JP2011129882A - Solar battery module, and wiring board for solar battery module - Google Patents

Solar battery module, and wiring board for solar battery module Download PDF

Info

Publication number
JP2011129882A
JP2011129882A JP2010229199A JP2010229199A JP2011129882A JP 2011129882 A JP2011129882 A JP 2011129882A JP 2010229199 A JP2010229199 A JP 2010229199A JP 2010229199 A JP2010229199 A JP 2010229199A JP 2011129882 A JP2011129882 A JP 2011129882A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
electrode
wiring pattern
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010229199A
Other languages
Japanese (ja)
Inventor
Noboru Imai
昇 今井
健 ▲高▼橋
Takeshi Takahashi
Katsutoshi Taga
勝俊 多賀
Aki Suzuki
亜季 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010229199A priority Critical patent/JP2011129882A/en
Priority to CN2010105484135A priority patent/CN102110727A/en
Publication of JP2011129882A publication Critical patent/JP2011129882A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery module which provides long-term reliability equal to or longer than a conventional solar battery module with a simple structure, and responds to reduction of a thickness, and to provide a wiring board for a solar battery module. <P>SOLUTION: The solar battery module 3 includes: a solar battery cell 1 having a light receiving surface 14a, a surface opposite to the light receiving surface 14a, and an electrode wiring arranged on the opposite surface; a conductor wiring pattern which is electrically connected to the electrode wiring, has a thickness 18-75 μm, and of which a front surface, rear surface, and side surface are coated with a coating member 26b; and a sealing part 36 for sealing the solar battery cell 1 and the conductor wiring pattern. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池モジュール、及び太陽電池モジュール用配線基板に関する。特に、本発明は、バックコンタクト型の太陽電池セルを用いることができる太陽電池モジュール、及び太陽電池モジュール用配線基板に関する。   The present invention relates to a solar cell module and a wiring substrate for a solar cell module. In particular, the present invention relates to a solar cell module that can use a back contact type solar cell and a wiring substrate for the solar cell module.

従来、少なくとも銅箔と絶縁層を有するフレキシブル銅張積層板の製造方法であって、銅箔を、引張弾性率が熱処理前の55%以下となるまで熱処理する工程を有するフレキシブル銅張積層板の製造方法が知られている(例えば、特許文献1参照)。   Conventionally, a method for producing a flexible copper clad laminate having at least a copper foil and an insulating layer, wherein the copper foil has a step of heat-treating until the tensile elastic modulus is 55% or less before the heat treatment. A manufacturing method is known (see, for example, Patent Document 1).

特許文献1に記載のフレキシブル銅張積層板の製造方法によれば、屈曲性に優れたフレキシブル銅張積層板を生産性良く製造することができる。   According to the method for producing a flexible copper-clad laminate described in Patent Document 1, a flexible copper-clad laminate excellent in flexibility can be produced with high productivity.

特開2008−243898号公報JP 2008-243898 A 特開2009−43842号公報JP 2009-43842 A

しかし、特許文献1に記載のフレキシブル銅張積層板の製造方法は、圧延箔と接着材と基材とからなる3層構造のフレキシブル配線基板を製造する方法である。そして、当該フレキシブル配線基板においては、圧延箔だけをフレキシブル配線基板から分離することは困難であり、そもそも、圧延箔部分だけを分離することは想定されていない。   However, the method for producing a flexible copper clad laminate described in Patent Document 1 is a method for producing a flexible wiring board having a three-layer structure comprising a rolled foil, an adhesive material, and a base material. In the flexible wiring board, it is difficult to separate only the rolled foil from the flexible wiring board. In the first place, it is not assumed that only the rolled foil portion is separated.

また、従来の太陽電池モジュール(例えば、特許文献2参照)は、配線基板の構成材である基材、接着材が封止されているので、10年以上の製品寿命を要求される太陽電池モジュールの長期信頼性に対応する試験の実施、あるいは市場での実績の積み上げを改めて実施することを要する。また、配線基板の基材、接着材が封止されている場合、基材の線膨張係数、及び/又は接着材の線膨張係数と太陽電池セルの線膨張係数との相違により、太陽電池セルにひずみが発生する場合があり、ひずみが大きいと太陽電池セルの破損、フレキシブル配線基板の配線の断線等が発生する場合がある。   Moreover, since the conventional solar cell module (for example, refer patent document 2) is sealing the base material and the adhesive material which are the components of a wiring board, the solar cell module which requires the product lifetime of 10 years or more It is necessary to carry out tests corresponding to the long-term reliability of the company or build up the results in the market. Moreover, when the base material of the wiring board and the adhesive are sealed, the solar cell is caused by the difference between the linear expansion coefficient of the base material and / or the linear expansion coefficient of the adhesive and the linear expansion coefficient of the solar battery cell. In some cases, distortion may occur. If the distortion is large, the solar battery cell may be damaged, or the wiring of the flexible wiring board may be disconnected.

したがって、本発明の目的は、シンプルな構成であり、従来の太陽電池モジュールと同等以上の長期信頼性を発揮し、薄型化に対応した太陽電池モジュール、及び太陽電池モジュール用配線基板を提供することにある。   Therefore, an object of the present invention is to provide a solar cell module and a solar cell module wiring board that have a simple configuration, exhibit long-term reliability equivalent to or higher than that of a conventional solar cell module, and can be made thinner. It is in.

本発明は、上記目的を達成するため、少なくとも受光面と、前記受光面の反対の面と、前記反対の面に設けられる電極配線とを有する太陽電池セルと、前記電極配線に電気的に接続すると共に、18μm以上75μm以下の厚さを有する銅箔からなり、表面、裏面、及び両側面の少なくとも1つの面が被覆材で被覆される導体配線パターンとを備え、前記太陽電池セルの垂直投影面内の前記導体配線パターンは、前記太陽電池セルに直接接続している部分を除き、全面が封止材と直接接して封止する封止部とを備える太陽電池モジュールが提供される。   In order to achieve the above object, the present invention provides a solar cell having at least a light receiving surface, a surface opposite to the light receiving surface, and an electrode wiring provided on the opposite surface, and electrically connected to the electrode wiring. And a conductor wiring pattern comprising a copper foil having a thickness of 18 μm or more and 75 μm or less and having at least one of a front surface, a back surface, and both side surfaces coated with a coating material, and a vertical projection of the solar battery cell A solar cell module provided with the sealing part which the whole surface of the said conductor wiring pattern seals in contact with the sealing material directly except for the part directly connected to the said photovoltaic cell.

また、上記太陽電池モジュールは、前記被覆材が、金属めっき、導電性接着材、及びはんだ材料からなる群から選択される材料を含んで形成されることが好ましい。   Moreover, it is preferable that the said solar cell module is formed in which the said coating | covering material contains the material selected from the group which consists of metal plating, a conductive adhesive material, and a solder material.

また、上記太陽電池モジュールは、前記導体配線パターンが、0.2%耐力が100MPa以下であることが好ましい。   In the solar cell module, the conductor wiring pattern preferably has a 0.2% proof stress of 100 MPa or less.

また、上記太陽電池モジュールは、前記導体配線パターンが、十点平均粗さが1.0μm以下の表面粗さの前記表面と前記裏面を有することが好ましい。   In the solar cell module, it is preferable that the conductor wiring pattern has the front surface and the back surface having a surface roughness with a ten-point average roughness of 1.0 μm or less.

また、上記太陽電池モジュールは、前記銅箔が、圧延銅箔であることが好ましい。   In the solar cell module, the copper foil is preferably a rolled copper foil.

また、上記太陽電池モジュールは、複数の前記太陽電池セルを有し、複数の前記太陽電池セルは、一列以上に配置され、前記導体配線パターンは、少なくとも一列に配置された複数の前記太陽電池セルを電気的に直列接続するのが好ましい。   The solar cell module includes a plurality of the solar cells, the plurality of solar cells are arranged in one or more rows, and the conductor wiring pattern is a plurality of the solar cells arranged in at least one row. Are preferably connected in series.

また、本発明は上記目的を達成するため、基材と、前記基材の表面に設けられる接着層と、前記接着層の表面に設けられ、18μm以上75μm以下の厚さを有し、0.2%耐力が100MPa以下であり、十点平均粗さが1.0μm以下の表面粗さの前記表面又は裏面を有する導体配線パターンとを有し、前記導体配線パターンの表面、裏面、及び両側面のうち少なくとも1つの面が被覆材で被覆されているバックコンタクト型太陽電池モジュール用配線基板が提供される。   In order to achieve the above object, the present invention has a base material, an adhesive layer provided on the surface of the base material, a surface provided on the surface of the adhesive layer, and has a thickness of 18 μm or more and 75 μm or less. 2% proof stress is 100 MPa or less, and 10-point average roughness is 1.0 μm or less. The conductor wiring pattern having the surface or the back surface has a surface roughness of 1.0 μm or less, and the surface, back surface, and both side surfaces of the conductor wiring pattern There is provided a wiring board for a back contact solar cell module in which at least one surface is covered with a covering material.

