JP2011129675A - Electric storage device, and electric storage module - Google Patents

Electric storage device, and electric storage module Download PDF

Info

Publication number
JP2011129675A
JP2011129675A JP2009286165A JP2009286165A JP2011129675A JP 2011129675 A JP2011129675 A JP 2011129675A JP 2009286165 A JP2009286165 A JP 2009286165A JP 2009286165 A JP2009286165 A JP 2009286165A JP 2011129675 A JP2011129675 A JP 2011129675A
Authority
JP
Japan
Prior art keywords
power storage
container
negative electrode
storage device
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009286165A
Other languages
Japanese (ja)
Inventor
Shigemi Kobayashi
茂己 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2009286165A priority Critical patent/JP2011129675A/en
Publication of JP2011129675A publication Critical patent/JP2011129675A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce resistance of each electrode terminal and to efficiently join terminals together in an electric storage device and an electric storage module consisting of a plurality of electric storage devices. <P>SOLUTION: A necessary number of electric storage devices 10 are divided into a plurality of electric storage device groups 20, equal numbers of electric storage devices 10 of the respective groups are connected in series by joining electrode terminals 13, and the plurality of electric storage device groups 20 are connected in parallel. Each of the electric storage devices 10 has a container 12 for storing electric storage elements formed having a polygonal external shape including two planes which face each other in one direction, and also includes, as a pair of electrode terminals 13, a positive electrode terminal 13a having a positive electrode junction plane X substantially flush with one of the two planes of the container which face each other in the one direction and a negative electrode terminal 13b having a negative electrode junction plane Y substantially flush with the other of the two planes as well. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、蓄電デバイスおよび所要数の蓄電デバイスから構成される蓄電モジュールに関する。   The present invention relates to a power storage module including a power storage device and a required number of power storage devices.

充放電サイクル寿命の長い蓄電デバイスとして、電気二重層キャパシタやリチウムイオン電池などが注目される(特許文献1〜特許文献8)。   As electric storage devices having a long charge / discharge cycle life, electric double layer capacitors, lithium ion batteries, and the like are attracting attention (Patent Documents 1 to 8).

その一例を図19に基づいて説明すると、蓄電デバイス100は、電荷を蓄える蓄電要素111(図21、参照)と、蓄電要素111を収容する容器112と、を備える。   An example thereof will be described with reference to FIG. 19. The power storage device 100 includes a power storage element 111 (see FIG. 21) that stores electric charges, and a container 112 that houses the power storage element 111.

蓄電要素111は、正極体と負極体とこれらの間に介在するセパレータとから角形の積層体に構成される。正極体および負極体は、電荷を蓄える電極層と、電荷の出し入れを行う集電層とからなり、集電層の同極同士が結束され、その結束部に極性の対応する電極端子(正極端子,負極端子)が接合される。   The power storage element 111 is formed in a rectangular laminate from a positive electrode body, a negative electrode body, and a separator interposed therebetween. The positive electrode body and the negative electrode body are composed of an electrode layer for storing electric charges and a current collecting layer for taking in and out electric charges, and the same polarity of the current collecting layers are bound to each other. , Negative terminal) are joined.

電極端子113は、金属板から短尺状に形成され、容器112の内部に位置する一端部に集電層の同極同士の結束部が接合され、他端側が容器の外部へストレートに引き出される。容器112は、ラミネートフィルム(金属の中間層を含む積層構造の樹脂フィルム)から形成され、蓄電要素111を各端子113の一部(先端側)が容器の外部へ突き出る収容状態に密封する。   The electrode terminal 113 is formed in a short shape from a metal plate, a bundling portion of the same polarity of the current collecting layer is joined to one end portion located inside the container 112, and the other end side is drawn straight out to the outside of the container. The container 112 is formed of a laminate film (a resin film having a laminated structure including a metal intermediate layer), and seals the power storage element 111 in a housed state in which a part (tip side) of each terminal 113 protrudes to the outside of the container.

このような蓄電デバイス100においては、耐電圧が3V〜5V程度であり、電気自動車の駆動電源などに適用する場合、所要の蓄電容量および所要の満充電電圧を確保するため、複数の蓄電デバイス100を並列接続すると共にこれらを数多く直列接続して用いられる。   In such an electricity storage device 100, the withstand voltage is about 3V to 5V, and when applied to a drive power source of an electric vehicle or the like, a plurality of electricity storage devices 100 are provided in order to ensure a required storage capacity and a required full charge voltage. Are connected in parallel and many of them are connected in series.

図20〜図22は、所要数の蓄電デバイス100から構成される蓄電モジュールM-0を示すものであり、所要数の蓄電デバイス100は、複数の蓄電デバイス群120に分けられる。各群同数の蓄電デバイス100は、容器112の前後方向(前面101と後面104との相対方向)へ並べられ、隣り合う蓄電デバイス100が所定数ずつ電極端子113を介して並列接続され、これらの間がバスバー114を介して直列接続される。   20 to 22 show a power storage module M-0 including a required number of power storage devices 100. The required number of power storage devices 100 are divided into a plurality of power storage device groups 120. FIG. The same number of power storage devices 100 in each group are arranged in the front-rear direction of the container 112 (the relative direction of the front surface 101 and the rear surface 104), and a predetermined number of adjacent power storage devices 100 are connected in parallel via the electrode terminals 113. The space is connected in series via the bus bar 114.

複数の蓄電デバイス群120は、容器112の左右方向(右面103と左面との相対方向)へ並べられ、蓄電デバイス群間がバズバー115およびバスバー117を介して直列接続される。各群120の最前部に位置する負極端子同士の接合部および正極端子同士の接合部はそれぞれバスバー116を介して外部の充放電回路に直列接続される。図中の3次元矢印は、前後と上下と左右との3方向を規定するためのものである。   The plurality of power storage device groups 120 are arranged in the left-right direction of the container 112 (the relative direction between the right surface 103 and the left surface), and the power storage device groups are connected in series via the buzz bar 115 and the bus bar 117. The junction between the negative terminals and the junction between the positive terminals located at the forefront of each group 120 are respectively connected in series to an external charge / discharge circuit via the bus bar 116. The three-dimensional arrows in the figure are for defining three directions of front and rear, up and down, and left and right.

図22において、RAは蓄電デバイス100の正極端子113aの抵抗であり、負極端子113bの抵抗RBであり、RCはバスバー115,116の抵抗であり、RDはバスバー114の抵抗であり、REはバスバー117の抵抗である。 In FIG. 22, R A is the resistance of the positive terminal 113 a of the power storage device 100, the resistance R B of the negative terminal 113 b, R C is the resistance of the bus bars 115 and 116, and R D is the resistance of the bus bar 114. , RE is the resistance of the bus bar 117.

特開2003−272972号JP 2003-272972 A 特開2006−108380号JP 2006-108380 A 特開2003−272966号JP 2003-272966 A 特許第3869183号Japanese Patent No. 3869183 特開2006−338934号JP 2006-338934 A 特開2008−204985号JP 2008-204985 A 特開2002−353078号JP 2002-353078 A 特開2005−190885号JP-A-2005-190885

このような蓄電モジュールにおいては、電極端子113の同極同士が拝み合うように折り曲げられ、これらにバスバー114,115の一端が重ねられ、溶接を用いて接合される。これらの接合は、2枚の電極端子13にバスバー114,115を加える3枚重ねの溶接となる。溶接に伴う高熱から蓄電デバイスの蓄電要素を保護するため、電極端子の引き出される部分(容器から外部へ突き出る端子部分)の長さが大きく取られることもあり、直列経路の抵抗が助長され、充放電時の発熱損(電力ロス)も大きくなってしまう。   In such a power storage module, the electrode terminals 113 are bent so that the same poles of each other are in contact with each other, and one ends of the bus bars 114 and 115 are overlapped with each other and joined by welding. These joints are three-layer welding in which the bus bars 114 and 115 are added to the two electrode terminals 13. In order to protect the electricity storage element of the electricity storage device from the high heat associated with welding, the length of the part where the electrode terminal is pulled out (the terminal part protruding outside from the container) may be taken large, and the resistance of the series path is promoted. The heat loss (power loss) during discharge also increases.

この発明は、このような課題を対処するための有効な手段の提供を目的とする。   An object of this invention is to provide an effective means for coping with such a problem.

第1の発明は、所要数の蓄電デバイスから構成される蓄電モジュールにおいて、所要数の蓄電デバイスは、複数の蓄電デバイス群に分けられ、各群同数の蓄電デバイスが電極端子の接合によって直列接続され、複数の蓄電デバイス群が互いに並列接続され、各蓄電デバイスは、電荷を蓄える蓄電要素と、蓄電要素を収装する容器と、蓄電要素の正極側および負極側に接続される1対の電極端子と、を備え、前記容器の外形が一方向へ相対する2面を含む多角形に形成され、1対の電極端子として、前記容器の一方向へ相対する2面の一方と略面一の正極接合面を持つ正極端子と、同じく2面の他方と略面一の負極接合面を持つ負極端子と、を備える、ことを特徴とする。   According to a first aspect of the present invention, in a power storage module including a required number of power storage devices, the required number of power storage devices is divided into a plurality of power storage device groups, and the same number of power storage devices are connected in series by joining electrode terminals. A plurality of power storage device groups are connected in parallel to each other, each power storage device includes a power storage element for storing electric charge, a container for storing the power storage element, and a pair of electrode terminals connected to the positive electrode side and the negative electrode side of the power storage element And the outer shape of the container is formed in a polygon including two surfaces facing in one direction, and a positive electrode that is substantially flush with one of the two surfaces facing in one direction of the container as a pair of electrode terminals. And a positive electrode terminal having a bonding surface and a negative electrode terminal having a negative electrode bonding surface substantially flush with the other of the two surfaces.

第2の発明は、第1の発明に係る蓄電モジュールにおいて、前記各群同数の蓄電デバイスは、前記容器の一方向へ並べられ、前記1対の電極端子は、前記容器の一方向へ隣り合う蓄電デバイスの一方の正極端子または負極端子の接合面と、他方の負極端子または正極端子の接合面と、の異極同士が前記容器同士の一方向へ隣接する面を境として鏡面対称に配置され、前記一方向へ並ぶ蓄電デバイスは、前記鏡面対称となる異極同士の接合面の接合によって接続される、ことを特徴とする。   According to a second invention, in the power storage module according to the first invention, the same number of power storage devices in each group are arranged in one direction of the container, and the pair of electrode terminals are adjacent in one direction of the container. Different polarities of the bonding surface of one positive electrode terminal or negative electrode terminal of the electricity storage device and the bonding surface of the other negative electrode terminal or positive electrode terminal are arranged mirror-symmetrically with respect to the surface adjacent to the container in one direction. The power storage devices arranged in the one direction are connected by joining of joining surfaces of different polarities that are mirror-symmetrical.

第3の発明は、第1の発明または第2の発明に係る蓄電モジュールにおいて、前記充放電回路に対して並列接続される複数の蓄電デバイス群の、蓄電デバイス間の同一位置を互いに接続する導電部材を備える、ことを特徴とする。   According to a third aspect of the present invention, in the power storage module according to the first aspect or the second aspect, the plurality of power storage device groups connected in parallel to the charge / discharge circuit are connected to each other at the same position between the power storage devices. A member is provided.

第4の発明は、所要数の蓄電デバイスから構成される蓄電モジュールにおいて、所要数の蓄電デバイスは、複数の蓄電デバイス群に分けられ、各群同数の蓄電デバイスが電極端子の接合によって直列接続され、複数の蓄電デバイス群が互いに並列接続され、各蓄電デバイスは、電荷を蓄える蓄電要素と、蓄電要素を収装する容器と、蓄電要素の正極側および負極側に接続される1対の電極端子と、を備え、前記容器の外形が一方向へ相対する2面と、前記一方向へ相対する2面と略直交する方向へ相対する2面と、を含む多角形に形成され、1対の電極端子として、前記容器の一方向へ相対する2面の一方と略面一の第1正極接合面を持つ正極端子と、同じく2面の他方と略面一の第1負極接合面を持つ負極端子と、が備えられ、前記正極端子に前記一方向へ相対する2面と略直交する方向へ相対する2面の一方と略面一の第2正極接合面、負極端子に同じく2面と略直交する方向へ相対する2面の他方と略面一の第2負極接合面、がそれぞれ形成される、ことを特徴とする。   According to a fourth aspect of the present invention, in a power storage module including a required number of power storage devices, the required number of power storage devices is divided into a plurality of power storage device groups, and the same number of power storage devices are connected in series by joining electrode terminals. A plurality of power storage device groups are connected in parallel to each other, each power storage device includes a power storage element for storing electric charge, a container for storing the power storage element, and a pair of electrode terminals connected to the positive electrode side and the negative electrode side of the power storage element And the outer shape of the container is formed in a polygon including two surfaces facing in one direction and two surfaces facing in a direction substantially orthogonal to the two surfaces facing in the one direction. As the electrode terminal, a positive electrode terminal having a first positive electrode bonding surface substantially flush with one of the two surfaces facing in one direction of the container, and a negative electrode having a first negative electrode bonding surface substantially flush with the other of the two surfaces A terminal, and the positive electrode end One of the two surfaces facing in the direction substantially orthogonal to the two surfaces facing in one direction and the other of the two surfaces facing in the direction substantially perpendicular to the two surfaces in the same manner as the second positive electrode bonding surface and the negative electrode terminal. And a second negative electrode bonding surface substantially flush with each other.

