publication of JP2011131224A publication Critical patent/JP2011131224A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply evaluating hardness of a build-up part formed on a metal plate by a build-up welding in a non-destructive manner. <P>SOLUTION: The propriety determining method for a reinforcing bead part includes: a dimension obtaining step of obtaining dimensions of a plurality of reinforcing bead parts formed on a vehicle body constituting part of the metal plate as a component by the build-up welding; a numerical actual measuring step of evaluating the hardness of the plurality of the reinforcing bead parts by actual measurement; and a correlation obtaining step of obtaining correlation between the dimensions of the reinforcing bead parts obtained by the dimension obtaining step and the actual measured values of the hardness of the reinforcing bead parts obtained by the numerical actual measuring step. The hardness of the reinforcing bead parts is evaluated based on the correlation obtained by the correlation obtaining step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、肉盛り溶接で金属板に形成した肉盛り部の硬さ評価方法、および、この肉盛り部を、金属板を構成要素とする車体構造部品に補強用ビード部として設けた場合における上記補強用ビード部の良否判定方法に関する。   The present invention relates to a method for evaluating the hardness of a build-up portion formed on a metal plate by build-up welding, and the case where this build-up portion is provided as a reinforcing bead portion on a vehicle body structural component having a metal plate as a component. The present invention relates to a quality determination method for the reinforcing bead portion.

近年、自動車の安全性向上と軽量化による環境負荷低減を共に図るべく、ハイテン材や超ハイテン材と呼ばれる高強度鋼板の車体構造部品への適用が検討され始めている。しかしながら、この種の鋼板は一般的に高価であり、また、高剛性であるが故に加工性の面でも問題がある。そのため、高強度鋼板の適用は、未だ限られた範囲に留まっているのが現状である。   In recent years, the application of high-strength steel sheets called high-tensile materials or ultra-high-tensile materials to car body structural parts has begun to be studied in order to improve the safety of automobiles and reduce the environmental burden by reducing weight. However, this type of steel sheet is generally expensive and has high workability due to its high rigidity. For this reason, the application of high-strength steel sheets is still limited.

そのため、例えば車体フレームを構成する鋼板製の車体構造部品にあっては、軽量化を図りつつもその高強度化を図るための鋼板への加工方法が検討、提案されている。ここで、例えば下記特許文献1には、上記車体構造部品としてのフレームの内面又は外面に、当該フレームの荷重入力方向に沿って肉盛り溶接を施し、これによりフレームの補強箇所に補強用ビード部としての肉盛り部を設けたフレーム構造およびこのフレーム構造の製造方法が開示されている。この加工方法によれば、フレーム構造に求められる強度特性等に応じて上記ビード部を形成すべき部位を設定することで部分的な補強が可能となり、また好適な溶接材料を選定することにより、大幅なフレーム重量の増加を招くことなく、フレーム構造に対して所要の強度特性等を付与することができる。しかも、一般的な溶接設備によって施工できるので汎用性も高い。   For this reason, for example, in the case of a vehicle body structural part made of a steel plate that constitutes a vehicle body frame, a method for processing the steel plate to increase the strength while reducing the weight has been studied and proposed. Here, for example, in Patent Document 1 below, build-up welding is performed on the inner surface or the outer surface of the frame as the vehicle body structural component along the load input direction of the frame, thereby reinforcing the bead portion for reinforcement at the reinforcing portion of the frame. A frame structure provided with a built-up portion and a method for manufacturing the frame structure are disclosed. According to this processing method, partial reinforcement is possible by setting a portion where the bead portion should be formed according to strength characteristics and the like required for the frame structure, and by selecting a suitable welding material, Necessary strength characteristics and the like can be imparted to the frame structure without significantly increasing the frame weight. Moreover, since it can be constructed by general welding equipment, it is highly versatile.

特開2003−112260号公報JP 2003-112260 A

このように、目的に応じた肉盛り材(溶接材)を使用して金属板を構成要素とする車体構成部品に対して肉盛り溶接を施す場合には、上記肉盛り溶接が適正に施されたか否かを判定する必要がある。具体的には、肉盛り溶接後のフレーム構造の強度や剛性を実際に試験により評価する方法が考えられる。あるいは、肉盛り溶接により金属板に形成された補強用ビード部の硬さを実際に測定することでその補強効果の程度を評価する方法が考えられる。しかし、肉盛り溶接を施した金属板に対して強度試験を行う場合には、比較となる肉盛り溶接を施していない金属板に対しても強度試験を行う必要があるため、手間と無駄が増える。また、補強用ビード部の硬さ(例えばビッカース硬さ)を測定する場合には、原則、補強用ビード部を切断し、その切断面における硬さを適当な硬さ試験機で実測しなければならないため、測定作業に多大な工数を要する。しかも、何れの方法によっても、補強用ビード部に所定の荷重を付与して破壊することになるため、評価した部品は廃棄処分とする必要があり、これによっても無駄が増える。   As described above, when overlay welding is performed on a vehicle body component having a metal plate as a component using a build-up material (welding material) according to the purpose, the above-described build-up welding is appropriately performed. It is necessary to determine whether or not. Specifically, a method of actually evaluating the strength and rigidity of the frame structure after build-up welding by a test is conceivable. Or the method of evaluating the degree of the reinforcement effect by actually measuring the hardness of the bead part for reinforcement formed in the metal plate by overlay welding is considered. However, when performing a strength test on a metal plate that has undergone build-up welding, it is necessary to perform a strength test on a metal plate that has not undergone build-up welding. Increase. In addition, when measuring the hardness (for example, Vickers hardness) of the reinforcing bead part, in principle, the reinforcing bead part must be cut and the hardness at the cut surface must be measured with an appropriate hardness tester. Therefore, it takes a lot of man-hours for the measurement work. In addition, by any method, a predetermined load is applied to the reinforcing bead portion for destruction, so that the evaluated part needs to be disposed of, which also increases waste.

例えばショア硬さ試験であればその試験機も比較的小型であり、補強用ビード部を切断せずともその表面にダイヤモンド圧子を押圧するだけで測定できるようにも思われる。しかし、この種の部品(車体構成部品)は、軽量化と高強度化を両立するために中空状のフレーム構造を有するものが多く、また、その板厚も他の構造用板材に比べて薄い(数mm以下)。そのために、上記硬さ試験を行うと、フレームを構成する金属板が変形ないし振動してダイヤモンド圧子からの押圧力を吸収するため、硬さを精度よく測定できない問題があった。   For example, in the case of the Shore hardness test, the testing machine is also relatively small, and it seems that measurement can be performed by simply pressing a diamond indenter on the surface without cutting the reinforcing bead portion. However, many of these types of components (vehicle body components) have a hollow frame structure in order to achieve both weight reduction and high strength, and the plate thickness is thinner than other structural plate materials. (Several mm or less). Therefore, when the hardness test is performed, the metal plate constituting the frame is deformed or vibrated and absorbs the pressing force from the diamond indenter, so that there is a problem that the hardness cannot be measured accurately.

この種の問題は、何も補強用ビード部を設ける場合に限ったことではなく、他の金属板又は金属板を構成要素とする物品全般に対して、所定の物性改善のために肉盛り溶接で肉盛り部を形成する場合にも当てはまる。   This kind of problem is not limited to the case where a reinforcing bead is provided, but other metal plates or general articles composed of metal plates are used for overlay welding to improve the specified physical properties. This also applies to the case where the build-up part is formed.

一方で、肉盛り部を補強用ビード部として設ける場合における補強用ビード部の良否は、上記ビード部の硬さだけでなく、その大きさや、母材(金属板)に対する溶込みの程度などによっても判定できると考えられる。しかし、これまでの評価方法は、硬さの評価を除けば、単に肉盛り溶接後のビード部を視認し、当該ビード部が途切れずに形成されているか、部分的に幅の狭い部分がないか等の定性的な評価に留まっており、この種のビード部が適正に形成されたか否かを定量的に評価・判定するための方法は存在しなかったのが実情である。   On the other hand, whether or not the reinforcing bead portion is good when the built-up portion is provided as the reinforcing bead portion depends not only on the hardness of the bead portion but also on the size and the degree of penetration into the base material (metal plate). Can also be judged. However, the conventional evaluation methods, except for the evaluation of hardness, simply visually recognize the bead part after build-up welding, and the bead part is formed without interruption or there is no part with a narrow width. However, there is no method for quantitatively evaluating and judging whether or not this type of bead portion is properly formed.