また、上記バックコンタクト型太陽電池モジュール用配線基板は、前記基材が、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、及びポリアミドイミドからなる群から選択される樹脂材料を含んで形成されることが好ましい。   The wiring board for the back contact solar cell module is formed so that the base material includes a resin material selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, and polyamideimide. It is preferred that

また、上記バックコンタクト型太陽電池モジュール用配線基板は、前記被覆材が、金属めっき、導電性接着材およびはんだからなる群から選択される材料を含んで形成されることが好ましい。   Moreover, it is preferable that the said wiring board for back contact type solar cell modules is formed so that the said coating | covering material contains the material selected from the group which consists of metal plating, a conductive adhesive material, and solder.

本発明に係る太陽電池モジュール、及び太陽電池モジュール用配線基板によれば、シンプルな構成であり、従来の太陽電池モジュールと同等以上の長期信頼性を発揮し、薄型化に対応した太陽電池モジュール、及び太陽電池モジュール用配線基板を提供できる。   According to the solar cell module and the solar cell module wiring board according to the present invention, the solar cell module has a simple configuration, exhibits long-term reliability equivalent to or higher than that of a conventional solar cell module, and is compatible with thinning. And the wiring board for solar cell modules can be provided.

本発明の実施の形態に係る太陽電池モジュールが備える太陽電池セルを裏面から見た平面図である。It is the top view which looked at the photovoltaic cell with which the solar cell module which concerns on embodiment of this invention is provided from the back surface. (a)は本発明の実施の形態に係る太陽電池モジュールの製造に用いるフレキシブル配線基板の平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view of the flexible wiring board used for manufacture of the solar cell module which concerns on embodiment of this invention, (b) is sectional drawing in the AA of (a). 本発明の実施の形態に係る太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which concerns on embodiment of this invention. 本発明の実施の形態に係る太陽電池モジュールの製造の流れを示す図である。It is a figure which shows the flow of manufacture of the solar cell module which concerns on embodiment of this invention. (a)及び(b)は、本発明の実施の形態に係る太陽電池モジュールの製造の流れを示す図である。(A) And (b) is a figure which shows the flow of manufacture of the solar cell module which concerns on embodiment of this invention. 本発明の実施の形態に係る太陽電池モジュールの製造の流れを示す図である。It is a figure which shows the flow of manufacture of the solar cell module which concerns on embodiment of this invention. 本発明の実施の形態に係る太陽電池モジュールの製造の流れを示す図である。It is a figure which shows the flow of manufacture of the solar cell module which concerns on embodiment of this invention.

[実施の形態の要約]
バックコンタクト型の太陽電池セルを備える太陽電池モジュールにおいて、受光面と、前記受光面の反対の面と、前記反対の面に設けられる電極配線とを有する太陽電池セルと、前記電極配線に電気的に接続すると共に、18μm以上75μm以下の厚さを有し、表面、裏面、及び側面の少なくとも1つの面が被覆材で被覆される導体配線パターンと、前記太陽電池セルと前記導体配線パターンとを封止する封止部とを備える太陽電池モジュールが提供される。
[Summary of embodiment]
In a solar cell module including a back contact type solar cell, a solar cell having a light receiving surface, a surface opposite to the light receiving surface, and an electrode wiring provided on the opposite surface, and electrically connected to the electrode wiring A conductor wiring pattern having a thickness of 18 μm or more and 75 μm or less and having at least one of a front surface, a back surface, and a side surface covered with a coating material, and the solar battery cell and the conductor wiring pattern. A solar cell module provided with the sealing part to seal is provided.

[実施の形態]
図1は、本発明の実施の形態に係る太陽電池モジュールが備える太陽電池セルを裏面から見た平面図を示す。
[Embodiment]
FIG. 1: shows the top view which looked at the photovoltaic cell with which the solar cell module which concerns on embodiment of this invention is provided from the back surface.

(太陽電池セル1)
本実施の形態に係る太陽電池モジュール3が備える太陽電池セル1は、例えば、単結晶シリコンから主として形成される半導体基板14と電極配線とを有する。すなわち、太陽電池セル1は、所定の半導体材料から平板状に形成された半導体基板14を有し、半導体基板14は、一方の面に受光面(すなわち、表面)を有すると共に他方の面(すなわち、裏面)に電極配線を有する。具体的に、本実施の形態に係る太陽電池セル1は、バックコンタクト型の太陽電池セル1であり、受光面に電極配線は設けられない。また、電極配線は、p電極10とn電極12とを有しており、p電極10及びn電極12はそれぞれ櫛歯状に形成される。更に、櫛歯状のp電極10と櫛歯状のn電極12とはそれぞれ、太陽電池セル1の他方の面に互いにかみ合う配置を有して設けられる。
(Solar cell 1)
The solar battery cell 1 included in the solar battery module 3 according to the present embodiment includes, for example, a semiconductor substrate 14 and electrode wiring mainly formed from single crystal silicon. That is, the solar cell 1 has a semiconductor substrate 14 formed in a flat plate shape from a predetermined semiconductor material. The semiconductor substrate 14 has a light receiving surface (that is, a surface) on one surface and the other surface (that is, a surface). , Back surface). Specifically, the solar battery cell 1 according to the present embodiment is a back contact solar battery cell 1, and no electrode wiring is provided on the light receiving surface. Moreover, the electrode wiring has the p electrode 10 and the n electrode 12, and the p electrode 10 and the n electrode 12 are each formed in a comb-tooth shape. Further, the comb-shaped p-electrode 10 and the comb-shaped n-electrode 12 are provided so as to mesh with each other on the other surface of the solar battery cell 1.

また、p電極10の櫛歯である複数のp側細線電極10bとn電極12の櫛歯である複数のn側細線電極12bとはそれぞれ、本実施の形態においては直線状に連続的に形成される。そして、p側細線電極10bは、平面視にて、太陽電池セル1の一辺に平行であって、当該一辺の近傍に設けられるp側外側電極10aから当該一辺の対辺側に延びて形成される。同様に、n側細線電極12bは、当該一辺の対辺近傍に設けられ、当該対辺に平行に設けられるn側外側電極12aから当該一辺に延びて形成される。   Further, in the present embodiment, a plurality of p-side thin wire electrodes 10b, which are comb teeth of the p electrode 10, and a plurality of n-side thin wire electrodes 12b, which are comb teeth of the n electrode 12, are continuously formed linearly in this embodiment. Is done. The p-side thin wire electrode 10b is formed so as to extend from the p-side outer electrode 10a provided in the vicinity of the one side to the opposite side of the one side in a plan view. . Similarly, the n-side thin wire electrode 12b is provided in the vicinity of the opposite side of the one side, and is formed to extend from the n-side outer electrode 12a provided in parallel to the opposite side to the one side.

電極配線(すなわち、p電極10及びn電極12)は、導電性が良好であり、はんだに対する接続性が良好な材料を主成分にして形成することができる。例えば、電極配線は、銀を主成分にして形成することができる。また、電極配線の表面に、銀ペースト等の導電性接着剤層をプリントすることもできる。なお、p側細線電極10b及びn側細線電極12bはそれぞれ、点線状に不連続的に形成することもできる。   The electrode wiring (that is, the p-electrode 10 and the n-electrode 12) can be formed using a material having good conductivity and good connectivity to solder as a main component. For example, the electrode wiring can be formed using silver as a main component. Further, a conductive adhesive layer such as a silver paste can be printed on the surface of the electrode wiring. Each of the p-side thin wire electrode 10b and the n-side thin wire electrode 12b can also be formed discontinuously in a dotted line shape.

なお、太陽電池セル1は、多結晶シリコンから主として形成することもできる。また、太陽電池セル1は、他の半導体、例えば、III−V族化合物半導体等から主として形成することもできる。更に、p電極10とn電極12との配置は、本実施の形態の配置の反対にすることもできる。   In addition, the photovoltaic cell 1 can also be mainly formed from a polycrystalline silicon. Moreover, the photovoltaic cell 1 can also be mainly formed from another semiconductor, for example, a III-V group compound semiconductor. Furthermore, the arrangement of the p-electrode 10 and the n-electrode 12 can be reversed from the arrangement of the present embodiment.

(フレキシブル配線基板2)
図2(a)は、本発明の実施の形態に係る太陽電池モジュールの製造に用いるフレキシブル配線基板の平面図を示し、図2(b)は、図2(a)のA−A線における断面を示す。
(Flexible wiring board 2)
Fig.2 (a) shows the top view of the flexible wiring board used for manufacture of the solar cell module which concerns on embodiment of this invention, FIG.2 (b) is the cross section in the AA of Fig.2 (a). Indicates.

本実施の形態に係る太陽電池モジュール3の製造に用いる太陽電池モジュール用配線基板(すなわち、配線基板)としてのフレキシブル配線基板2は、可撓性を有する基材20と、基材20の上方に設けられる配線パターンとしての導体配線パターン(すなわち、p側用電極24及びn側用電極26)とを有すると共に、基材20と導体配線パターンとの間には接着層22が設けられる。接着層22は、基材20の表面の略全面若しくは一部に設けられる。また、導体配線パターンは被覆材により被覆される。   A flexible wiring substrate 2 as a solar cell module wiring substrate (that is, a wiring substrate) used for manufacturing the solar cell module 3 according to the present embodiment includes a flexible base material 20 and a base material 20 above. A conductor wiring pattern (that is, the p-side electrode 24 and the n-side electrode 26) is provided as a wiring pattern to be provided, and an adhesive layer 22 is provided between the substrate 20 and the conductor wiring pattern. The adhesive layer 22 is provided on substantially the entire surface or a part of the surface of the substrate 20. The conductor wiring pattern is covered with a covering material.

