JP2011129847A - Reflecting concentrated solar power generating module - Google Patents

Reflecting concentrated solar power generating module Download PDF

Info

Publication number
JP2011129847A
JP2011129847A JP2009299443A JP2009299443A JP2011129847A JP 2011129847 A JP2011129847 A JP 2011129847A JP 2009299443 A JP2009299443 A JP 2009299443A JP 2009299443 A JP2009299443 A JP 2009299443A JP 2011129847 A JP2011129847 A JP 2011129847A
Authority
JP
Japan
Prior art keywords
power generation
solar cell
solar power
reflecting mirror
generation module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009299443A
Other languages
Japanese (ja)
Inventor
Tadashi Nakamura
忠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009299443A priority Critical patent/JP2011129847A/en
Publication of JP2011129847A publication Critical patent/JP2011129847A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflecting concentrated solar power generating module that is more advantageous in terms of space-saving and cost performance compared to a conventional reflecting/condensing solar power generation system. <P>SOLUTION: A long and narrow solar cell is disposed parallel with a bucket-shaped reflection mirror having an arcuate section such that the solar cell is near a point separated from the reflection mirror across a distance equivalent to the half of the radius of the reflective mirror arcuate shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、樋型の反射鏡をもつ反射集光型太陽光発電モジュールに係り、更に詳しくは従来の反射集光型太陽光発電装置に比べ、省スペース、高コストパフォーマンスの反射集光型太陽光発電モジュールに関する。The present invention relates to a reflective concentrating solar power generation module having a bowl-shaped reflecting mirror, and more specifically, a reflective concentrating solar that saves space and has a higher cost performance than a conventional reflective concentrating solar power generation device. The present invention relates to a photovoltaic module.

光発電素子を用いる太陽光発電システムの一つとして、太陽光集光機構を特に設けることなく、光発電素子を並べた太陽電池を設置し、直接太陽光を受けて発電する固定型が一般家庭に普及しつつある。しかしながら、固定型の太陽光発電システムは、高価である太陽電池の面積当りの発電量が少なく、発電コストの点で課題を残す。One type of photovoltaic power generation system that uses photovoltaic elements is a fixed type that generates solar power directly by installing solar cells with photovoltaic elements arranged without a solar condensing mechanism. It is becoming popular. However, the fixed solar power generation system has a small amount of power generation per area of the expensive solar cell, and remains a problem in terms of power generation cost.

これに対し、小面積の太陽電池で大きな発電量を得ることを可能とするものとして、かまぼこ状の細長い凸レンズや、断面が放物線状である樋型の反射鏡を用いて太陽光を直線状に集光する集光型太陽光発電システム(例えば、非特許文献1参照)、更には、当該集光型太陽光発電システムに、一日の太陽の動きを追尾する機構を付加した一軸追尾式の集光型太陽光発電システム(非特許文献2参照)が近年注目されている。On the other hand, it is possible to obtain a large amount of power generation with a small-area solar cell, and the sunlight is linearized using a kamaboko-shaped elongated convex lens or a bowl-shaped reflector having a parabolic cross section. A concentrating solar power generation system that collects light (for example, see Non-Patent Document 1), and further, a uniaxial tracking type system that adds a mechanism for tracking the movement of the sun of the day to the concentrating solar power generation system. In recent years, a concentrating solar power generation system (see Non-Patent Document 2) has attracted attention.

KEC情報NO、201 p.17−18 2007年KEC information NO, 201 p. 17-18 2007 R&D News kansai 特集号 p.36−37R & D News Kansai Special Issue p. 36-37

従来の集光型太陽光発電システムにあっては、発電効率の向上の為、太陽電池を反射鏡等の焦点近傍に配置しているため、反射鏡等の焦点距離に相当する大きなスペースを必要とする装置となる。又、前述の一軸追尾式の集光型太陽光発電システムは季節による太陽高度の変化への対応がなされていない為、高価な光発電素子の一部が季節によっては遊休状態となりコストパフォーマンスの点で不満を残す。光発電素子の遊休状態を解消し年間を通じた発電効率を高めるものとして、一日の太陽の動きを追尾する機構に加え、季節による太陽高度の変化を追尾する機構を有する二軸追尾式の反射集光型太陽光発電システムも考えられている。しかしながら、二軸追尾式のそれは追尾機構が複雑となり更なるコストアップにつながる。In a conventional concentrating solar power generation system, a solar cell is arranged near the focal point of a reflecting mirror or the like in order to improve power generation efficiency, so a large space corresponding to the focal length of the reflecting mirror or the like is required. It becomes the device. In addition, since the single-axis tracking type concentrating photovoltaic power generation system described above does not cope with changes in solar altitude due to the season, some of the expensive photovoltaic elements become idle depending on the season, and cost performance Leave a complaint. In order to eliminate the idle state of photovoltaic devices and increase the power generation efficiency throughout the year, in addition to a mechanism that tracks the movement of the sun in the day, a biaxial tracking type reflection that has a mechanism to track changes in the solar altitude due to the season A concentrating solar power generation system is also considered. However, the two-axis tracking type complicates the tracking mechanism and further increases the cost.

