JP2011129845A - Electromagnetic wave shield using electroforming - Google Patents

Electromagnetic wave shield using electroforming Download PDF

Info

Publication number
JP2011129845A
JP2011129845A JP2009299407A JP2009299407A JP2011129845A JP 2011129845 A JP2011129845 A JP 2011129845A JP 2009299407 A JP2009299407 A JP 2009299407A JP 2009299407 A JP2009299407 A JP 2009299407A JP 2011129845 A JP2011129845 A JP 2011129845A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
shield
electroforming
metal
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009299407A
Other languages
Japanese (ja)
Inventor
Naohiko Kamisaka
直彦 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009299407A priority Critical patent/JP2011129845A/en
Publication of JP2011129845A publication Critical patent/JP2011129845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce and provide an electromagnetic wave shield that has precision of micron order of boring of a small hole inexpensively by electroforming. <P>SOLUTION: The electromagnetic wave shield 1 is made of metal, and alloy thereof can be freely selected as long as it can be manufactured by electroforming. A solid which is a cube, a column, a sphere, or a combination thereof can be selected as the whole shape. A hole 2 for heat dissipation may be round, square, rhombic, polygonal, etc. A size of the hole may be freely selected as long as an electromagnetic wave does not leak. One surface of the solid is open, and a generation source for an electromagnetic wave and an electronic component which is vulnerable to the electronic wave can be covered. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、電鋳法を用いた精密小型金属製電磁波シールドに関するものである。  The present invention relates to a precision small metal electromagnetic wave shield using an electroforming method.

電子機器の発達に伴い電磁波を発生する装置が多くなってきた。今後、電子情報の増加に伴い高周波変調される機器が益々増え、今より多くの電磁波の発生が予想される。電磁波はペースメーカーなどの単独の機械に影響を与えるばかりではなく、機器の一部で発生した電磁波が、同じ機器内の回路に影響を与える場合もあるので遮断する必要がある。  Along with the development of electronic devices, more devices generate electromagnetic waves. In the future, with the increase of electronic information, more and more devices are modulated with high frequency, and more electromagnetic waves are expected to be generated. Electromagnetic waves not only affect a single machine such as a pacemaker, but electromagnetic waves generated in a part of the device may affect circuits in the same device, so it is necessary to block them.

例えば電磁波を防ぐためにブリキやアルミのケースが、ブラウン管式テレビのチューナー部分に採用されシールドを行ってきた。サイズが大きいテレビであれば大きなプレス製シールドによる対応でも良かったが、全てが集積化されている昨今、例えば薄型テレビ、携帯電話や光通信機器内では部品同士の間隔がとても狭いので、ミリ単位や数百ミクロン単位の部分的な電磁波シールドが必要となってきた。  For example, tin and aluminum cases have been used for the tuners of CRT televisions to prevent electromagnetic waves. For large-sized TVs, a large press shield could be used, but now everything is integrated. For example, in flat-screen TVs, mobile phones, and optical communication devices, the distance between parts is very narrow. In addition, partial electromagnetic shielding of several hundred microns has become necessary.

既存のブリキによる電磁波シールド例えば図4はプレスによって作られているテレビのチューナー部分である。プレスの電磁波シールドは大きな定型物を大量に製作するには適しているが、プリント基板の一部や集積回路そして半導体素子等を電磁波からシールドする為に小さく、多品種の生産を行おうとすると困難である。しかも、ミクロン単位での製作となれば精密な金型が必要になり製作費用が高額となり、よって製品価格が高くなってしまう。また、プレスでは曲げたときの応力が残り、電子部品からの放熱などによる熱変形も懸念される。隙間なくシールドしてしまうと放熱効果を妨げるばかりか、熱を留めてしまうので、シールドには細かな穴を開けるのが好ましいが、微細な穴は今までのプレス技術はもとより、微細エッチング法でもミクロン単位の精度による放熱用の穴を大量に開けるのは困難である。そこで、本発明は電鋳法により、小さな穴あきのミクロン単位の精度を持つ金属製電磁波シールドを、安価に生産、提供することを課題とする。  For example, FIG. 4 shows a tuner portion of a television set produced by a press. The electromagnetic wave shield of the press is suitable for manufacturing a large amount of standard products, but it is small to shield a part of the printed circuit board, integrated circuit, and semiconductor element from the electromagnetic wave, and it is difficult to produce a variety of products. It is. In addition, if the production is performed in units of microns, a precise mold is required, and the production cost is high, thus increasing the product price. In addition, the press retains the stress when bent, and there is a concern about thermal deformation due to heat radiation from the electronic components. Shielding without gaps not only hinders the heat dissipation effect, but also keeps heat, so it is preferable to make fine holes in the shield, but fine holes can be made not only by conventional press technology but also by fine etching method It is difficult to make a large number of holes for heat dissipation with micron precision. Accordingly, an object of the present invention is to inexpensively produce and provide a metal electromagnetic wave shield having micron unit accuracy with a small hole by electroforming.