以上の事情に鑑み、本明細書では、肉盛り溶接で金属板に形成した肉盛り部の硬さを非破壊で簡便に評価することのできる方法を提供することを、解決すべき第1の技術的課題とする。   In view of the above circumstances, the present specification provides a first method that should be solved to provide a method capable of easily and non-destructively evaluating the hardness of a built-up portion formed on a metal plate by build-up welding. Technical issue.

また、以上の事情に鑑み、本明細書では、金属板を構成要素とする車体構成部品に肉盛り溶接で形成した補強用ビード部の良否判定を定量的かつ簡便に行うことのできる方法を提供することを、解決すべき第2の技術的課題とする。   Further, in view of the above circumstances, the present specification provides a method capable of quantitatively and simply determining the quality of a reinforcing bead portion formed by build-up welding on a vehicle body component having a metal plate as a component. This is the second technical problem to be solved.

本発明は、前記第1の技術的課題の解決を図るためになされたものである。すなわち、本発明の第1の側面に係る肉盛り部の硬さ評価方法は、肉盛り溶接で金属板に形成した複数の肉盛り部の寸法を取得する寸法取得工程と、複数の肉盛り部の硬さを実測する硬さ実測工程と、寸法取得工程で得た肉盛り部の寸法と、硬さ実測工程で得た肉盛り部の硬さの実測値との相関を取得する相関取得工程とを備え、相関取得工程で得た相関に基づき、肉盛り部の硬さを評価する点をもって特徴付けられる。   The present invention has been made to solve the first technical problem. That is, the method for evaluating the hardness of the built-up portion according to the first aspect of the present invention includes a dimension obtaining step for obtaining the dimensions of a plurality of built-up portions formed on a metal plate by build-up welding, and a plurality of built-up portions. Hardness measurement step for actually measuring the hardness of the workpiece, and a correlation acquisition step for acquiring a correlation between the dimension of the build-up portion obtained in the dimension acquisition step and the measured value of the hardness of the build-up portion obtained in the hardness measurement step And based on the correlation obtained in the correlation acquisition step, the hardness of the built-up portion is evaluated.

この種の肉盛り溶接に用いられる肉盛り材(溶接材)は、母材となる金属板に対して所定の物性向上を目的として使用されることから、通常、母材とは異なる材料からなる。そのため、上記肉盛り材が例えば所定の合金成分を含む場合、金属板への溶込みが進むにつれて、溶接部における合金成分が母材によって薄められる現象、いわゆる希釈を生じる。この希釈の程度(希釈率)と硬さとの間に相関があることは知られているが、溶込み量は、肉盛り部だけでなく金属板に溶け込んだ部分の大きさを知る必要があることから、どうしても破壊検査に頼らざるを得ない問題があった。ここで、硬さは、一般に、材料の構造(金属であればその結晶構造)により決定されるものであるところ、本発明者らは鋭意検討の結果、外部からその定量的な大きさを把握し易い肉盛り部の寸法に着目し、後述する肉盛り部の寸法測定結果と、硬さ測定結果とから、この寸法と硬さとの間に所定の相関を見出すに至った。   The build-up material (welding material) used for this type of build-up welding is usually made of a material different from the base material because it is used for the purpose of improving predetermined physical properties with respect to the metal plate as the base material. . Therefore, when the build-up material includes, for example, a predetermined alloy component, a phenomenon in which the alloy component in the welded portion is diluted by the base material, so-called dilution, occurs as the penetration into the metal plate proceeds. Although it is known that there is a correlation between the degree of dilution (dilution rate) and hardness, the amount of penetration needs to know the size of the part that has melted into the metal plate as well as the build-up part. Therefore, there was a problem that had to rely on destructive inspection. Here, the hardness is generally determined by the structure of the material (if it is a metal, its crystal structure). As a result of intensive studies, the present inventors have grasped the quantitative size from the outside. Focusing on the dimensions of the built-up portion that is easy to do, a predetermined correlation was found between the dimensions and the hardness from the dimension measurement result of the build-up portion described later and the hardness measurement result.

本発明に係る硬さ評価方法は上記知見に基づき創出されたものであり、予め所定の金属板と肉盛り材を用いた場合に形成された肉盛り部の寸法、および硬さを実測により求めて、これらの相関を取得しておく工程を備えることを特徴とする。これにより、上記相関の取得に用いた肉盛り部と同一又は同種の金属板および肉盛り材で形成される肉盛り部の寸法を測定等により取得さえすれば、肉盛り部の硬さを管理(制御)することができる。よって、従来のように硬さ試験を行って硬さを実測しなくても、肉盛り部の品質管理を容易に行うことが可能となる。   The hardness evaluation method according to the present invention was created based on the above knowledge, and the dimensions and hardness of the built-up portion formed when a predetermined metal plate and a built-up material are used in advance are obtained by actual measurement. And a step of acquiring these correlations. As a result, the hardness of the build-up part can be managed as long as the dimensions of the build-up part formed of the same or the same type of metal plate and build-up material as the build-up part used for obtaining the correlation are obtained by measurement or the like. (Control). Therefore, the quality control of the built-up portion can be easily performed without performing the hardness test and measuring the hardness as in the conventional case.

ここで、肉盛り部の寸法と硬さ実測値との相関に関し、本発明者らの更なる鋭意検討の結果、後述する図12に示すように、特に肉盛り部の幅寸法(本明細書では、肉盛り部の溶接進行方向に直交する向きの寸法を指す。)と硬さ実測値との間に高い相関があることが分かった。そのため、寸法取得工程で肉盛り部の幅寸法を取得し、この取得した幅寸法と硬さの実測値との相関を求めておけば、その後に形成した同種の肉盛り部の幅寸法を取得するだけで、硬さを非破壊かつ高精度に評価することが可能となる。詳述すると、肉盛り部の高さ(本明細書では、肉盛り部を設けていないと仮定した場合の金属板の肉盛り部側の表面から、この表面と垂直に交わる線と肉盛り部の外表面とが交差する点までの距離を指すものとする。)と硬さとの間にも一定の相関は見られたが、その範囲が狭いことや、僅かな測定誤差が大きな違いとなって現れやすい。これに対して、幅寸法であれば、比較的広い範囲にわたって高い相関を示し、またその測定スケールも比較的大きいので、測定誤差も少ない。そのため、肉盛り部の硬さを精度よく評価することが可能となる。   Here, with respect to the correlation between the dimension of the build-up portion and the actually measured hardness value, as a result of further intensive studies by the inventors, as shown in FIG. Then, the dimension of the direction perpendicular to the welding progress direction of the build-up portion is pointed out) and the hardness measurement value is found to have a high correlation. Therefore, if the width dimension of the build-up part is acquired in the dimension acquisition process and the correlation between the acquired width dimension and the measured value of hardness is obtained, then the width dimension of the same type of build-up part formed thereafter is acquired. It is possible to evaluate the hardness nondestructively and with high accuracy simply by doing. Specifically, the height of the built-up portion (in this specification, from the surface on the built-up portion side of the metal plate when it is assumed that no built-up portion is provided, the line and the built-up portion intersecting the surface perpendicularly. A certain correlation was also found between the hardness and the hardness of the outer surface of the surface.) However, the narrow range and slight measurement error are the major differences. It is easy to appear. On the other hand, the width dimension shows high correlation over a relatively wide range, and the measurement scale is relatively large, so that the measurement error is small. Therefore, it is possible to accurately evaluate the hardness of the built-up portion.

また、本発明は、前記第2の技術的課題の解決を図るためになされたものである。すなわち、本発明の第2の側面に係る補強用ビード部の良否判定方法は、金属板を構成要素とする車体構成部品に肉盛り溶接で形成した複数の補強用ビード部の寸法を取得する寸法取得工程と、複数の補強用ビード部の機械的特性に関連する数値を実測により評価する数値実測工程と、寸法取得工程で得た補強用ビード部の寸法と、数値実測工程で得た補強用ビード部の機械的特性に関連する数値の実測結果との相関を取得する相関取得工程とを備え、相関取得工程で得た相関に基づき、補強用ビード部の機械的特性を評価する点をもって特徴付けられる。   The present invention has been made in order to solve the second technical problem. That is, the quality determination method of the reinforcing bead part according to the second aspect of the present invention is a dimension for acquiring the dimensions of a plurality of reinforcing bead parts formed by overlay welding on a vehicle body component having a metal plate as a constituent element. The acquisition process, the numerical measurement process that evaluates numerical values related to the mechanical characteristics of multiple reinforcing bead parts by actual measurement, the dimensions of the reinforcing bead part obtained in the dimension acquisition process, and the reinforcement obtained in the numerical measurement process A correlation acquisition process that acquires correlations with actual measurement results related to the mechanical properties of the bead part, and features that the mechanical characteristics of the reinforcing bead part are evaluated based on the correlation obtained in the correlation acquisition process Attached.

