JP2011129746A - Piezoelectric film actuator and method of manufacturing the same - Google Patents

Piezoelectric film actuator and method of manufacturing the same Download PDF

Info

Publication number
JP2011129746A
JP2011129746A JP2009287452A JP2009287452A JP2011129746A JP 2011129746 A JP2011129746 A JP 2011129746A JP 2009287452 A JP2009287452 A JP 2009287452A JP 2009287452 A JP2009287452 A JP 2009287452A JP 2011129746 A JP2011129746 A JP 2011129746A
Authority
JP
Japan
Prior art keywords
piezoelectric film
piezoelectric
film
temperature
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009287452A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawakami
祥広 川上
Takatoshi Hashimoto
孝俊 橋本
Atsushi Sasaki
淳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009287452A priority Critical patent/JP2011129746A/en
Publication of JP2011129746A publication Critical patent/JP2011129746A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric film actuator using a piezoelectric film that does not contain lead and has high piezoelectric constant, which has high performance and is superior in temperature characteristic, and the method of manufacturing the same. <P>SOLUTION: A piezoelectric film actuator is formed of a piezoelectric film 2 formed on a substrate 1 and a lower electrode 3 and an upper electrode 4 for applying voltage to the piezoelectric film 2. The piezoelectric film actuator drives an object using displacement produced in the piezoelectric film 2 by applying voltage between the electrodes. The piezoelectric film 2 is composed of polycrystals of barium titanate (BaTiO<SB>3</SB>) whose particle size is 0.2-0.5 μm. The piezoelectric film 2 is formed by an aerosol deposition method, and then heat-treated at a temperature of 850 to 1,100°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基板上に形成された圧電膜に電圧を印加することにより生ずる変位を利用して物体の駆動を行う圧電膜型アクチュエータおよびその製造方法に関し、特に圧電アクチュエータに用いられる圧電膜の材料およびその製造方法に関する。   The present invention relates to a piezoelectric film type actuator for driving an object using displacement generated by applying a voltage to a piezoelectric film formed on a substrate, and a method for manufacturing the same, and in particular, a material for a piezoelectric film used for a piezoelectric actuator. And a manufacturing method thereof.

圧電デバイスは、エネルギー密度を高くできること、消費電力が少ないこと、電磁ノイズを低減できることなどのメリットがあることから、電子機器の小型化に伴い、カメラのオートフォーカス機構や薄型スピーカー、インクジェットプリンタ用ヘッドなどのアクチュエータやジャイロなどのセンサ素子に採用され、応用分野が拡大している。   Piezoelectric devices have advantages such as high energy density, low power consumption, and reduced electromagnetic noise. As electronic devices become smaller, camera autofocus mechanisms, thin speakers, and inkjet printer heads It is used for sensor elements such as actuators and gyros, and its application fields are expanding.

これらの圧電デバイスではさらに小型化、薄型化が要求され、近年では圧電膜を基板上に形成し、その圧電膜に電圧を印加することにより生ずる変位を利用して物体の駆動を行う圧電膜型アクチュエータなどの圧電膜型デバイスの開発が活発に行われている。圧電膜の材料としては、通常、圧電性能の優れた鉛系の圧電材料、例えばジルコン酸チタン酸鉛(PZT)などが使用されるのが一般的である。   These piezoelectric devices are required to be further reduced in size and thickness. In recent years, a piezoelectric film type in which a piezoelectric film is formed on a substrate and an object is driven using a displacement generated by applying a voltage to the piezoelectric film. Development of piezoelectric film type devices such as actuators has been actively conducted. As a material for the piezoelectric film, a lead-based piezoelectric material having excellent piezoelectric performance, for example, lead zirconate titanate (PZT) is generally used.