以上の課題を解決するために、第一の発明は、図5のように雄型のレジストに電鋳法で金属を成長させ、ミクロン単位の精度を持つ極小さな穴が開けられた電磁波シールドである。電鋳法は常温もしくは50度に満たない低温で成長するので熱変形もほとんど無い。熱膨張率に関しても金属成長の段階で成長スピードを変化させることにより、熱膨張率を接合する基板に合わす事ができる。放熱用の穴に関しては、穴がない場合はシールドで閉鎖された上に発熱体からの熱が金属面で反射し、シールドしない場合より高温になり半導体などを傷めてしまう。電子部品では電磁波防止と同じぐらい放熱が重要な課題であり、電磁波シールドも放熱性能を重要視し対策を考慮しなければならない。ところが電磁波シールドのサイズが小さくなればなるほど、放熱用の穴も小さくなり均一に隙間無く穴を開けることが困難になった。例えばエッチング法で穴をあける場合、通常は金属の厚さ以下にすることはできない。たとえばシールド材の厚さを200ミクロンとすれば、穴の直径も200ミクロンと大きなものになってしまい、シールドに多くの穴を開けることができない。電鋳法の場合は金属の厚さとは関係なく穴の径を小さくすることが可能である。電鋳法で小さな穴を開ける技術はインクジェットプリンターのノズルやネブライザーで実証されている。さらに電鋳法はシールドの形を立方体、或いは円柱形やそれらを集合させた立体にすることが簡単にできる上、電磁シールドの内側の寸法を正確に製作可能であり電磁波発生源や電磁波に弱い電子部品を必要最小限の範囲で放熱性良く被うことができる。  In order to solve the above-mentioned problems, the first invention is an electromagnetic wave shield in which a metal is grown on a male resist by electroforming as shown in FIG. is there. Since the electroforming method grows at room temperature or at a low temperature of less than 50 degrees, there is almost no thermal deformation. Regarding the coefficient of thermal expansion, the coefficient of thermal expansion can be matched to the substrate to be bonded by changing the growth speed at the stage of metal growth. Regarding the hole for heat dissipation, if there is no hole, it is closed by a shield and the heat from the heating element is reflected by the metal surface, resulting in a higher temperature than if it is not shielded and damaging the semiconductor. Heat dissipation is as important as the prevention of electromagnetic waves in electronic parts, and electromagnetic shields must also consider countermeasures with an emphasis on heat dissipation performance. However, the smaller the size of the electromagnetic wave shield, the smaller the holes for heat dissipation, making it difficult to make holes uniformly without gaps. For example, when a hole is made by an etching method, it is usually not possible to make it less than the thickness of the metal. For example, if the thickness of the shield material is 200 microns, the diameter of the hole becomes as large as 200 microns, and many holes cannot be formed in the shield. In the case of electroforming, the hole diameter can be reduced regardless of the thickness of the metal. The technique of drilling small holes by electroforming has been demonstrated with inkjet printer nozzles and nebulizers. Furthermore, the electroforming method can easily make the shape of the shield cubic or cylindrical, or a solid that combines them, and can accurately manufacture the inner dimensions of the electromagnetic shield, and is weak against electromagnetic sources and electromagnetic waves. Electronic parts can be covered with good heat dissipation within the minimum necessary range.