従来の肉盛溶接は、上記特許文献1のような場合を除き、例えば耐摩耗性や耐腐食性の向上などを目的として、対象となる母材の表面に肉盛り部(溶接部)を被覆するように形成するのが通常であったために、その立体的な形状に関しては考慮されることはなかった。これに対して、肉盛り溶接による肉盛り部を金属板の補強用ビード部として用いることを考えた場合には、その形状や大きさが重要となる。本発明はこの点に着目してなされたものであり、上記のように補強用ビード部の寸法と機械的特性に関連する数値を実測した結果との間に新たに見出した相関を利用して非破壊で補強用ビード部の機械的特性を評価する方法である。そのため、補強用ビード部の寸法、例えばその高さ寸法や幅寸法などを測定するだけで、補強用ビード部の機械的特性を定量的に評価でき、これにより補強用ビード部の良否を簡便かつ高精度に判定することができる。   In conventional overlay welding, except for the case of Patent Document 1, for example, for the purpose of improving wear resistance and corrosion resistance, the surface of the target base material is covered with a buildup part (welded part). Since it was usual to form in such a manner, the three-dimensional shape was not considered. On the other hand, when considering using the build-up part by build-up welding as a bead part for reinforcement of a metal plate, the shape and size are important. The present invention has been made paying attention to this point, and utilizes the newly found correlation between the dimensions of the reinforcing bead portion and the numerical values related to the mechanical characteristics as described above. This is a non-destructive method for evaluating the mechanical properties of the reinforcing bead portion. Therefore, it is possible to quantitatively evaluate the mechanical characteristics of the reinforcing bead part simply by measuring the dimensions of the reinforcing bead part, for example, the height dimension and the width dimension thereof, thereby making it easy to determine whether the reinforcing bead part is good or bad. It can be determined with high accuracy.

ここで、定量的に評価可能な機械的特性としては、強度や剛性などが挙げられ、これら特性に関連する数値として補強用ビード部の硬さが挙げられる。また、これら補強用ビード部を設ける車体構成部品には曲げに対する耐性(曲げ強度や曲げ剛性)が要求されることから、これら曲げ強度や曲げ剛性に関連する数値として、金属板の補強用ビード部を設けた部位の断面係数又は断面二次モーメントなどを挙げることができる。断面係数や断面二次モーメントは、補強用ビード部を設けた部位の断面形状や断面積から求めることができる。   Here, examples of mechanical properties that can be quantitatively evaluated include strength and rigidity, and the numerical values related to these properties include the hardness of the reinforcing bead portion. In addition, since vehicle body components provided with these reinforcing bead parts are required to have resistance to bending (bending strength and bending rigidity), numerical values related to these bending strengths and bending rigidity can be used as reinforcing bead parts for metal plates. The section modulus or the moment of inertia of the section of the portion provided with s. The section modulus and the section moment of inertia can be obtained from the section shape and the section area of the portion where the reinforcing bead portion is provided.

ここで、例えば補強用ビード部の断面係数又は断面二次モーメントを測定、評価しようとすると、補強用ビード部を切断して行う必要が生じ、上記と同様の問題が生じる。この点、例えば、補強用ビード部の所定の寸法と、補強用ビード部又は金属板との溶込み部の断面形状や断面積との間に一定の相関を見出すことができれば、例えばビード部の高さ寸法や幅寸法を測定するだけで、補強用ビード部を設けた部位の断面係数や断面二次モーメントの大きさを評価することができる。これにより、例えば上述した硬さにより求めた引張り強度やヤング率とから、補強用ビード部を設けた車体構成部品の曲げ強度や曲げ剛性を精度よく評価することも可能となる。   Here, for example, when trying to measure and evaluate the section modulus or the second moment of section of the reinforcing bead portion, it is necessary to cut the reinforcing bead portion, which causes the same problem as described above. In this respect, for example, if a certain correlation can be found between the predetermined dimension of the reinforcing bead part and the cross-sectional shape or cross-sectional area of the penetration part of the reinforcing bead part or the metal plate, for example, the bead part By measuring only the height dimension and the width dimension, it is possible to evaluate the section modulus and the section moment of inertia of the portion where the reinforcing bead portion is provided. Thus, for example, it is possible to accurately evaluate the bending strength and bending rigidity of the vehicle body component provided with the reinforcing bead portion from the tensile strength and Young's modulus obtained from the above-described hardness.

また、上記高さ寸法や幅寸法と、溶接部における溶込み深さ(例えば後述する図1の符号dで示す寸法)との相関が分かっていれば、断面ハット状部材のように切断しないと溶け落ちの有無を判定できないような形状を有する車体構成部品であっても、補強用ビード部の例えば幅寸法や高さ寸法を取得するだけで、容易に金属板下面からの突出高さ(溶込み深さから金属板の厚み寸法を減じた値)を評価でき、これにより溶け落ちの有無を容易に判定することができる。   Further, if the correlation between the height dimension and the width dimension and the penetration depth (for example, the dimension indicated by reference sign d in FIG. 1 described later) in the welded portion is known, it must be cut like a cross-sectional hat-shaped member. Even if a vehicle body component has a shape that cannot be determined whether it has burned out or not, it is easy to obtain the protrusion height (melting point) from the lower surface of the metal plate simply by obtaining the width and height of the reinforcing bead, for example. The value obtained by subtracting the thickness dimension of the metal plate from the depth of penetration) can be evaluated, whereby the presence or absence of burnout can be easily determined.

また、補強用ビード部の強度や剛性を評価するために、これら強度や剛性に関連する数値として上記ビード部の硬さを評価する場合には、例えば数値実測工程で、補強用ビード部の硬さを機械的特性に関連する数値として実測すると共に、相関取得工程で、補強用ビード部の寸法と硬さの実測値との相関を取得するようにしてもよい。   Further, in order to evaluate the strength and rigidity of the reinforcing bead part, when evaluating the hardness of the bead part as a numerical value related to the strength and rigidity, for example, in the numerical measurement process, the hardness of the reinforcing bead part is determined. The thickness may be measured as a numerical value related to the mechanical characteristics, and the correlation between the dimension of the reinforcing bead portion and the measured value of the hardness may be acquired in the correlation acquisition step.

このように既述の硬さ評価方法の一部を利用することで、補強用ビード部の硬さであっても、非破壊で簡便にかつ高精度に評価することができる。また、この場合も、補強用ビード部の幅寸法と硬さとの間に高い相関が見られることを利用することで、補強用ビード部の幅寸法を測定等で取得するだけで、非破壊で簡便にかつ高精度に補強用ビード部の硬さを評価することができる。   In this way, by utilizing a part of the hardness evaluation method described above, even the hardness of the reinforcing bead portion can be evaluated non-destructively and easily with high accuracy. Also in this case, by utilizing the fact that a high correlation is observed between the width dimension and the hardness of the reinforcing bead part, it is possible to obtain the width dimension of the reinforcing bead part by measurement or the like and to obtain non-destructiveness. The hardness of the reinforcing bead portion can be evaluated easily and with high accuracy.

以上のように、本発明に係る肉盛り部の硬さ評価方法によれば、肉盛り溶接で金属板に形成した肉盛り部の硬さを非破壊で簡便に評価することができる。   As described above, according to the method for evaluating the hardness of the built-up portion according to the present invention, the hardness of the built-up portion formed on the metal plate by build-up welding can be easily and non-destructively evaluated.

また、本発明に係る補強用ビード部の良否判定方法によれば、金属板を構成要素とする車体構成部品に肉盛り溶接で形成した補強用ビード部の良否判定を定量的かつ簡便に行うことができる。   In addition, according to the method for determining the quality of the reinforcing bead portion according to the present invention, quantitative and simple determination of the quality of the reinforcing bead portion formed by overlay welding on a vehicle body component having a metal plate as a constituent element can be performed. Can do.