第5の発明は、第4の発明に係る蓄電モジュールにおいて、各群同数の蓄電デバイスは、前記容器の一方向へ並べられ、複数の蓄電デバイス群は、前記容器の一方向と略直交する方向へ並べられ、前記1対の電極端子は、前記容器の一方向へ隣り合う蓄電デバイスの一方の第1正極接合面または第1負極接合面と、他方の第1負極接合面または第1正極接合面と、の異極同士が前記容器同士の一方向へ隣接する面を境として鏡面対称に配置され、前記一方向へ並ぶ蓄電デバイスは、前記鏡面対称となる異極同士の接合面の接合によって接続され、前記容器の一方向と略直交する方向へ隣り合う蓄電デバイスの一方の第2正極接合面または第2負極接合面と、他方の第2負極接合面または第2正極接合面と、の同極同士が前記容器同士の一方向と略直交する方向へ隣接する面を境として鏡面対称に配置され、前記一方向と略直交する方向へ隣り合う蓄電デバイスは、前記鏡面対称となる同極同士の接合面の接合によって接続される、ことを特徴とする。   According to a fifth invention, in the power storage module according to the fourth invention, the same number of power storage devices in each group are arranged in one direction of the container, and the plurality of power storage device groups are substantially orthogonal to one direction of the container. The one pair of electrode terminals are arranged such that one of the first positive electrode bonding surface or the first negative electrode bonding surface and the other first negative electrode bonding surface or the first positive electrode bonding of the electricity storage device adjacent in one direction of the container. Are arranged symmetrically with respect to a plane adjacent to the containers in one direction, and the electricity storage devices arranged in the one direction are joined by joining the joint surfaces of the different polarities that are mirror-symmetric. A second positive electrode bonding surface or a second negative electrode bonding surface of one of the storage devices adjacent to each other in a direction substantially orthogonal to the one direction of the container, and the other second negative electrode bonding surface or the second positive electrode bonding surface. Same poles are unidirectional The storage devices adjacent to each other in a direction substantially orthogonal to the one direction are connected by joining the joint surfaces of the same poles having the mirror symmetry, arranged in mirror symmetry with respect to a surface adjacent to the substantially orthogonal direction, It is characterized by that.

第6の発明は、第4の発明または第5の発明に係る蓄電モジュールにおいて、前記複数の蓄電デバイス群が前記容器の一方向と略直交する方向へ並ぶ両サイドの蓄電デバイス群の、前記容器の一方向へ並ぶ蓄電デバイス間の異極同士の接合部を、相互に接続する導電部材を備える、ことを特徴とする。   6th invention is the electrical storage module which concerns on 4th invention or 5th invention, The said container of the electrical storage device group of the both sides in which the said several electrical storage device group is located in a direction substantially orthogonal to one direction of the said container It is characterized by comprising a conductive member that connects the joints of different polarities between power storage devices arranged in one direction to each other.

第7の発明は、電荷を蓄える蓄電要素と、蓄電要素を収装する容器と、蓄電要素の正極側および負極側に接続される1対の電極端子と、を備える蓄電デバイスにおいて、前記容器の外形が一方向へ相対する2面と、前記一方向へ相対する2面と略直交する方向へ相対する2面と、を含む多角形に形成され、1対の電極端子として、前記容器の一方向へ相対する2面の一方と略面一の第1正極接合面を持つ正極端子と、同じく2面の他方と略面一の第1負極接合面を持つ負極端子と、が備えられ、前記正極端子に前記一方向へ相対する2面と略直交する方向へ相対する2面の一方と略面一の第2正極接合面、前記負極端子に同じく2面と略直交する方向へ相対する2面の他方と略面一の第2負極接合面、がそれぞれ形成されることを特徴とする。   According to a seventh aspect of the present invention, there is provided an electrical storage device comprising: an electrical storage element that stores electric charge; a container that houses the electrical storage element; and a pair of electrode terminals connected to a positive electrode side and a negative electrode side of the electrical storage element. The outer shape is formed into a polygon including two surfaces facing in one direction and two surfaces facing in a direction substantially perpendicular to the two surfaces facing in one direction, and a pair of electrode terminals is used as one pair of electrode terminals. A positive electrode terminal having a first positive electrode bonding surface substantially flush with one of the two surfaces facing in the direction, and a negative electrode terminal having a first negative electrode bonding surface substantially flush with the other of the two surfaces, The second positive electrode joining surface that is substantially flush with one of the two surfaces facing the positive electrode terminal in the direction substantially orthogonal to the two surfaces facing the one direction, and the negative electrode terminal 2 facing the direction substantially orthogonal to the second surface. A second negative electrode bonding surface substantially flush with the other surface is formed respectively.

第8の発明は、第7の発明に係る蓄電デバイスにおいて、前記1対の電極端子は、複数の前記蓄電デバイスを前記容器の一方向へ並べると、前記容器の一方向へ隣り合う蓄電デバイスの、一方の第1正極接合面と、他方の第1負極接合面と、の異極同士が前記容器同士の一方向へ隣接する面を境として鏡面対称に配置され、複数の前記蓄電デバイスを前記容器の一方向と略直交する方向へ並べると、前記容器の一方向と略直交する方向へ隣り合う蓄電デバイスの、一方の第2正極接合面または第2負極接合面と、他方の負極端子または正極端子の接合面と、の同極同士が前記容器同士の一方向と略直交する方向へ隣接する面を境として鏡面対称に配置される、ことを特徴とする。   According to an eighth aspect of the present invention, in the power storage device according to the seventh aspect, the pair of electrode terminals are formed by arranging the plurality of power storage devices in one direction of the container, The different polarities of one first positive electrode bonding surface and the other first negative electrode bonding surface are arranged mirror-symmetrically with respect to a surface adjacent to one direction of the containers, and a plurality of the electric storage devices are When arranged in a direction substantially orthogonal to one direction of the container, one of the second positive electrode bonding surface or the second negative electrode bonding surface and the other negative electrode terminal of the electricity storage device adjacent in the direction substantially orthogonal to the one direction of the container The same polarity of the joint surface of the positive electrode terminal is disposed mirror-symmetrically with respect to a surface adjacent to a direction substantially orthogonal to one direction of the containers.

第1の発明においては、複数の蓄電デバイス群は、互いに並列接続され、各群同数の蓄電デバイスは、電極端子の接合によって直列接続される。各蓄電デバイスは、容器の一方向へ相対する2面の一方と略面一の正極接合面を持つ正極端子と、同じく2面の他方と略面一の負極接合面を持つ負極端子と、を備えるので、容器の一方向へ並べると、その方向へ隣り合う蓄電デバイスの電極端子の異極同士の接合面を簡単に重ね合わせることが可能となり、これら異極同士の接合面を接合することによって各群同数の蓄電デバイスを効率よく直列接続することができる。これら接合は、溶接に拠る場合、金属板(電極端子を形成する)の2枚重ねの溶接となるため、3枚ずつの溶接となる従来の場合に較べると、溶接に伴う蓄電要素への伝熱との関係から、電極端子の外部へ引き出される部分に要求される余分長を大きく取られずに済む。また、2枚重ねの溶接のため、良好な安定した溶接部が得やすくなる。また、電極端子の外部へ引き出される部分が余分長さを大きく取らずに済み、蓄電デバイス間の直列接続にバスバーも要らないので、各群同数の蓄電デバイスを繋ぐ直列経路の短縮が可能となり、充放電時の電力ロス(発熱損)を大幅に低減することができる。   In the first invention, the plurality of power storage device groups are connected in parallel to each other, and the same number of power storage devices in each group are connected in series by joining electrode terminals. Each power storage device has a positive electrode terminal having a positive electrode joint surface substantially flush with one of two surfaces facing in one direction of the container, and a negative electrode terminal having a negative electrode joint surface substantially flush with the other of the two surfaces. Therefore, when arranged in one direction of the container, it becomes possible to easily superimpose the joining surfaces of the different polarities of the electrode terminals of the storage device adjacent in that direction, and by joining the joining surfaces of these different polarities The same number of power storage devices in each group can be efficiently connected in series. Since these joints are welding of two metal plates (forming electrode terminals) when welding is performed, compared to the conventional case of welding three by three, transmission to the power storage element accompanying welding is performed. Due to the relationship with heat, the extra length required for the part drawn out of the electrode terminal does not have to be increased. In addition, because of the two-layer welding, it is easy to obtain a good and stable weld. In addition, it is not necessary to take the extra length of the part that is drawn out of the electrode terminal, and a bus bar is not required for the serial connection between the electricity storage devices, so it is possible to shorten the series path that connects the same number of electricity storage devices in each group, Power loss (heat loss) during charging / discharging can be greatly reduced.

第2の発明においては、各群同数の蓄電デバイスは、容器の2面が相対する一方向へ並べると、その方向へ隣り合う蓄電デバイス間の、一方の正極接合面と、他方の負極接合面と、が容器同士の隣接面を境として鏡面対称となるため、蓄電デバイスを一方向へ並べるのみで異極同士の接合面が重なり合うようになり、これら接合面間を簡単に効率よく接合することができる。   In the second invention, the same number of power storage devices in each group are arranged in one direction where the two surfaces of the container face each other, and one positive electrode bonding surface and the other negative electrode bonding surface between the power storage devices adjacent in that direction. Since the mirrors are mirror-symmetric with respect to the adjacent surfaces of the containers, the joint surfaces of the different polarities can be overlapped only by arranging the electricity storage devices in one direction, and the joint surfaces can be easily and efficiently joined. Can do.

第3の発明においては、互いに並列接続される複数の蓄電デバイス群の、蓄電デバイス間が導電部材を介して同電位となる。同電位間を蓄電デバイス群の列方向へ並ぶ蓄電デバイス同士の電圧が均等化される。つまり、同電位間において、蓄電デバイスの個々の蓄電容量などのばらつきに原因する蓄電デバイスの端子電圧のばらつきが蓄電デバイス群の列方向へ並ぶ複数の蓄電デバイスによって平準化(均等化)されることになる。   In 3rd invention, between the electrical storage devices of the some electrical storage device group connected mutually in parallel becomes the same electric potential via a conductive member. The voltages of the power storage devices arranged in the column direction of the power storage device group between the same potentials are equalized. That is, the variation in the terminal voltage of the storage device caused by the variation in the individual storage capacity of the storage device is leveled (equalized) by the plurality of storage devices arranged in the column direction of the storage device group. become.

第4の発明においては、複数の蓄電デバイス群は、互いに並列接続され、各群同数の蓄電デバイスは、電極端子の接合によって直列接続される。各蓄電デバイスは、容器の一方向およびこれと略直交する方向へ並べられ、容器の一方向へ隣り合う蓄電デバイス間は、第1正極接合面と第1負極接合面との接合によって直列接続される。容器の一方向と略直交する方向へ隣り合う蓄電デバイス間は、第2正極端子同士または第2負極接合面同士の接合によって接続される。これにより、容器の一方向へ2個の蓄電デバイスが直列に接続されるもの(組)が、容器の一方向と直交する方向へ2列となる構成(最小単位回路)の直列接続となり、最小単位回路において、各組の両端電圧が平準化(均等化)されるので、充放電などに伴う蓄電デバイスの端子電圧のばらつきが小さく抑えられる。   In the fourth invention, the plurality of power storage device groups are connected in parallel to each other, and the same number of power storage devices in each group are connected in series by joining electrode terminals. The electric storage devices are arranged in one direction of the container and in a direction substantially orthogonal to the container, and the electric storage devices adjacent in one direction of the container are connected in series by bonding of the first positive electrode bonding surface and the first negative electrode bonding surface. The The electricity storage devices adjacent in a direction substantially orthogonal to one direction of the container are connected by joining the second positive electrode terminals or the second negative electrode joining surfaces. As a result, two power storage devices connected in series in one direction of the container (a set) are connected in series in a configuration (minimum unit circuit) in two rows in a direction orthogonal to the one direction of the container. In the unit circuit, the voltages at both ends of each set are leveled (equalized), so that variation in the terminal voltage of the electricity storage device due to charge / discharge or the like can be suppressed to be small.