一方、近年、EU(欧州連合)では環境・安全への配慮から電子機器に鉛などの特定有害物質を使用することを規制するRoHS指令などが施行され始めている。圧電材料に関してはまだ代替材料が無いことから規制の対象外になっているが、非鉛圧電材料の開発が活発に行われるようになっている。   On the other hand, in recent years, the EU (European Union) has begun to enforce the RoHS Directive that regulates the use of specific harmful substances such as lead in electronic devices in consideration of the environment and safety. Piezoelectric materials are not subject to regulation because there are no alternative materials yet, but lead-free piezoelectric materials are being actively developed.

一般的に、非鉛材料は圧電特性が鉛系材料に比べ低いことに加え、その材料の相転移温度がデバイスの使用温度範囲内に存在する場合、温度特性が問題となる。非鉛材料の一つであるチタン酸バリウム(BaTiO)はバルクの結晶では圧電定数が大きいが、圧電定数を大きく保ったまま高品質の膜を作製するのが難しいことや、相転移温度が低いため従来の結晶膜をデバイスに応用しても安定な温度特性が得られないことが問題となる。 In general, non-lead materials have lower piezoelectric characteristics than lead-based materials, and if the phase transition temperature of the material is within the operating temperature range of the device, temperature characteristics become a problem. Barium titanate (BaTiO 3 ), one of the lead-free materials, has a large piezoelectric constant in bulk crystals, but it is difficult to produce a high-quality film while keeping the piezoelectric constant large, and the phase transition temperature is Since it is low, there is a problem that a stable temperature characteristic cannot be obtained even if a conventional crystal film is applied to a device.

従来技術として、非鉛圧電材料として、チタン酸バリウムを主成分とし、その一部を添加物で置換することにより電界誘起歪特性を向上させた材料を焼結し、電界誘起歪素子として使用することが特許文献1に記載されている。また、セラミックスなどの微粒子をガス中に浮遊させてエアロゾル化して基板に衝突させ、そのときの熱エネルギーを利用して微粒子間や微粒子と基材間を焼結するガスデポジション法によるチタン酸バリウムなどの誘電体膜の製造方法が特許文献2に記載されている。さらに、特許文献3では、セラミックス膜などの作製方法として、セラミックスなどの微粒子を含むエアロゾルを基板に高速で衝突させ、そのとき生ずる結晶面のずれや結晶粒の微細化およびメカノケミカル反応による粒子間結合を利用したエアロゾルデポジション法(AD法)が示され、非特許文献1ではこのAD法によるチタン酸バリウム膜を用いたコンタクトプローブが示されている。一方、非特許文献2では、バルクのチタン酸バリウムを焼結して作製する際、圧電アクチュエータの性能を決定する圧電定数と結晶粒径の関係について示されている。   As a conventional technology, a lead-free piezoelectric material that has barium titanate as the main component and a part of which is replaced with an additive has been sintered to be used as a field-induced strain element. This is described in Patent Document 1. Also, barium titanate by a gas deposition method in which fine particles such as ceramics are suspended in a gas, aerosolized and collided with a substrate, and the heat energy at that time is used to sinter between the fine particles or between the fine particles and the substrate. Patent Document 2 describes a method for manufacturing a dielectric film. Furthermore, in Patent Document 3, as a method for producing a ceramic film or the like, an aerosol containing fine particles such as ceramics is collided with a substrate at high speed, and the resulting crystal plane shift, crystal grain refinement, and interparticle spacing due to mechanochemical reaction. An aerosol deposition method (AD method) using bonding is shown. In Non-Patent Document 1, a contact probe using a barium titanate film by this AD method is shown. On the other hand, Non-Patent Document 2 shows the relationship between the piezoelectric constant and the crystal grain size that determine the performance of a piezoelectric actuator when bulk barium titanate is sintered.