本発明の一実施形態に係る肉盛り部の断面図である。It is sectional drawing of the build-up part which concerns on one Embodiment of this invention. 実施例1に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の幅寸法と、溶接時の電流値との関係を示すグラフである。It is a graph which shows the relationship between the width dimension of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 1, and the electric current value at the time of welding. 実施例2に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の幅寸法と、溶接時の電流値との関係を示すグラフである。It is a graph which shows the relationship between the width dimension of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 2, and the electric current value at the time of welding. 実施例1に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の高さ寸法と、溶接時の電流値との関係を示すグラフである。It is a graph which shows the relationship between the height dimension of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 1, and the electric current value at the time of welding. 実施例2に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の高さ寸法と、溶接時の電流値との関係を示すグラフである。It is a graph which shows the relationship between the height dimension of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 2, and the electric current value at the time of welding. 実施例1に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の断面積と溶込み部の断面積をそれぞれ示すグラフである。It is a graph which shows the cross-sectional area of the build-up part obtained when the build-up welding was performed using the welding material which concerns on Example 1, and having different electric current values, and the cross-sectional area of a penetration part, respectively. 実施例2に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の断面積と溶込み部の断面積をそれぞれ示すグラフである。It is a graph which shows the cross-sectional area of the build-up part and the cross-sectional area of a penetration part which were obtained when the build-up welding was performed by using the welding material which concerns on Example 2, and varying current value. 実施例1に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の希釈率とビッカース硬さとの関係を示すグラフである。It is a graph which shows the relationship between the dilution rate and the Vickers hardness of the build-up part obtained when the build-up welding was performed by using the welding material which concerns on Example 1, and varying current value. 実施例2に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の希釈率とビッカース硬さとの関係を示すグラフである。It is a graph which shows the relationship between the dilution rate and the Vickers hardness of the build-up part obtained when the build-up welding was performed using the welding material which concerns on Example 2, and varying an electric current value. 実施例1に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、溶接時の電流値との関係を示すグラフである。It is a graph which shows the relationship between the Vickers hardness of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 1, and the electric current value at the time of welding. 実施例2に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、溶接時の電流値との関係を示すグラフである。It is a graph which shows the relationship between the Vickers hardness of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 2, and the electric current value at the time of welding. 実施例1に係る溶接材を用いて、板厚が1.0mmの鋼板に肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、肉盛り部の幅寸法との関係、および高さ寸法との関係を示すグラフである。Using the welding material according to Example 1, the relationship between the Vickers hardness of the build-up portion obtained when build-up welding was performed on a steel sheet having a plate thickness of 1.0 mm, and the width dimension of the build-up portion, and It is a graph which shows the relationship with a height dimension. 実施例1に係る溶接材を用いて、板厚が1.2mmの鋼板に肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、肉盛り部の幅寸法との関係、および高さ寸法との関係を示すグラフである。Using the welding material according to Example 1, the relationship between the Vickers hardness of the build-up portion obtained when overlay welding was performed on a steel sheet having a plate thickness of 1.2 mm, and the width dimension of the build-up portion, and It is a graph which shows the relationship with a height dimension. 実施例1に係る溶接材を用いて、板厚が1.4mmの鋼板に肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、肉盛り部の幅寸法との関係、および高さ寸法との関係を示すグラフである。Using the welding material according to Example 1, the relationship between the Vickers hardness of the build-up portion obtained when build-up welding was performed on a steel plate having a plate thickness of 1.4 mm, and the width dimension of the build-up portion, and It is a graph which shows the relationship with a height dimension.

以下、本発明に係る肉盛り部の硬さ評価方法、および補強用ビード部の良否判定方法の一実施形態を説明する。この実施形態では、金属板を構成要素とする車体構成部品に肉盛り溶接で補強用ビード部を形成した場合における当該補強用ビード部の硬さを評価し、これにより当該ビード部の良否判定を行う場合を例にとって説明する。すなわち、本発明に係る肉盛り部の硬さ評価方法を利用した補強用ビード部の良否判定方法の一例を下記に説明する。   Hereinafter, an embodiment of a hardness evaluation method for a built-up portion and a quality determination method for a reinforcing bead portion according to the present invention will be described. In this embodiment, the hardness of the reinforcing bead portion is evaluated when the reinforcing bead portion is formed by build-up welding on a vehicle body component having a metal plate as a constituent element, thereby determining the quality of the bead portion. A case where this is performed will be described as an example. That is, an example of the quality determination method for the reinforcing bead portion using the method for evaluating the hardness of the built-up portion according to the present invention will be described below.

この実施形態に係る補強用ビード部の良否判定方法は、金属板を構成要素とする車体構成部品に肉盛り溶接で形成した複数の補強用ビード部の寸法を取得する寸法取得工程(P1)と、複数の補強用ビード部の機械的特性に関連する数値を実測により評価する数値実測工程(P2)と、寸法取得工程(P1)で得た補強用ビード部の寸法と、数値実測工程(P2)で得た補強用ビード部の機械的特性に関連する数値の実測結果との相関を取得する相関取得工程(P3)と、相関取得工程(P3)で得た相関に基づき、補強用ビード部の機械的特性を評価する特性評価工程(P4)とを備える。ここでは、数値実測工程(P2)で、補強用ビード部の硬さを機械的特性に関連する数値として実測すると共に、相関取得工程(P3)で、補強用ビード部の寸法と硬さの実測値との相関を取得することとする。以下、各工程を詳述する。   The reinforcing bead part quality determination method according to this embodiment includes a dimension acquisition step (P1) for acquiring dimensions of a plurality of reinforcing bead parts formed by overlay welding on a vehicle body component having a metal plate as a constituent element. The numerical measurement step (P2) for evaluating numerical values related to the mechanical characteristics of the plurality of reinforcing bead portions by actual measurement, the dimensions of the reinforcing bead portion obtained in the dimension acquisition step (P1), and the numerical measurement step (P2) The correlation acquisition step (P3) for acquiring the correlation with the actual measurement result of the numerical value related to the mechanical characteristics of the reinforcement bead portion obtained in (1), and the reinforcement bead portion based on the correlation obtained in the correlation acquisition step (P3) And a mechanical property evaluation step (P4) for evaluating the mechanical properties. Here, in the numerical measurement step (P2), the hardness of the reinforcing bead portion is actually measured as a numerical value related to mechanical characteristics, and in the correlation acquisition step (P3), the dimensions and hardness of the reinforcing bead portion are actually measured. The correlation with the value is acquired. Hereinafter, each process is explained in full detail.

(P1)寸法取得工程
まず、この工程に供給される部品につき詳述する。肉盛り溶接の対象となる部品は、図1に示すように、一部が鋼板1(金属板)で構成されたものであればよく、例えばセンターピラーやフロントピラー、フロントサイドメンバーなどの断面ハット状部材をはじめとして種々の鋼板1製の車体構成部品が溶接対象となり得る。また、その溶接部位についても特に限定されることなく、鋼板1製の壁部の表面、又は、図示は省略するが、2つの壁部を連結する角部の表面(外側又は内側)が溶接対象部位となり得る。また、使用する溶接材(肉盛り材)には、通常、肉盛り溶接に使用される溶接ワイヤ材をはじめとして、母材(鋼板1)の特性向上を目的として種々の溶接材が適用可能である。本実施形態では、母材(鋼板1)よりも硬さの高い溶接材を使用でき、例えばステンレス系の溶接ワイヤ材や、炭素配合量を多くした、いわゆるハイカーボン鋼ワイヤ材などが使用可能である。中でも、ハイカーボン鋼ワイヤ材は、通常の鋼ワイヤ材と比べて非常に炭素配合率が高い(0.4%C〜0.7%C)ため、溶接により、母材と溶接材との溶融部2に焼きが入る。あるいは、ワイヤ材中の炭素が合金成分として母材(鋼板1)に溶け込むことで、鋼板1が合金化される。これらの作用により、容易に溶融部2(鋼板1より盛り上がった部分が補強用ビード部3となり、鋼板1の表面より内側に溶け込んだ部分が溶融部2の溶込み部4となる)の硬度を高めることができる。ここで、上記の肉盛り溶接には、被覆アーク溶接、ミグ溶接、マグ溶接、ティグ溶接、サブマージアーク溶接、プラズマアーク溶接など種々のアーク溶接が使用できる。なお、上記の説明では、母材として鋼板1を例示したが、もちろん、鋼板1以外の金属板、例えばアルミニウム製やアルミニウム合金製の金属板なども母材として使用できる。また、アルミニウム系の金属板を母材に用いる場合、ワイヤ材として、アルミニウムと銅の複合ワイヤ材を好適な例として挙げることができる。
(P1) Dimension Acquisition Step First, the parts supplied to this step will be described in detail. As shown in FIG. 1, the part to be subjected to build-up welding may be a part made of a steel plate 1 (metal plate), for example, a cross-sectional hat such as a center pillar, a front pillar, or a front side member. Various vehicle body components made of a steel plate 1 including a member can be welded. Also, the welding site is not particularly limited, and the surface of the wall portion made of steel plate 1 or the surface of the corner portion (outside or inside) connecting the two wall portions is omitted although not shown. Can be a site. Moreover, various welding materials can be applied to the welding material (building material) used for the purpose of improving the characteristics of the base material (steel plate 1), including welding wire materials usually used for building welding. is there. In the present embodiment, a welding material having a hardness higher than that of the base material (steel plate 1) can be used. For example, a stainless steel welding wire material or a so-called high carbon steel wire material having a larger carbon content can be used. is there. Among them, high carbon steel wire material has a very high carbon compounding ratio (0.4% C to 0.7% C) compared to normal steel wire material, so that the base material and welding material are fused by welding. Part 2 is baked. Or the steel plate 1 is alloyed because the carbon in a wire material melt | dissolves in a base material (steel plate 1) as an alloy component. By these actions, the hardness of the melting portion 2 (the portion raised from the steel plate 1 becomes the reinforcing bead portion 3 and the portion melted inward from the surface of the steel plate 1 becomes the penetration portion 4 of the melting portion 2). Can be increased. Here, various kinds of arc welding such as covering arc welding, MIG welding, MAG welding, TIG welding, submerged arc welding, and plasma arc welding can be used for the above-described overlay welding. In the above description, the steel plate 1 is exemplified as the base material, but, of course, a metal plate other than the steel plate 1, such as a metal plate made of aluminum or aluminum alloy, can be used as the base material. Moreover, when using an aluminum-type metal plate for a base material, a composite wire material of aluminum and copper can be mentioned as a suitable example as a wire material.