最小単位回路は、蓄電デバイス群数および各群の蓄電デバイス数が増えると、容器の一方向およびこれと略直交する方向へ隣り合う4つの最小単位回路の中に各最小単位回路の蓄電デバイスを1個ずつ共有する最小単位回路が出来るため、最小単位回路に働く電圧の均等化(平準化)が最小単位回路の範囲を超えて連鎖するようになる。この連鎖がモジュール全体に及べば、蓄電セル個々の端子電圧を均等化(平準化)することも可能となる。   As the number of power storage device groups and the number of power storage devices in each group increase, the minimum unit circuit includes the power storage devices of each minimum unit circuit in four minimum unit circuits adjacent in one direction of the container and in a direction substantially orthogonal thereto. Since a minimum unit circuit can be shared one by one, voltage equalization (leveling) acting on the minimum unit circuit is chained beyond the range of the minimum unit circuit. If this chain extends to the entire module, it becomes possible to equalize (equalize) the terminal voltage of each storage cell.

第1正極接合面と第1負極接合面との接合、第2正極端子同士の接合、第2負極接合面同士の接合、については、溶接に拠る場合、金属板(電極端子を形成する)の2枚重ねの溶接となるので、溶接に伴う蓄電要素への伝熱との関係から、電極端子の外部へ引き出される部分に要求される余分長を大きく取られずに済む。また、2枚重ねの溶接のため、良好な安定した溶接部が得やすくなる。また、電極端子の外部へ引き出される部分の余分長を大きく取らずに済み、蓄電デバイス間の直列接続にバスバーも要らないので、各群同数の蓄電デバイスを繋ぐ直列経路の短縮が可能となり、充放電時の電力ロス(発熱損)を大幅に低減することができる。   When joining the first positive electrode bonding surface and the first negative electrode bonding surface, the bonding between the second positive electrode terminals, and the bonding between the second negative electrode bonding surfaces, in the case of welding, the metal plate (forming the electrode terminal) Since the two-layer welding is performed, the extra length required for the portion drawn out of the electrode terminal does not have to be increased due to the relationship with the heat transfer to the power storage element accompanying the welding. In addition, because of the two-layer welding, it is easy to obtain a good and stable weld. In addition, it is not necessary to increase the extra length of the part that is led out of the electrode terminal, and a bus bar is not required for the serial connection between the energy storage devices. Therefore, it is possible to shorten the series path that connects the same number of energy storage devices in each group. The power loss (heat loss) during discharge can be greatly reduced.

第5の発明においては、各蓄電デバイスは、容器の2面が相対する一方向へ並べると、その方向へ隣り合う蓄電デバイス間の、一方の第1正極接合面と、他方の第1負極接合面と、が容器同士の隣接面を境として鏡面対称となり、容器の一方向へ相対する2面と略直交する方向へ並べると、その方向へ隣り合う蓄電デバイス間の、第2正極接合面同士または第2負極接合面同士が容器同士の隣接面を境として鏡面対称となるため、蓄電デバイスを一方向およびこれと略直交する方向へ並べるのみで一方向へ異極同士の接合面およびこれと略直交する方向へ同極同士の接合面がそれぞれ重なり合うようになり、これら各接合面間を簡単に効率よく溶接することができる。   In the fifth invention, when each power storage device is arranged in one direction where the two surfaces of the container face each other, one first positive electrode bonding surface and the other first negative electrode bonding between the power storage devices adjacent to each other in that direction. When the surfaces are arranged in a direction substantially orthogonal to two surfaces facing in one direction of the container, the second positive electrode bonding surfaces between the storage devices adjacent to each other are aligned. Alternatively, since the second negative electrode bonding surfaces are mirror-symmetrical with respect to the adjacent surfaces of the containers, the power storage devices are arranged in one direction and in a direction substantially orthogonal thereto, and the bonding surfaces of different polarities in one direction and this The joint surfaces of the same poles overlap each other in a substantially orthogonal direction, and the joint surfaces can be easily and efficiently welded.

第6の発明においては、導電部材により、蓄電デバイス群の列方向の両サイド間においても、隣り合う4つの最小単位回路の中に各最小単位回路の蓄電デバイスを1個ずつ共有する最小単位回路が出来るようになり、最小単位回路に働く電圧の均等化(平準化)の、最小単位回路の範囲を超える連鎖がさらに促進される。   In the sixth invention, the minimum unit circuit that shares one power storage device of each minimum unit circuit among the four adjacent minimum unit circuits between both sides in the column direction of the power storage device group by the conductive member As a result, it is possible to further promote a chain of equalization (leveling) of the voltage acting on the minimum unit circuit beyond the range of the minimum unit circuit.

第7の発明においては、所要数の蓄電デバイスから構成される蓄電モジュールを想定すると、第4の発明と同一の作用効果が得られる。また、電極端子の容器から外部へ引き出される部分の長さ(蓄電デバイスの高さ寸法)が短くなるので、蓄電デバイスの占有体積が小さくなり、単位体積あたりの蓄電容量も大きくなる。   In the seventh invention, assuming a power storage module composed of a required number of power storage devices, the same effects as the fourth invention can be obtained. In addition, since the length (the height dimension of the electricity storage device) of the portion of the electrode terminal that is pulled out from the container is shortened, the occupied volume of the electricity storage device is reduced, and the electricity storage capacity per unit volume is also increased.

第8の発明においては、所要数の蓄電デバイスから構成される蓄電モジュールを想定すると、第5の発明と同一の作用効果が得られる。   In the eighth invention, assuming a power storage module including a required number of power storage devices, the same effects as the fifth invention can be obtained.

この発明の第1実施形態に係る蓄電デバイスの外観斜視図である。1 is an external perspective view of an electricity storage device according to a first embodiment of the present invention. 同じく蓄電デバイスの断面図である。It is sectional drawing of an electrical storage device similarly. 同じく蓄電モジュールの外観斜視図である。It is an external appearance perspective view of an electrical storage module similarly. 同じく蓄電モジュールの構成を説明するものであり、(a)は平面図であり、(b)は側面図であり、(c)はx−x断面図である。Similarly, the configuration of the power storage module will be described, in which (a) is a plan view, (b) is a side view, and (c) is an xx cross-sectional view. 同じく蓄電モジュールの回路構成図である。It is a circuit block diagram of an electrical storage module similarly. この発明の第2実施形態に係る蓄電デバイスの外観斜視図である。It is an external appearance perspective view of the electrical storage device which concerns on 2nd Embodiment of this invention. 同じく蓄電デバイスの構成説明図である。It is the structure explanatory drawing of an electrical storage device similarly. 同じく蓄電モジュールの外観斜視図である。It is an external appearance perspective view of an electrical storage module similarly. 同じく蓄電モジュールの回路構成図である。It is a circuit block diagram of an electrical storage module similarly. 同じく第2実施形態に係る変形例を示す蓄電モジュールの外観斜視図である。It is an external appearance perspective view of the electrical storage module which similarly shows the modification concerning 2nd Embodiment. 同じく蓄電モジュールの回路構成図である。It is a circuit block diagram of an electrical storage module similarly. 同じく別の変形例を示す蓄電モジュールの外観斜視図である。It is an external appearance perspective view of the electrical storage module which similarly shows another modification. 同じく別の変形例を示す蓄電モジュールの外観斜視図である。It is an external appearance perspective view of the electrical storage module which similarly shows another modification. 同じく蓄電モジュールの回路構成図である。It is a circuit block diagram of an electrical storage module similarly. 同じく別の変形例を示す蓄電モジュールの外観斜視図である。It is an external appearance perspective view of the electrical storage module which similarly shows another modification. 同じく蓄電モジュールの回路構成図である。It is a circuit block diagram of an electrical storage module similarly. 同じく別の変形例を示す蓄電モジュールの外観斜視図である。It is an external appearance perspective view of the electrical storage module which similarly shows another modification. 同じく別の変形例を示す蓄電モジュールの外観斜視図である。It is an external appearance perspective view of the electrical storage module which similarly shows another modification. 従来例を示す蓄電デバイスの外観斜視図である。It is an external appearance perspective view of the electrical storage device which shows a prior art example. 同じく蓄電モジュールの外観斜視図である。It is an external appearance perspective view of an electrical storage module similarly. 同じく蓄電モジュールの構成を説明するものであり、(a)は平面図であり、(b)は側面図であり、(c)はx−x断面図である。Similarly, the configuration of the power storage module will be described, in which (a) is a plan view, (b) is a side view, and (c) is an xx cross-sectional view. 同じく蓄電モジュールの回路構成図である。It is a circuit block diagram of an electrical storage module similarly.

図に基づいて、この発明に基づく実施形態を説明する。なお、図の随所に前後と上下と左右との3方向を規定する3次元矢印を添えておく。   The embodiment based on this invention is described based on figures. In addition, three-dimensional arrows that define three directions, front and rear, up and down, and left and right, are attached everywhere in the figure.

図1〜図5は、第1実施形態を示すものである。図1,図2において、蓄電デバイス10は、電気二重層キャパシタである。電気二重層キャパシタ10は、電荷を蓄える蓄電要素11と、蓄電要素11を収容する容器12と、蓄電要素の電荷の出し入れを行う1対の電極端子13と、を備える。   1 to 5 show a first embodiment. 1 and 2, the electricity storage device 10 is an electric double layer capacitor. The electric double layer capacitor 10 includes a power storage element 11 for storing electric charge, a container 12 for storing the power storage element 11, and a pair of electrode terminals 13 for taking in and out the charge of the power storage element.

蓄電要素11は、正極体と負極体とこれらの間に介在するセパレータとから角形の積層体に構成される。正極体および負極体は、電荷を蓄える電極層(分極性電極)と、電荷の出し入れを行う集電層(集電極)とからなり、集電層の同極同士のリード14が結束され、その結束部に極性の対応する電極端子13が接続される。   The electrical storage element 11 is comprised by the square laminated body from the positive electrode body, the negative electrode body, and the separator interposed between these. The positive electrode body and the negative electrode body are composed of an electrode layer (polarizable electrode) for storing electric charge and a current collecting layer (current collecting electrode) for taking in and out electric charge, and leads 14 of the same polarity of the current collecting layer are bound. The electrode terminal 13 corresponding to the polarity is connected to the binding portion.

容器12は、蓄電要素11の外形に合わせて角形(直方体)に形成され、その内部に蓄電要素11を電解液と共に収容する室が設けられる。1対の電極端子13として、容器12の互いに相対する2面の一方と略面一に連なる正極接合面Xをもつ端子13a(正極端子)と、同じく2面の他方と略面一に連なる負極接合面Yをもつ端子13b(負極端子)と、が備えられる。   The container 12 is formed in a square shape (a rectangular parallelepiped) according to the outer shape of the power storage element 11, and a chamber for storing the power storage element 11 together with the electrolyte is provided therein. As a pair of electrode terminals 13, a terminal 13 a (a positive electrode terminal) having a positive electrode joint surface X that is substantially flush with one of two opposing surfaces of the container 12, and a negative electrode that is also substantially flush with the other of the two surfaces. And a terminal 13b (negative electrode terminal) having a joint surface Y.

各電極端子13は、金属板から短尺状に形成され、容器12の内部(室)に位置する一端部に集電層の同極同士のリード14の結束部が溶接などによって接合され、容器12の外部に突き出る他端側が接合面X,Yを構成するのである。   Each electrode terminal 13 is formed in a short shape from a metal plate, and a bundling portion of the leads 14 of the same polarity of the current collecting layer is joined to one end portion located in the inside (chamber) of the container 12 by welding or the like. The other end side protruding to the outside constitutes the joint surfaces X and Y.

容器12の互いに相対する2面については、この場合、容器12が直方体のため、前面1と後面4(図2、参照)との2面、左面と右面3との2面、上面2と下面との2面、となるが、電極端子13が上方へ突き出るので、上面2と下面との2面を除く、前面1と後面4との2面、左面と右面3との2面、の何れかに選定される。   In this case, since the container 12 is a rectangular parallelepiped, two surfaces of the front surface 1 and the rear surface 4 (see FIG. 2), two surfaces of the left surface and the right surface 3, and an upper surface 2 and a lower surface of the container 12 are opposed to each other. However, since the electrode terminal 13 protrudes upward, any one of the two surfaces of the front surface 1 and the rear surface 4 and the two surfaces of the left surface and the right surface 3 except for the two surfaces of the upper surface 2 and the lower surface. Selected.

この例においては、後述の蓄電モジュールM-1における蓄電デバイス10の配列方向との関係から前面1と後面4との2面が選定され、負極端子13bは、容器12の前面1の一辺(上辺)の左面側へ寄る位置から容器12の上方へストレートに引き出され、容器12の前面1と略面一の負極接合面Yを形成する一方、正極端子13aは、容器12の後面4の一辺(上辺)の右面3側へ寄る位置から容器12の上方へストレートに引き出され、容器12の後面と略面一の正極接合面Xを形成する。   In this example, two surfaces of the front surface 1 and the rear surface 4 are selected from the relationship with the arrangement direction of the power storage device 10 in the power storage module M-1 described later, and the negative electrode terminal 13b is one side (upper side) of the front surface 1 of the container 12. ) From the position approaching the left side of the container 12 is straightly drawn upward of the container 12 to form a negative electrode bonding surface Y substantially flush with the front surface 1 of the container 12, while the positive electrode terminal 13 a is formed on one side of the rear surface 4 of the container 12 ( From the position on the right side 3 side of the upper side), it is drawn straight above the container 12 to form a positive electrode bonding surface X that is substantially flush with the rear surface of the container 12.