本発明は従来の反射集光型太陽光発電システムに比べ、省スペース、高コストパフォーマンスの反射集光型太陽光発電モジュールの提供を目的とする。An object of the present invention is to provide a reflective concentrating solar power generation module that saves space and has high cost performance as compared with a conventional reflective concentrating solar power generation system.

本発明者は、反射集光型太陽光発電システムにおける断面が放物線状の焦点を有する樋型反射鏡に代えて、焦点のない、断面が円孤の樋型反射鏡を用い、当該反射鏡の半径の1/2近傍に太陽電池の受光面を設置し、太陽電池の受光面の長さを反射鏡の長手方向の長さよりやや短くすれば上記目的を達成し得ることを見出し、本発明の完成に至った。The present inventor uses, instead of a saddle type reflector having a parabolic focus in a cross section in a reflective concentrating solar power generation system, a saddle type reflector having a cross section having no focal point and a circular arc, It has been found that the above object can be achieved if the light receiving surface of the solar cell is installed in the vicinity of a half of the radius, and the length of the light receiving surface of the solar cell is slightly shorter than the length in the longitudinal direction of the reflecting mirror. Completed.

即ち、請求項1に係る本発明は、断面が円孤である樋型反射鏡と、当該反射鏡と平行に細長い太陽電池を配設してなる反射集光型太陽発電モジュールであって、太陽電池を反射鏡の半径の1/2近傍に設置することを特徴とする。That is, the present invention according to claim 1 is a reflective concentrating solar power generation module in which a saddle-shaped reflecting mirror having a circular cross section and a solar cell elongated in parallel with the reflecting mirror are provided. The battery is installed in the vicinity of a half of the radius of the reflecting mirror.

請求項2に係る本発明は、請求項1において、太陽電池の受光面が、反射鏡曲面から下記数式1で表される距離(e)であることを特徴とする。

Figure 2011129847
The present invention according to claim 2 is characterized in that, in claim 1, the light receiving surface of the solar cell is a distance (e) expressed by the following mathematical formula 1 from the reflecting mirror curved surface.
Figure 2011129847

請求項3に係る本発明は、請求項1又2において、孤の長さ(l)が下記数式2で表される樋型反射鏡であることを特徴とする。

Figure 2011129847
The present invention according to claim 3 is the saddle type reflecting mirror according to claim 1 or 2, wherein the length of the arc (l) is expressed by the following mathematical formula 2.
Figure 2011129847

請求項1から3いずれかに記載の本発明の反射集光型太陽発電モジュールは、断面が放物線状の樋型反射鏡を用いその焦点近傍に太陽電池を配設してなる従来の反射集光型太陽光発電システムに比べ、省スペース、低コストを実現できるため、より大きな発電量を得ることの出来る大型の太陽光発電装置用としても適している。The reflective concentrating solar power generation module of the present invention according to any one of claims 1 to 3 is a conventional reflective condensing concentrator formed by using a vertical reflector having a parabolic cross section and arranging a solar cell in the vicinity of the focal point thereof. Compared to the type solar power generation system, it can realize space saving and low cost, and is therefore suitable for a large-scale solar power generation apparatus capable of obtaining a larger amount of power generation.

請求項4に係る本発明は、請求項1から3において、太陽電池の受光面の幅(d2)が反射鏡の幅(d2)の1/5以下のサイズであることを特徴とする。The present invention according to claim 4 is characterized in that, in claims 1 to 3, the width (d2) of the light receiving surface of the solar cell is not more than 1/5 of the width (d2) of the reflecting mirror.

請求項5に係る本発明は、請求項1から4いずれかにおいて、太陽電池の受光面の長さ(L2)が、下記数式3で表されるサイズであることを特徴とする。

Figure 2011129847
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the length (L2) of the light receiving surface of the solar cell is a size represented by the following mathematical formula 3.
Figure 2011129847

請求項6に係る本発明は、請求項1から5いずれかにおいて、装置全体を地軸と平行に設置し、地軸と平行な回転軸を中心に回転させて一日の太陽の動きを追尾する追尾機構を有することを特徴とする。The present invention according to claim 6 is the tracking according to any one of claims 1 to 5, wherein the entire apparatus is installed in parallel with the earth axis, and the movement of the sun is tracked by rotating around the rotation axis parallel to the earth axis. It has a mechanism.

請求項1から3いずれかに記載の本発明に加え、請求項4から6いずれかに記載の本発明の反射集光型太陽発電モジュールによれば、年間を通じ遊休する太陽電池(光発電素子)のない高コストパフォーマンスの太陽光発電装置を提供することが出来る。In addition to the present invention according to any one of claims 1 to 3, according to the reflective concentrating solar power generation module according to any one of claims 4 to 6, a solar cell (photovoltaic element) that is idle throughout the year. It is possible to provide a solar power generation device with high cost performance that is free from any problem.