特開2001−172077号公報JP 2001-172077 A 特開平4−188503号公報Japanese Patent Laid-Open No. 4-188503 特許第3348154号公報Japanese Patent No. 3348154

「エアロゾルデポジション法の基礎から応用まで」2007年、CMC出版、P.199−208“From the basics to the application of the aerosol deposition method” 2007, CMC Publishing, p. 199-208 「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Japanese Journal of Applied Physics)」2007年、46巻、10B号、P.7044−7047“Japanese Journal of Applied Physics” 2007, 46, 10B, p. 7044-7047

しかしながら、上記特許文献1では印刷法で圧電膜を形成するため、緻密化させるために1300℃以上の高温で焼成する必要があり、基板がセラミックに限定されるなどの課題がある。また、BaTiOを主成分とし高温で焼成させているため粒径が大きいことにより室温付近に相転移温度があり、そこで誘電率のピークを持つため圧電特性が室温以上で低下してしまうという課題がある。 However, in the above-mentioned Patent Document 1, since the piezoelectric film is formed by the printing method, it is necessary to fire at a high temperature of 1300 ° C. or higher for densification, and there is a problem that the substrate is limited to ceramic. In addition, since BaTiO 3 is the main component and fired at a high temperature, the particle size is large, so there is a phase transition temperature near room temperature. There is.

特許文献2の方法では特許文献1の方法に比べて焼成温度は低くできるがやはり高温で作製するため基板の制約があることが問題である。また、特許文献2に示されたチタン酸バリウムの製造方法はその高誘電率を利用したコンデンサの製造方法であり、圧電定数が大きく、かつ安定な温度特性が要求されるアクチュエータに使用できるチタン酸バリウム膜の製造については記載されていない。   In the method of Patent Document 2, the firing temperature can be lowered as compared with the method of Patent Document 1, but there is a problem that the substrate is restricted because it is manufactured at a high temperature. In addition, the method for producing barium titanate disclosed in Patent Document 2 is a method for producing a capacitor utilizing the high dielectric constant, and titanic acid that can be used for an actuator that has a large piezoelectric constant and requires stable temperature characteristics. There is no description of the production of barium films.

一方、特許文献3に示されたAD法は室温で成膜できることから様々な膜の作製方法として有効であり、非特許文献1では、コンタクトプローブにコンデンサの機能を持たせるため、その外表面にAD法を用いてチタン酸バリウムの膜を作製する方法が記載されている。しかし、このチタン酸バリウム膜はコンデンサを得るための高い誘電率を有する膜を得ることが目的であり、圧電定数やその温度特性については不明である。大きな圧電定数を得るためには、誘電率以外に弾性定数、結合係数などの要素が重要であり、さらに実用上は温度特性が重要となる。   On the other hand, since the AD method shown in Patent Document 3 can be formed at room temperature, it is effective as a method for producing various films. In Non-Patent Document 1, since the contact probe has a function of a capacitor, A method for producing a barium titanate film using the AD method is described. However, the purpose of this barium titanate film is to obtain a film having a high dielectric constant for obtaining a capacitor, and the piezoelectric constant and its temperature characteristics are unknown. In order to obtain a large piezoelectric constant, elements such as an elastic constant and a coupling coefficient are important in addition to the dielectric constant, and temperature characteristics are important in practical use.

非特許文献2では焼結で作成したチタン酸バリウムの圧電定数と結晶粒径の関係について示されており、結晶粒径が2.5μmのとき高い圧電定数が得られることが示されている。しかし、後の本発明の説明で述べるように、上記の粒径の値はAD法により作製されるチタン酸バリウム膜を用いた圧電膜型アクチュエータに最適な結晶粒径とは異なっている。   Non-Patent Document 2 shows the relationship between the piezoelectric constant and the crystal grain size of barium titanate prepared by sintering, and shows that a high piezoelectric constant can be obtained when the crystal grain size is 2.5 μm. However, as will be described later in the description of the present invention, the above grain size value is different from the optimum crystal grain size for a piezoelectric film type actuator using a barium titanate film produced by the AD method.

以上のように、従来の技術では非鉛圧電材料を用い、高い圧電定数を有する圧電膜を使用した高性能の圧電膜型アクチュエータは得られていない。また、圧電膜型アクチュエータの実用化に不可欠な温度特性の安定化の手段もまったく得られていない。   As described above, in the prior art, a high-performance piezoelectric film type actuator using a lead-free piezoelectric material and using a piezoelectric film having a high piezoelectric constant has not been obtained. In addition, no means for stabilizing temperature characteristics, which is indispensable for the practical application of piezoelectric film type actuators, has been obtained.