容器12は、この場合、枠体6と1対の膜体7とから構成される。枠体6は、樹脂(熱溶着性および電気絶縁性もつ)から角形の蓄電要素の外形に合わせて四角形に形成される。枠体6は、上辺部と下辺部と右辺部と左辺部とからなり、これらに囲まれる空間が前後に開口される。膜体7は、ラミネートフィルムから枠体の前後面と略同形同大のシート状に形成される。ラミネートフィルムは、複数の樹脂層と金属の中間層とから積層構造のものが用いられ、枠体6の開口に面する側の表層が熱溶着性もつ電気絶縁材質の樹脂から形成される。   In this case, the container 12 includes a frame body 6 and a pair of film bodies 7. The frame 6 is formed in a quadrangular shape from a resin (having heat-welding and electrical insulating properties) in accordance with the outer shape of the rectangular power storage element. The frame body 6 includes an upper side portion, a lower side portion, a right side portion, and a left side portion, and a space surrounded by these is opened forward and backward. The film body 7 is formed from a laminate film into a sheet shape having substantially the same shape and size as the front and rear surfaces of the frame body. The laminated film has a laminated structure composed of a plurality of resin layers and a metal intermediate layer, and the surface layer facing the opening of the frame body 6 is formed of a resin of an electrically insulating material having a heat welding property.

電極端子13は、枠体6の内側に突き出る一端部と、枠体6の外側に突き出る他端部と、枠体6の一辺部に接着される中間部と、からなり、ヒートシール処理により、枠体6と膜体7との間(熱溶着樹脂中)に中間部を介して組み付けられる。   The electrode terminal 13 is composed of one end protruding inside the frame 6, the other end protruding outside the frame 6, and an intermediate portion bonded to one side of the frame 6. It is assembled between the frame body 6 and the film body 7 (in the heat welding resin) via an intermediate portion.

ヒートシール処理においては、枠体6の一辺部、この場合、上辺部の前面1に一方の電極端子13の中間部が重ねられ、その上に膜体7が被せられ、ヒートシーラにより、枠体6の前面1側から膜体7の周囲(周縁部)が加圧と共に加熱される。また、上辺部の後面4に他方の電極端子13の中間部が重ねられ、その上に膜体7が被せられ、ヒートシーラにより、枠体の後面4側から膜体7の周囲(周縁部)が加圧と共に加熱される。   In the heat sealing process, an intermediate portion of one electrode terminal 13 is overlapped on one side of the frame 6, in this case, the front surface 1 of the upper side, and the film body 7 is covered thereon, and the frame 6 is covered with a heat sealer. The periphery (peripheral part) of the film body 7 is heated together with the pressure from the front surface 1 side. Further, the middle portion of the other electrode terminal 13 is overlapped on the rear surface 4 of the upper side portion, and the film body 7 is covered thereon, and the periphery (peripheral portion) of the film body 7 from the rear surface 4 side of the frame body by the heat sealer. Heated with pressure.

ヒートシーラによる加熱および加圧を受けて膜板7の熱溶着性樹脂および枠体6の熱溶着性樹脂が溶融し、放熱後に凝固する樹脂によって膜体7と枠体6との間が隙間なく封止される。また、各端子13の中間部も凝固した樹脂に包み込まれ、その周囲が隙間なく封止される。電解液の注入については、ヒートシール処理において、未処理(非熱溶着)部分が残され、電解液はその未処理部分から容器の内部へ充填される。未処理部分は、電解液の注入後にヒートシール処理によって封止される。   The heat-welding resin of the film plate 7 and the heat-welding resin of the frame body 6 are melted by heating and pressurizing with a heat sealer, and the film body 7 and the frame body 6 are sealed without gaps by the resin that solidifies after heat dissipation. Stopped. Moreover, the intermediate part of each terminal 13 is also wrapped in the solidified resin, and its periphery is sealed without a gap. Regarding the injection of the electrolytic solution, an untreated (non-thermally welded) portion is left in the heat sealing process, and the electrolytic solution is filled into the container from the untreated portion. The untreated portion is sealed by heat sealing after the electrolyte is injected.

このような工程により、容器12の互いに相対する2面の一方と略面一の正極接合面Xをもつ端子13aと、同じく他方の略面一の負極接合面Yをもつ端子13bと、を備える電気二重層キャパシタ10(蓄電デバイス)を簡単かつ容易に効率よく製造することができる。電気二重層キャパシタ10は、容器12の内圧を所定レベル以下に抑えるガス抜きバルブ(図示せず)が備えられる。   By such a process, a terminal 13a having a positive electrode bonding surface X that is substantially flush with one of the two opposite surfaces of the container 12 and a terminal 13b having the other substantially flat negative electrode bonding surface Y are provided. The electric double layer capacitor 10 (power storage device) can be easily and easily manufactured efficiently. The electric double layer capacitor 10 is provided with a gas vent valve (not shown) that keeps the internal pressure of the container 12 below a predetermined level.

図3〜図5は、蓄電モジュールM-1を示すものであり、所要数の蓄電デバイス10(蓄電セル)から組み立てられる。所要数の蓄電セル10は、複数の蓄電デバイス群20に分けられる。各群20の蓄電デバイス数は、同数とする。   3 to 5 show the power storage module M-1, which is assembled from a required number of power storage devices 10 (power storage cells). The required number of power storage cells 10 is divided into a plurality of power storage device groups 20. The number of power storage devices in each group 20 is the same.

各群同数の蓄電セル10は、容器12の前後方向(容器12の前面1と後面4との相対方向)へ並べられ、隣り合う蓄電セル間が互いに異極同士の電極端子13を接合することによって直列接続される。隣り合う蓄電セル間において、一方の蓄電セル10の正極接合面Xと、他方の蓄電セル10の負極接合面Yと、は容器同士の隣接面を境として鏡面対称に配置される。   The same number of power storage cells 10 in each group are arranged in the front-rear direction of the container 12 (the relative direction of the front surface 1 and the rear surface 4 of the container 12), and the adjacent power storage cells join electrode terminals 13 having different polarities. Are connected in series. Between adjacent power storage cells, the positive electrode bonding surface X of one power storage cell 10 and the negative electrode bonding surface Y of the other power storage cell 10 are arranged in mirror symmetry with respect to the adjacent surface of the containers.

この場合、蓄電セル10は、負極端子13bが前面1の一辺(上辺)の左面側へ寄る位置から容器12の上方へストレートに引き出され、正極端子13aが容器12の後面4の一辺(上辺)の右面3側へ寄る位置から容器13の上方へストレートに引き出されるため、電極端子13の配置が異なる2種類のものA,Bが用いられる。 In this case, the storage cell 10 is drawn straight upward from the position where the negative electrode terminal 13 b approaches the left side of one side (upper side) of the front surface 1, and the positive electrode terminal 13 a is one side (upper side) of the rear surface 4 of the container 12. Since the electrode 13 is drawn straight from the position close to the right surface 3 side to the upper side of the container 13, two types A and B having different arrangements of the electrode terminals 13 are used.

蓄電デバイスAの電極端子13は、図1と同一に配置される。蓄電デバイスBの電極端子は、正極端子13aが、前面1の一辺(上辺)の右面3側へ寄る位置から容器12の上方へストレートに引き出され、容器12の前面1と略面一の正極接合面Xを形成する一方、負極端子13bが、容器12の後面の一辺(上辺)の左面側へ寄る位置から容器12の上方へストレートに引き出され、容器12の後面と略面一の負極接合面Yを形成する。   The electrode terminals 13 of the electricity storage device A are arranged in the same manner as in FIG. The electrode terminal of the electricity storage device B is drawn straight out from the position where the positive electrode terminal 13a approaches the right surface 3 side of one side (upper side) of the front surface 1 and is substantially flush with the front surface 1 of the container 12. While forming the surface X, the negative electrode terminal 13b is drawn straight upward from the position on the left side of one side (upper side) of the rear surface of the container 12 and is substantially flush with the rear surface of the container 12. Y is formed.

各群20の蓄電セル10は、容器12の前後方向へA-B-A-B-A-Bに並べられる。A-B間において、Aの正極接合面Xと、Bの負極接合面Yと、が容器同士の隣接面(Aの容器12の後面4とBの容器12の前面1との重なり合う面)を境として鏡面対称となり、これらが溶接によって接合される。B-A間において、Bの正極接合面Xと、Aの負極接合面Yと、容器同士の隣接面(Bの容器12の後面4とAの容器12の前面1が重なり合う面)を境として鏡面対称となり、これらが溶接によって接合される。   The power storage cells 10 of each group 20 are arranged in a line A-A-B-A-B in the front-rear direction of the container 12. Between A and B, the positive electrode bonding surface X of A and the negative electrode bonding surface Y of B are adjacent surfaces of the containers (the surface where the rear surface 4 of the container 12 of A and the front surface 1 of the container 12 of B overlap). It becomes mirror-symmetrical as a boundary, and these are joined by welding. Between B-A, the positive electrode bonding surface X of B, the negative electrode bonding surface Y of A, and the adjacent surfaces of the containers (the surface where the rear surface 4 of the B container 12 and the front surface 1 of the A container 12 overlap) are the boundaries. They are mirror-symmetric and are joined by welding.

複数の蓄電デバイス群20は、容器12の前後方向と直交する方向(容器12の右面3と左面との相対方向)へ並べられる。各群20の列の両端に位置する蓄電セル10の電極端子13の同極同士がバスバー21を介して接続される。バスバー21が蓄電モジュールM-1の外部端子となる場合、これらバスバー21に外部の充放電回路(図示せず)が接続される。つまり、複数の蓄電デバイス群20は、外部の充放電回路に対し、互いに並列接続される関係になる。充放電回路は、M-1から負荷への電力の供給経路および充電源からM-1への電力の供給経路を構成するものである。   The plurality of power storage device groups 20 are arranged in a direction orthogonal to the front-rear direction of the container 12 (the relative direction between the right surface 3 and the left surface of the container 12). The same polarity of the electrode terminals 13 of the storage cells 10 located at both ends of the row of each group 20 are connected via a bus bar 21. When the bus bars 21 are external terminals of the power storage module M-1, external charge / discharge circuits (not shown) are connected to the bus bars 21. That is, the plurality of power storage device groups 20 are connected to each other in parallel with an external charge / discharge circuit. The charging / discharging circuit constitutes a power supply path from M-1 to the load and a power supply path from the charging source to M-1.

蓄電モジュールM-1は、蓄電デバイス群同士の、蓄電セル間の同一位置を接続する導電部材22が備えられる。導電部材22は、蓄電デバイス群間を容器12の左右方向(容器12の左面と右面3との相対方向)へ延ばされ、図示の場合(M-1が2列の蓄電デバイス群20から構成される)、導電部材22の両端は、各A-B間の接合部および各B-A間の接合部にリベット23によって結合(接続)される。   The power storage module M-1 includes a conductive member 22 that connects the same position between power storage cells among power storage device groups. The conductive member 22 extends between the power storage device groups in the left-right direction of the container 12 (the relative direction of the left surface and the right surface 3 of the container 12), and in the illustrated case (M-1 is composed of two rows of power storage device groups 20). The both ends of the conductive member 22 are coupled (connected) by rivets 23 to the junctions between the A-Bs and the junctions between the B-As.

M-1において、複数の蓄電デバイス群20は、外部の充放電回路に対して並列接続され、各群同数の蓄電デバイス10は、電極端子13の接合によって直列接続される。各蓄電セル10は、容器12の一方向へ相対する2面の一方と略面一の正極接合面Xを持つ端子13aと、同じく2面の他方と略面一の負極接合面Yを持つ端子13bと、を備えるので、容器12の一方向へ並べると、その方向へ隣り合う蓄電セル10の電極端子13の、一方の正極接合面Xと、他方の負極接合面Yと、が容器同士の隣接面を境として鏡面対称となるため、蓄電デバイス10を一方向へ並べるのみで異極同士の接合面X,Yが重なり合うようになり、これら接合面間を簡単に効率よく接合することができる。   In M-1, a plurality of power storage device groups 20 are connected in parallel to an external charge / discharge circuit, and the same number of power storage devices 10 in each group are connected in series by joining electrode terminals 13. Each storage cell 10 has a terminal 13a having a positive electrode bonding surface X that is substantially flush with one of two surfaces facing in one direction of the container 12, and a terminal having a negative electrode bonding surface Y that is also substantially flush with the other of the two surfaces. 13b, and when arranged in one direction of the container 12, one positive electrode bonding surface X and the other negative electrode bonding surface Y of the electrode terminal 13 of the storage cell 10 adjacent in that direction are Since the mirror surfaces are symmetric with respect to the adjacent surface, the joint surfaces X and Y of different polarities overlap each other only by arranging the power storage devices 10 in one direction, and the joint surfaces can be easily and efficiently joined. .