第二の発明は、電鋳法により製作した電磁シールドは基板や集積回路内に取り付けるとき図3で示すようにはんだ7を使用し、はんだ7による接着性が優れている金属をシールド材使用する事を特徴とする。その金属は、例えばボロンニッケルや銅、銅に金の表面処理などがあげられる。ニッケルのみの場合はニッケルの表面酸化により、はんだをはじいてしまう問題が発生した場合は、表面酸化防止にボロンを例えば1〜2%含有する合金が適している。銅は放熱特性が良いので発熱する部品のシールドに向き、金を表面処理すれば取り付け後の酸化も防止できる。プリント基板などの工程では、チップ抵抗やチップコンデンサーの取り付けにはんだ工程があるので銀エポキシなどの接着剤を使用するよりも簡単にすばやく接着でき、生産性良くコストダウンが可能になる。  In the second invention, when an electromagnetic shield manufactured by electroforming is attached to a substrate or an integrated circuit, solder 7 is used as shown in FIG. 3, and a metal having excellent adhesion by solder 7 is used as a shielding material. It is characterized by things. Examples of the metal include boron nickel, copper, and copper surface treatment with gold. In the case of nickel alone, when a problem of repelling solder occurs due to nickel surface oxidation, an alloy containing, for example, 1 to 2% of boron is suitable for preventing surface oxidation. Since copper has good heat dissipation characteristics, it can be used as a shield for parts that generate heat, and if gold is surface-treated, oxidation after installation can be prevented. In processes such as printed circuit boards, there is a soldering process for mounting chip resistors and chip capacitors, making it easier and faster to bond than using adhesives such as silver epoxy, and cost reduction is possible with high productivity.

第三の発明は電磁波シールドを半導体の組立装置で良く使用されるバキュームチャックで移動可能にするために、電磁波シールド上面の一部にエアチャック用に穴を開けないエリア3を設ける。図1、2、3でエリアを示している。  In the third invention, in order to make the electromagnetic wave shield movable by a vacuum chuck often used in a semiconductor assembling apparatus, an area 3 in which a hole is not formed for an air chuck is provided on a part of the upper surface of the electromagnetic wave shield. The areas are shown in FIGS.

第一発明、第二発明そして第三発明によれば、プリント基板やフレキシブル基板上のごく一部の部品だけを電磁波からシールドすることや、光通信で使用される受光素子の受光部だけを開口して覆うシールド、LSI、CPUなど集積回路の一部分だけをシ−ルドするなど微小なシールドが、ミクロン単位の精度でも正確かつ安価に設置が可能となる。また、はんだ付けによる取り付けはアースと接続することになり、回路的にも好ましい。  According to the first invention, the second invention, and the third invention, only a small part on the printed circuit board or flexible substrate is shielded from electromagnetic waves, or only the light receiving part of the light receiving element used in optical communication is opened. Thus, it is possible to install a minute shield such as a shield covering, a part of an integrated circuit such as an LSI, a CPU, etc., accurately and inexpensively even with an accuracy of a micron. Further, the attachment by soldering is connected to the ground, which is preferable in terms of circuit.

この発明の一実施形態を示すLSIを覆う形状の長辺6mmくらいの電磁波シ−ルド斜視図である。1 is a perspective view of an electromagnetic wave shield having a long side of about 6 mm and covering an LSI according to an embodiment of the present invention. この発明の一実施形態を示すLSIの樹脂モールド内部に設置した形状の長辺4mmくらいの電磁波シ−ルド斜視図である。FIG. 2 is a perspective view of an electromagnetic wave shield having a long side of about 4 mm in a shape installed inside an LSI resin mold showing an embodiment of the present invention. この発明の一実施形態を示す受光素子を覆う形状の長辺1mmくらいの電磁波シールド斜視図である。1 is a perspective view of an electromagnetic wave shield having a long side of about 1 mm and covering a light receiving element according to an embodiment of the present invention. 従来技術によるプレスのテレビチューナーを示す平面図であるIt is a top view which shows the television tuner of the press by a prior art. 雄型のレジストによる電鋳法の電磁波シールド断面を示す平面図である。It is a top view which shows the electromagnetic wave shield cross section of the electroforming method by a male resist.