そこで、本発明の課題は、鉛を含まない高い圧電定数を有する圧電膜を使用した高性能、かつ、温度特性に優れた圧電膜型アクチュエータおよびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a piezoelectric film type actuator using a piezoelectric film having a high piezoelectric constant not containing lead and having excellent temperature characteristics and a method for manufacturing the same.

本発明は上記の課題を解決させるためになされたものであり、本発明の圧電膜型アクチュエータは、基板上に形成された圧電膜と該圧電膜に電圧を印加するための電極とからなり、該電極に電圧を印加することにより前記圧電膜に生ずる変位を利用して物体の駆動を行う圧電膜型アクチュエータであって、前記圧電膜は粒径が0.2〜0.5μmのチタン酸バリウム(BaTiO)の多結晶から構成されていることを特徴とする。 The present invention has been made to solve the above problems, and the piezoelectric film type actuator of the present invention comprises a piezoelectric film formed on a substrate and an electrode for applying a voltage to the piezoelectric film, A piezoelectric film type actuator for driving an object using displacement generated in the piezoelectric film by applying a voltage to the electrode, wherein the piezoelectric film has a particle diameter of 0.2 to 0.5 μm. characterized in that it consists polycrystalline (BaTiO 3).

また、本発明の圧電膜型アクチュエータの製造方法においては、前記圧電膜はAD法により形成され、その後、850〜1100℃の温度で熱処理されることを特徴とする。   In the method for manufacturing a piezoelectric film type actuator according to the present invention, the piezoelectric film is formed by an AD method, and then heat treated at a temperature of 850 to 1100 ° C.

本発明は、発明者らがAD法によるチタン酸バリウム膜の作製条件を検討し、圧電特性および温度特性に優れた膜の構造および製造条件を見出したことに基づくものである。   The present invention is based on the fact that the inventors have studied the conditions for producing a barium titanate film by the AD method, and found the structure and manufacturing conditions of the film excellent in piezoelectric characteristics and temperature characteristics.

本発明によれば、AD法によりチタン酸バリウム膜を形成した後、熱処理により粒径を制御することで、圧電特性と温度特性に優れた非鉛圧電膜を得ることができる。これにより、鉛を含まない高い圧電定数を有する圧電膜を使用した高性能、かつ、温度特性に優れた圧電膜型アクチュエータおよびその製造方法が得られる。   According to the present invention, a lead-free piezoelectric film having excellent piezoelectric characteristics and temperature characteristics can be obtained by forming a barium titanate film by the AD method and then controlling the particle size by heat treatment. As a result, a piezoelectric film type actuator using a piezoelectric film having a high piezoelectric constant not containing lead and having excellent temperature characteristics and a manufacturing method thereof can be obtained.

本発明による圧電膜型アクチュエータの一実施の形態を示す断面図。1 is a cross-sectional view showing an embodiment of a piezoelectric film type actuator according to the present invention. 実施例のチタン酸バリウムの多結晶からなる圧電膜の表面の観察結果の一例を示す写真。The photograph which shows an example of the observation result of the surface of the piezoelectric film which consists of a polycrystal of the barium titanate of an Example. 実施例の圧電膜の変位特性を測定した結果の一例を示す図。The figure which shows an example of the result of having measured the displacement characteristic of the piezoelectric film of an Example. 実施例の圧電膜の比誘電率の温度特性の測定結果の一例を従来のバルク結晶の焼結により得られた圧電膜と比較して示す図。The figure which shows an example of the measurement result of the temperature characteristic of the dielectric constant of the piezoelectric film of an Example compared with the piezoelectric film obtained by sintering of the conventional bulk crystal.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明による圧電膜型アクチュエータの一実施の形態を示す断面図である。図1において、本実施の形態の圧電膜型アクチュエータは、基板1上に形成された圧電膜2とこの圧電膜2に電圧を印加するための下部電極3および上部電極4とからなり、この両電極間に電圧を印加することにより圧電膜2に生ずる変位を利用して物体の駆動を行う圧電膜型アクチュエータであって、圧電膜2は粒径が0.2〜0.5μmのチタン酸バリウム(BaTiO)の多結晶から構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a piezoelectric film type actuator according to the present invention. In FIG. 1, a piezoelectric film type actuator according to the present embodiment includes a piezoelectric film 2 formed on a substrate 1 and a lower electrode 3 and an upper electrode 4 for applying a voltage to the piezoelectric film 2. A piezoelectric film type actuator for driving an object by utilizing a displacement generated in a piezoelectric film 2 by applying a voltage between electrodes, wherein the piezoelectric film 2 has a particle diameter of 0.2 to 0.5 μm. and a polycrystalline (BaTiO 3).