これら接合は、溶接(例えば、スポット溶接)に拠る場合、金属板(電極端子13を形成する)の2枚重ねの溶接となり、バスバー21と電極端子13との接合についても、2枚重ねの溶接となるため、3枚ずつの溶接となる従来の場合に較べると、溶接に伴う蓄電デバイス10の蓄電要素11への伝熱との関係から、電極端子13の外部へ引き出される部分に要求される余分長を大きく取られずに済む。また、2枚重ねの溶接により、良好な安定した溶接部が得やすくなる。また、電極端子13の外部へ引き出される部分に要求される余分長を大きく取られずに済み、蓄電セル間を直列接続するバスバー(図20,図21の114)も要らないため、各群同数の蓄電セル10を繋ぐ直列経路が効率よく短縮され、充放電時の電力ロス(発熱損)を大幅に低減することができる。   When these joinings are based on welding (for example, spot welding), the welding is a two-layer welding of metal plates (forming the electrode terminals 13), and the joining of the bus bar 21 and the electrode terminals 13 is also a two-layer welding. Therefore, as compared with the conventional case where welding is performed three by three, the portion drawn to the outside of the electrode terminal 13 is required due to the heat transfer to the power storage element 11 of the power storage device 10 accompanying welding. The extra length does not have to be increased. Moreover, it becomes easy to obtain a favorable stable welded portion by welding two sheets. In addition, the extra length required for the portion of the electrode terminal 13 drawn to the outside is not required to be large, and bus bars (114 in FIGS. 20 and 21) for connecting the storage cells in series are not required. The series path connecting the storage cells 10 can be efficiently shortened, and the power loss (heat loss) during charging / discharging can be greatly reduced.

図5は、蓄電モジュールM-1の回路構成を示すものである。図5において、R’は蓄電デバイス10の電極端子13の抵抗であり、REはバスバー21の抵抗であり、RFは導電部材22の抵抗であり、複数の蓄電デバイス群20の、蓄電デバイス間が導電部材22を介して同電位となる。この例においては、各群20のA-B間の接合部同士およびB-A間の接合部同士が導電部材22を介して接続されるため、群20の列方向へ並ぶA−A間の端子電圧のばらつきおよびB−B間の端子電圧のばらつきが平準化(均等化)される。蓄電デバイス10は、蓄電容量などに多少のばらつきがあり、充放電に伴って蓄電セル10の端子電圧にばらつきが生じるようになるが、群20の列方向(容器12の左右方向)へ並ぶA−A間の端子電圧のばらつきおよびB−B間の端子電圧のばらつきが平準化(均等化)されるので、充放電などに伴う蓄電セル10の端子電圧のばらつきが小さく抑えられるのである。その結果、蓄電デバイス10の蓄電容量などのばらつきを考慮して蓄電モジュールM-1の満充電時の電圧(制限電圧)を低める割合が小さく見込めるため、M-1の制限電圧を高めに設定することが可能となる。 FIG. 5 shows a circuit configuration of the power storage module M-1. In FIG. 5, R ′ is the resistance of the electrode terminal 13 of the power storage device 10, R E is the resistance of the bus bar 21, R F is the resistance of the conductive member 22, and the power storage devices of the plurality of power storage device groups 20 The gap becomes the same potential via the conductive member 22. In this example, since the joints between A and B and the joints between B and A in each group 20 are connected via the conductive member 22, the A and A lines arranged in the column direction of the group 20 are connected. The terminal voltage variation and the BB terminal voltage variation are leveled (equalized). The storage device 10 has some variation in storage capacity and the like, and the terminal voltage of the storage cell 10 varies with charging / discharging. However, the storage device 10 is arranged in the column direction of the group 20 (the left-right direction of the container 12). Since the variation in the terminal voltage between −A and the variation in the terminal voltage between BB are leveled (equalized), the variation in the terminal voltage of the storage cell 10 due to charge / discharge or the like can be suppressed to a small level. As a result, since the rate of lowering the voltage (limit voltage) at the time of full charge of the power storage module M-1 can be expected to be small in consideration of variations in the power storage capacity of the power storage device 10, the limit voltage of M-1 is set higher. It becomes possible.

導電部材22は、両端の接続点に電位差が生じると、電位の高い方から低い方へ電流が流れるが、両端の接続点の電位が同一であれば、電流は流れることがなく、両端の電位差によって流れる電流も極く小さいため、RFを入れずに蓄電デバイスの内部抵抗RXを除く合成抵抗R1を計算すると、R1=6・R’+(RE/2)となる。 In the conductive member 22, when a potential difference occurs between the connection points at both ends, a current flows from the higher potential to the lower potential. However, if the potentials at the connection points at both ends are the same, no current flows, and the potential difference between the both ends. Therefore, when the combined resistance R1 excluding the internal resistance R X of the electricity storage device is calculated without adding R F , R1 = 6 · R ′ + (R E / 2) is obtained.

図22に示す従来の蓄電モジュールM-0の回路構成においては、合成抵抗R0は、蓄電デバイス100の正極端子113aの抵抗RAと負極端子113bの抵抗RBが同一(RA=RB)として計算すると、R0=6・RA+4・RC+4RD+REとなる。 In the circuit configuration of a conventional storage modules M-0 shown in FIG. 22, the combined resistance R0, the resistance R B of the resistor R A and the negative electrode terminal 113b of the positive terminal 113a of the electric storage device 100 is the same (R A = R B) Is calculated as R0 = 6 · R A + 4 · R C + 4R D + R E.

本願の合成抵抗R1を従来の合成抵抗R0と比較すると、本願の電極端子の抵抗R’は、従来の電極端子113の抵抗よりも小さく、かつ、従来のバスバー114〜116の抵抗(4・RC+4RD)が不要となる。また、本願のバスバーの抵抗REは、バスバー21が電極端子13の同極同士を接続(連結)する構成のため、抵抗REは1/2となるのに対し、従来のバスバー117の抵抗REは、異極同士のバスバ115ーを連結(接続)する構成のため、抵抗REは1/2とならない。これらの結果、本願の合成抵抗R1は、従来の合成抵抗R0よりも、大幅に低減できることになる。 Comparing the combined resistance R1 of the present application with the conventional combined resistance R0, the resistance R ′ of the electrode terminal of the present application is smaller than the resistance of the conventional electrode terminal 113 and the resistance (4 · R) of the conventional bus bars 114 to 116. C + 4R D ) becomes unnecessary. Further, the resistance R E of the bus bar of the present application is a resistance R E of 1/2 because the bus bar 21 is configured to connect (connect) the same polarity of the electrode terminals 13, whereas the resistance of the conventional bus bar 117 is Since R E is configured to connect (connect) the bus bars 115 of different polarities, the resistance R E does not become 1/2. As a result, the combined resistance R1 of the present application can be significantly reduced as compared with the conventional combined resistance R0.

蓄電デバイス10が出力密度の高い電気二重層キャパシタにおいては、合成抵抗R1の大幅な低減により、充放電に伴う電力ロスおよび充放電に伴う発熱量の低減にもたらす効果が大きい。   In the electric double layer capacitor in which the power storage device 10 has a high output density, the combined resistance R1 is greatly reduced, which has a great effect of reducing the power loss associated with charge / discharge and the heat generation associated with charge / discharge.

従来の蓄電デバイス100の場合、電極端子113の容器112から突き出る部分は、容器112の上面中央から略垂直に突き出る部分の長さ、容器の前後方向と略平行に延びる部分の長さ、電極端子間の接合面を形成する部分の長さ、の和になるのに対し、本願の蓄電デバイス10の場合、電極端子13の容器12から突き出る部分は、概ね電極端子13の接合面X,Yを形成する部分の長さのみで済むため、蓄電デバイスおよび蓄電モジュールの高さ寸法についても、従来の場合、H(図21、参照)なのに対し、本願の場合、H’(図4、参照)と低められる。そのため、本願の場合、蓄電デバイス10の占有体積が小さくなり、従来と較べると、蓄電モジュールM-1の単位体積あたりの蓄電容量も向上する。   In the case of the conventional power storage device 100, the portion of the electrode terminal 113 protruding from the container 112 is the length of the portion protruding substantially vertically from the center of the upper surface of the container 112, the length of the portion extending substantially parallel to the front-rear direction of the container, In contrast, in the case of the electricity storage device 10 of the present application, the portion protruding from the container 12 of the electrode terminal 13 generally has the bonding surfaces X and Y of the electrode terminal 13 as the sum of the lengths of the portions that form the bonding surfaces between them. Since only the length of the portion to be formed is required, the height dimension of the power storage device and the power storage module is H (refer to FIG. 21) in the conventional case, whereas in the present application, it is H ′ (refer to FIG. 4). Be lowered. Therefore, in the case of the present application, the occupied volume of the electricity storage device 10 is reduced, and the electricity storage capacity per unit volume of the electricity storage module M-1 is also improved as compared with the conventional case.

導電部材22については、抵抗の許容範囲において、配線が簡便な、小径断面の電線が使用されるが、もちろん、抵抗が小さいバスバーを用いてもよい。   For the conductive member 22, an electric wire with a small diameter and a simple cross section is used within the allowable range of resistance. Of course, a bus bar with low resistance may be used.

図1〜図5においては、蓄電デバイス10として電極端子13の配置が異なる2種類のものが用いられるが、1対の電極端子13の接合面(正極接合面Xと負極接合面Y)が容器12の左右方向の中央において、容器12の前後方向へ対向する配置に設定すると、1種類の蓄電デバイスから、図3〜図5と同一容量の蓄電モジュールを構成することが可能となる。   In FIG. 1 to FIG. 5, two types of storage devices 10 having different arrangements of electrode terminals 13 are used, but the bonding surfaces (positive bonding surface X and negative bonding surface Y) of a pair of electrode terminals 13 are containers. In the center of the left and right direction of 12, the container 12 is set to be disposed in the front-rear direction, so that a power storage module having the same capacity as that shown in FIGS. 3 to 5 can be configured from one type of power storage device.

図6〜図18は、第2実施形態を示すものである。図6,図7において、蓄電デバイス50は、電気二重層キャパシタである。電気二重層キャパシタは、電荷を蓄える蓄電要素51と、蓄電要素51を収容する容器52と、蓄電要素51の電荷の出し入れを行う1対の電極端子53と、を備える。   6 to 18 show a second embodiment. 6 and 7, the electricity storage device 50 is an electric double layer capacitor. The electric double layer capacitor includes a power storage element 51 that stores electric charge, a container 52 that houses the power storage element 51, and a pair of electrode terminals 53 that take in and out the charge of the power storage element 51.

蓄電要素51は、正極体と負極体とこれらの間に介在するセパレータとから角形の積層体に構成される。正極体および負極体は、電荷を蓄える電極層(分極性電極)と、電荷の出し入れを行う集電層(集電極)とからなり、集電層の同極同士のリードが結束され、その結束部に極性の対応する電極端子53が接続される。   The power storage element 51 is formed in a rectangular laminated body from a positive electrode body, a negative electrode body, and a separator interposed therebetween. The positive electrode body and the negative electrode body are composed of an electrode layer (polarizable electrode) for storing electric charge and a current collecting layer (current collecting electrode) for taking in and out electric charge, and the leads of the same polarity of the current collecting layer are bound together. The electrode terminal 53 corresponding to the polarity is connected to the part.

容器52は、蓄電要素52の外形に合わせて角形(直方体)に形成され、その内部に蓄電要素52を電解液と共に収容する室が設けられる。1対の電極端子53として、容器12の互いに相対する2面の一方と略面一に連なる第1正極接合面X-1をもつ端子(正極端子53a)と、同じく2面の他方と略面一に連なる第1負極接合面Y-1をもつ端子(負極端子53b)と、が備えられる。   The container 52 is formed in a square shape (a rectangular parallelepiped shape) according to the outer shape of the power storage element 52, and a chamber for storing the power storage element 52 together with the electrolyte is provided therein. As a pair of electrode terminals 53, a terminal (positive electrode terminal 53a) having a first positive electrode bonding surface X-1 that is substantially flush with one of two opposite surfaces of the container 12, and the other of the two surfaces and a substantially surface. And a terminal (negative electrode terminal 53b) having a first negative electrode bonding surface Y-1 continuous with the first negative electrode bonding surface Y-1.

各端子53は、金属板から形成され、容器52の内部(室)に位置する一端部に集電層の同極同士のリードの結束部が溶接などによって接合され、容器52の外部に突き出る他端側が第1接正極合面X-1または第1負極正極面Y-1を構成するのである。   Each terminal 53 is formed of a metal plate, and a bundling portion of leads having the same polarity of the current collecting layer is joined to one end portion located inside (chamber) of the container 52 by welding or the like, and protrudes to the outside of the container 52. The end side constitutes the first tangential positive electrode mating surface X-1 or the first negative electrode positive electrode surface Y-1.