上述のようにして、鋼板1に肉盛り溶接を施すことで得た肉盛り部としての補強用ビード部3の寸法を取得する。ここで、取得部位は、補強用ビード部3の外観形状に係る寸法がよく、例えば補強用ビード部3の幅寸法Wや、高さ寸法hを例示することができる(何れも図1を参照)。また、上記寸法の取得方法については任意であり、例えば、ノギスや形状限界ゲージを用いて直接的に補強用ビード部3の寸法を測定してもよく、位置センサーや変位センサーなどの非接触測定手段を用いて上記寸法を測定してもよい。あるいは、補強用ビード部3を撮像し、得られた補強用ビード部3の外観画像に適当な画像処理を施すことで上記寸法を取得するようにしてもよい。   As described above, the dimensions of the reinforcing bead portion 3 as the build-up portion obtained by performing build-up welding on the steel plate 1 are acquired. Here, the acquired part has a good dimension related to the external shape of the reinforcing bead part 3, and can be exemplified by, for example, the width dimension W and the height dimension h of the reinforcing bead part 3 (both refer to FIG. 1). ). The method for obtaining the above dimensions is arbitrary. For example, the dimensions of the reinforcing bead part 3 may be directly measured using a caliper or a shape limit gauge, and non-contact measurement such as a position sensor or a displacement sensor. The above dimensions may be measured using means. Alternatively, the dimensions may be acquired by imaging the reinforcing bead portion 3 and performing appropriate image processing on the appearance image of the obtained reinforcing bead portion 3.

(P2)数値実測工程
次に、寸法を取得した複数の補強用ビード部3の硬さ、ここではビッカース硬さを実測により評価する。具体的には、図1に示す断面が露出するよう、補強用ビード部3をその長手方向に直交する向きに切断し、現れた切断面の補強用ビード部3ないし鋼板1への溶込み部4におけるビッカース硬さを所定の硬さ試験機にて実測する。これにより、取得した寸法と同数の硬さ数値を取得する。なお、取得する硬さとしては、ビッカース硬さの他、凡そ金属材料に対する硬さの評価指標として一般に用いられているものであれば、特に限定されることなく適用できる。
(P2) Numerical measurement process Next, the hardness of the plurality of reinforcing bead portions 3 whose dimensions have been acquired, here, the Vickers hardness is evaluated by actual measurement. Specifically, the reinforcing bead portion 3 is cut in a direction perpendicular to the longitudinal direction so that the cross section shown in FIG. 1 is exposed, and the cut portion that appears is a portion that penetrates into the reinforcing bead portion 3 or the steel plate 1. The Vickers hardness at 4 is measured with a predetermined hardness tester. Thereby, the same number of hardness values as the acquired dimensions are acquired. The hardness to be acquired is not particularly limited as long as it is generally used as an evaluation index of hardness with respect to a metal material in addition to Vickers hardness.

(P3)相関取得工程
このように、寸法取得工程(P1)で補強用ビード部3の寸法を取得すると共に、数値実測工程(P2)で補強用ビード部3の硬さの実測値を取得した後、これらの実測値の相関を取得する。ここで、例えば補強用ビード部3の幅寸法Wを測定した場合、後述する図12のように、横軸にビッカース硬さ[Hv]、縦軸に幅寸法W[mm]をとることで、両者の間に高い相関が見られる。よって、この相関図から適当な近似直線を求めておくことで、当該相関を次工程となる特性評価工程(P4)に容易に利用することができる。
(P3) Correlation acquisition step As described above, the dimension of the reinforcement bead portion 3 is acquired in the dimension acquisition step (P1), and the measured value of the hardness of the reinforcement bead portion 3 is acquired in the numerical measurement step (P2). After that, the correlation between these actually measured values is acquired. Here, for example, when the width dimension W of the reinforcing bead portion 3 is measured, by taking the Vickers hardness [Hv] on the horizontal axis and the width dimension W [mm] on the vertical axis as shown in FIG. There is a high correlation between the two. Therefore, by obtaining an appropriate approximate straight line from this correlation diagram, the correlation can be easily used for the characteristic evaluation step (P4) as the next step.

(P4)特性評価工程
以上、(P1)から(P3)までの工程を経ることにより補強用ビード部3の寸法と硬さとの相関を得たら、実際に評価すべき補強用ビード部3の寸法を取得する。ここで、評価対象となる補強用ビード部3は、先の工程(P1)〜(P3)で使用した鋼板1および溶接材と同一又は同種のものを用いて同種の溶接法により形成されたものとする。また、本工程にて取得すべき寸法も寸法取得工程(P1)で取得した寸法と同じ部位とする。寸法の取得方法は先の工程(P1)と必ずしも同じでなくてよい。そして、当該補強用ビード部3の寸法(例えば幅寸法W)を取得したら、相関取得工程(P3)で取得した相関、具体的には近似1次直線の式に、本工程で取得した寸法を当てはめることで、当該寸法に対応する硬さ(ここではビッカース硬さ)が算出される。従って、後は、例えば公知となっている、硬さ(ビッカース硬さ)から強度(例えば引張り強度など)への変換表を用いることで、補強用ビード部3を設けた鋼板1、又はこの鋼板1を構成要素とする車体構成部品の強度や剛性の大きさを評価することができる。また、このようにして評価した機械的特性値を、車体構成部品ごとに定められた、各機械的特性(引張り強度やヤング率など)のしきい値と比較することで、補強用ビード部3の良否を判定することもできる。
(P4) Characteristic Evaluation Step When the correlation between the size and hardness of the reinforcing bead portion 3 is obtained through the steps (P1) to (P3), the size of the reinforcing bead portion 3 to be actually evaluated. To get. Here, the reinforcing bead portion 3 to be evaluated was formed by the same type of welding method using the same or the same type of steel plate 1 and welding material used in the previous steps (P1) to (P3). And Also, the dimensions to be acquired in this step are the same as the dimensions acquired in the dimension acquisition step (P1). The dimension acquisition method is not necessarily the same as in the previous step (P1). And if the dimension (for example, width dimension W) of the said bead part 3 for a reinforcement is acquired, the dimension acquired by this process will be added to the correlation acquired by the correlation acquisition process (P3), specifically the expression of an approximate linear straight line. By applying, the hardness corresponding to the dimension (here, Vickers hardness) is calculated. Accordingly, the steel plate 1 provided with the reinforcing bead portion 3 by using a conversion table from hardness (Vickers hardness) to strength (for example, tensile strength), for example, which has been publicly known, or this steel plate. It is possible to evaluate the strength and rigidity of a vehicle body component having 1 as a component. Further, by comparing the mechanical characteristic value evaluated in this way with a threshold value of each mechanical characteristic (such as tensile strength and Young's modulus) determined for each vehicle body component, the reinforcing bead 3 It is also possible to determine whether the product is good or bad.