(基材20)
基材20は、可撓性を有する絶縁材料から主として形成され、フィルム状に形成される。基材20は、例えば、取扱いの容易性の観点から10μm以上125μm以下、好ましくは25μm以上75μm以下の厚さを有して形成される。基材20を構成する絶縁材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリアミドイミド等を用いることができる。
(Substrate 20)
The base material 20 is mainly formed from a flexible insulating material, and is formed in a film shape. The base material 20 is formed to have a thickness of 10 μm or more and 125 μm or less, preferably 25 μm or more and 75 μm or less from the viewpoint of easy handling. As an insulating material which comprises the base material 20, a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), a polyimide, a polyamideimide etc. can be used, for example.

(接着層22)
接着層22は、エネルギーの供給により接着力が低下する接着剤組成物から主として形成される。接着剤組成物としては、エポキシ系樹脂、アクリル系樹脂等の樹脂材料を用いることができる。また、エネルギーの供給は、例えば、加熱による熱エネルギーの供給、紫外線(UV)の照射による光エネルギーの供給が挙げられる。すなわち、接着層22は、フレキシブル配線基板2に所定のエネルギーを供給した場合、接着層22に対する導体配線パターンの接着力が低下する接着剤組成物から主として構成される。
(Adhesive layer 22)
The adhesive layer 22 is mainly formed from an adhesive composition whose adhesive strength is reduced by supplying energy. As the adhesive composition, a resin material such as an epoxy resin or an acrylic resin can be used. Examples of the energy supply include supply of heat energy by heating and supply of light energy by irradiation with ultraviolet rays (UV). That is, the adhesive layer 22 is mainly composed of an adhesive composition that reduces the adhesive strength of the conductor wiring pattern to the adhesive layer 22 when a predetermined energy is supplied to the flexible wiring substrate 2.

(導体配線パターン)
導体配線パターンは、例えば、銅又は銅合金から主として形成される。また、導体配線パターンは、直流抵抗の低減、温度変化に基づいて発生する応力の低減の観点から、18μm以上75μm以下の厚さを有して形成することが好ましい。また、温度が変化する環境において、本実施の形態に係る太陽電池モジュール3が備える太陽電池セル1内に発生する応力を低減することを目的として、導体配線パターンの0.2%耐力は、アニール処理等を施すことにより100MPa以下程度に低減することが好ましい。したがって、導体配線パターンは、圧延銅箔から形成することが好ましい。
(Conductor wiring pattern)
The conductor wiring pattern is mainly formed from, for example, copper or a copper alloy. In addition, the conductor wiring pattern is preferably formed to have a thickness of 18 μm or more and 75 μm or less from the viewpoint of reducing direct current resistance and stress generated based on temperature change. Further, in the environment where the temperature changes, the 0.2% proof stress of the conductor wiring pattern is annealed for the purpose of reducing the stress generated in the solar battery cell 1 provided in the solar battery module 3 according to the present embodiment. It is preferable to reduce to about 100 MPa or less by performing a treatment or the like. Therefore, the conductor wiring pattern is preferably formed from rolled copper foil.

更に、導体配線パターンは、導体配線パターンから接着層22を剥離させやすくすることを目的として、少なくとも接着層22に接する面の表面粗さが、十点平均粗さで1.0μm以下の表面粗さであることが好ましい。   Furthermore, the conductor wiring pattern has a surface roughness with a 10-point average roughness of 1.0 μm or less on the surface roughness of at least the surface in contact with the adhesive layer 22 for the purpose of facilitating the peeling of the adhesive layer 22 from the conductor wiring pattern. It is preferable.

具体的に、導体配線パターンは、接着層22の表面に櫛歯状に設けられ、第1導電型としてのp型用の第1配線としてのp側用電極24と、p側用電極24が設けられる領域とは異なる接着層22の表面に櫛歯状に設けられ、p型とは異なる第2導電型としてのn型用の第2配線としてのn側用電極26とを有する。具体的に、p側用電極24の櫛歯であるp側用細線電極24aとn側用電極26の櫛歯としてのn側用細線電極26aとは、交互にかみ合うように配置される。   Specifically, the conductor wiring pattern is provided in a comb-teeth shape on the surface of the adhesive layer 22, and includes a p-side electrode 24 as a p-type first wiring as a first conductivity type, and a p-side electrode 24. An n-side electrode 26 serving as a second wiring for n-type serving as a second conductivity type different from the p-type is provided on the surface of the adhesive layer 22 different from the provided region. Specifically, the p-side fine wire electrode 24a, which is a comb tooth of the p-side electrode 24, and the n-side thin wire electrode 26a, which is a comb tooth of the n-side electrode 26, are alternately arranged.

また、本実施の形態に係る導体配線パターンは、表面、裏面、及び側面が導電性を有する被覆材で被覆される。具体的には、p側用電極24及びn側用電極26の表面及び側面が、金属めっき、導電性接着材、又は、はんだ材料等の被覆材24b及び被覆材26bによって被覆される。なお、太陽電池モジュール3においては、被覆材24b及び被覆材26bによりp側用電極24及びn側用電極26の表面及び側面が被覆され、p側用電極24及びn側用電極26の裏面(すなわち、p側用電極24及びn側用電極26の接着層22に接着している面)は、封止部36により被覆される。なお、被覆材24b及び被覆材26bにより、導体配線パターンの変色の防止、導体配線パターンの腐食の防止、及び太陽電池セル1の電極配線に対する導体配線パターンの電気的接続の確実性の向上を図ることができる。また、被覆材24b及び被覆材26bとしては、一例として、金、錫等を用いためっき膜を用いることができる。   In addition, the conductor wiring pattern according to the present embodiment is coated with a conductive covering material on the front surface, back surface, and side surfaces. Specifically, the surfaces and side surfaces of the p-side electrode 24 and the n-side electrode 26 are covered with a coating material 24b and a coating material 26b, such as metal plating, a conductive adhesive, or a solder material. In the solar cell module 3, the surface and side surfaces of the p-side electrode 24 and the n-side electrode 26 are covered with the covering material 24b and the covering material 26b, and the back surfaces of the p-side electrode 24 and the n-side electrode 26 ( That is, the surface of the p-side electrode 24 and the n-side electrode 26 bonded to the adhesive layer 22 is covered with the sealing portion 36. The covering material 24 b and the covering material 26 b prevent discoloration of the conductor wiring pattern, prevent corrosion of the conductor wiring pattern, and improve the reliability of electrical connection of the conductor wiring pattern to the electrode wiring of the solar battery cell 1. be able to. Further, as the covering material 24b and the covering material 26b, for example, a plating film using gold, tin, or the like can be used.

フレキシブル配線基板2は、一例として、以下のように得ることができる。まず、圧延銅箔の原箔を準備する(例えば、圧延箔メーカー(日立電線株式会社など)から入手できる)。この際に、圧延銅箔にアニール処理を施し、0.2%耐力を、例えば、100MPa以下にする。また、表面処理として油分洗浄、圧延粗さの調整を原箔に施すこともできる。このようにして得られる圧延箔に対し、必要に応じて、脱脂処理、酸洗浄処理、粗化処理、Organic Soderability Preservative(OSP)処理を施すこともできる。   The flexible wiring board 2 can be obtained as follows as an example. First, an original rolled copper foil is prepared (for example, available from a rolled foil manufacturer (Hitachi Electric Cable Co., Ltd.)). At this time, the rolled copper foil is annealed so that the 0.2% proof stress is, for example, 100 MPa or less. Further, as a surface treatment, the raw foil can be subjected to oil cleaning and rolling roughness adjustment. The rolled foil thus obtained can be subjected to a degreasing treatment, an acid cleaning treatment, a roughening treatment, and an organic sodability preservative (OSP) treatment as necessary.

続いて、準備した圧延銅箔にラミネート加工を施す。例えば、PENからなる基材20に、接着材T(株式会社 有沢製作所製)を用いて圧延銅箔をラミネート加工して、Copper Clad Lamination(CCL)材にする。得られたCCL材は、必要に応じて、所定の幅に切断する。そして、CCL材の表面に設けられている圧延銅箔から、導体配線パターンを形成する。導体配線パターンは、例えば、エッチングレジストを圧延銅箔の表面にスクリーン印刷した後、ウェットエッチング処理を圧延銅箔に施すことにより形成できる。あるいは、フォトリソグラフィー法、及びエッチング法を用いて導体配線パターンを形成することができる。その後、導体配線パターンにめっき処理、又はOSP処理を施す。   Subsequently, the prepared rolled copper foil is laminated. For example, a copper clad lamination (CCL) material is formed by laminating a rolled copper foil on the base material 20 made of PEN using an adhesive T (manufactured by Arisawa Manufacturing Co., Ltd.). The obtained CCL material is cut into a predetermined width as necessary. And a conductor wiring pattern is formed from the rolled copper foil provided in the surface of CCL material. The conductor wiring pattern can be formed, for example, by screen-printing an etching resist on the surface of the rolled copper foil and then applying a wet etching process to the rolled copper foil. Alternatively, the conductor wiring pattern can be formed using a photolithography method and an etching method. Thereafter, the conductor wiring pattern is subjected to a plating process or an OSP process.