次に、図1に示す本発明の圧電膜型アクチュエータおよびその製造方法の具体的な一実施例について説明する。ここでは、基板1としてステンレス板を使用し、基板1の表面には、基板1の成分と下部電極3および圧電膜2の成分との間の相互拡散を防止するバリア層5として酸化アルミニウム(Al)膜が形成され、その上に下部電極3として白金(Pt)膜が形成されている。基板1の材料としては、成分の相互拡散が防止できれば、セラミックやシリコンなどでもよい。基板1の形状は、アクチュエータの用途に応じて、長さ数十μm〜30mm、幅数十μm〜10mm、厚さ10〜500μm程度、下部電極3および上部電極4の厚さは数十nm〜数μm程度の値とすることができる。 Next, a specific example of the piezoelectric film type actuator of the present invention and the manufacturing method thereof shown in FIG. 1 will be described. Here, a stainless steel plate is used as the substrate 1, and aluminum oxide (Al) is used as a barrier layer 5 on the surface of the substrate 1 to prevent mutual diffusion between the components of the substrate 1 and the components of the lower electrode 3 and the piezoelectric film 2. 2 O 3 ) film is formed, and a platinum (Pt) film is formed thereon as the lower electrode 3. The material of the substrate 1 may be ceramic or silicon as long as mutual diffusion of components can be prevented. The substrate 1 has a shape of several tens of μm to 30 mm, a width of several tens of μm to 10 mm, a thickness of about 10 to 500 μm, and the thicknesses of the lower electrode 3 and the upper electrode 4 are several tens of nm depending on the application of the actuator. The value can be about several μm.

圧電膜2は、材料として水熱合成法で形成された粒径0.1〜0.5μmのチタン酸バリウム粉末を使用し、AD法により作製した。上記粉末はAD法による成膜が可能であれば固相法で作製しても構わない。AD法による圧電膜2の形成は、キャリアガスとしてNガスを用い、室温で膜厚が約10μmになるように成膜を行った。膜厚は10μmに限定されるものではなく、電気的な耐電圧が確保できれば薄くても問題なく、また厚くてもクラックや、剥離などが生じなければ構わない。成膜した膜は大気中で850〜1100℃の温度で熱処理を行った。 The piezoelectric film 2 was produced by the AD method using a barium titanate powder having a particle size of 0.1 to 0.5 μm formed by a hydrothermal synthesis method as a material. The powder may be produced by a solid phase method as long as film formation by the AD method is possible. The piezoelectric film 2 was formed by the AD method using N 2 gas as a carrier gas so that the film thickness was about 10 μm at room temperature. The film thickness is not limited to 10 μm, and there is no problem even if it is thin as long as the electric withstand voltage can be secured, and it does not matter if cracks or peeling do not occur even if it is thick. The formed film was heat-treated at a temperature of 850 to 1100 ° C. in the atmosphere.