以上、本発明に係る補強用ビード部の良否判定方法の一実施形態を説明したが、この評価方法は、上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得ることはもちろんである。   As mentioned above, although one Embodiment of the quality determination method of the reinforcement bead part which concerns on this invention was described, this evaluation method takes arbitrary forms within the scope of the present invention, without being limited to the form of the said illustration. Of course you get.

評価対象となる補強用ビード部3には、その補強部位によっては曲げ強度など断面形状や断面積に影響する機械的特性を評価の対象とする場合もあり得ることから、例えば硬さ実測工程(数値実測工程(P2))の際に、溶融部2(もしくは溶融部2を含めた鋼板1)の断面形状及び断面積からその断面係数又は断面二次モーメントを算出して、これら断面係数又は断面二次モーメントと補強用ビード部3の所定寸法との相関を求めるようにしてもよい。このようにして断面係数等と補強用ビード部3の所定寸法との相関が求まれば、例えば上述した硬さの評価結果とから、鋼板1の補強用ビード部3を設けた部位の曲げ強度や曲げ剛性を評価することも可能となる。また、このように硬さ以外の評価値でもって補強用ビード部3の機械的特性を評価できるのであれば、必ずしも補強用ビード部3の硬さを実測ないし評価する必要はない。   Since the reinforcing bead part 3 to be evaluated may be subjected to evaluation of mechanical characteristics that affect the cross-sectional shape and cross-sectional area such as bending strength depending on the reinforcing part, for example, a hardness measurement step ( During the numerical measurement process (P2)), the section modulus or section moment is calculated from the sectional shape and sectional area of the melted part 2 (or the steel plate 1 including the melted part 2), and the section modulus or section is calculated. A correlation between the secondary moment and a predetermined dimension of the reinforcing bead portion 3 may be obtained. If the correlation between the section modulus and the like and the predetermined dimension of the reinforcing bead portion 3 is obtained in this way, the bending strength of the portion where the reinforcing bead portion 3 of the steel plate 1 is provided from, for example, the hardness evaluation result described above. It is also possible to evaluate bending rigidity. Further, if the mechanical properties of the reinforcing bead part 3 can be evaluated with an evaluation value other than the hardness as described above, it is not always necessary to actually measure or evaluate the hardness of the reinforcing bead part 3.

また、上記実施形態では、実際に肉盛り部(補強用ビード部3)を作成して、作成した肉盛り部の幅寸法や硬さを切断により実測することでこれらの相関を取得していたが、必ずしも硬さ等を実測する必要はない。同一又は同種の鋼板1(金属板)および溶接材を用いた肉盛り部の寸法と硬さに関するデータベースがあれば、それを利用して相関を取得するようにしてもよい。   Moreover, in the said embodiment, these correlations were acquired by actually creating the build-up part (reinforcement bead part 3) and actually measuring the width dimension and hardness of the created build-up part by cutting. However, it is not always necessary to actually measure the hardness or the like. If there is a database regarding the dimensions and hardness of the built-up portion using the same or the same type of steel plate 1 (metal plate) and welding material, the correlation may be obtained using the database.

また、上記以外の事項についても、本発明の技術的意義を没却しない限りにおいて他の具体的形態を採り得ることはもちろんである。   Of course, other specific forms can be adopted for matters other than the above as long as the technical significance of the present invention is not lost.

本発明の効果を確認すべく、以下に示す試験ならびにその検討を行った。具体的には、溶接時の電流値を異ならせて肉盛り量を変化させた場合に得られた肉盛り部の幅寸法および高さ寸法を測定すると共に、肉盛り部の硬さを実測し、これらの相関の有無について検討を行った。   In order to confirm the effect of the present invention, the following tests and examinations were conducted. Specifically, the width and height dimensions of the build-up part obtained when the build-up amount was changed by changing the current value during welding were measured, and the hardness of the build-up part was measured. The existence of these correlations was examined.

まず、試験条件について説明する。試験片には、板厚が異なる3種類の鋼板(SPC590)を使用した。板厚はそれぞれ1.0mm、1.2mm、1.4mmである。この鋼板の中央にその長手方向寸法が60mmとなるように肉盛り溶接を行い、所定の肉盛り部を鋼板表面に形成した。溶接材には、ステンレス系の溶接ワイヤ材と、ハイカーボン鋼溶接ワイヤ材を使用した。以下、前者(ステンレス系溶接ワイヤ材)を用いて肉盛り溶接を施したものを実施例1、後者(ハイカーボン鋼溶接ワイヤ材)を用いて肉盛り溶接を施したものを実施例2とする。溶接法はショートアーク溶接(短絡アーク溶接)を使用した。また、50A、および60A、75A、90A…と60Aから15A刻みで徐々に電流値を上げていきながら、溶け落ちが生じるまで上記肉盛り溶接を行った。また、この際の電圧は(採用した電流値)×0.02+14[V]とした。以下は、固定条件である。
ワイヤ突き出し量:15mm
狙い角 :面直
溶接速度 :60cm/min
前進角 :0°
シールドガス :MAG(Ar80%+CO220%)
First, test conditions will be described. Three types of steel plates (SPC590) having different plate thicknesses were used as test pieces. The plate thicknesses are 1.0 mm, 1.2 mm, and 1.4 mm, respectively. Overlay welding was performed at the center of the steel plate so that the longitudinal dimension was 60 mm, and a predetermined overlaid portion was formed on the surface of the steel plate. As the welding material, a stainless steel welding wire material and a high carbon steel welding wire material were used. Hereinafter, Example 1 is used for build-up welding using the former (stainless steel welding wire material), and Example 2 is used for build-up welding using the latter (high carbon steel welding wire material). . The welding method used was short arc welding (short circuit arc welding). Further, the build-up welding was performed until the melt-off occurred while gradually increasing the current value in increments of 15 A from 60 A, 60 A, 75 A, 90 A. The voltage at this time was (adopted current value) × 0.02 + 14 [V]. The following are the fixed conditions.
Wire protrusion: 15mm
Aiming angle: Straight welding speed: 60cm / min
Advance angle: 0 °
Shield gas: MAG (Ar 80% + CO 2 20%)

上記のようにして形成した肉盛り部を、例えば図1に示す断面が現れるように切断し、各切断面における肉盛り部の幅寸法、高さ寸法、断面積、および鋼板への溶込み部の断面積を測定した。また、各切断面における溶融部のビッカース硬さを複数箇所にわたって測定し、その平均値を各切断面における肉盛部のビッカース硬さとして求めた。切断面の数は2とした(後述する図8、図9のN1,N2に対応)。   The built-up portion formed as described above is cut so that, for example, the cross section shown in FIG. 1 appears, and the width dimension, the height dimension, the cross-sectional area, and the penetration portion into the steel plate at each cut surface The cross-sectional area of was measured. Moreover, the Vickers hardness of the fusion | melting part in each cut surface was measured over several places, and the average value was calculated | required as Vickers hardness of the built-up part in each cut surface. The number of cut surfaces was 2 (corresponding to N1 and N2 in FIGS. 8 and 9 described later).

まず、肉盛り溶接の結果を下記の表1に示す。同表中、「○」は、肉盛り部の外観及び断面の目視の結果、当該肉盛り部が良好に形成されていることを、「×」は、肉盛り部の一部に溶け落ちが生じていることを、「−」は肉盛り溶接を実施していないことをそれぞれ意味している。なお、表1には示していないが、溶接時の電流値を45Aとした場合、肉盛り部が鋼板上に安定して形成できなかったため、50Aを電流下限としている。この表1から分かるように、何れの溶接ワイヤ材を用いた場合でも、溶け落ちが生じる電流値は板厚に関係なくほとんど同じであった。

Figure 2011131224
First, the results of overlay welding are shown in Table 1 below. In the same table, “○” indicates that the build-up portion is well formed as a result of visual observation of the appearance and cross section of the build-up portion, and “×” indicates that the build-up portion has melted down. “−” Means that no overlay welding is performed. Although not shown in Table 1, when the current value at the time of welding is 45 A, the build-up portion could not be stably formed on the steel plate, so 50 A is set as the current lower limit. As can be seen from Table 1, regardless of the plate thickness, the current value at which the burn-out occurred was almost the same regardless of which welding wire material was used.
Figure 2011131224