この発明の一実施形態を図1〜3に、電鋳の説明を5図に示しながらこの発明を実施するための形態を説明するが、各部品の位置、大きさ等はこの発明の説明のための概略であり、材質および数値的な条件、そしてシールドする対象は単なる例にすぎず、この発明は以下の形態に限定されるわけではない。  An embodiment of the present invention will be described with reference to FIGS. 1 to 3 and an explanation of electroforming shown in FIG. 5. The position, size, etc. of each part are described in the description of the present invention. The material and numerical conditions, and the object to be shielded are merely examples, and the present invention is not limited to the following embodiments.

電鋳法により製作された図1の電磁波シールド1は金属製であり、その合金は電鋳法で製作できる範囲内であれば自由に選択できる。全体の形状は簡単な立方体や円柱、球体、それらを複雑に組み合わせた立体が選択できる。放熱用穴2の形状は丸や四角、菱形、多角形などが選択できる。穴の大きさは電磁波が漏れない範囲で選択が可能である。立体の1つの面は開放されており電磁波の発生源や電磁波に弱い電子部品を被うことができる。  The electromagnetic wave shield 1 of FIG. 1 manufactured by electroforming is made of metal, and its alloy can be freely selected as long as it is within a range that can be manufactured by electroforming. The entire shape can be selected from simple cubes, cylinders, spheres, and solid combinations of them. The shape of the heat radiating hole 2 can be selected from a circle, a square, a diamond, and a polygon. The size of the hole can be selected within a range where electromagnetic waves do not leak. One surface of the three-dimensional object is open and can cover an electromagnetic wave generation source and an electronic component that is weak against the electromagnetic wave.

図5は雄型のレジスト8と電鋳法の電磁波シールド1の関係を示す断面平面図である。雌型のレジストに金属を成長させることも可能であるが、その場合シールド外面の寸法精度は正確であるが逆に内側の寸法精度が正確ではなくなる。設置スペースが限られた中で最小の電磁波シールドが必要な場合、シールドする対象とシールド内面との距離における寸法精度が正確であれば、その距離を安心して小さくできるので最小の電磁波シールドを製作することができる。従ってシールド内面10の寸法精度が良い雄型のレジスト8が好ましい。尚、シールドする対象とは電磁波を発生する電気部品、電磁波の影響を受けやすい電気部品の双方であり、片方に限定するものではない。  FIG. 5 is a sectional plan view showing the relationship between the male resist 8 and the electroformed electromagnetic wave shield 1. Although it is possible to grow a metal on a female resist, in that case, the dimensional accuracy of the outer surface of the shield is accurate, but the inner dimensional accuracy is not accurate. When the minimum electromagnetic shielding is required in a limited installation space, if the dimensional accuracy at the distance between the object to be shielded and the shield inner surface is accurate, the distance can be reduced with confidence, so the smallest electromagnetic shielding is produced. be able to. Therefore, the male resist 8 having good dimensional accuracy of the shield inner surface 10 is preferable. The object to be shielded is both an electric component that generates an electromagnetic wave and an electric component that is easily affected by the electromagnetic wave, and is not limited to one.

図1はLSI5を覆う形状の長辺6mmくらいの電磁波シールド斜視図である。例えば図5の方法で製作された電磁波シールドの上部には放熱用の穴2が多数開けられている。穴2は電磁波を漏らさない大きさであれば、形状やサイズを規定しない。電磁波シールド1上部の一部に穴の開いていない部分3があるが、そこはバキュームチャック用の吸着ポイントである。穴があると吸気が行えずバキュームチャックができない事を防ぐために考案されている。電磁波シールドは基板にLSIを装着した後、バキュームチャック又はコレットチャックで装填し、はんだ付けされる。  FIG. 1 is a perspective view of an electromagnetic wave shield having a long side of about 6 mm in a shape covering the LSI 5. For example, a large number of holes 2 for heat dissipation are formed in the upper part of the electromagnetic wave shield manufactured by the method of FIG. As long as the hole 2 has a size that does not leak electromagnetic waves, the shape and size are not defined. There is a portion 3 having no hole in a part of the upper part of the electromagnetic wave shield 1, which is a suction point for a vacuum chuck. It has been devised to prevent the vacuum chuck from being able to inhale if there is a hole. The electromagnetic wave shield is mounted with an LSI on a substrate, then loaded with a vacuum chuck or a collet chuck, and soldered.