なお、図2においては、フレキシブル配線基板2に2個の太陽電池セル1を実装するレイアウトを一例として示している。本実施の形態の変形例においては、3個以上の太陽電池セル1を1列または2列以上に実装することのできるレイアウトを有するフレキシブル配線基板2を用いることもできる。また、太陽電池セル1間の間隔、太陽電池セル1間の導体配線パターンの形状は、自由に設計することができる。なお、太陽電池セル1間の間隔は、太陽電池セル1同士が接触して破損することを防止することを目的として、1mm以上に設定することが好ましい。更に、フレキシブル配線基板2には、太陽電池セル1を位置決めして実装する際に用いる認識パターン及び/又は認識穴を形成することが好ましい。   In FIG. 2, a layout in which two solar cells 1 are mounted on the flexible wiring board 2 is shown as an example. In the modification of the present embodiment, a flexible wiring board 2 having a layout in which three or more solar cells 1 can be mounted in one or more rows can be used. Moreover, the space | interval between the photovoltaic cells 1 and the shape of the conductor wiring pattern between the photovoltaic cells 1 can be designed freely. In addition, it is preferable to set the space | interval between the photovoltaic cells 1 to 1 mm or more for the purpose of preventing that the photovoltaic cells 1 contact and damage. Furthermore, it is preferable to form a recognition pattern and / or a recognition hole for use in positioning and mounting the solar battery cell 1 on the flexible wiring board 2.

なお、フレキシブル配線基板2としては、例えば、基材20の厚さが60μm以下であり曲げが可能な極薄リジット基板(極薄ガラスエポキシ基板)、予めめっき処理等の表面処理を施した銅箔を有する銅箔貼り付け基板、又は、2層銅貼基板を用いることもできる。ここで、2層銅貼基板には、スパッタ法若しくは蒸着法等の気相における膜形成法を用い、樹脂からなる基材20に金属層を形成した後、金属層に銅めっきを施して形成される基板、銅箔に樹脂をキャスティングして形成される基板、又は、熱可塑性樹脂を接着材として用い、樹脂からなる基材20を銅箔に貼り付けて形成される疑似2層銅貼基板が含まれる。これら2層銅貼基板は、基材20に貼り付ける銅箔の基材20に対するピール強度を低減させて製造することにより、本実施の形態に係る太陽電池モジュール3の製造に用いるフレキシブル配線基板2として用いることができる。   The flexible wiring board 2 is, for example, an ultra-thin rigid board (ultra-thin glass epoxy board) that can be bent with a thickness of the base material 60 of 60 μm or less, or a copper foil that has been subjected to surface treatment such as plating in advance. It is also possible to use a copper foil pasted substrate or a two-layer copper pasted substrate. Here, the two-layer copper-clad substrate is formed by forming a metal layer on the resin base material 20 using a film forming method in a gas phase such as sputtering or vapor deposition, and then performing copper plating on the metal layer. Substrate, a substrate formed by casting a resin on a copper foil, or a pseudo two-layer copper-clad substrate formed by attaching a base material 20 made of a resin to a copper foil using a thermoplastic resin as an adhesive Is included. These two-layer copper-clad substrates are manufactured by reducing the peel strength of the copper foil to be affixed to the base material 20 with respect to the base material 20, thereby using the flexible wiring board 2 used for manufacturing the solar cell module 3 according to the present embodiment. Can be used as

また、導体配線パターンは、銅とインバー(Fe−36% Ni合金)とを組み合わせた複合金属を用いて形成することもできる。複合金属を用いることにより、導体配線パターンの線膨張係数を太陽電池セル1の線膨張係数に近づけることができる。   The conductor wiring pattern can also be formed using a composite metal in which copper and invar (Fe-36% Ni alloy) are combined. By using the composite metal, the linear expansion coefficient of the conductor wiring pattern can be brought close to the linear expansion coefficient of the solar battery cell 1.

(太陽電池モジュール3)
図3は、本発明の実施の形態に係る太陽電池モジュールの断面を示す。
(Solar cell module 3)
FIG. 3 shows a cross section of the solar cell module according to the embodiment of the present invention.

本実施の形態に係る太陽電池モジュール3は、受光面14aを有する太陽電池セル1と、フレキシブル配線基板2から基材20及び接着層22を削除して残り、表面及び側面が被覆材で被覆され、裏面が封止部36により被覆された導体配線パターンとを備える。本実施の形態に係る太陽電池モジュール3は、バックコンタクト型の太陽電池セル1を用いた太陽電池モジュール3である。具体的に、本実施の形態に係る太陽電池モジュール3は、太陽電池セル1と、太陽電池セル1のp電極10及びn電極12とフレキシブル配線基板2が有していたp側用電極24及びn側用電極26とを電気的に接続する導電性接着材40と、太陽電池セル1、p側用電極24、及びn側用電極26を封止する封止部36と、太陽電池セル1の受光面に設けられる透明接着シート32と、透明接着シート32の太陽電池セル1の反対側に設けられるガラス板30と、p側用電極24及びn側用電極26の太陽電池セル1の反対側に設けられるバックシート34とを備える。   In the solar cell module 3 according to the present embodiment, the base material 20 and the adhesive layer 22 are removed from the solar cell 1 having the light receiving surface 14a and the flexible wiring board 2, and the surface and side surfaces are covered with a covering material. And a conductor wiring pattern whose back surface is covered with a sealing portion 36. The solar cell module 3 according to the present embodiment is a solar cell module 3 using back contact type solar cells 1. Specifically, the solar cell module 3 according to the present embodiment includes the solar cell 1, the p-electrode 10 and the n-electrode 12 of the solar cell 1, and the p-side electrode 24 that the flexible wiring board 2 has. A conductive adhesive 40 that electrically connects the n-side electrode 26, a solar cell 1, a p-side electrode 24, a sealing portion 36 that seals the n-side electrode 26, and the solar cell 1 The transparent adhesive sheet 32 provided on the light receiving surface, the glass plate 30 provided on the opposite side of the solar cell 1 of the transparent adhesive sheet 32, and the opposite of the solar cell 1 of the p-side electrode 24 and the n-side electrode 26. And a back sheet 34 provided on the side.

また、太陽電池モジュール3は、p側用電極24及びn側用電極26に電気的に接続する配線部38と、配線部38に電気的に接続する外部接続ケーブル52と、外部接続ケーブル52の一部を格納する外部接続箱50と、ガラス板30とバックシート34とを挟み込む金属枠60とを備える。   The solar cell module 3 includes a wiring portion 38 that is electrically connected to the p-side electrode 24 and the n-side electrode 26, an external connection cable 52 that is electrically connected to the wiring portion 38, and an external connection cable 52. An external connection box 50 for storing a part thereof and a metal frame 60 for sandwiching the glass plate 30 and the back sheet 34 are provided.

以下、太陽電池モジュール3の製造工程の説明と共に、太陽電池モジュール3の構成について説明する。   Hereinafter, the structure of the solar cell module 3 will be described together with the description of the manufacturing process of the solar cell module 3.

(太陽電池モジュール3の製造工程)
図4、図5、図6A、及び図6Bは、本発明の実施の形態に係る太陽電池モジュールの製造の流れの一例を示す。
(Manufacturing process of solar cell module 3)
4, FIG. 5, FIG. 6A, and FIG. 6B show an example of the flow of manufacturing the solar cell module according to the embodiment of the present invention.

具体的に、図4は、フレキシブル配線基板に太陽電池セルを搭載する工程の概要を示す。また、図5(a)は、フレキシブル配線基板に太陽電池を搭載した状態における平面図を示し、図5(b)は、図5(a)のB−B線における断面を示す。なお、図5(a)は、太陽電池セルが搭載されていない基材の面側からの図である。   Specifically, FIG. 4 shows an outline of a process for mounting solar cells on a flexible wiring board. FIG. 5A shows a plan view of a state in which a solar cell is mounted on a flexible wiring board, and FIG. 5B shows a cross section taken along line BB in FIG. In addition, Fig.5 (a) is a figure from the surface side of the base material in which the photovoltaic cell is not mounted.