図2は、実施例1に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の幅寸法と、溶接時の電流値との関係を示している。また、図3は、実施例2に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の幅寸法と、溶接時の電流値との関係を示している。これらの図を見ると分かるように、肉盛り部の幅寸法は、溶接時の電流値が大きくなるにつれて増加している。また、実施例1と2とで、肉盛り部の幅寸法はそれほど大きく変わらないことから、少なくとも補強用ビード部のための溶接材を用いる場合であれば、溶接材の違いが肉盛り部の幅寸法にそれほど影響を与えないことが分かる。また、板厚の違いによる影響を見ると、板厚が大きくなるにつれて溶融した金属(溶接材)が漏れ拡がらなくなり、幅寸法が板厚の小さい物に比べて小さくなっていることが分かる。これは、板厚が増すほど熱容量が増加することが理由と考えられる。   FIG. 2 shows the relationship between the width dimension of the build-up portion obtained when build-up welding is performed using the welding material according to Example 1, and the current value during welding. Moreover, FIG. 3 has shown the relationship between the width dimension of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 2, and the electric current value at the time of welding. As can be seen from these figures, the width dimension of the build-up portion increases as the current value during welding increases. Moreover, since the width dimension of the build-up part does not change so much in Examples 1 and 2, if a welding material for at least the reinforcing bead part is used, the difference in the welding material is that of the build-up part. It can be seen that the width dimension is not significantly affected. Further, when the influence due to the difference in the plate thickness is seen, it can be seen that the molten metal (welding material) does not leak and spread as the plate thickness increases, and the width dimension is smaller than that of the small plate thickness. This is thought to be because the heat capacity increases as the plate thickness increases.

図4は、実施例1に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の高さ寸法と、溶接時の電流値との関係を示している。また、図5は、実施例2に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部の高さ寸法と、溶接時の電流値との関係を示している。これらの図を見ると分かるように、肉盛り部の高さ寸法は、多くの場合、所定の電流値までは溶接時の電流値が大きくなるにつれて増加し、その後、減少する傾向にあることが分かった。ここで、図示は省略するが、各電流値における肉盛り部および溶込み部の断面写真を見ると、高さ寸法が増加から減少に転じる時点の電流値は、溶込み部が鋼板の下面(肉盛り部と反対側の端面)よりもさらに下方に突出し始めた時点にほぼ一致している。また、図4および図5から、原則、板厚が大きくなるほど、高さ寸法が増加から減少に転じる時点の電流値が大きくなっていることも分かる。これらのことから、溶融部が重力により鋼板の下面よりも下方に垂れ始めるとその分肉盛り部となる部分の高さが減少したものと考えられる。なお、図示は省略するが、溶込み部の深さ(溶込み量)についてもその板厚が増加するにつれて減少する傾向が見られた。   FIG. 4 shows the relationship between the height dimension of the build-up portion obtained when build-up welding is performed using the welding material according to Example 1, and the current value during welding. FIG. 5 shows the relationship between the height of the built-up portion obtained when overlay welding is performed using the welding material according to Example 2, and the current value during welding. As can be seen from these figures, the height of the built-up portion often increases as the current value during welding increases up to a predetermined current value, and then tends to decrease. I understood. Here, although illustration is omitted, when a cross-sectional photograph of the build-up portion and the penetration portion at each current value is seen, the current value at the time when the height dimension starts to decrease from the increase is the bottom portion of the steel plate ( It almost coincides with the point when it begins to protrude further downward than the end face on the opposite side of the build-up part. 4 and 5, it can be seen that, in principle, as the plate thickness increases, the current value when the height dimension changes from increasing to decreasing increases. From these facts, it is considered that when the melted portion starts to sag below the lower surface of the steel plate due to gravity, the height of the portion that becomes the build-up portion is reduced accordingly. In addition, although illustration is abbreviate | omitted, the tendency for the depth (penetration amount) of a penetration part to reduce as the plate | board thickness increased was seen.

図6は、実施例1に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の断面積と溶込み部の断面積をそれぞれ示している。また、図7は、実施例2に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の断面積と溶込み部の断面積をそれぞれ示している。ここでいう「肉盛り部の断面積」と「溶込み部の断面積」は、それぞれ図1中の符号3で示すハッチング部の面積、および同図中の符号4で示すハッチング部の面積に相当する。また、この「肉盛り部の断面積」を「溶込み部の断面積」で除した値が、上述の希釈率に相当する。その上で、図6と図7を比較すると、実施例2に係る溶接材(ハイカーボン鋼溶接ワイヤ材)を用いた場合、実施例1に係る溶接材(ステンレス系)を用いた場合と比べて、比較的低電流時に希釈率が高くなる傾向が見られた。これはハイカーボン鋼溶接ワイヤ材のほうが鋼板への初期溶込み量が多いことに起因していると考えられる。また、図示しない断面写真や図4、図5の結果を併せて見ると、溶込み部が鋼板の下面よりも下方に突出し始めると、希釈率は50%程度で推移し、溶接材による希釈率の差はほとんど無くなることが分かる。   FIG. 6 shows the cross-sectional area of the build-up portion and the cross-sectional area of the penetration portion obtained when the welding material according to Example 1 is used and build-up welding is performed with different current values. . Moreover, FIG. 7 shows the cross-sectional area of the build-up part and the cross-sectional area of the penetration part obtained when using the welding material according to Example 2 and performing build-up welding with different current values. ing. The “cross-sectional area of the build-up part” and “cross-sectional area of the penetration part” here are respectively the area of the hatched part indicated by reference numeral 3 in FIG. 1 and the area of the hatched part indicated by reference numeral 4 in FIG. Equivalent to. The value obtained by dividing the “cross-sectional area of the build-up portion” by the “cross-sectional area of the penetration portion” corresponds to the above-described dilution rate. 6 and 7 are compared, when the welding material according to Example 2 (high carbon steel welding wire material) is used, compared with the case where the welding material according to Example 1 (stainless steel) is used. As a result, the dilution rate tended to increase at relatively low currents. This is considered to be due to the fact that the high carbon steel welding wire material has a larger initial penetration amount into the steel plate. Moreover, when the cross-sectional photograph which is not shown in figure and the result of FIG. 4, FIG. 5 are seen collectively, when a penetration part begins to protrude below the lower surface of a steel plate, a dilution rate will change about 50%, and the dilution rate by a welding material It can be seen that there is almost no difference.

図8は、実施例1に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の希釈率とビッカース硬さとの関係を示している。図9は、実施例2に係る溶接材を用い、かつ電流値を異ならせて肉盛り溶接を行った場合に得られた肉盛り部の希釈率とビッカース硬さとの関係を示している。まず、図8に示すように、ステンレス系の溶接ワイヤ材を用いた場合(実施例1の場合)、硬さのばらつきが比較的小さく、安定した硬さが得られていることが分かる。また、その一方で、希釈率が40%に達するまでは、希釈率と硬さとの間に一定の負の相関が見られるが、希釈率が40%を超えると、急激に硬さが低下する傾向が見て取れる。次に、図9を見ると、ハイカーボン鋼溶接ワイヤ材を用いた場合(実施例2の場合)、実施例1と比べて、低電流時には硬さが非常に高い値を示していることが分かる。しかし、切断面によって硬さにばらつきがみられることから、ハイカーボンによる焼入れ硬化の作用が電流値によっては(特に電流値が小さい場合には)均一に生じていないものと考えられる。ただし、全体的には、ステンレス鋼溶接ワイヤ材のように、途中で硬さが急激に低下することはなく、溶け落ちまでの間、一定の負の相関を保っていることが分かる。   FIG. 8 shows the relationship between the dilution ratio of the build-up portion and Vickers hardness obtained when build-up welding was performed using the welding material according to Example 1 and different current values. FIG. 9 shows the relationship between the dilution ratio of the build-up part and the Vickers hardness obtained when the welding material according to Example 2 is used and build-up welding is performed with different current values. First, as shown in FIG. 8, when a stainless steel welding wire material is used (in the case of Example 1), it can be seen that variation in hardness is relatively small and stable hardness is obtained. On the other hand, until the dilution rate reaches 40%, a certain negative correlation is observed between the dilution rate and the hardness. However, when the dilution rate exceeds 40%, the hardness rapidly decreases. A trend can be seen. Next, when FIG. 9 is seen, when a high carbon steel welding wire material is used (in the case of Example 2), compared with Example 1, it has shown that hardness is a very high value at the time of low electric current. I understand. However, since the hardness varies depending on the cut surface, it is considered that the quench hardening effect by high carbon does not occur uniformly depending on the current value (especially when the current value is small). However, as a whole, it can be seen that the hardness does not drop sharply in the middle as in the case of stainless steel welding wire material, and a constant negative correlation is maintained until it melts.