以下、本発明に係る反射集光型太陽光発電モジュールについて、添付図表を参照しつつ説明する。図1は本発明の太陽光発電モジュールの概念を示す横断面図である。反射鏡Mの断面は円孤の一部であり、点Oを中央とした左右対称の樋型凹面鏡である。図の上方から太陽光が照射されると光線は鏡面で反射され、円孤の中心RとOを結ぶ中心線(Y軸とする)に向う。反射鏡断面が放物線の場合、反射光は一つの焦点に集まるが、本発明で用いる円孤の反射鏡の場合は焦点が存在しない。Hereinafter, the reflective concentrating solar power generation module according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing the concept of the photovoltaic power generation module of the present invention. The cross section of the reflecting mirror M is a part of a circular arc, and is a symmetrical bowl-shaped concave mirror with the point O at the center. When sunlight is irradiated from the upper side of the figure, the light beam is reflected by the mirror surface and goes toward the center line (Y axis) connecting the centers R and O of the arc. When the cross section of the reflector is a parabola, the reflected light is collected at one focal point, but there is no focal point in the case of the circular reflector used in the present invention.

ここで、円孤上の点Aと中心Rを結ぶ線は、中心線R〜O(Y軸)と45°をなすとする(片側中心角45°)。Y軸と平行に上方から入射した光線は点Aで反射して90°方向を変え、点aでY軸と交わる。同様に、片側中心角30°の点Bで反射した光線は60°の角度で反射して点bでY軸と交わる。点Cの片側中心角は25°、以下5°刻みで点D、点F、点Gからの反射光の交点をそれぞれc、d、f、gとする。それぞれの点の座標(x,y)を計算すると、表1のようになる。ただし、円孤の半径を1.0とする。なお、y=0.40、y=0.45及びy=0.50の欄に記入してある数字は、高さ(y)0.40、0.45及び0.50の位置に太陽電池を設置した時に反射光が横切るX座標を表している。上で述べた点Aからの反射光はY軸を0.293の位置で水平に横切るので、y=0.40の位置あるいはそれより上の位置には到達しない。Here, it is assumed that the line connecting the point A and the center R on the arc is 45 ° with the center line R to O (Y axis) (one-side center angle 45 °). A light ray incident from above in parallel with the Y axis is reflected at the point A, changes its direction by 90 °, and intersects the Y axis at the point a. Similarly, a light beam reflected at a point B having a central angle of 30 ° on one side is reflected at an angle of 60 ° and intersects the Y axis at a point b. The central angle of one side of the point C is 25 °, and the intersection of the reflected light from the point D, the point F, and the point G in increments of 5 ° and below is c, d, f, and g, respectively. When the coordinates (x, y) of each point are calculated, Table 1 is obtained. However, the radius of the arc is 1.0. The numbers entered in the columns y = 0.40, y = 0.45, and y = 0.50 are solar cells at heights (y) 0.40, 0.45, and 0.50. Represents the X coordinate that the reflected light crosses when is installed. Since the reflected light from the point A described above crosses the Y axis horizontally at the position of 0.293, it does not reach the position of y = 0.40 or above.

いま、y=0.40の位置に太陽電池Eを反射面に向けて設置する場合を考えてみる。中心角30°以内の反射面からの反射光はおよそ0.06より内側に集まる。中心角30°の点BのX座標は、0.50であるから、これより内側の反射光がy=0.40の位置で0.06より内側に集まることになり、およそ8倍に集光される。厳密には、太陽電池の陰になる部分には光が到達しないので、実際の倍率はこれより小さい。

Figure 2011129847
Consider the case where the solar cell E is installed at the position of y = 0.40 with the reflection surface facing. Reflected light from the reflecting surface with a central angle of 30 ° or less gathers inside approximately 0.06. Since the X coordinate of the point B having the central angle of 30 ° is 0.50, the reflected light on the inner side of the point B gathers on the inner side of 0.06 at the position of y = 0.40, which is about eight times as much. Be lit. Strictly speaking, since light does not reach the shaded portion of the solar cell, the actual magnification is smaller than this.
Figure 2011129847

次に、y=0.45の位置では、点Bからの反射光が横切る0.047が最大(絶対値)であるから、集光率はおよそ10倍になる。すなわち、断面が円孤の一部である本発明の樋型反射鏡を用いた場合、10倍程度の集光が可能となる。Next, at the position of y = 0.45, 0.047 that the reflected light from the point B crosses is the maximum (absolute value), so the light collection rate is approximately 10 times. That is, when the vertical reflector of the present invention whose cross section is a part of a circle is used, it is possible to collect light about 10 times.