(セル準備工程、配線基板準備工程、搭載工程)
まず、太陽電池セル1及びフレキシブル配線基板2を準備した後(セル準備工程、配線基板準備工程)、フレキシブル配線基板2に太陽電池セル1を搭載する(搭載工程)。具体的には、フレキシブル配線基板2の配線パターンであるp側用電極24に太陽電池セル1のp電極10が電気的に接続し、フレキシブル配線基板2の配線パターンであるn側用電極26に太陽電池セル1のn電極12が電気的に接続するように、フレキシブル配線基板2に太陽電池セル1を搭載する。
(Cell preparation process, wiring board preparation process, mounting process)
First, after preparing the solar battery cell 1 and the flexible wiring board 2 (cell preparation process, wiring board preparation process), the solar battery cell 1 is mounted on the flexible wiring board 2 (mounting process). Specifically, the p-electrode 10 of the solar battery cell 1 is electrically connected to the p-side electrode 24 that is the wiring pattern of the flexible wiring board 2, and the n-side electrode 26 that is the wiring pattern of the flexible wiring board 2. Solar cell 1 is mounted on flexible wiring board 2 such that n electrode 12 of solar cell 1 is electrically connected.

ここで、本実施の形態に係る搭載工程においては、配線パターン(すなわち、p側用電極24及びn側用電極26)の一部にp電極10及びn電極12を電気的に接続させる。具体的に、搭載工程は、配線パターン上に、配線パターンとp電極10及びn電極12とが電気的に接続する接続部15と、配線パターンとp電極10及びn電極12とが物理的に接触しない非接続部16とが形成されるように、フレキシブル配線基板2に太陽電池セル1を搭載する。   Here, in the mounting process according to the present embodiment, the p-electrode 10 and the n-electrode 12 are electrically connected to a part of the wiring pattern (that is, the p-side electrode 24 and the n-side electrode 26). Specifically, in the mounting process, on the wiring pattern, the connection portion 15 where the wiring pattern and the p electrode 10 and the n electrode 12 are electrically connected, and the wiring pattern, the p electrode 10 and the n electrode 12 are physically connected. The solar battery cell 1 is mounted on the flexible wiring board 2 so that the non-connecting portion 16 that does not contact is formed.

例えば、図5(b)に示すように、p電極10とp側用電極24の表面に形成されている被覆材24bとを部分的に(若しくは断続的に)導電性接着材40を用いて電気的に接続した部分が接続部15であり、一の接続部15と当該一の接続部15に隣接する他の接続部15との間に形成され、p電極10とp側用電極24とを離間する部分が非接続部16である。したがって、接続部15と非接続部16とは交互に設けられる。n電極12とn側用電極26との間においても同様である。なお、非接続部16は、例えば、後述する封止部36を構成する封止樹脂により充填される。   For example, as shown in FIG. 5B, the p-electrode 10 and the covering material 24 b formed on the surface of the p-side electrode 24 are partially (or intermittently) used with a conductive adhesive 40. The electrically connected portion is a connection portion 15, which is formed between one connection portion 15 and another connection portion 15 adjacent to the one connection portion 15, and includes a p-electrode 10 and a p-side electrode 24. The portion separating the two is the non-connecting portion 16. Therefore, the connection part 15 and the non-connection part 16 are provided alternately. The same applies to the n-electrode 12 and the n-side electrode 26. In addition, the non-connection part 16 is filled with sealing resin which comprises the sealing part 36 mentioned later, for example.

ここで、導電性接着材40は、太陽電池セル1のp電極10及びn電極12の表面、又はフレキシブル配線基板2のp側用電極24及びn側用電極26の表面に予め印刷により形成する。そして、画像認識等の技術を用い、太陽電池セル1とフレキシブル配線基板2とを相互に位置合わせし、太陽電池セル1をフレキシブル配線基板2に搭載する。これにより、図5に示すように、複数の太陽電池セル1が直列に接続された太陽電池ストリング4が形成される。   Here, the conductive adhesive 40 is formed by printing in advance on the surfaces of the p-electrode 10 and the n-electrode 12 of the solar battery cell 1 or the surfaces of the p-side electrode 24 and the n-side electrode 26 of the flexible wiring board 2. . Then, using a technique such as image recognition, the solar battery cell 1 and the flexible wiring board 2 are aligned with each other, and the solar battery cell 1 is mounted on the flexible wiring board 2. Thereby, as shown in FIG. 5, the solar cell string 4 in which the several photovoltaic cell 1 was connected in series is formed.

なお、フレキシブル配線基板2に太陽電池セル1を搭載する場合において、フレキシブル配線基板2は、短冊状のシート、又はロール状に形成することができる。ロール状のフレキシブル配線基板2を用いた場合、太陽電池セル1を搭載する前、若しくは後に、搭載する個数の太陽電池セル1分の長さごとに、シート又はストリングとして切り出すことにより、太陽電池ストリング4を形成することができる。   In addition, when mounting the photovoltaic cell 1 on the flexible wiring board 2, the flexible wiring board 2 can be formed in a strip-like sheet or a roll shape. When the roll-shaped flexible wiring board 2 is used, the solar cell string is cut out as a sheet or a string before or after the solar cell 1 is mounted for each length of the solar cell 1 to be mounted. 4 can be formed.

また、配線パターン状に接続部15と非接続部16とを設ける理由は、太陽電池セル1に反りが発生した場合、太陽電池セル1の破損、及び太陽電池モジュール3の製造工程における作業性の悪化を防止するためである。したがって、接続部15の間隔は、太陽電池セル1の厚さ、フレキシブル配線基板2の構成の変化に応じて調整することが好ましい。また、フレキシブル配線基板2に導電性接着材40を介して太陽電池セル1を搭載するに際し、導電性接着材40の部分のみを加熱するか、あるいは、太陽電池セル1側のみを加熱することにより、太陽電池セル1の反りを低減させることができる。   Moreover, the reason for providing the connection part 15 and the non-connection part 16 in the wiring pattern is that when the solar battery cell 1 is warped, the solar battery cell 1 is damaged and the workability in the manufacturing process of the solar battery module 3 is improved. This is to prevent deterioration. Therefore, it is preferable to adjust the space | interval of the connection part 15 according to the change of the thickness of the photovoltaic cell 1, and the structure of the flexible wiring board 2. FIG. Moreover, when mounting the photovoltaic cell 1 on the flexible wiring board 2 via the conductive adhesive 40, only the portion of the conductive adhesive 40 is heated or only the solar cell 1 side is heated. And the curvature of the photovoltaic cell 1 can be reduced.

図6A(a)は、太陽電池ストリングにガラス板を透明接着シートを介して貼り付けた状態の断面の概要を示し、図6A(b)は、フレキシブル配線基板の基材及び接着層を剥がす途中における断面の概要を示す。図6Bは、太陽電池ストリングからフレキシブル配線基板の基材及び接着層を剥がした後の断面の概要を示す。   FIG. 6A (a) shows an outline of a cross-section in a state where a glass plate is attached to a solar cell string via a transparent adhesive sheet, and FIG. 6A (b) is in the process of peeling the base material and the adhesive layer of the flexible wiring board. The outline of the cross section in is shown. FIG. 6B shows an outline of a cross section after the base material and the adhesive layer of the flexible wiring board are peeled from the solar cell string.

(貼り付け工程)
まず、一方の面に透明接着シート32が貼り付けられたガラス板30を準備する。そして、透明接着シート32のガラス板30の反対側の表面に、太陽電池ストリング4の半導体基板14の表面を貼り付ける(貼り付け工程)。具体的に、透明接着シート32は、ポリエチレン−ビニルアセテート(EVA)系、又はシリコーン系の樹脂から主として形成される。また、透明接着シート32は、太陽光のうち、波長の短い光を太陽電池セル1において発電することができる波長に変換する波長変換機能を有することもできる。そして、ガラス板30が貼り付けられた透明接着シート32のガラス板30とは反対側の表面上に太陽電池ストリング4を配置し、透明接着シート32と太陽電池セル1とを密着若しくは接着させる。なお、透明接着シート32と太陽電池セル1との接着力が不十分である場合、透明接着シート32を加熱して、接着力を向上させることもできる。
(Attaching process)
First, a glass plate 30 having a transparent adhesive sheet 32 attached to one surface is prepared. And the surface of the semiconductor substrate 14 of the solar cell string 4 is affixed on the surface on the opposite side of the glass plate 30 of the transparent adhesive sheet 32 (adhesion process). Specifically, the transparent adhesive sheet 32 is mainly formed from a polyethylene-vinyl acetate (EVA) -based or silicone-based resin. Moreover, the transparent adhesive sheet 32 can also have a wavelength conversion function which converts light having a short wavelength out of sunlight into a wavelength that can be generated in the solar battery cell 1. And the solar cell string 4 is arrange | positioned on the surface on the opposite side to the glass plate 30 of the transparent adhesive sheet 32 on which the glass plate 30 was affixed, and the transparent adhesive sheet 32 and the photovoltaic cell 1 are closely_contact | adhered or adhere | attached. In addition, when the adhesive force of the transparent adhesive sheet 32 and the photovoltaic cell 1 is inadequate, the transparent adhesive sheet 32 can be heated and adhesive force can also be improved.