図10は、実施例1に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、溶接時の電流値との関係を示している。また、図11は、実施例2に係る溶接材を用いて肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、溶接時の電流値との関係を示している。このように、硬さと電流値との関係を見ると、何れの溶接材を用いた場合においても、非常に高い負の相関が見られた。また、板厚が異なっていても、電流値が同じであれば、硬さは近い値をとることが分かった。   FIG. 10 shows the relationship between the Vickers hardness of the build-up portion obtained when build-up welding is performed using the welding material according to Example 1, and the current value during welding. Moreover, FIG. 11 has shown the relationship between the Vickers hardness of the build-up part obtained when build-up welding was performed using the welding material which concerns on Example 2, and the electric current value at the time of welding. Thus, when the relationship between hardness and an electric current value was seen, even when any welding material was used, the very high negative correlation was seen. It was also found that even if the plate thickness was different, the hardness would be close if the current value was the same.

図12〜図14は、何れも実施例1に係る溶接材を用いて、互いに板厚の異なる鋼板に肉盛り溶接を行った場合に得られた肉盛り部のビッカース硬さと、肉盛り部の幅寸法との関係、および高さ寸法との関係を示している。これらは、図2と図4、および図10の結果、すなわち、肉盛り部の各寸法と電流値との間には非常に高い正の相関(比例関係)が見られると共に、ビッカース硬さと電流値との間も非常に高い負の相関(逆比例関係)が見られることに鑑みて作成されたもので、肉盛り部の外部から取得(測定)可能な寸法と、当該肉盛り部のビッカース硬さとの間に相関が存在することが分かる。また、特に、肉盛り部の幅寸法とビッカース硬さとの間に高い負の相関が存在することが分かる。この傾向(相関)は、図12〜図14を見る限り、板厚tに関係なく見られる。   FIGS. 12 to 14 show the Vickers hardness of the build-up portion obtained when build-up welding was performed on steel plates having different plate thicknesses using the welding material according to Example 1, and the build-up portion of FIG. The relationship with the width dimension and the relationship with the height dimension are shown. These are the results of FIGS. 2, 4, and 10, that is, a very high positive correlation (proportional relationship) is observed between each dimension of the built-up portion and the current value, and Vickers hardness and current It was created in view of the fact that a very high negative correlation (inverse proportional relationship) was found between the values, the dimensions that can be obtained (measured) from the outside of the overlay, and the Vickers of the overlay It can be seen that there is a correlation with hardness. In particular, it can be seen that there is a high negative correlation between the width dimension of the built-up portion and the Vickers hardness. This tendency (correlation) can be seen regardless of the thickness t as far as FIGS.

1 鋼板
2 溶融部
3 補強用ビード部(肉盛り部)
4 溶込み部
w 幅寸法(補強用ビード部)
h 高さ寸法(補強用ビード部)
t 板厚(鋼板)
1 Steel plate 2 Melting part 3 Reinforcing bead part (overlaying part)
4 penetration part width dimension (bead part for reinforcement)
h Height (reinforcing bead)
t Plate thickness (steel plate)

Claims (3)

肉盛り溶接で金属板に形成した複数の肉盛り部の寸法を取得する寸法取得工程と、
前記複数の肉盛り部の硬さを実測する硬さ実測工程と、
前記寸法取得工程で得た前記肉盛り部の寸法と、前記硬さ実測工程で得た前記肉盛り部の硬さの実測値との相関を取得する相関取得工程とを備え、
前記相関取得工程で得た前記相関に基づき、前記肉盛り部の硬さを評価することを特徴とする肉盛り部の硬さ評価方法。
A dimension acquisition step for acquiring the dimensions of a plurality of overlays formed on the metal plate by overlay welding;
A hardness measurement step of measuring the hardness of the plurality of build-up portions;
A correlation acquisition step of acquiring a correlation between the dimension of the build-up portion obtained in the dimension acquisition step and the measured value of the hardness of the build-up portion obtained in the hardness measurement step;
A method for evaluating the hardness of the built-up portion, wherein the hardness of the built-up portion is evaluated based on the correlation obtained in the correlation obtaining step.
前記寸法取得工程において、前記肉盛り部の幅寸法を取得する請求項1に記載の肉盛り部の硬さ評価方法。   The method for evaluating the hardness of the built-up portion according to claim 1, wherein the width of the built-up portion is acquired in the dimension acquiring step. 金属板を構成要素とする車体構成部品に肉盛り溶接で形成した複数の補強用ビード部の寸法を取得する寸法取得工程と、
前記複数の補強用ビード部の機械的特性に関連する数値を実測により評価する数値実測工程と、
前記寸法取得工程で得た前記補強用ビード部の寸法と、前記数値実測工程で得た前記補強用ビード部の機械的特性に関連する数値の実測結果との相関を取得する相関取得工程とを備え、
前記相関取得工程で得た前記相関に基づき、前記補強用ビード部の機械的特性を評価することを特徴とする補強用ビード部の良否判定方法。
A dimension acquisition step of acquiring dimensions of a plurality of reinforcing bead portions formed by overlay welding on a vehicle body component having a metal plate as a component;
A numerical measurement process for evaluating numerical values related to mechanical properties of the plurality of reinforcing bead portions by actual measurement;
A correlation acquisition step of acquiring a correlation between the dimension of the reinforcing bead portion obtained in the dimension acquisition step and a numerical measurement result related to mechanical characteristics of the reinforcing bead portion obtained in the numerical measurement step; Prepared,
A quality determination method for a reinforcing bead part, wherein mechanical characteristics of the reinforcing bead part are evaluated based on the correlation obtained in the correlation obtaining step.
JP2009290866A 2009-12-22 2009-12-22 Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part Pending JP2011131224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290866A JP2011131224A (en) 2009-12-22 2009-12-22 Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290866A JP2011131224A (en) 2009-12-22 2009-12-22 Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part

Publications (1)

Publication Number Publication Date
JP2011131224A true JP2011131224A (en) 2011-07-07

Family

ID=44344531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290866A Pending JP2011131224A (en) 2009-12-22 2009-12-22 Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part

Country Status (1)

Country Link
JP (1) JP2011131224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184206A (en) * 2012-03-09 2013-09-19 Toyota Motor Corp Method for evaluating hardness in welded part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184206A (en) * 2012-03-09 2013-09-19 Toyota Motor Corp Method for evaluating hardness in welded part

Similar Documents

Publication Publication Date Title
Ahmed et al. Development and testing of fixtures for friction stir welding of thin aluminium sheets
TW201131151A (en) Evaluation method of brittle crack propagation arrest behavior of high strength steel plate
Rozmus-Górnikowska et al. Influence of boiler pipe cladding techniques on their microstructure and properties
JP2008122345A (en) Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part
Benedetti et al. Crack growth resistance of MAG butt-welded joints of S355JR construction steel
Grimsmo et al. Fillet welds subjected to impact loading–an experimental study
JP5038113B2 (en) Destructive evaluation method for structures
Arunkumar et al. Evaluation of mechanical properties of dissimilar metal tube welded joints using inert gas welding
Vasantharaja et al. Effect of arc welding processes on the weld attributes of type 316LN stainless steel weld joint
JP5225705B2 (en) Fatigue testing machine and fatigue strength evaluation method
JP2011131224A (en) Method for evaluating hardness of build-up part and propriety determining method for reinforcing bead part
JP6686645B2 (en) Steel quality assurance method and fatigue property estimation method
JP6809327B2 (en) Strength test method for spot welds
Xu et al. Charpy toughness of ERW seam welds
Milititsky et al. On characteristics of DP600 resistance spot welds
KR101195733B1 (en) Method for evaluating fatigue property of t-joint portion at t-type welding joint structure
Branza et al. A microstructural and low-cycle fatigue investigation of weld-repaired heat-resistant cast steels
Brauser et al. Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T
Mohr et al. Comparing fracture toughness transition curves for girth welds in X70 pipe
Li et al. Mechanical characteristic and stress-strain modelling of friction stir welded 6061-T6 aluminium alloy butt joints
Amalia et al. Tensile test analysis for steel welding connections as a basis for compiling welding procedure specification (WPS)
Siefert et al. Application of digital image correlation in cross weld tensile testing: test method validation
Singh et al. A comparative study on fracture parameters of friction stir welded AA5083 using NCORR
Weidinger et al. Testing of new materials and computer aided optimization of process parameters and clamping device during predevelopment of laser welding processes
JPWO2017130830A1 (en) Welded joint and its manufacturing method