ところで、点Bからの反射光は、半径の1/2の点Pの近傍にある平面太陽電池に30°の角度で入射する。この角度では、反射光のかなりの割合が太陽電池表面で再反射して、発電に寄与しないおそれがある。それを避けるために、より小さい中心角、例えば点D(中心角20°)以内の円孤を反射面として利用しても良い。円孤のどの範囲を反射面として利用するかは、太陽電池の表面での反射光の再反射の程度や、太陽電池Eを点P近傍のどこに置くかで、最適値が変わりうる。いずれにしても、最大、円孤B〜B´の範囲の反射光を利用する(この時片側中心角は30°)ことが可能であるが、それより小さい範囲でも良い。従って、反射鏡としては、孤の長さ(l)が下記数式2で表されるサイズで良い。

Figure 2011129847
By the way, the reflected light from the point B is incident on the flat solar cell in the vicinity of the point P having a half radius at an angle of 30 °. At this angle, a significant proportion of the reflected light may re-reflect on the solar cell surface and not contribute to power generation. In order to avoid this, a smaller center angle, for example, an arc within point D (center angle 20 °), may be used as the reflecting surface. Which range of the arc is used as the reflection surface may vary depending on the degree of re-reflection of the reflected light on the surface of the solar cell and where the solar cell E is placed near the point P. In any case, it is possible to use reflected light in the range of arcs B to B ′ at the maximum (at this time, the central angle on one side is 30 °), but a range smaller than that may be used. Therefore, as the reflecting mirror, the length of the arc (l) may be a size represented by the following formula 2.
Figure 2011129847

次に、別な事例について考えてみる。反射鏡円孤として片側中心角20°のD〜D´を考える。太陽電池はY軸上の高さ0.45の位置に反射鏡に面して平行に設置する。この位置での反射光は最大でもおよそ0.019の範囲に集まるので、太陽電池の幅は0.02(片側)で十分である。点DのX座標は0.342であるから、集光倍率としては18倍(陰の部分を除けば17倍)となる。片側中心角20°の場合は、太陽電池を高さ0.50の位置、すなわち半径の1/2の位置Pに置いても、反射光の到達範囲は最大(絶対値)0.027であるから、およそ12倍程度の集光倍率である。このことから分かるように、太陽電池の位置は、0.50よりやや大きくともよい。Next, consider another case. Consider D to D ′ having a central angle of 20 ° as a reflector arc. The solar cell is placed parallel to the reflecting mirror at a height of 0.45 on the Y axis. Since the reflected light at this position is collected in a range of about 0.019 at the maximum, 0.02 (one side) is sufficient for the width of the solar cell. Since the X coordinate of the point D is 0.342, the condensing magnification is 18 times (17 times excluding the shaded portion). When the central angle on one side is 20 °, even if the solar cell is placed at a height of 0.50, that is, at a position P that is ½ of the radius, the reach of the reflected light is 0.027 (absolute value). Therefore, the light collection magnification is about 12 times. As can be seen from this, the position of the solar cell may be slightly larger than 0.50.

すなわち、本発明においては太陽電池の幅が反射鏡の幅の1/5以下であり、この太陽電池を反射鏡曲面から下記数式1で表される距離(e)の範囲内に設置することで集光5倍以上の性能を担保し得る。

Figure 2011129847
That is, in the present invention, the width of the solar cell is 1/5 or less of the width of the reflector, and the solar cell is installed within the distance (e) represented by the following formula 1 from the curved surface of the reflector. Performance of 5 times or more of light collection can be ensured.
Figure 2011129847

図2は本発明の反射集光型太陽光発電モジュールの一実施態様である。反射鏡Mは断面が半径1.46mの円の中心角(両側)40°の円孤である。この時、反射鏡Mの幅(弦)は1.0mである。 反射鏡の中心Oと円の中心Rを結ぶ線上の、Oから0.66mの位置(E)に幅0.056mの太陽電池を、反射鏡に面して設置する。太陽光がO〜Rと平行な方向から反射鏡に入射すると、反射光は太陽電池の位置でおよそ17倍に集光されて、発電が行なわれる。図2からも分かるように、太陽電池Eの位置を半径の1/2の点Pの近傍に選択することにより意図する集光倍率のものを自由にデザインすることが出来る。FIG. 2 shows an embodiment of the reflective concentrating solar power generation module of the present invention. The reflecting mirror M is a circular arc with a cross section of a central angle (both sides) of 40 ° with a radius of 1.46 m. At this time, the width (string) of the reflecting mirror M is 1.0 m. A solar cell having a width of 0.056 m is placed facing a reflecting mirror at a position (E) 0.66 m from O on a line connecting the center O of the reflecting mirror and the center R of the circle. When sunlight enters the reflecting mirror from a direction parallel to O to R, the reflected light is condensed approximately 17 times at the position of the solar cell, and power is generated. As can be seen from FIG. 2, by selecting the position of the solar cell E in the vicinity of the point P having a radius of 1/2, it is possible to freely design a solar cell having an intended concentration ratio.