(露出工程)
そして、図6A(b)に示すように、配線パターンとしてのp側用電極24及びn側用電極26の表面から基材20を除去することにより、p側用電極24及びn側用電極26の裏面、すなわち、電極配線としてのp電極10及びn電極12に接続しているp側用電極24及びn側用電極26の面の反対側の面を露出させる(露出工程)。露出工程は、p側用電極24及びn側用電極26の表面から基材20、又は基材20及び接着層22を引き剥がすことにより、p側用電極24及びn側用電極26の裏面を露出させる。
(Exposure process)
Then, as shown in FIG. 6A (b), by removing the base material 20 from the surfaces of the p-side electrode 24 and the n-side electrode 26 as wiring patterns, the p-side electrode 24 and the n-side electrode 26 are removed. , That is, the surface opposite to the surfaces of the p-side electrode 24 and the n-side electrode 26 connected to the p-electrode 10 and the n-electrode 12 as electrode wirings (exposure step). In the exposing step, the back surface of the p-side electrode 24 and the n-side electrode 26 is removed by peeling off the base material 20 or the base material 20 and the adhesive layer 22 from the surfaces of the p-side electrode 24 and the n-side electrode 26. Expose.

具体的に、露出工程は、フレキシブル配線基板2が有する接着層22を構成する接着剤組成物の特性に応じて、フレキシブル配線基板2及び/又は接着層22を加熱する加熱工程、又はフレキシブル配線基板2及び/又は接着層22に紫外線(UV)を照射する照射工程を有する。そして、露出工程は、加熱工程又は照射工程により接着力が低下した接着層22及び基材20を、図6A(b)に示すように、p側用電極24及びn側用電極26から引き剥がすことにより、p側用電極24及びn側用電極26の裏面を露出させる。   Specifically, the exposing step is a heating step of heating the flexible wiring substrate 2 and / or the adhesive layer 22 according to the characteristics of the adhesive composition constituting the adhesive layer 22 of the flexible wiring substrate 2, or the flexible wiring substrate. 2 and / or an irradiation step of irradiating the adhesive layer 22 with ultraviolet rays (UV). Then, in the exposure step, the adhesive layer 22 and the base material 20 whose adhesive strength has been reduced by the heating step or the irradiation step are peeled off from the p-side electrode 24 and the n-side electrode 26 as shown in FIG. 6A (b). Thus, the back surfaces of the p-side electrode 24 and the n-side electrode 26 are exposed.

より具体的に、露出工程は、フレキシブル配線基板2の接着層22に、所定のエネルギー量のエネルギーを、直接的又は間接的に供給する工程として加熱工程又は照射工程を有する。例えば、加熱工程は、フレキシブル配線基板2を加熱する工程、若しくは接着層22に赤外線を照射することにより接着層22を加熱する工程等を用いることができる。露出工程は、加熱工程又は照射工程により接着層22の接着力を低下させた状態で、基材20及び接着層22をp側用電極24及びn側用電極26から引き剥がす。これにより、図6Bに示すように、基材20及び接着層22が除去された形態を有する太陽電池ストリング4が形成される。   More specifically, the exposure step includes a heating step or an irradiation step as a step of supplying a predetermined amount of energy directly or indirectly to the adhesive layer 22 of the flexible wiring board 2. For example, the heating step may be a step of heating the flexible wiring board 2 or a step of heating the adhesive layer 22 by irradiating the adhesive layer 22 with infrared rays. In the exposure process, the base material 20 and the adhesive layer 22 are peeled off from the p-side electrode 24 and the n-side electrode 26 in a state where the adhesive force of the adhesive layer 22 is reduced by the heating process or the irradiation process. Thereby, as shown to FIG. 6B, the solar cell string 4 which has the form from which the base material 20 and the contact bonding layer 22 were removed is formed.

ここで、図6Bの状態においては、p側用電極24及びn側用電極26の裏面、すなわち、基材20及び接着層22が除去されて露出する面には被覆材24b及び被覆材26bは設けられておらず、後述する封止工程により封止部36が形成されることにより、当該裏面は封止部36により被覆される。   Here, in the state of FIG. 6B, the coating material 24 b and the coating material 26 b are formed on the back surfaces of the p-side electrode 24 and the n-side electrode 26, that is, the surfaces exposed by removing the base material 20 and the adhesive layer 22. It is not provided, and the back surface is covered with the sealing portion 36 by forming the sealing portion 36 by a sealing process described later.

なお、基材20及び接着層22の引き剥がしは、ガラス板30の表面を基準に150度以上180度以下の角度の方向に基材20及び接着層22を引き剥がすことで、透明接着シート32と太陽電池セル1との密着若しくは接着状態に与える影響を低減させることができる。また、特に基材20及び接着層22の引き剥がしの開始時において、p側用電極24及びn側用電極26とp電極10及びn電極12とが接続されていない部分については、クランプ等により固定することもできる。   The base material 20 and the adhesive layer 22 are peeled off by peeling the base material 20 and the adhesive layer 22 in the direction of an angle of 150 degrees or more and 180 degrees or less with respect to the surface of the glass plate 30. And the influence exerted on the adhesion or adhesion state between the solar battery cell 1 and the solar battery cell 1 can be reduced. In particular, at the start of peeling of the base material 20 and the adhesive layer 22, a portion where the p-side electrode 24 and the n-side electrode 26 and the p-electrode 10 and the n-electrode 12 are not connected is clamped or the like. It can also be fixed.

また、配線基板準備工程は、接着層22を加熱中若しくは加熱した後、又は接着層22に紫外線(UV光)を照射した後における接着層22に対する配線パターン(すなわち、p側用電極24及びn側用電極26)のピール強度(ただし、90度ピール、引張速度20mm/分)が、100N/m以下になる接着層22を有するフレキシブル配線基板2を準備することが好ましい。   Further, the wiring board preparation step includes a wiring pattern (that is, the p-side electrode 24 and n) for the adhesive layer 22 while the adhesive layer 22 is being heated or heated, or after the adhesive layer 22 is irradiated with ultraviolet rays (UV light). It is preferable to prepare the flexible wiring board 2 having the adhesive layer 22 in which the peel strength of the side electrode 26) (however, 90 ° peel, tensile rate 20 mm / min) is 100 N / m or less.

(洗浄工程)
基材20及び接着層22をp側用電極24及びn側用電極26から引き剥がした後、p側用電極24及びn側用電極26の裏面に常圧プラズマ等を用いてクリーニングすることもできる(洗浄工程)。なお、基材20及び接着層22をp側用電極24及びn側用電極26から引き剥がした後、p側用電極24及びn側用電極26の裏面、すなわち、基材20及び接着層22を引き剥がすことにより外部に露出したp側用電極24及びn側用電極26の面(つまり、導電性接着材40が接続している面の反対側の面)に、導電性の接着材、又は、はんだペースト等を塗布、印刷することもできる。そして、導電性の接着材等が塗布、印刷された領域を加熱することにより導電性の接着材を溶融させ、溶融させた導電性の接着材等をp側用電極24及びn側用電極26の裏面側から表面(すなわち、p側用電極24及びn側用電極26の導電性接着材40が接続している面)側に流れ込ませることにより、p側用電極24及びn側用電極26とp電極10及びn電極12との間の接続強度の向上を図ることもできる。これにより、p側用電極24及びn側用電極26とp電極10及びn電極12との接続強度が不足している場合に、接続強度を補うことができる。
(Washing process)
After the base material 20 and the adhesive layer 22 are peeled off from the p-side electrode 24 and the n-side electrode 26, the back surfaces of the p-side electrode 24 and the n-side electrode 26 may be cleaned using atmospheric pressure plasma or the like. Yes (cleaning process). In addition, after peeling off the base material 20 and the adhesive layer 22 from the p-side electrode 24 and the n-side electrode 26, the back surfaces of the p-side electrode 24 and the n-side electrode 26, that is, the base material 20 and the adhesive layer 22. Conductive adhesive on the surfaces of the p-side electrode 24 and the n-side electrode 26 exposed to the outside by peeling off (that is, the surface opposite to the surface to which the conductive adhesive 40 is connected), Alternatively, solder paste or the like can be applied and printed. Then, the conductive adhesive is melted by heating the region where the conductive adhesive or the like is applied and printed, and the melted conductive adhesive or the like is used for the p-side electrode 24 and the n-side electrode 26. The p-side electrode 24 and the n-side electrode 26 are caused to flow from the back side to the front surface (that is, the surface to which the conductive adhesive 40 of the p-side electrode 24 and the n-side electrode 26 is connected). The connection strength between the p electrode 10 and the n electrode 12 can be improved. Thereby, when the connection strength between the p-side electrode 24 and the n-side electrode 26 and the p-electrode 10 and the n-electrode 12 is insufficient, the connection strength can be supplemented.

(モジュール形成工程)
続いて、太陽電池ストリング4に配線部材としての配線部と、外部接続用配線部材(図示しない)とを取り付ける。そして、ポリエチレン−ビニルアセテート(EVA樹脂)等の封止樹脂を用い、太陽電池セル1、並びにp側用電極24及びn側用電極26を封止して封止部36を形成する(封止工程)。更に、封止部36の表面にバックシート34を重ねて脱気、加熱する。その後、例えば、アルミニウムからなる金属枠60と、外部接続箱50と、外部接続ケーブル52とを取り付ける。これにより、図3に示すような本実施の形態に係る太陽電池モジュール3が得られる。
(Module formation process)
Subsequently, a wiring portion as a wiring member and an external connection wiring member (not shown) are attached to the solar cell string 4. Then, using a sealing resin such as polyethylene-vinyl acetate (EVA resin), the solar cell 1, the p-side electrode 24, and the n-side electrode 26 are sealed to form a sealing portion 36 (sealing). Process). Further, the back sheet 34 is overlapped on the surface of the sealing portion 36 and deaerated and heated. Thereafter, for example, a metal frame 60 made of aluminum, an external connection box 50, and an external connection cable 52 are attached. Thereby, the solar cell module 3 which concerns on this Embodiment as shown in FIG. 3 is obtained.