熱処理した圧電膜2の表面を走査型電子顕微鏡(SEM)で観察し、圧電膜2を構成するチタン酸バリウム結晶の粒径を測定した。その結果、圧電膜2は粒径0.2〜0.5μmの結晶からなる多結晶膜であることが確認された。図2は実施例のチタン酸バリウムの多結晶からなる圧電膜の表面の観察結果の一例を示す写真である。   The surface of the heat-treated piezoelectric film 2 was observed with a scanning electron microscope (SEM), and the particle size of the barium titanate crystal constituting the piezoelectric film 2 was measured. As a result, it was confirmed that the piezoelectric film 2 was a polycrystalline film made of crystals having a particle size of 0.2 to 0.5 μm. FIG. 2 is a photograph showing an example of the observation result of the surface of the piezoelectric film made of a barium titanate polycrystal of the example.

次に、圧電膜2の表面にメタルマスクを配置し、スパッタで金(Au)を蒸着し上部電極4を形成した。圧電膜2の圧電特性は図1に示した構造体、すなわち圧電ユニモルフを片持ち梁構造で保持し、印加電圧による圧電膜2中の電界強度が20kV/cmの時の本構造体の変位特性から圧電定数d31を求めた。図3は実施例の圧電膜の変位特性を測定した結果の一例を示す図である。これより良好な圧電特性が得られていることがわかる。 Next, a metal mask was placed on the surface of the piezoelectric film 2 and gold (Au) was deposited by sputtering to form the upper electrode 4. The piezoelectric characteristic of the piezoelectric film 2 is that of the structure shown in FIG. 1, that is, the piezoelectric unimorph is held in a cantilever structure and the electric field strength in the piezoelectric film 2 due to the applied voltage is 20 kV / cm. From this, the piezoelectric constant d 31 was determined. FIG. 3 is a diagram showing an example of the result of measuring the displacement characteristics of the piezoelectric film of the example. It can be seen that better piezoelectric characteristics are obtained.

また、圧電特性は誘電率の平方根に比例することから、本発明に用いる圧電膜の温度特性の評価を、その比誘電率を−20〜140℃の温度範囲で測定することにより行った。図4は比誘電率の温度特性の測定結果の一例を従来のバルク結晶の焼結により得られた圧電膜と比較して示す図である。これより、従来の圧電膜と比較して、広い温度範囲で安定な特性が得られていることがわかる。本発明においては粒径を小さくすることにより圧電特性をそれほど低下させないで相転移による比誘電率のピークを押さえることができることを示している。   Since the piezoelectric characteristics are proportional to the square root of the dielectric constant, the temperature characteristics of the piezoelectric film used in the present invention were evaluated by measuring the relative dielectric constant in the temperature range of -20 to 140 ° C. FIG. 4 is a diagram showing an example of the measurement result of the temperature characteristic of relative permittivity in comparison with a piezoelectric film obtained by sintering a conventional bulk crystal. Thus, it can be seen that stable characteristics are obtained in a wide temperature range as compared with the conventional piezoelectric film. In the present invention, it is shown that the peak of the relative dielectric constant due to the phase transition can be suppressed without reducing the piezoelectric characteristics so much by reducing the particle size.

本発明の有効性を確認するために、比較例として上記と同様な方法でAD法により圧電膜を作成後、それぞれ750℃、1200℃、1250℃で熱処理し、図1と同じ構造の比較例のサンプルを作製した。850℃、950℃、1000℃、1100℃の各温度で熱処理し作製した圧電膜による実施例のサンプルと上記の比較例について、結晶粒径、圧電定数、温度特性の評価結果をまとめて表1に示す。圧電定数d31は絶対値が50pm/V以上であるものが良品として使用でき、温度特性は−20〜80℃の温度範囲で顕著な変曲点を示さないものを良品(○)として判定した。 In order to confirm the effectiveness of the present invention, as a comparative example, a piezoelectric film was prepared by the AD method in the same manner as described above, and then heat treated at 750 ° C., 1200 ° C., and 1250 ° C., respectively, and a comparative example having the same structure as FIG. A sample of was prepared. Table 1 summarizes the evaluation results of the crystal grain size, piezoelectric constant, and temperature characteristics of the sample of the example using the piezoelectric film manufactured by heat treatment at each temperature of 850 ° C., 950 ° C., 1000 ° C., and 1100 ° C. and the above comparative example. Shown in A piezoelectric constant d 31 having an absolute value of 50 pm / V or more can be used as a non-defective product, and a temperature characteristic of a piezoelectric constant d 31 that does not show a remarkable inflection point in the temperature range of −20 to 80 ° C. .