集光型太陽電池のひとつの問題は、集光倍率が高くなるほど太陽熱も濃縮され、太陽電池が高温になって発電効率が落ちることである。そのため、さまざまな除熱の工夫がされているが、いたずらに集光倍率を上げずに10倍程度に抑え、除熱の問題をクリアするデザインのものを提供することも一つの選択である。その意味で、このような低倍率の集光型発電装置も十分意味がある。尚、本発明に、すでに知られている除熱技術を必要に応じ適用しうることは言うまでもない。One problem with concentrating solar cells is that the higher the concentration factor, the more concentrated the solar heat, and the higher the solar cell temperature, the lower the power generation efficiency. For this reason, various heat removal devices have been devised, but it is also an option to provide a design that eliminates the problem of heat removal by suppressing the light collection magnification to about 10 times without unnecessarily increasing the concentration factor. In that sense, such a low-magnification concentrating power generator is also sufficiently meaningful. In addition, it cannot be overemphasized that the heat removal technique already known can be applied to this invention as needed.

太陽の日周運動への追尾は、本発明の集光型太陽光発電装置を地軸と平行に設置し、地軸と平行な回転軸を中心に東から西へ回転させれば達成できる。図2でこのことを説明すると、反射鏡の中心軸Oを地軸と平行に設置し、この軸を中心に、太陽電池Eを含む装置全体を東から西へ回転させる。回転の中心はOに限らず、装置全体の重心を考えて選択することができる。朝6時には反射鏡の中心は東の水平方向を向く。春分、秋分の日の出の時間である。正午にはいうまでもなく真上(真南)を向き、夕方6時には真西を向く。ここで、時間は日本の標準時間といったものではなく、その土地で太陽が南中したときを正午とする、その土地の絶対時間である。北半球では夏の朝6時には太陽はすでに昇っているが、6時の反射鏡の向きは季節を問わず同じでよい。6時より前の太陽光も利用したい場合は、反射鏡をやや下向きの角度から追尾を始め、日没時には6時過ぎまで追尾してもよい。日没まで追尾したのち、反射鏡は夜の間に翌日のスタート位置まで戻される。Tracking to the diurnal movement of the sun can be achieved by installing the concentrating solar power generation device of the present invention parallel to the earth axis and rotating it from east to west around a rotation axis parallel to the earth axis. This will be explained with reference to FIG. 2. The central axis O of the reflecting mirror is set parallel to the ground axis, and the entire device including the solar cell E is rotated from east to west around this axis. The center of rotation is not limited to O, and can be selected considering the center of gravity of the entire apparatus. At 6 o'clock in the morning, the center of the reflector faces the eastern horizontal direction. It is the sunrise time for spring and autumn. Needless to say, it heads directly above (south south) at noon and heads west at 6:00 in the evening. Here, time is not the standard time of Japan, but the absolute time of the land, when the sun goes south in the land and noon. In the northern hemisphere, the sun has already risen at 6 am in the summer, but the orientation of the reflector at 6 am can be the same regardless of the season. If you want to use sunlight before 6 o'clock, you may start tracking the reflector from a slightly downward angle and at sunset until 6 o'clock. After tracking until sunset, the reflector is returned to the starting position the next day during the night.

次に、図3により、季節による太陽高度の変化に対応する考え方を説明する。Mは樋型反射鏡の中心線、Eは太陽電池の位置である。MとEは平行で、かつ地軸に対しても平行である。すなわち、水平面に対する角度αは地球上のその地点の緯度と等しい(南半球ではαはマイナスとなる)。春分、秋分には、太陽光は反射面に垂直に入射し、反射鏡で反射して太陽電池Eに照射される。それに対して、夏至には、太陽光はこの垂直な線より北へ23度26分傾いた角度βで入射し、南へ同じ角度傾いた方向へ反射する。冬至にはこれとまったく逆になる。ここで、βは太陽の周りを回る地球の公転面に対する地軸の傾きであり、北回帰線の緯度と同じである。Next, with reference to FIG. 3, a concept corresponding to a change in solar altitude due to the season will be described. M is the center line of the saddle type reflector, and E is the position of the solar cell. M and E are parallel and parallel to the ground axis. That is, the angle α with respect to the horizontal plane is equal to the latitude of that point on the earth (α is negative in the Southern Hemisphere). In spring equinox and autumn equinox, sunlight enters the reflecting surface perpendicularly, is reflected by the reflecting mirror, and is applied to the solar cell E. On the other hand, at the summer solstice, sunlight is incident at an angle β tilted 23 degrees 26 minutes north from this vertical line, and is reflected in the direction tilted south by the same angle. The winter solstice is exactly the opposite. Here, β is the inclination of the earth axis with respect to the revolution plane of the earth around the sun, and is the same as the latitude of the north regression line.