(変形例)
フレキシブル配線基板2に、銅箔自身が2層に分離するピーラブル銅箔(三井金属鉱業株式会社の銅箔キャリア付銅箔)を適用することもできる。斯かる場合、銅箔自身がフレキシブル配線基板2から剥がれるので、本実施の形態に係る太陽電池モジュール3の製造に適用することができる。また、フレキシブル配線基板2の形成において、p側用電極24及びn側用電極26用の圧延銅箔を準備する段階において、当該圧延銅箔にめっき処理を施すこともできる。これにより、圧延銅箔から導体配線パターンを形成した時に、形成した配線パターンの表面、裏面には既にめっき膜が設けられている状態になるので、当該導体配線パターンを有するフレキシブル配線基板2にそのままめっき処理を施すことにより、導体配線パターンの前面に被覆材を設けることができる。
(Modification)
A peelable copper foil (copper foil with a copper foil carrier of Mitsui Metal Mining Co., Ltd.) in which the copper foil itself is separated into two layers can also be applied to the flexible wiring board 2. In such a case, since the copper foil itself is peeled off from the flexible wiring board 2, it can be applied to manufacture of the solar cell module 3 according to the present embodiment. Moreover, in the formation of the flexible wiring board 2, in the stage of preparing the rolled copper foil for the p-side electrode 24 and the n-side electrode 26, the rolled copper foil can be plated. As a result, when the conductor wiring pattern is formed from the rolled copper foil, a plating film is already provided on the front and back surfaces of the formed wiring pattern, so that the flexible wiring board 2 having the conductor wiring pattern is left as it is. By performing the plating treatment, a coating material can be provided on the front surface of the conductor wiring pattern.

基材20及び接着層22を剥がした後のp側用電極24及びn側用電極26の表面に、配線部等を設ける部分を除き、接着層22を構成する接着剤組成物が残存していてもよい。また、基材20及び接着層22は部分的に残しておくことでもよい。例えば、p側用電極24及びn側用電極26の端部に対応する部分、又は太陽電池セル1の間に対応する部分の基材20及び接着層22のみを引き剥がすこともできる。   The adhesive composition constituting the adhesive layer 22 remains on the surface of the p-side electrode 24 and the n-side electrode 26 after the substrate 20 and the adhesive layer 22 are peeled off, except for a portion where a wiring portion or the like is provided. May be. Moreover, you may leave the base material 20 and the contact bonding layer 22 partially. For example, only the base material 20 and the adhesive layer 22 corresponding to the end portions of the p-side electrode 24 and the n-side electrode 26 or corresponding portions between the solar cells 1 can be peeled off.

(実施の形態の効果)
本実施の形態に係る太陽電池モジュール3は、フレキシブル配線基板2に太陽電池セル1を搭載した後、フレキシブル配線基板2を構成する基材20及び接着層22を除去した上で太陽電池セル1を封止することにより製造されるので、主として、フレキシブル配線基板2のp側用電極24及びn側用電極26と太陽電池セル1とが封止樹脂により封止される。すなわち、フレキシブル配線基板2のp側用電極24及びn側用電極26を除く他の部分を分離することができるので、主として、フレキシブル配線基板2のp側用電極24及びn側用電極26と太陽電池セル1とが封止樹脂により封止された太陽電池モジュール3を提供できる。これにより、本実施の形態に係る太陽電池モジュール3においては、長期信頼性試験、実証試験の簡略化も可能になるので、特に、バックコンタクト型のような太陽電池モジュール3の開発期間、及び開発費用を低減することができる。
(Effect of embodiment)
In the solar cell module 3 according to the present embodiment, the solar cell 1 is mounted on the flexible wiring substrate 2, and then the solar cell 1 is removed after removing the base material 20 and the adhesive layer 22 constituting the flexible wiring substrate 2. Since it is manufactured by sealing, the p-side electrode 24 and the n-side electrode 26 of the flexible wiring board 2 and the solar battery cell 1 are mainly sealed with a sealing resin. That is, since the other parts of the flexible wiring board 2 except for the p-side electrode 24 and the n-side electrode 26 can be separated, mainly the p-side electrode 24 and the n-side electrode 26 of the flexible wiring board 2 The solar cell module 3 in which the solar cells 1 are sealed with a sealing resin can be provided. Thereby, in the solar cell module 3 according to the present embodiment, it is possible to simplify the long-term reliability test and the verification test, and in particular, the development period and development of the solar cell module 3 such as the back contact type Cost can be reduced.

また、本実施の形態に係る太陽電池モジュール3の製造に用いるフレキシブル配線基板2は、その導体配線パターンの表面、裏面、及び両側面にわたってめっき等の被覆材を設けることができるので、銅又は銅合金からなる導体配線パターンの変色及び腐食を遅らせることや、防止することができる。更に、フレキシブル配線基板2から基材20及び接着22を引き剥がす工程を経るだけで導体配線パターンの裏面の被覆も完了させることができるので、改めて当該裏面を被覆する工程を省略又は簡略化できることになり、太陽電池モジュール3の製造に適している。   Moreover, since the flexible wiring board 2 used for manufacture of the solar cell module 3 according to the present embodiment can be provided with a coating material such as plating over the front surface, back surface, and both side surfaces of the conductor wiring pattern, copper or copper Discoloration and corrosion of a conductor wiring pattern made of an alloy can be delayed or prevented. Furthermore, since the coating of the back surface of the conductor wiring pattern can be completed only by passing through the process of peeling the base material 20 and the adhesive 22 from the flexible wiring board 2, the process of coating the back surface can be omitted or simplified again. Therefore, it is suitable for manufacturing the solar cell module 3.

また、本実施の形態に係る太陽電池モジュール3は、フレキシブル配線基板2を構成していた基材20及び接着層22は除去され、封止部36に封止されないので、長期使用での紫外線による基材20及び接着層22の分解に起因する封止部36の絶縁抵抗の劣化、吸湿によって生じる基材20及び接着層22の加水分解による封止部36の絶縁抵抗の劣化、又はEVA樹脂等と基材20及び接着層22との間で起こる化学反応による封止部36の絶縁抵抗の劣化を大幅に抑制することができる。   Further, in the solar cell module 3 according to the present embodiment, the base material 20 and the adhesive layer 22 constituting the flexible wiring board 2 are removed and are not sealed by the sealing portion 36. Degradation of insulation resistance of the sealing portion 36 due to decomposition of the base material 20 and the adhesive layer 22, deterioration of insulation resistance of the sealing portion 36 due to hydrolysis of the base material 20 and the adhesive layer 22 caused by moisture absorption, EVA resin, or the like Degradation of the insulation resistance of the sealing portion 36 due to a chemical reaction occurring between the substrate 20 and the adhesive layer 22 can be significantly suppressed.

また、本実施の形態に係る太陽電池モジュール3の製造方法によれば、フレキシブル配線基板2から基材20及び接着層22を除去したので、シンプルな構成の太陽電池モジュール3を実現することができると共に、太陽電池モジュール3を薄型化することができる。そして、封止部36の中には、主として、p側用電極24及びn側用電極26と太陽電池セル1とが封止され、基材20及び接着層22は封止されないので、基材20の線膨張係数及び接着層22の線膨張係数と、太陽電池セル1の線膨張係数との差に起因する太陽電池セル1内における応力の発生を防止できる。更に、フレキシブル配線基板2の接着層22は、エネルギーの供給により接着力が低下する材料から主として構成されるので、基材20及び接着層22を引き剥がした場合に、p側用電極24及びn側用電極26の表面の接着層22の残渣を低減することができる。   Moreover, according to the manufacturing method of the solar cell module 3 according to the present embodiment, since the base material 20 and the adhesive layer 22 are removed from the flexible wiring board 2, the solar cell module 3 having a simple configuration can be realized. At the same time, the solar cell module 3 can be thinned. In the sealing portion 36, the p-side electrode 24 and the n-side electrode 26 and the solar battery cell 1 are mainly sealed, and the base material 20 and the adhesive layer 22 are not sealed. Generation of stress in the solar cell 1 due to the difference between the linear expansion coefficient of 20 and the linear expansion coefficient of the adhesive layer 22 and the linear expansion coefficient of the solar cell 1 can be prevented. Furthermore, since the adhesive layer 22 of the flexible wiring board 2 is mainly composed of a material whose adhesive strength is reduced by supplying energy, when the base material 20 and the adhesive layer 22 are peeled off, the p-side electrode 24 and n The residue of the adhesive layer 22 on the surface of the side electrode 26 can be reduced.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1 太陽電池セル
2 フレキシブル配線基板
3 太陽電池モジュール
4 太陽電池ストリング
10 p電極
10a p側外側電極
10b p側細線電極
12 n電極
12a n側外側電極
12b n側細線電極
14 半導体基板
14a 受光面
15 接続部
16 非接続部
20 基材
22 接着層
24 p側用電極
24a p側用細線電極
24b 被覆材
26 n側用電極
26a n側用細線電極
26b 被覆材
30 ガラス板
32 透明接着シート
34 バックシート
36 封止部
38 配線部
40 導電性接着材
50 外部接続箱
52 外部接続ケーブル
60 金属枠
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Flexible wiring board 3 Solar cell module 4 Solar cell string 10 p electrode 10a p side outer electrode 10b p side thin wire electrode 12 n electrode 12a n side outer electrode 12b n side thin wire electrode 14 Semiconductor substrate 14a Light-receiving surface 15 Connection Part 16 Non-connecting part 20 Substrate 22 Adhesive layer 24 p-side electrode 24a p-side fine wire electrode 24b coating material 26 n-side electrode 26a n-side fine wire electrode 26b coating material 30 glass plate 32 transparent adhesive sheet 34 back sheet 36 Sealing part 38 Wiring part 40 Conductive adhesive 50 External connection box 52 External connection cable 60 Metal frame