容器52の一方向へ相対する2面と略直交する方向へ相対する2面の一方と略面一の第2正極接合面X-2が端子53aの外部へ突き出る他端側に設けられ、負極端子53bに同じく2面と略直交する方向へ相対する2面の他方と略面一の第2負極接合面Y-2が端子53bの外部へ突き出る他端側に設けられる。   A second positive electrode bonding surface X-2, which is substantially flush with one of the two surfaces facing in the direction substantially orthogonal to the two surfaces facing in one direction of the container 52, is provided on the other end side protruding outside the terminal 53a. Similarly to the terminal 53b, a second negative electrode joint surface Y-2 that is substantially flush with the other of the two surfaces facing in a direction substantially orthogonal to the two surfaces is provided on the other end side that protrudes to the outside of the terminal 53b.

容器52の互いに相対する2面およびこれと略直交する方向へ相対する2面については、この場合、容器52が直方体のため、前面1と後面との2面が一方向へ相対する2面となり、左面と右面3との2面が一方向と略直交する2面となる。   In this case, since the container 52 is a rectangular parallelepiped, the two surfaces of the front surface 1 and the rear surface are two surfaces facing in one direction, with respect to the two surfaces facing the container 52 and the two surfaces facing in a direction substantially orthogonal thereto. The two surfaces of the left surface and the right surface 3 are two surfaces that are substantially orthogonal to one direction.

この例においては、負極端子53bは容器52の前面1の一辺(上辺)の左面側の端部から容器52の上方へ突出され、容器52の前面1と略面一の第1負極接合面Y-1を形成する一方、正極端子53aは、容器52の後面の一辺(上辺)の右面3側の端部から容器52の上方へ突出され、容器52の後面と略面一の第1正極接合面X-1を形成する。負極端子53bの一部が容器52の左面の一辺(上辺)の前面1側の端部から容器52の上方へ突出され、容器52の左面と略面一の第2負極接合面Y-2を形成する一方、正極端子53aの一部が右面3の一辺(上辺)の後面側の端部から容器52の上方へ突出され、容器52の右面3と略面一の第2負極接合面X-2を形成する。   In this example, the negative electrode terminal 53 b protrudes from the left side end of one side (upper side) of the front surface 1 of the container 52 to the upper side of the container 52, and the first negative electrode bonding surface Y substantially flush with the front surface 1 of the container 52. 1 is formed, the positive electrode terminal 53a protrudes upward from the end of the one side (upper side) of the rear surface of the container 52 on the right surface 3 side, and is substantially flush with the rear surface of the container 52. Surface X-1 is formed. A part of the negative electrode terminal 53b protrudes from the end on the front surface 1 side of the one side (upper side) of the left surface of the container 52 to the second negative electrode bonding surface Y-2 that is substantially flush with the left surface of the container 52. On the other hand, a part of the positive electrode terminal 53a protrudes from the rear side end of one side (upper side) of the right surface 3 to the upper side of the container 52, and the second negative electrode bonding surface X− is substantially flush with the right surface 3 of the container 52. 2 is formed.

容器52は、角形の蓄電要素51の外形に合わせて形成される箱部57と、箱部57の開口する上面を封止する蓋部58と、からなり、これらは樹脂(熱溶着性および電気絶縁性もつ)から成形される。   The container 52 includes a box portion 57 formed in accordance with the outer shape of the rectangular power storage element 51, and a lid portion 58 that seals the upper surface of the box portion 57 that opens. Molded from an insulating material).

電極端子53は、蓋部58の内面から突き出る一端部と、蓋部58の外面から突き出る他端部と、蓋部58に埋設される中間部と、からなり、蓋部58と共にインサート成形される。各端子53の蓋部58の内面から突き出る一端部に蓄電要素51の同極同士のリード59の結束部が溶接などによって接合され、蓋部58が蓄電要素51を箱部57の上面(開口)からその内側へ納めて箱部58の開口(上面)部に嵌め付けられ、蓋部58と箱部57との嵌合部がヒートシール処理により熱溶着されるのである。   The electrode terminal 53 includes one end protruding from the inner surface of the lid 58, the other end protruding from the outer surface of the lid 58, and an intermediate portion embedded in the lid 58, and is insert-molded together with the lid 58. . A bundling portion of the leads 59 of the same polarity of the electricity storage element 51 is joined to one end portion protruding from the inner surface of the lid portion 58 of each terminal 53 by welding or the like, and the lid portion 58 connects the electricity storage element 51 to the upper surface (opening) of the box portion 57. Then, it is placed inside and fitted into the opening (upper surface) portion of the box portion 58, and the fitting portion between the lid portion 58 and the box portion 57 is thermally welded by heat sealing.

ヒートシーラによる加熱および加圧を受けて箱部57の熱溶着性樹脂および蓋部58の熱溶着性樹脂が溶融し、放熱後に凝固する樹脂によって箱部57と蓋部58との嵌合部が隙間なく封止される。容器52に電解液の注入口が予め形成され、注入口は、電解液の注入後にシール材などによって封止される。   The heat-sealing resin of the box portion 57 and the heat-welding resin of the lid portion 58 are melted by heating and pressurization by the heat sealer, and the fitting portion between the box portion 57 and the lid portion 58 is a gap by the resin that solidifies after heat radiation. It is sealed without. An inlet for electrolytic solution is formed in the container 52 in advance, and the inlet is sealed with a sealing material or the like after the electrolytic solution is injected.

このような工程により、1対の電極端子として、第1正極接合面X-1および第2正極接合面X-2を持つ端子52bと、第1負極接合面Y-1および第2負極接合面Y-2を持つ端子53bと、を備える電気二重層キャパシタ50(蓄電デバイス)を簡単かつ容易に効率よく製造することができる。電気二重層キャパシタ50は、容器の内圧を所定レベル以下に抑えるガス抜きバルブ(図示せず)が備えられる。   By such a process, as a pair of electrode terminals, a terminal 52b having a first positive electrode bonding surface X-1 and a second positive electrode bonding surface X-2, a first negative electrode bonding surface Y-1 and a second negative electrode bonding surface. The electric double layer capacitor 50 (electric storage device) including the terminal 53b having Y-2 can be easily and easily manufactured. The electric double layer capacitor 50 is provided with a gas vent valve (not shown) that keeps the internal pressure of the container below a predetermined level.

図8,図9は、蓄電モジュールM-2を示すものであり、所要数の蓄電デバイス50(蓄電セル)から組み立てられる。所要数の蓄電セル50は、複数の蓄電デバイス群60に分けられる。各群60の蓄電セル数は、同数とする。   8 and 9 show the power storage module M-2, which is assembled from a required number of power storage devices 50 (power storage cells). The required number of power storage cells 50 is divided into a plurality of power storage device groups 60. The number of storage cells in each group 60 is the same.

所要数の蓄電セル50は、容器52の2面が相対する一方向(容器52の前面1と後面との相対方向)およびこれと略直交する方向(容器52の左面と右面3との相対方向)へ並べられ、容器52の前後方向へ隣り合う蓄電セル間は、第1正極接合面X-1と第1負極接合面Y-1との接合によって直列接続される。容器52の左右方向へ隣り合う蓄電セル間は、第2正極端子X-2同士または第2負極接合面Y-2同士の接合によって接続される。   The required number of energy storage cells 50 includes one direction in which the two surfaces of the container 52 face each other (a relative direction between the front surface 1 and the rear surface of the container 52) and a direction substantially perpendicular thereto (the relative direction between the left surface and the right surface 3 of the container 52). The storage cells adjacent to each other in the front-rear direction of the container 52 are connected in series by joining the first positive electrode bonding surface X-1 and the first negative electrode bonding surface Y-1. The storage cells adjacent to each other in the left-right direction of the container 52 are connected by joining the second positive electrode terminals X-2 or the second negative electrode joining surfaces Y-2.

容器52の一方向(前後方向)へ隣り合う蓄電セル間において、一方の蓄電デバイス50の第1正極接合面X-1と、他方の蓄電デバイス50の第1負極接合面Y-1と、の異極同士の接合面は、容器同士の隣接面(後面と前面1との重なり合う面または前面1と後面との重なり合う面)を境として鏡面対称に配置される。容器52の前後方向と略直交する方向(容器の左右方向)へ隣り合う蓄電デバイス間において、一方の蓄電デバイス50の第2正極接合面X-2または第2負極接合面Y-2と、他方の蓄電デバイス50の第2正極接合面X-2または第2負極接合面Y-2と、の同極同士の接合面は、容器同士の隣接面(左面と右面3との重なり合う面または右面3と左面との重なり合う面)を境として鏡面対称に配置される。   Between the storage cells adjacent in one direction (front-rear direction) of the container 52, the first positive electrode bonding surface X-1 of one power storage device 50 and the first negative electrode bonding surface Y-1 of the other power storage device 50 The joint surfaces of the different polarities are arranged in mirror symmetry with respect to the adjacent surfaces of the containers (the surface where the rear surface and the front surface 1 overlap or the surface where the front surface 1 and the rear surface overlap). Between the power storage devices adjacent to each other in the direction substantially orthogonal to the front-rear direction of the container 52 (the left-right direction of the container), the second positive electrode bonding surface X-2 or the second negative electrode bonding surface Y-2 of one power storage device 50 and the other The same polarity of the second positive electrode bonding surface X-2 or the second negative electrode bonding surface Y-2 of the electricity storage device 50 is an adjacent surface of the containers (a surface overlapping the left surface and the right surface 3 or a right surface 3). And the left surface are overlapped with each other).

この場合、蓄電デバイス50は、負極端子53bと正極端子53aが容器52の上面(四角形)の互いに向かい合う角部(対角部)に配置されるため、電極端子53の配置が異なる2種類のものが用いられる。蓄電デバイスAの電極端子は、図6,図7と同一に配置される。蓄電デバイスBの電極端子53は、蓄電デバイスAの電極端子53と異なる対角部に配置される。これら蓄電セル50は、容器52の前後方向および左右方向へそれぞれ交互に並べられる。   In this case, the electricity storage device 50 has two types of electrode terminals 53 different in arrangement because the negative electrode terminal 53b and the positive electrode terminal 53a are arranged at opposite corner portions (diagonal portions) of the upper surface (rectangle) of the container 52. Is used. The electrode terminals of the electricity storage device A are arranged in the same manner as in FIGS. The electrode terminal 53 of the electricity storage device B is arranged at a different diagonal from the electrode terminal 53 of the electricity storage device A. The storage cells 50 are alternately arranged in the front-rear direction and the left-right direction of the container 52.

この例においては、2列の蓄電デバイス群60の右側は、蓄電セル50が容器52の前後方向へA-B-A-B-A-Bに並べられ、2列の蓄電デバイス群の左側は、蓄電セル50が容器52の前後方向へB-A-B-A-B-Aに並べられる。   In this example, the right side of the two rows of power storage device groups 60 is such that the power storage cells 50 are arranged in the back-and-forth direction of the container 52 in the A-B-A-B-A-B direction. The storage cells 50 are lined up in the front-rear direction of the container 52 in B-A-B-A-B-A.

容器52の前後方向へ隣り合うA-B間において、Aの第1正極接合面X-1と、Bの第1負極接合面Y-1と、が容器同士の隣接面(Aの容器52の後面とBの容器52の前面との重なり合う面)を境として鏡面対称となり、これらが溶接によって接合される。容器52の前後方向へ隣り合うB-A間において、Bの第1正極接合面X-1と、Aの第1負極接合面Y-1と、が容器同士の隣接面(Bの容器52の後面とAの容器52の前面が重なり合う面)を境として鏡面対称となり、これらが溶接によって接合される。   Between A and B adjacent in the front-rear direction of the container 52, the first positive electrode bonding surface X-1 of A and the first negative electrode bonding surface Y-1 of B are adjacent surfaces of the containers (of the container 52 of A). The surface of the rear surface and the front surface of the B container 52 is mirror-symmetrical, and these are joined by welding. Between B-A adjacent in the front-rear direction of the container 52, the first positive electrode bonding surface X-1 of B and the first negative electrode bonding surface Y-1 of A are adjacent surfaces of the containers (of the container 52 of B). The rear surface and the front surface of the A container 52 overlap each other) and are mirror-symmetrical and are joined by welding.

容器52の左右方向へ隣り合うA-B間において、Aの第2負極接合面Y-2と、Bの第2負極接合面Y-2と、が容器同士の隣接面(Aの容器の左面とBの容器の右面3との重なり合う面)を境として鏡面対称となり、これらが溶接によって接合される。容器52の左右方向へ隣り合うB-A間において、Bの第2正極接合面X-2と、Aの第2正極接合面X-2と、が容器同士の隣接面(Bの容器の左面とAの容器の右面3が重なり合う面)を境として鏡面対称となり、これらが溶接によって接合される。   Between AB adjacent to the left-right direction of the container 52, the second negative electrode bonding surface Y-2 of A and the second negative electrode bonding surface Y-2 of B are adjacent surfaces of the containers (the left surface of the container of A). And the right surface 3 of the container B are mirror-symmetrical with respect to each other and are joined by welding. Between B-A adjacent in the left-right direction of the container 52, the second positive electrode bonding surface X-2 of B and the second positive electrode bonding surface X-2 of A are adjacent surfaces of the containers (the left surface of the B container). And the right surface 3 of the container of A are overlapped), and they are mirror-symmetrical and are joined by welding.