この装置を太陽高度の季節変化に追随して上下(南北)に角度を変えることは、装置が大きくなると非常に困難なことが予想される。しかも、1日の太陽の動きに同時に追随するには複雑な制御が必要になり、高コストにつながる。ここで重要なのは、反射鏡の長さL1(A〜B)と太陽電池の長さ(a〜b)が同じであると、夏至にはb〜sの部分、冬至にはa〜wの部分に反射光が当たらないことである。春分、秋分を除いてその他の季節は、程度の差はあるがこの部分で受光する光は他の部分より少なくなり、その結果この部分での発電量が低下することになる。このように、Eの両端部は季節により受光量が著しく変わるが、それを除いたw〜sの区間(L2)は、どの季節も均等に反射光を受光することができる。すなわち、反射面L1に対し、受光部(太陽電池E)をそれより短いL2、即ち、下記数式3で表される長さとすれば、季節による太陽高度の変化にかかわらず、年間を通じ遊休する太陽電池(光発電素子)がなく常に均一な発電が可能となる。

Figure 2011129847
言いかえると、太陽電池Eの長さL2を基準にすれば、下記数式4のように反射鏡の長さL1をそれより若干長くすれば良い。
Figure 2011129847
It is expected that it will be very difficult to change the angle of the device up and down (north-south) following the seasonal change in solar altitude as the device becomes larger. In addition, complicated control is required to follow the movement of the sun at the same time, leading to high costs. What is important here is that the length L1 (A-B) of the reflector and the length (ab) of the solar cell are the same, the portion of b to s in the summer solstice, and the portion of a to w in the winter solstice. It is that no reflected light hits. In other seasons except spring and autumn, the light received in this part is less than in other parts, but the amount of power generated in this part decreases. As described above, the amount of light received varies greatly depending on the seasons at both ends of E, but the section (L2) from w to s excluding that can receive the reflected light evenly in any season. That is, if the light receiving portion (solar cell E) is shorter than L2 with respect to the reflective surface L1, that is, the length expressed by the following mathematical formula 3, the sun that is idle throughout the year regardless of the change in solar altitude due to the season. There is no battery (photovoltaic element), and uniform power generation is always possible.
Figure 2011129847
In other words, if the length L2 of the solar cell E is used as a reference, the length L1 of the reflecting mirror may be slightly longer as shown in the following formula 4.
Figure 2011129847

本発明によれば、反射鏡で集光された太陽光を全て利用することは原理的に不可能である。しかしながら、そのロスをできるだけ小さく、利用効率をできるだけ大きく(1に近づける)することができる。ここで、利用効率εは太陽電池の長さと反射鏡の長さの比L2/L1で決まり、これを大きくするには、反射鏡の長さL1に対する太陽電池までの距離eの比をできるだけ小さくすれば良い。図3を幾何学的に解析すると、eがL1の1/10とすると、利用効率εはおよそ0.91となる。1/20なら0.96であり、実用上問題はない。According to the present invention, it is impossible in principle to use all the sunlight collected by the reflecting mirror. However, the loss can be made as small as possible and the utilization efficiency can be made as large as possible (close to 1). Here, the utilization efficiency ε is determined by the ratio L2 / L1 between the length of the solar cell and the length of the reflecting mirror. To increase this, the ratio of the distance e to the solar cell with respect to the length L1 of the reflecting mirror is made as small as possible. Just do it. When geometrically analyzing FIG. 3, if e is 1/10 of L1, the utilization efficiency ε is approximately 0.91. 1/20 is 0.96, and there is no practical problem.

本発明の反射集光型太陽光発電モジュールを複数個並列に並べることで、より大きな発電量を得ることが出来る。図4は、例として3ユニットを平行に並べた断面である(ここで、モジュール1単位をユニットと呼ぶ)。全体で幅2mの範囲の太陽光を集光する場合を考えてみる。図2の事例で、反射鏡の幅を2mとすると、反射鏡Mの中心から太陽電池Eまでの距離eは1.32mである。これに対し、3ユニットを平行に並べた場合は、1ユニットの全幅は0.67m、太陽電池Eまでの距離eは1/3でおよそ0.44mとなる。もし、ユニット(反射鏡)の長さL1がどちらも同じ、例えば5mとすると、前に説明したとおり、e/L1が小さい方が反射光の利用効率ε(L2/L1)をより1に近づけることができるので、3ユニット並べた方が季節による太陽高度変化に対する装置の効率が高くできる。いくつのユニットを並べるかは、装置の複雑さと、得られる効率向上との比較で決められる。複数ユニットを平行に並べた場合の太陽の日周運動への追尾は、単独モジュールの場合と同様に、複数ユニット全体を地軸と平行な軸の回りに回転させることで、達成できる。By arranging a plurality of the reflective concentrating solar power generation modules of the present invention in parallel, a larger amount of power generation can be obtained. FIG. 4 is a cross section in which three units are arranged in parallel as an example (here, one module unit is called a unit). Consider the case of collecting sunlight with a total width of 2 m. In the example of FIG. 2, when the width of the reflecting mirror is 2 m, the distance e from the center of the reflecting mirror M to the solar cell E is 1.32 m. On the other hand, when three units are arranged in parallel, the total width of one unit is 0.67 m, and the distance e to the solar cell E is 1/3, which is approximately 0.44 m. If the lengths L1 of the units (reflecting mirrors) are the same, for example, 5 m, the reflected light utilization efficiency ε (L2 / L1) is closer to 1 when e / L1 is smaller as described above. Therefore, it is possible to increase the efficiency of the device with respect to changes in solar altitude due to the season by arranging three units. The number of units to be arranged is determined by comparing the complexity of the apparatus with the efficiency gain obtained. Tracking to the sun's diurnal motion when a plurality of units are arranged in parallel can be achieved by rotating the entire plurality of units around an axis parallel to the ground axis, as in the case of a single module.