図2はLSI5の樹脂モールド内部に設置した形状の長辺4mmくらいの電磁波シ−ルド斜視図である。図1と形状や手法は似ているがその違いはLSI5の外側を覆うのではなくLSIの製造工程において樹脂モールドを行う前に内部に設置した形状である。電磁波シ−ルド設置後に樹脂モールドなされ、外見は通常のLSIのようになるが、電磁波シールド対策製品となっている。  FIG. 2 is a perspective view of an electromagnetic wave shield having a long side of about 4 mm in a shape installed inside the resin mold of the LSI 5. Although the shape and method are similar to those in FIG. 1, the difference is the shape that does not cover the outside of the LSI 5 but is set before resin molding in the LSI manufacturing process. Resin molding is performed after the installation of the electromagnetic shield, and it looks like an ordinary LSI, but it is an electromagnetic shielding product.

図3は受光素子6を覆う形状の長辺1mmくらいの電磁波シ−ルド斜視図である。とても小さな電磁波シールドであり、エッチング法では、その小さな穴2を開けることが困難である。そればかりか電磁波シールド内部をエッチングで侵食させ製作する場合、4隅の部分は角ではなくR状となる。その半径は金属の厚さの80%位なので、電磁波シールドの厚さを仮に100ミクロンと想定すれば80ミクロンのRとなってしまいその円上に部品は設置できず電磁波シールド全体が大きくなってしまう。電鋳法で製作した場合の4隅は直角であり、その精度は2ミクロン以下ですら可能となり部品との隙間を小さくして設置できる。また、受光用の開口部4も正確に製作できる。電磁波シールドは組み立てロボットでチップコンデンサーを扱うのと同じように移動しはんだ付け7がされ固定する。図3では受光素子へ外部からの電磁波をシールドする例であるが、発光素子を被い発光素子が発する電磁波を外部に放出しないシールドが、全く同様の形式で行うことが出来る。  FIG. 3 is a perspective view of an electromagnetic wave shield having a shape covering the light receiving element 6 and having a long side of about 1 mm. It is a very small electromagnetic shield, and it is difficult to make the small hole 2 by the etching method. In addition, when the inside of the electromagnetic wave shield is eroded by etching, the four corner portions are R-shaped instead of corners. Since the radius is about 80% of the thickness of the metal, if the thickness of the electromagnetic shield is assumed to be 100 microns, the radius will be 80 microns, and parts cannot be placed on the circle, and the entire electromagnetic shield becomes larger. End up. The four corners produced by electroforming are right-angled, and the accuracy can be even less than 2 microns, so that the gap between the parts can be reduced. Also, the light receiving opening 4 can be accurately manufactured. The electromagnetic wave shield moves in the same way as the chip capacitor is handled by the assembly robot, and is fixed by soldering 7. Although FIG. 3 shows an example of shielding an electromagnetic wave from the outside to the light receiving element, a shield that covers the light emitting element and does not emit the electromagnetic wave emitted by the light emitting element to the outside can be performed in exactly the same manner.