Figure 2011129746
Figure 2011129746

表1より本発明の実施例は圧電定数と温度特性の両者とも良品の条件を満たしていることがわかる。さらに、デバイスとしては使用範囲で正の温度係数を持つことが望ましい。そこで、比誘電率の温度特性について実施例と従来例を比較した。図4は、実施例の圧電膜の比誘電率の温度特性の測定結果の一例を従来のバルク結晶の焼結により得られた圧電膜と比較して示す図である。図4の例に示されるように、実施例では−20℃から100℃付近までの広い範囲で正の温度係数が得られている。   From Table 1, it can be seen that both the piezoelectric constant and the temperature characteristics of the examples of the present invention satisfy the conditions for non-defective products. Furthermore, it is desirable for the device to have a positive temperature coefficient in the range of use. Therefore, the embodiment and the conventional example were compared with respect to the temperature characteristics of the relative dielectric constant. FIG. 4 is a diagram showing an example of the measurement result of the temperature characteristic of the relative dielectric constant of the piezoelectric film of the example in comparison with a piezoelectric film obtained by sintering a conventional bulk crystal. As shown in the example of FIG. 4, in the example, a positive temperature coefficient is obtained in a wide range from −20 ° C. to around 100 ° C.

以上のように、本発明では、チタン酸バリウムによる圧電膜の結晶粒径を0.2〜0.5μmに制御することで圧電特性に優れ、温度特性の良好な圧電膜型アクチュエータが実現できる。   As described above, in the present invention, a piezoelectric film type actuator having excellent piezoelectric characteristics and excellent temperature characteristics can be realized by controlling the crystal grain size of the piezoelectric film made of barium titanate to 0.2 to 0.5 μm.

本発明による圧電膜型アクチュエータは、インクジェットヘッド、医療用マイクロポンプ、超音波モータ、超音波トランスデューサ、光スキャナーなどのデバイスで利用できる。   The piezoelectric film type actuator according to the present invention can be used in devices such as inkjet heads, medical micropumps, ultrasonic motors, ultrasonic transducers, and optical scanners.

なお、本発明は上記の実施の形態や実施例に限定されるものではないことはいうまでもなく、目的や用途に応じて設計変更可能である。例えば、基板や電極の材料、AD法による圧電膜の材料となるチタン酸バリウム粉末の製法や粒子径なども変更可能であり、圧電膜型アクチュエータの構造は圧電膜と電極膜とを多層に積層しても構成してもよい。   It goes without saying that the present invention is not limited to the above-described embodiments and examples, and the design can be changed according to the purpose and application. For example, the production method and particle size of the barium titanate powder that is the material of the substrate and electrode, and the piezoelectric film by AD method can be changed. The structure of the piezoelectric film type actuator is a multilayer of piezoelectric film and electrode film. Or you may comprise.

1 基板
2 圧電膜
3 下部電極
4 上部電極
5 バリア層
1 Substrate 2 Piezoelectric film 3 Lower electrode 4 Upper electrode 5 Barrier layer

Claims (2)