発明の効果The invention's effect

本発明の反射集光型太陽光発電モジュールは、反射鏡が明確な焦点を持たないにもかかわらず、太陽電池の設置場所を反射鏡円弧の半径の1/2近傍とすることにより、十分な集光倍率を達成できることを特徴とする。これにより、従来の反射集光型太陽光発電システムに比べ、省スペース、低コストを実現する。更に、太陽電池の受光面の長さを反射鏡の長さより短くすることで、年間を通じ遊休する太陽電池(光発電素子)のない高コストパフォーマンスの太陽光発電装置を提供することを可能とするものである。The reflective concentrating solar power generation module according to the present invention is sufficient because the installation location of the solar cell is in the vicinity of ½ of the radius of the arc of the reflector, even though the reflector does not have a clear focus. It is characterized by being able to achieve a condensing magnification. Thereby, space saving and low cost are realized compared with the conventional reflective concentrating solar power generation system. Furthermore, by making the length of the light receiving surface of the solar cell shorter than the length of the reflecting mirror, it is possible to provide a solar power generation device with high cost performance without a solar cell (photovoltaic element) that is idle throughout the year. Is.

本発明の反射集光型太陽光発電モジュールを説明する概念図The conceptual diagram explaining the reflective condensing type photovoltaic power generation module of this invention 本発明の反射集光型太陽光発電モジュールの一実施態様を示す横断面図The cross-sectional view which shows one embodiment of the reflective condensing type photovoltaic power generation module of this invention 本発明の反射集光型太陽光発電モジュールの縦方向の断面図Sectional drawing of the vertical direction of the reflective condensing type photovoltaic power generation module of this invention 本発明の反射集光型太陽光発電モジュールを3ユニット連結した断面図Sectional drawing which connected 3 units | sets of the reflective condensing type photovoltaic power generation modules of this invention

E・・・太陽電池受光面、M・・・反射鏡、P・・・反射鏡の半径の1/2の位置、R・・・反射鏡円弧の中心、e・・・反射鏡から太陽電池の受光面までの距離、L1・・・反射鏡の長手方向の長さ、d1・・・反射鏡の横幅、L2・・・太陽電池の長手方向の長さ、d2・・・太陽電池の横幅E: Solar cell light receiving surface, M: Reflector, P: Position of half of radius of reflector, R: Center of reflector arc, e ... Reflector to solar cell To the light receiving surface, L1... Length in the longitudinal direction of the reflecting mirror, d1... Width of the reflecting mirror, L2... Length in the longitudinal direction of the solar cell, d2.

Claims (6)

断面が円孤である樋型反射鏡と、当該反射鏡と平行に細長い太陽電池を配設してなる反射集光型太陽光発電モジュールであって、太陽電池を反射鏡円弧の半径の1/2近傍に設置することを特徴とする反射集光型太陽光発電モジュール。A reflective concentrating solar power generation module comprising a saddle-shaped reflecting mirror having a circular cross section and an elongated solar cell parallel to the reflecting mirror, wherein the solar cell is 1 / of the radius of the arc of the reflecting mirror 2. A reflection concentrating solar power generation module, which is installed in the vicinity of 2. 太陽電池の受光面が、反射鏡円弧の中心から下記数式1で表される距離(e)である請求項1に記載の反射集光型太陽発電モジュール。
Figure 2011129847
The reflective concentrating solar power generation module according to claim 1, wherein the light receiving surface of the solar cell is a distance (e) represented by the following formula 1 from the center of the arc of the reflecting mirror.
Figure 2011129847
断面の円孤の長さ(l)が下記数式2で表される樋型反射鏡である請求項1又は2に記載の反射集光型太陽発電モジュール。
Figure 2011129847
The reflective concentrating solar power generation module according to claim 1 or 2, wherein the length (l) of the circular arc of the cross section is a vertical reflector represented by the following formula 2.
Figure 2011129847
太陽電池の受光面の幅(d2)が、反射鏡の幅(d1)の1/5以下のサイズである請求項1から3いずれかに記載の反射集光型太陽光発電モジュール。The reflective concentrating solar power generation module according to any one of claims 1 to 3, wherein the width (d2) of the light receiving surface of the solar cell is 1/5 or less of the width (d1) of the reflecting mirror. 太陽電池の受光面の長さ(L2)が、下記数式3で表されるサイズである請求項1から4いずれかに記載の反射集光型太陽光発電モジュール。
Figure 2011129847
The reflective concentrating solar power generation module according to any one of claims 1 to 4, wherein the length (L2) of the light receiving surface of the solar cell is a size represented by the following mathematical formula 3.
Figure 2011129847
装置全体を地軸と平行に設置し、地軸と平行な回転軸を中心に回転させて一日の太陽の動きを追尾する追尾機構を有する請求項1から5いずれかに記載の反射集光型太陽光発電モジュール。The reflective concentrating sun according to any one of claims 1 to 5, further comprising a tracking mechanism that installs the entire apparatus parallel to the earth axis and rotates the sun around a rotation axis parallel to the earth axis to track the movement of the sun during the day. Photovoltaic module.
JP2009299443A 2009-12-18 2009-12-18 Reflecting concentrated solar power generating module Pending JP2011129847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299443A JP2011129847A (en) 2009-12-18 2009-12-18 Reflecting concentrated solar power generating module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299443A JP2011129847A (en) 2009-12-18 2009-12-18 Reflecting concentrated solar power generating module