「実施形態の効果」
この実施形態によれば、ミリ或いはミクロン単位の微少な部品のシールドを選択的かつその形状に合わせて行うことができる。勿論従来からの大きな部品もシールドすることが可能である。シールドに穴を開けることにより、放熱効果、軽量化、省資源化を同時に行える。さらに、はんだによる取り付けが可能なので、特殊な工程無しにチップコンデンサーを設置するような手順で現在の製造工程をそのまま使用できる。
"Effect of the embodiment"
According to this embodiment, it is possible to selectively shield a minute part in the millimeter or micron unit according to its shape. Of course, conventional large parts can also be shielded. By making a hole in the shield, heat dissipation effect, light weight, and resource saving can be done at the same time. Furthermore, since it can be attached by soldering, the current manufacturing process can be used as it is in the procedure of installing a chip capacitor without any special process.

「他の実施形態」
図2の実施形態では、樹脂モールドの内部全体を覆っているが、全体ではなく回路の一部を覆うこともできる。図3のような微小な電磁波シールドはカンパッケージ内部などにも使用できる。
"Other embodiments"
In the embodiment of FIG. 2, the entire inside of the resin mold is covered, but a part of the circuit can be covered instead of the whole. The minute electromagnetic wave shield as shown in FIG. 3 can also be used inside the can package.

1 電磁波シールド 2 放熱用の穴
3 バキュームチャック用のエリア 4 開口部
5 LSI 6 受光素子
7 はんだ 8 雄型のレジスト
9 基板 10 シールド内面
DESCRIPTION OF SYMBOLS 1 Electromagnetic wave shield 2 Radiation hole 3 Vacuum chuck area 4 Opening part 5 LSI 6 Light receiving element 7 Solder 8 Male resist 9 Substrate 10 Shield inner surface

Claims (6)

細かな穴の開いた金属製立方体、或いは円柱形やそれらの集合体により電磁波発生源や電磁波に弱い電子部品を被うことを特徴とする電鋳法により製作された電磁波シールド  Electromagnetic wave shield manufactured by electroforming, characterized by covering a metal cube with a fine hole or a cylindrical shape or an assembly thereof with an electromagnetic wave generation source or an electronic component vulnerable to the electromagnetic wave. 細かな穴の開いた立体のシールドは、はんだ付けに適した、例えばボロンニッケルや銅などの金属により電鋳法で製作され、通常の半導体や電子部品の生産ラインで容易に基板やLSIにはんだで取り付け可能な金属製電磁波シールド  Three-dimensional shields with fine holes are suitable for soldering, for example, produced by electroforming with metals such as boron nickel and copper, and can be easily soldered to substrates and LSIs in the production lines for ordinary semiconductors and electronic components. Metal electromagnetic shield that can be attached with 電磁波の影響を受けやすい部分または発生源のみをピンポイントに選択してミクロン単位でシールドできる電鋳法を用いた小型金属製電磁波シールド  Small metal electromagnetic wave shield using an electroforming method that can be shielded in micron units by selecting only the part or source that is susceptible to electromagnetic waves as a pinpoint. LSIやCPU、そしてカンパッケージのダイオードなどの内部に電鋳法を用いた小型金属製電磁波シールドを取り付けて製品化した電磁波対策対応の電子部品  Electronic components for electromagnetic wave countermeasures that have been commercialized by attaching small metal electromagnetic shields using electroforming to LSIs, CPUs, and diodes in can packages. レジストに沿って金属が成長する電鋳法の特性を生かしてシールドの内面と細かな穴の寸法制度がミクロン単位で正確に制御できる電鋳法を用いた小型金属製電磁波シールド  Small metal electromagnetic wave shield using the electroforming method that can accurately control the size system of the inner surface of the shield and fine holes in micron units by taking advantage of the characteristics of the electroforming method in which metal grows along the resist 生産ラインで、エアチャックによりシールドを移動できるようにするため、上面の一部に穴加工を行わないエリアを設けた、電鋳法による金属製電磁波シールド  In order to be able to move the shield with an air chuck in the production line, a metal electromagnetic wave shield by electroforming with an area not drilled on a part of the upper surface
JP2009299407A 2009-12-16 2009-12-16 Electromagnetic wave shield using electroforming Pending JP2011129845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299407A JP2011129845A (en) 2009-12-16 2009-12-16 Electromagnetic wave shield using electroforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299407A JP2011129845A (en) 2009-12-16 2009-12-16 Electromagnetic wave shield using electroforming