容器52の前後方向へ並ぶ蓄電セル50の列の最前部を左右方向へ並ぶA-B間は、電極端子53の第2負極接合面Y-2同士の接合となり、容器52の前後方向へ並ぶ蓄電セル50の列の最後部を左右方向へ並ぶB-A間は、電極端子53の第2正極接合面X-2同士の接合となる。これら同極同士の接合部が蓄電モジュールM-2の外部端子となる場合、これら同極同士の接合部に外部の充放電回路(図示せず)が接続される つまり、複数の蓄電デバイス群60は、外部の充放電回路に対し、互いに並列接続される関係になる。   Between A and B where the foremost part of the row of the storage cells 50 arranged in the front-rear direction of the container 52 is arranged in the left-right direction, the second negative electrode joint surfaces Y-2 of the electrode terminals 53 are joined together, and are arranged in the front-rear direction of the container 52. The line B-A in which the rearmost part of the row of the storage cells 50 is arranged in the left-right direction is a joint between the second positive electrode joint surfaces X-2 of the electrode terminals 53. When these same-polarity junctions serve as external terminals of the power storage module M-2, an external charge / discharge circuit (not shown) is connected to these homopolarity-joints. Are connected to each other in parallel with an external charge / discharge circuit.

蓄電モジュールM-2において、容器52の前後方向へ蓄電デバイス50を並べると、その方向へ隣り合う蓄電デバイス間の、一方の第1正極接合面X-1と、他方の第1負極接合面Y-1と、が容器同士の隣接面を境として鏡面対称となり、容器52の左右方向へ蓄電デバイス50を並べると、その方向へ隣り合う蓄電デバイス間の、第2負極接合面Y-2同士または第1正極接合面X-2同士と、が容器同士の隣接面を境として鏡面対称となるため、蓄電デバイス50を前後左右へ並べるのみで容器52の前後方向へ異極同士の接合面および容器52の左右方向へ同極同士の接合面が重なり合うようになる。   In the power storage module M-2, when the power storage devices 50 are arranged in the front-rear direction of the container 52, one first positive electrode bonding surface X-1 and the other first negative electrode bonding surface Y between the power storage devices adjacent in the direction are arranged. -1 is mirror-symmetrical with respect to the adjacent surfaces of the containers, and when the power storage devices 50 are arranged in the left-right direction of the container 52, the second negative electrode bonding surfaces Y-2 between the power storage devices adjacent in the direction or Since the first positive electrode bonding surfaces X-2 are mirror-symmetrical with respect to the adjacent surfaces of the containers, the bonding surfaces and containers having different polarities in the front-rear direction of the container 52 can be obtained simply by arranging the power storage devices 50 in the front-rear and left-right directions. The joint surfaces of the same poles overlap in the left-right direction of 52.

これら接合は、溶接(例えば、スポット溶接)に拠ると、金属板(電極端子53を形成する)の2枚重ねの溶接となるため、3枚ずつの溶接となる従来の場合に較べると、溶接に伴う蓄電セル50の蓄電要素51への伝熱との関係から、電極端子53の外部へ引き出される部分に要求される余分長を大きく取られずに済む。また、2枚重ねの溶接により、良好な安定した溶接部が得やすくなる。また、電極端子53の外部へ引き出される部分に要求される余分長を大きく取られずに済み、蓄電デバイス間および蓄電デバイス群間の接続にバスバーが要らないため、所要数の蓄電セルを繋ぐ直列経路(充放電時の通電経路)が効率よく短縮され、充放電時の電力ロス(発熱損)を大幅に低減することができる。   Since these joints are welding of two sheets of metal plates (forming electrode terminals 53) when welding (for example, spot welding) is performed, welding is performed as compared with the conventional case of welding three by three. Due to the relationship with the heat transfer from the storage cell 50 to the storage element 51, the extra length required for the portion drawn out of the electrode terminal 53 does not have to be increased. Moreover, it becomes easy to obtain a favorable stable welded portion by welding two sheets. Further, the extra length required for the part drawn out of the electrode terminal 53 is not required to be large, and a bus bar is not required for connection between the power storage devices and between the power storage device groups. The (energization path at the time of charging / discharging) can be shortened efficiently, and the power loss (heating loss) at the time of charging / discharging can be greatly reduced.

図9において、R’は蓄電セルの電極端子の抵抗であり、各a点,各b点は、電極端子53の第2正極接合面X-2同士または第2負極接合面Y-2同士の接合により、電極端子53間が同電位に保たれる。各c点は、電極端子53の第1正極接合面X-1と第1負極接合面Y-1との異極同士の接合のみとなる。従って、容器52の前後方向へ2個の蓄電セル50が直列に接続されるもの(組)が、容器52の左右方向へ2組並列に接続される構成(最小単位回路)となり、この場合、最小単位回路S(図中の円形内の構成)が容器52の前後方向へ3つ直列に接続される。   In FIG. 9, R ′ is the resistance of the electrode terminal of the storage cell, and each point a and each point b are between the second positive electrode bonding surfaces X-2 or the second negative electrode bonding surfaces Y-2 of the electrode terminal 53. By joining, the electrode terminals 53 are kept at the same potential. Each point c is only the bonding between the different polarities of the first positive electrode bonding surface X-1 and the first negative electrode bonding surface Y-1 of the electrode terminal 53. Accordingly, a configuration in which two storage cells 50 are connected in series in the front-rear direction of the container 52 (set) is a configuration (minimum unit circuit) in which two sets are connected in parallel in the left-right direction of the container 52. Three minimum unit circuits S (configuration in a circle in the drawing) are connected in series in the front-rear direction of the container 52.

最小単位回路間においても、正極端子同士の連接面(Aの第1正極接合面とBの第1正極接合面との連続する接合面)と、負極端子同士の連接面(Aの第1負極接合面とBの第1負極接合面との連続する接合面)と、が前後方向へ隣り合う容器同士の隣接面を境として鏡面対称となる。   Also between the minimum unit circuits, the connecting surface between the positive terminals (the continuous connecting surface of the first positive electrode bonding surface of A and the first positive electrode bonding surface of B) and the connecting surface of the negative electrode terminals (the first negative electrode of A) The joining surface and the joining surface of the first negative electrode joining surface of B) are mirror-symmetric with respect to the adjacent surface of the containers adjacent in the front-rear direction.

各最小単位回路Sにおいては、A-Bの直列経路(小楕円で括られる)の両端電圧と、B-Aの直列経路(小楕円で括られる)の両端電圧と、が平準化(均等化)されるので、充放電などに伴う蓄電デバイスの端子電圧のばらつきが小さく抑えられるのである。   In each minimum unit circuit S, the both-ends voltage of the AB series path (enclosed by a small ellipse) and the both-ends voltage of the B-A series path (enclosed by a small ellipse) are leveled (equalized). Therefore, variation in the terminal voltage of the electricity storage device due to charge / discharge or the like can be reduced.

第2正極接合面同士または第2負極接合面同士の接合部は、A-Bの直列経路の両端電圧とB-Aの直列経路の両端電圧との間に電位差が生じると、電位の高い方から低い方へ電流が流れるが、両者の電位が同一であれば、電流は流れることがなく、両者の電位差によって流れる電流も極く小さいため、電極端子53の第2正極接合面同士または第2負極接合面同士の接合部の抵抗を入れずに蓄電デバイスの内部抵抗RXを除く合成抵抗R2を計算すると、R2=6・R’となる。 When the potential difference occurs between the both-end voltage of the AB series path and the both-end voltage of the B-A series path, the junction between the second cathode joining faces or the second anode joining faces has a higher potential. However, if the two potentials are the same, no current flows, and the current that flows due to the potential difference between the two is very small. When the combined resistance R2 excluding the internal resistance R X of the electricity storage device without adding the resistance of the junction between the negative electrode bonding surfaces is calculated, R2 = 6 · R ′.

本願の合成抵抗R1を従来の合成抵抗R0(図、参照)と比較すると、本願の電極端子53の抵抗R’は、従来の電極端子113の抵抗RAよりも小さく、かつ、従来のバスバーの抵抗(4・RC+4RD+RE)も不要となる。これらの結果、本願の合成抵抗R2は、従来の合成抵抗R0よりも格段に低減できることになる。蓄電デバイス50が出力密度の高い電気二重層キャパシタにおいては、合成抵抗R1の大幅な低減により、充放電に伴う電力ロスおよび充放電に伴う発熱量の低減にもたらす効果が大きい。 When the combined resistance R1 of the present application is compared with the conventional combined resistance R0 (see the figure), the resistance R ′ of the electrode terminal 53 of the present application is smaller than the resistance RA of the conventional electrode terminal 113, and A resistor (4 · R C + 4R D + R E ) is also unnecessary. As a result, the combined resistance R2 of the present application can be significantly reduced as compared with the conventional combined resistance R0. In the electric double layer capacitor in which the power storage device 50 has a high output density, the combined resistance R1 is greatly reduced, which has a great effect of reducing the power loss associated with charge / discharge and the heat generation associated with charge / discharge.

最小単位回路Sにおいては、図10,図11に示すように、2個の蓄電セル50が直列接続されるA-B間と、2個の蓄電セル50が直列接続されるB-A間と、を接続する導電部材22を用いることが考えられる。導電部材22により、A−Bにおける電極端子53の異極同士の接合部と、B-Aにおける電極端子53の異極同士の接合部と、の間が同電位に保たれる。言い換えれば、図11の楕円の小円で括られるAとBとの端子電圧が平準化(均等化)されるため、図8,図9の場合に較べると、充放電などに伴う蓄電セルの端子電圧のばらつきが小さく抑えられるのである。   In the minimum unit circuit S, as shown in FIG. 10 and FIG. 11, between A and B where two storage cells 50 are connected in series, and between B and A where two storage cells 50 are connected in series. It is conceivable to use a conductive member 22 for connecting the two. The conductive member 22 maintains the same potential between the joint between the different polarities of the electrode terminal 53 in AB and the joint between the different polarities of the electrode terminal 53 in B-A. In other words, since the terminal voltages of A and B, which are bounded by the ellipse small circles in FIG. 11, are leveled (equalized), compared to the case of FIG. 8 and FIG. Variations in terminal voltage can be minimized.

図12〜図18は、第2実施形態の変形例を示すものであり、図12の蓄電モジュールM-3は、蓄電容量を高めるため、蓄電デバイス群が3列に構成される。図13の蓄電モジュールM-4は、さらに蓄電容量を高めるため、蓄電デバイス群が4列に構成される。   FIGS. 12 to 18 show modifications of the second embodiment. In the power storage module M-3 in FIG. 12, the power storage device group is configured in three rows in order to increase the power storage capacity. The power storage module M-4 in FIG. 13 includes power storage device groups arranged in four rows in order to further increase the power storage capacity.

蓄電モジュールM-3は、図8,図9の蓄電モジュールM-2(以下、単に標準モジュールRMと称す)に蓄電デバイス群60aが1列増やされる。蓄電デバイス群60aは、2種類の蓄電デバイス50(蓄電セル)が容器52の前後方向へA-B-A-B-A-Bに並べられ、標準モジュールRMの左面に蓄電デバイス群60a(追加の蓄電デバイス群)の右面が重なり合うように配置される。   In the power storage module M-3, the power storage device group 60a is increased by one column to the power storage module M-2 in FIG. 8 and FIG. 9 (hereinafter simply referred to as the standard module RM). In the power storage device group 60a, two types of power storage devices 50 (power storage cells) are arranged in the back-and-forth direction of the container 52 in the A-B-A-B-A-B direction, and the power storage device group 60a (additional) is added to the left side of the standard module RM. Are arranged so that the right surfaces of the storage device groups) overlap.

標準モジュールRMと蓄電デバイス群60aとの隣接面(標準モジュールRMの左面と蓄電デバイス群60aの右面との重なり合う面)においても、両者の電極端子53の接合面同士は、鏡面対称になるため、これらの間の接合も簡単に効率よく行える。   Even in the adjacent surface of the standard module RM and the power storage device group 60a (the surface where the left surface of the standard module RM and the right surface of the power storage device group 60a overlap), the joint surfaces of both electrode terminals 53 are mirror-symmetric, Bonding between them can be performed easily and efficiently.

図12において、71は蓄電デバイス群60aの前後方向の両端に位置する電極端子53と、標準モジュールRMの各蓄電デバイス群60の前後方向の両端に位置する電極端子53の同極同士の接合部と、の間をそれぞれ同極同士に接続するバスバーであり、これらの接合についても、2枚重ねの溶接で済むため、簡単に効率よく処理することができる。   In FIG. 12, reference numeral 71 denotes a joint between the electrode terminals 53 positioned at both ends in the front-rear direction of the power storage device group 60 a and the same polarity of the electrode terminals 53 positioned at both ends in the front-rear direction of each power storage device group 60 of the standard module RM. The bus bars are connected to each other with the same polarity, and these joints can be easily and efficiently processed because two-layer welding is sufficient.