Publications (1)

Publication Number Publication Date
JP2011129847A true JP2011129847A (en) 2011-06-30

Family

ID=44292091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299443A Pending JP2011129847A (en) 2009-12-18 2009-12-18 Reflecting concentrated solar power generating module

Country Status (1)

Country Link
JP (1) JP2011129847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149929A (en) * 2012-01-20 2013-08-01 Seikichi Funada Use of solar panel
CN107040195A (en) * 2017-05-12 2017-08-11 苏福来 A kind of sea high-efficiency photovoltaic platform and its power generation operation method and cleaning method
CN112737499A (en) * 2021-01-19 2021-04-30 肇庆学院 Solar power generation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126170U (en) * 1974-03-29 1975-10-16
JPH05272972A (en) * 1992-03-27 1993-10-22 Topcon Corp Laser surveying instrument
JPH07178581A (en) * 1993-12-21 1995-07-18 Toshiba Corp Laser beam machine
JP2004172256A (en) * 2002-11-19 2004-06-17 Daido Steel Co Ltd Solar power generating device of linear light condensing-type
JP2008130801A (en) * 2006-11-21 2008-06-05 Masataka Murahara Solar photovoltaic/thermal power generation system
JP2009520378A (en) * 2005-12-19 2009-05-21 コーニング インコーポレイテッド Method and apparatus for light collection
JP2009545186A (en) * 2006-07-28 2009-12-17 メガワット ソーラー エルエルシー Reflector assembly, system and method for collecting solar radiation for photovoltaic generation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126170U (en) * 1974-03-29 1975-10-16
JPH05272972A (en) * 1992-03-27 1993-10-22 Topcon Corp Laser surveying instrument
JPH07178581A (en) * 1993-12-21 1995-07-18 Toshiba Corp Laser beam machine
JP2004172256A (en) * 2002-11-19 2004-06-17 Daido Steel Co Ltd Solar power generating device of linear light condensing-type
JP2009520378A (en) * 2005-12-19 2009-05-21 コーニング インコーポレイテッド Method and apparatus for light collection
JP2009545186A (en) * 2006-07-28 2009-12-17 メガワット ソーラー エルエルシー Reflector assembly, system and method for collecting solar radiation for photovoltaic generation
JP2008130801A (en) * 2006-11-21 2008-06-05 Masataka Murahara Solar photovoltaic/thermal power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149929A (en) * 2012-01-20 2013-08-01 Seikichi Funada Use of solar panel
CN107040195A (en) * 2017-05-12 2017-08-11 苏福来 A kind of sea high-efficiency photovoltaic platform and its power generation operation method and cleaning method
CN112737499A (en) * 2021-01-19 2021-04-30 肇庆学院 Solar power generation device

Similar Documents

Publication Publication Date Title
Ju et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
US7858875B2 (en) Radiant energy conversion system
US20100218807A1 (en) 1-dimensional concentrated photovoltaic systems
US20090314280A1 (en) Apparatus and A Method for Solar Tracking and Concentration af Incident Solar Radiation for Power Generation
US8664514B2 (en) Multiplexing solar light chamber
US20100206302A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
JP2013539000A (en) Cross-line solar concentrator
US20110168232A1 (en) Method and System for Providing Tracking for Concentrated Solar Modules
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
RU2303205C1 (en) Solar power plant
CN101419333A (en) Combination concentration and power generation unit of concave reflecting mirror
JP2011129847A (en) Reflecting concentrated solar power generating module
CN101388625A (en) Solar concentration electricity generating apparatus
ES2750551T3 (en) Solar energy collector apparatus and design method
JP2004271063A (en) Solar power generation device
RU2206837C2 (en) Solar module with concentrator (alternatives)
CN204880790U (en) Exempt from to trail compound paraboloid condenser of solar energy
RU2406043C1 (en) Solar power installation with solar energy concentrator made from flat reflecting plates
ES2903170T3 (en) Optimized static radiation collector
CN201584928U (en) Slot-type photovoltaic concentrator device
RU2338129C1 (en) Solar house (versions)
TW201026998A (en) Static concentrator
Lamba et al. Designing of parabolic trough collector using plane mirrors
CN115603657B (en) Non-tracking low-magnification concentrating solar power generation device and design method
Saxena et al. Design and Performance of a Small Parabolic Trough System for Process Heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401