Publications (1)

Publication Number Publication Date
JP2011129845A true JP2011129845A (en) 2011-06-30

Family

ID=44292089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299407A Pending JP2011129845A (en) 2009-12-16 2009-12-16 Electromagnetic wave shield using electroforming

Country Status (1)

Country Link
JP (1) JP2011129845A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253244A (en) * 2011-06-03 2012-12-20 Kyocera Chemical Corp Shield case assembly and method for producing electronic component
JP2013038162A (en) * 2011-08-05 2013-02-21 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
EP2590401A1 (en) * 2011-11-01 2013-05-08 Samsung Electronics Co., Ltd. Television tuner module and broadcast receiving apparatus having the same
JP2013098472A (en) * 2011-11-04 2013-05-20 Kyocera Chemical Corp Manufacturing method of shield case
WO2013140449A1 (en) * 2012-03-22 2013-09-26 京セラケミカル株式会社 Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component
WO2017131984A1 (en) * 2016-01-27 2017-08-03 Microsoft Technology Licensing, Llc Emi shield for an electronic optical device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253244A (en) * 2011-06-03 2012-12-20 Kyocera Chemical Corp Shield case assembly and method for producing electronic component
JP2013038162A (en) * 2011-08-05 2013-02-21 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
EP2590401A1 (en) * 2011-11-01 2013-05-08 Samsung Electronics Co., Ltd. Television tuner module and broadcast receiving apparatus having the same
KR20130048064A (en) * 2011-11-01 2013-05-09 삼성전자주식회사 Television tuner module and broadcast receiving apparatus having the same
US9819893B2 (en) 2011-11-01 2017-11-14 Samsung Electronics Co., Ltd. Television tuner module and broadcast receiving apparatus having the same
KR101867846B1 (en) * 2011-11-01 2018-06-19 삼성전자주식회사 Television tuner module and Broadcast receiving apparatus having the same
JP2013098472A (en) * 2011-11-04 2013-05-20 Kyocera Chemical Corp Manufacturing method of shield case
WO2013140449A1 (en) * 2012-03-22 2013-09-26 京セラケミカル株式会社 Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component
WO2017131984A1 (en) * 2016-01-27 2017-08-03 Microsoft Technology Licensing, Llc Emi shield for an electronic optical device

Similar Documents

Publication Publication Date Title
CN101467500B (en) Interconnect substrate and electronic circuit mounted structure
US8008753B1 (en) System and method to reduce shorting of radio frequency (RF) shielding
US8110896B2 (en) Substrate structure with capacitor component embedded therein and method for fabricating the same
EP1734800B1 (en) Technique for manufacturing an overmolded electronic assembly
CN101290914B (en) Semiconductor device and method for manufacturing the same
JP2011129845A (en) Electromagnetic wave shield using electroforming
JP6962371B2 (en) High frequency module
KR101501735B1 (en) EMI shielding method of the semiconductor package
CN110349919A (en) Electronic-component module and the method for manufacturing the electronic-component module
US10383265B2 (en) Electromagnetic-interference shielding device
US8822844B1 (en) Shielding and potting for electrical circuits
US11488880B2 (en) Enclosure for an electronic component
US7915715B2 (en) System and method to provide RF shielding for a MEMS microphone package
JP2009158838A (en) Electronic equipment
US20180090448A1 (en) Semiconductor package and method for preparing same
US11195800B2 (en) Electronic device module and method of manufacturing the same
US20180061725A1 (en) Air-cavity package with enhanced package integration level and thermal performance
US20210007224A1 (en) Contact pads for electronic substrates and related methods
JP2023083334A (en) Imaging element module, imaging system, imaging element package, and manufacturing method
US9805996B2 (en) Substrate structure and manufacturing method thereof
US11810863B2 (en) Sensor
US20140154463A1 (en) Substrate structure and manufacturing method thereof
US11335664B2 (en) Integrated circuit packaging method and integrated packaging circuit
US20220375821A1 (en) Board, electronic device, and manufacturing method
JP2011151274A (en) Circuit module and method of manufacturing the same