Claims (9)

少なくとも受光面と、前記受光面の反対の面と、前記反対の面に設けられる電極配線とを有する太陽電池セルと、前記電極配線に電気的に接続すると共に、18μm以上75μm以下の厚さを有する銅箔からなり、表面、裏面、及び両側面の少なくとも1つの面が被覆材で被覆される導体配線パターンとを備え、前記太陽電池セルの垂直投影面内の前記導体配線パターンは、前記太陽電池セルに直接接続している部分を除き、全面が封止材と直接接して封止する封止部とを備える太陽電池モジュール。   A solar cell having at least a light receiving surface, a surface opposite to the light receiving surface, and an electrode wiring provided on the opposite surface, electrically connected to the electrode wiring, and having a thickness of 18 μm to 75 μm And a conductor wiring pattern in which at least one surface of the front surface, the back surface, and both side surfaces is covered with a coating material, and the conductor wiring pattern in the vertical projection plane of the solar cell includes the solar cell A solar cell module comprising a sealing portion that seals the entire surface in direct contact with a sealing material except for a portion directly connected to a battery cell. 前記被覆材は、金属めっき、導電性接着材、及びはんだ材料からなる群から選択される材料を含んで形成される請求項1に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the covering material is formed including a material selected from the group consisting of metal plating, a conductive adhesive, and a solder material. 前記導体配線パターンは、0.2%耐力が100MPa以下である請求項1又は2に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the conductor wiring pattern has a 0.2% proof stress of 100 MPa or less. 前記導体配線パターンは、十点平均粗さが1.0μm以下の表面粗さの前記表面と前記裏面を有する請求項3に記載の太陽電池モジュール。   The solar cell module according to claim 3, wherein the conductor wiring pattern has the front surface and the back surface having a surface roughness with a 10-point average roughness of 1.0 µm or less. 前記銅箔は、圧延銅箔である請求項4に記載の太陽電池モジュール。   The solar cell module according to claim 4, wherein the copper foil is a rolled copper foil. 複数の前記太陽電池セルを有し、複数の前記太陽電池セルは、一列以上に配置され、前記導体配線パターンは、少なくとも一列に配置された複数の前記太陽電池セルを電気的に直列接続する請求項5に記載の太陽電池モジュール。   A plurality of the solar cells, wherein the plurality of solar cells are arranged in one or more rows, and the conductor wiring pattern electrically connects the plurality of solar cells arranged in at least one row in series. Item 6. The solar cell module according to Item 5. 基材と、前記基材の表面に設けられる接着層と、前記接着層の表面に設けられ、18μm以上75μm以下の厚さを有し、0.2%耐力が100MPa以下であり、十点平均粗さが1.0μm以下の表面粗さの前記表面又は裏面を有する導体配線パターンとを有し、前記導体配線パターンの表面、裏面、及び両側面のうち少なくとも1つの面が被覆材で被覆されているバックコンタクト型太陽電池モジュール用配線基板。   A base material, an adhesive layer provided on the surface of the base material, provided on the surface of the adhesive layer, having a thickness of 18 μm to 75 μm, a 0.2% proof stress of 100 MPa or less, and an average of ten points A conductor wiring pattern having the surface or back surface with a surface roughness of 1.0 μm or less, and at least one of the surface, back surface, and both side surfaces of the conductor wiring pattern is covered with a coating material. Wiring board for back contact solar cell module. 前記基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、及びポリアミドイミドからなる群から選択される樹脂材料を含んで形成される請求項7に記載のバックコンタクト型太陽電池モジュール用配線基板。   The back contact solar cell module according to claim 7, wherein the base material is formed to include a resin material selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, and polyamideimide. Wiring board. 前記被覆材は、金属めっき、導電性接着材およびはんだからなる群から選択される材料を含んで形成される請求項7に記載のバックコンタクト型太陽電池モジュール用配線基板。   The said contact material is a wiring board for back contact type solar cell modules of Claim 7 formed including the material selected from the group which consists of metal plating, a conductive adhesive, and solder.
JP2010229199A 2009-11-20 2010-10-12 Solar battery module, and wiring board for solar battery module Withdrawn JP2011129882A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010229199A JP2011129882A (en) 2009-11-20 2010-10-12 Solar battery module, and wiring board for solar battery module
CN2010105484135A CN102110727A (en) 2009-11-20 2010-11-12 Solar cell module and wiring circuit board for solar cell module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009264559 2009-11-20
JP2009264559 2009-11-20
JP2010229199A JP2011129882A (en) 2009-11-20 2010-10-12 Solar battery module, and wiring board for solar battery module

Publications (1)

Publication Number Publication Date
JP2011129882A true JP2011129882A (en) 2011-06-30

Family

ID=44292103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229199A Withdrawn JP2011129882A (en) 2009-11-20 2010-10-12 Solar battery module, and wiring board for solar battery module

Country Status (1)

Country Link
JP (1) JP2011129882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752884A1 (en) * 2011-08-31 2014-07-09 Sanyo Electric Co., Ltd. Solar cell module
US9691925B2 (en) 2013-06-14 2017-06-27 Mitsubishi Electric Corporation Light receiving element module and manufacturing method therefor
JPWO2019058799A1 (en) * 2017-09-22 2020-09-03 日本ゼオン株式会社 Energy harvesting equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752884A1 (en) * 2011-08-31 2014-07-09 Sanyo Electric Co., Ltd. Solar cell module
JPWO2013031296A1 (en) * 2011-08-31 2015-03-23 三洋電機株式会社 Solar cell module
EP2752884B1 (en) * 2011-08-31 2017-08-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US9691925B2 (en) 2013-06-14 2017-06-27 Mitsubishi Electric Corporation Light receiving element module and manufacturing method therefor
JPWO2019058799A1 (en) * 2017-09-22 2020-09-03 日本ゼオン株式会社 Energy harvesting equipment
JP7111106B2 (en) 2017-09-22 2022-08-02 日本ゼオン株式会社 energy harvester

Similar Documents

Publication Publication Date Title
JP2011108969A (en) Method of manufacturing solar cell module and wiring board for solar cell
US10383207B2 (en) Interdigitated foil interconnect for rear-contact solar cells
TWI390747B (en) Photovoltaic modules manufactured using monolithic module assembly techniques
US8975510B2 (en) Foil-based interconnect for rear-contact solar cells
JP5445419B2 (en) Solar cell module and manufacturing method thereof
US20120132251A1 (en) Solar cell, solar module comprising said solar cell and method for producing the same and for producing a contact foil
JP2007200970A (en) Photovoltaic module
WO2011118688A1 (en) Solar cell, solar cell module, electronic component, and production method for solar cell
JP2008147260A (en) Interconnector, solar cell string, solar cell module, and method for manufacturing solar cell module
JP2011199020A (en) Solar cell rear surface circuit sheet and method of manufacturing the same
JP2009302327A (en) Connection structure of wiring member, solar-battery module comprising the same, and its manufacturing method
JP2007141967A (en) Photovoltaic element, photovoltaic module, and method of manufacturing photovoltaic element
WO2016158299A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
JP2011129882A (en) Solar battery module, and wiring board for solar battery module
JP5306668B2 (en) Manufacturing method of photoelectric conversion module
JP2010062186A (en) Photoelectric converter and method of manufacturing the same
JP2011159779A (en) Solar cell module, and method of manufacturing the same
CN102110727A (en) Solar cell module and wiring circuit board for solar cell module
TWI540742B (en) Solar cell module
JP2012099565A (en) Backside contact solar battery cell having wiring board, solar cell module, and manufacturing method of backside contact solar battery cell having wiring board
JP2010182935A (en) Method of manufacturing thin film solar cell
JP2011035070A (en) Back sheet for solar cell module, and method of manufacturing the same
JP2010074042A (en) Solar-battery module and method for manufacturing the same
JP5569139B2 (en) Solar cell module
JP2014013838A (en) Solar battery power collecting sheet and solar battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130531