基板上に形成された圧電膜と該圧電膜に電圧を印加するための電極とからなり、該電極に電圧を印加することにより前記圧電膜に生ずる変位を利用して物体の駆動を行う圧電膜型アクチュエータであって、前記圧電膜は粒径が0.2〜0.5μmのチタン酸バリウム(BaTiO)の多結晶から構成されていることを特徴とする圧電膜型アクチュエータ。 A piezoelectric film comprising a piezoelectric film formed on a substrate and an electrode for applying a voltage to the piezoelectric film, and for driving an object using a displacement generated in the piezoelectric film by applying a voltage to the electrode A piezoelectric film type actuator, wherein the piezoelectric film is made of a polycrystal of barium titanate (BaTiO 3 ) having a particle diameter of 0.2 to 0.5 μm. 前記圧電膜はエアロゾルデポジション法により形成され、その後、850〜1100℃の温度で熱処理されることを特徴とする請求項1記載に圧電膜型アクチュエータの製造方法。   2. The method of manufacturing a piezoelectric film type actuator according to claim 1, wherein the piezoelectric film is formed by an aerosol deposition method and then heat-treated at a temperature of 850 to 1100 [deg.] C.
JP2009287452A 2009-12-18 2009-12-18 Piezoelectric film actuator and method of manufacturing the same Pending JP2011129746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287452A JP2011129746A (en) 2009-12-18 2009-12-18 Piezoelectric film actuator and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287452A JP2011129746A (en) 2009-12-18 2009-12-18 Piezoelectric film actuator and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011129746A true JP2011129746A (en) 2011-06-30

Family

ID=44292015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287452A Pending JP2011129746A (en) 2009-12-18 2009-12-18 Piezoelectric film actuator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011129746A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124712A (en) * 2000-10-16 2002-04-26 Seiko Epson Corp Piezoelectric film and piezoelectric element having the film
JP2007015378A (en) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp Functional film-containing structure and manufacturing method of functional film
JP2008291291A (en) * 2007-05-22 2008-12-04 National Institute Of Advanced Industrial & Technology Brittle material film structure
JP2009209413A (en) * 2008-03-04 2009-09-17 Brother Ind Ltd Method for selecting optimum condition for execution of aerosol deposition method, and film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124712A (en) * 2000-10-16 2002-04-26 Seiko Epson Corp Piezoelectric film and piezoelectric element having the film
JP2007015378A (en) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp Functional film-containing structure and manufacturing method of functional film
JP2008291291A (en) * 2007-05-22 2008-12-04 National Institute Of Advanced Industrial & Technology Brittle material film structure
JP2009209413A (en) * 2008-03-04 2009-09-17 Brother Ind Ltd Method for selecting optimum condition for execution of aerosol deposition method, and film forming method

Similar Documents

Publication Publication Date Title
JP4948639B2 (en) Piezoelectric ceramics, manufacturing method thereof, piezoelectric element, liquid discharge head, and ultrasonic motor
JP5885931B2 (en) Bismuth iron oxide powder, method for producing the same, dielectric ceramics, piezoelectric element, liquid discharge head, and ultrasonic motor
JP5864168B2 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP5734688B2 (en) Method for producing oriented oxide ceramics, oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
KR101497857B1 (en) Piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
EP2655293B1 (en) Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
EP2677558B1 (en) Piezoelectric element
Kuscer et al. Inkjet-printing-derived lead-zirconate-titanate-based thick films for printed electronics
JP2006193351A (en) Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive element and method of producing piezoelectric/electrostrictive element
JP2008109072A (en) Monomorph-type piezoelectric/electrostrictive element and method for manufacturing the same
JP5937774B1 (en) Piezoelectric ceramic and manufacturing method thereof, and electronic component
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
JP2017179416A (en) Piezoelectric ceramic sputtering target, non-lead piezoelectric thin film and piezoelectric thin film element using the same
JP5129067B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
CN114080696A (en) Piezoelectric film and piezoelectric element
JP6075765B2 (en) Piezoelectric element
JP2005247619A (en) Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive substance, and piezoelectric/electrostrictive membrane type element
JP2015165552A (en) Piezoelectric composition and piezoelectric device
JP2008078267A (en) Piezoelectric ceramic, its manufacturing method, and piezoelectric/electrostrictive element
JP2011129746A (en) Piezoelectric film actuator and method of manufacturing the same
JP6146453B2 (en) Bismuth iron oxide powder, method for producing the same, dielectric ceramics, piezoelectric element, liquid discharge head, and ultrasonic motor
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP2017165618A (en) Piezoelectric ceramic composition and method for producing piezoelectric ceramic composition
JP2006049806A (en) Laminate piezoelectric ceramic structure and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140526

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140725