図13の蓄電モジュールM-4は、標準モジュールRMが2つ組み合わされる。標準モジュールRM-1の左面または右面に標準モジュールRM-2の右面または左面が重なり合うように配置され、標準モジュールRM同士の隣接面(図示の場合、標準モジュールRM-1の左面と標準モジュールRM-2の右面との重なり合う面)においても、両者の電極端子53の接合面同士が鏡面対称になる。72は各標準モジュールRMの前後方向の両端に位置する電極端子53の同極同士の接合部をそれぞれ接続するバスバーである。   The power storage module M-4 in FIG. 13 is a combination of two standard modules RM. The right and left surfaces of the standard module RM-2 overlap with the left or right surface of the standard module RM-1, and the adjacent surfaces of the standard modules RM (in the illustrated case, the left surface of the standard module RM-1 and the standard module RM- 2), the joint surfaces of the electrode terminals 53 are mirror-symmetric. Reference numeral 72 denotes a bus bar that connects joints of the same polarity of the electrode terminals 53 located at both ends in the front-rear direction of each standard module RM.

図14は、蓄電モジュールM-4の回路構成を示すものであり、R’は蓄電セル50の電極端子53の抵抗であり、RE’はバズバー72の抵抗である。 FIG. 14 shows a circuit configuration of the power storage module M-4, where R ′ is the resistance of the electrode terminal 53 of the power storage cell 50, and R E ′ is the resistance of the buzz bar 72.

各標準モジュールRMは、複数(この例においては、3つ)の最小単位回路S(図中の円形内の構成)を備えるが、RM-1とRM-2との接合により、RM-1の前後方向へ並ぶ2つ最小単位回路Sと、RM-2の前後方向へ並ぶ2つの最小単位回路Sと、の間にこれら最小単位回路Sの蓄電セル50を1個ずつ共有する最小単位回路Sが出来る。このため、最小単位回路Sに働く電圧の均等化(平準化)が最小単位回路Sの範囲を超えて連鎖するようになる。   Each standard module RM includes a plurality (three in this example) of minimum unit circuits S (configuration in a circle in the figure). However, by joining RM-1 and RM-2, A minimum unit circuit S that shares one storage cell 50 of each of the minimum unit circuits S one by one between the two minimum unit circuits S arranged in the front-rear direction and the two minimum unit circuits S arranged in the front-rear direction of RM-2. I can do it. For this reason, equalization (leveling) of voltages applied to the minimum unit circuit S is chained beyond the range of the minimum unit circuit S.

各最小単位回路Sにおいて、2個の蓄電セル50が直列接続される組同士の両端電圧が平準化(均等化)されるが、1個の蓄電セル50に注目すると、複数の最小単位回路Sに働く電圧の平準化(均等化)作用を受け、また、複数の最小単位回路Sに働く電圧の平準化作用に影響を与えるので、この連鎖がM-4全体に及べば、蓄電セル個々の端子電圧を均等化(平準化)することも可能となる。   In each minimum unit circuit S, the voltage between both ends of a set in which two storage cells 50 are connected in series is leveled (equalized). When attention is paid to one storage cell 50, a plurality of minimum unit circuits S Since the voltage leveling (equalization) of the voltage acting on the voltage and the leveling action of the voltage acting on the plurality of minimum unit circuits S are affected, if this chain reaches the entire M-4, the individual storage cells It is also possible to equalize (equalize) the terminal voltages.

図15は、別の変形例を示すものである。蓄電モジュールM-5は、2つの標準モジュールRMから構成される。これら標準モジュールRM-1,RM-2は、設置面を半減させるため、上下2段に配置される。各標準モジュールRMは、各電極端子53の突出面を上向きに上下方向へ平行移動させる形に組み立てられ、上下2段の標準モジュールRMにおいて、右面に表れる電極端子53の異極同士の連接面(第2正極接合面X-2と第2負極接合面Y-2との連続面)A〜C同士が垂直方向へ延びるバスバー73aを介して接続され、左面に表れる電極端子53の異極同士の連接面D〜F(第2正極接合面X-2と第2負極接合面Y-2との連続面)同士が垂直方向へ延びるバスバー73bを介して接続される。   FIG. 15 shows another modification. The power storage module M-5 is composed of two standard modules RM. These standard modules RM-1 and RM-2 are arranged in two upper and lower stages in order to halve the installation surface. Each standard module RM is assembled in such a manner that the protruding surface of each electrode terminal 53 is translated upward and downward, and in the upper and lower two-stage standard module RM, connecting surfaces of different polarities of the electrode terminal 53 appearing on the right surface ( A continuous surface of the second positive electrode bonding surface X-2 and the second negative electrode bonding surface Y-2) A to C are connected to each other via a bus bar 73a extending in the vertical direction, and the different polarities of the electrode terminal 53 appearing on the left surface. The connecting surfaces D to F (continuous surfaces of the second positive electrode bonding surface X-2 and the second negative electrode bonding surface Y-2) are connected to each other via a bus bar 73b extending in the vertical direction.

各標準モジュールRMにおいて、前面に表れる電極端子53の同極同士の連接面(第1負極接合面Y-1と第1負極接合面Y-1との連続面)同士が垂直方向へ延びるバスバー74aを介して接続され、後面に表れる電極端子53の同極同士の連接面(第1正極接合面X-1と第1正極接合面X-1との連続面)同士が垂直方向へ延びるバスバー74bを介して接続され、これらのバズバー74a,74bにより、蓄電モジュールM-5の外部端子が形成される。   In each standard module RM, a bus bar 74a in which connecting surfaces of the same polarity of electrode terminals 53 appearing on the front surface (continuous surface of the first negative electrode bonding surface Y-1 and the first negative electrode bonding surface Y-1) extend in the vertical direction. The bus bar 74b is connected to each other, and the connecting surfaces of the same polarity of the electrode terminals 53 appearing on the rear surface (continuous surfaces of the first positive electrode bonding surface X-1 and the first positive electrode bonding surface X-1) extend in the vertical direction. The external terminals of the power storage module M-5 are formed by these buzz bars 74a and 74b.

図16は、蓄電モジュールM-5の回路構成を示すものであり、各標準モジュールRMは、複数(この例においては、3つ)の最小単位回路S(図中の円形内の構成)を備えるが、電極端子53の連接面A〜C同士および連接面D〜F同士をそれぞれ接続するバスバー73a,73bにより、RM-1の前後方向へ並ぶ2つ最小単位回路Sと、RM-2の前後方向へ並ぶ2つの最小単位回路Sと、の間にこれら最小単位回路Sの蓄電セル50を1個ずつ共有する最小単位回路SがM-5の両側に出来るため、最小単位回路Sの範囲を超えて連鎖する電圧の均等化(平準化)作用をM-5全体へ及ぼすことができる。   FIG. 16 shows a circuit configuration of the power storage module M-5, and each standard module RM includes a plurality (three in this example) of minimum unit circuits S (configuration in a circle in the drawing). Are connected to the connecting surfaces A to C and connecting surfaces D to F of the electrode terminal 53 by the bus bars 73a and 73b, respectively, and the two minimum unit circuits S arranged in the front-rear direction of the RM-1 and the front and rear of the RM-2. Since the minimum unit circuit S that shares one storage cell 50 of each of the minimum unit circuits S between two minimum unit circuits S arranged in the direction can be formed on both sides of M-5, the range of the minimum unit circuit S is The voltage leveling (leveling) effect can be exerted on the entire M-5.

なお、M-5を構成する蓄電セル個々の端子電圧53を均等化するため、導電部材(図10の22、参照)により、最小単位回路Sの蓄電セル間(A-B間とB-A間)同士を接続することも考えられる。   In addition, in order to equalize the terminal voltage 53 of each of the storage cells constituting M-5, the conductive member (see 22 in FIG. 10) can be used to connect between the storage cells of the minimum unit circuit S (between A-B and B-A). It is also conceivable to connect each other.

図16において、R’は蓄電セル50の電極端子の抵抗であり、M-5の合成抵抗は、M-2(図20、参照)と較べると、蓄電デバイス群60の数が増える分、格段に小さくなる。   In FIG. 16, R ′ is the resistance of the electrode terminal of the electricity storage cell 50, and the combined resistance of M-5 is markedly increased by the increase in the number of electricity storage device groups 60 compared to M-2 (see FIG. 20). Becomes smaller.

バスバー73a、73bについては、各連接面A〜C同士、各連接面D〜F同士を同電位に接続するものであり、抵抗の許容範囲において、配線が簡便な、小径断面の電線(図の導電部材22)に置き換えることも可能となる。   As for the bus bars 73a and 73b, the connecting surfaces A to C and the connecting surfaces D to F are connected to the same potential. It is also possible to replace the conductive member 22).

図17は、別の変形例を示すものであり、蓄電モジュールM-6は、2つの標準モジュールRMから構成される。これら標準モジュールRM-1,RM-2は、体積効率の向上(単位体積あたりの蓄電容量のアップ)を図るため、電極端子53の突出する面が向かい合わせに組み合わされる。   FIG. 17 shows another modification example, and the power storage module M-6 includes two standard modules RM. In these standard modules RM-1 and RM-2, the projecting surfaces of the electrode terminals 53 are combined face to face in order to improve volumetric efficiency (increase the storage capacity per unit volume).

RM-1の電極端子53の突出端面と、RM-2の電極端子53の突出端面と、はこれらの向かい合わせ面を境として鏡面対称に配置され、電極端子の連接面A〜C同士および連接面D〜F同士がバスバー74を介して接続される。75はM-6の前後の電極端子53の同極同士の連接面間を接合するバスバーであり、M-6の外部端子を形成する。   The projecting end surface of the electrode terminal 53 of the RM-1 and the projecting end surface of the electrode terminal 53 of the RM-2 are arranged mirror-symmetrically with respect to these facing surfaces, and the connecting surfaces A to C of the electrode terminals are connected to each other. The surfaces D to F are connected to each other through the bus bar 74. 75 is a bus bar that joins the connecting surfaces of the same polarity of the electrode terminals 53 before and after M-6, and forms an external terminal of M-6.

蓄電モジュールM-6は、2つの標準モジュールRMが電極端子53の突出する面を向かい合わせに組み合わされるので、バスバー74,75も短くて済み、体積効率の向上が得られる。   In the power storage module M-6, two standard modules RM are combined with the protruding surfaces of the electrode terminals 53 facing each other, so that the bus bars 74 and 75 can be shortened, and volume efficiency can be improved.

図15のバスバー73a、73bおよび図17のバスバー74については、各連接面A〜C同士、各連接面D〜F同士を同電位に接続するものであり、抵抗の許容範囲において、配線が簡便な、小径断面の電線(図の導電部材22)に置き換えることも可能となる。   The bus bars 73a and 73b in FIG. 15 and the bus bar 74 in FIG. 17 connect the connection surfaces A to C and the connection surfaces D to F to the same potential, and the wiring is simple within the allowable resistance range. It is also possible to replace the electric wire with a small-diameter cross section (conductive member 22 in the figure).

図13〜図17において、標準モジュールRMは、図8の蓄電モジュールM-2が使用されるが、図12の蓄電モジュールM-3を標準モジュールRM’として、図18のように上下2段の蓄電モジュールM-7を構成することも考えられる。   13 to 17, the standard module RM uses the power storage module M-2 of FIG. 8, but the power storage module M-3 of FIG. It is also conceivable to configure the power storage module M-7.

この発明に係る電極端子の配置構成および接続構成は、電気二重層キャパシタやリチウム電池に適用が限定されるものでなく、充放電が繰り返し可能な各種の蓄電デバイスへ広く適用可能となる。   The arrangement and connection configuration of the electrode terminals according to the present invention are not limited to application to electric double layer capacitors and lithium batteries, and can be widely applied to various power storage devices that can be repeatedly charged and discharged.

10,50 蓄電デバイス
13,53 電極端子
M-1〜M-7 蓄電モジュール
X 正極接合面
Y 負極接合面
X-1 第1正極接合面
Y-1 第1負極接合面
X-2 第2正極接合面
Y-2 第2負極接合面
22 導電部材
DESCRIPTION OF SYMBOLS 10,50 Power storage device 13,53 Electrode terminal M-1 to M-7 Power storage module X Positive electrode bonding surface Y Negative electrode bonding surface X-1 First positive electrode bonding surface Y-1 First negative electrode bonding surface X-2 Second positive electrode bonding Surface Y-2 Second negative electrode bonding surface 22 Conductive member

Claims (8)

所要数の蓄電デバイスから構成される蓄電モジュールにおいて、所要数の蓄電デバイスは、複数の蓄電デバイス群に分けられ、各群同数の蓄電デバイスが電極端子の接合によって直列接続され、複数の蓄電デバイス群が互いに並列接続され、各蓄電デバイスは、電荷を蓄える蓄電要素と、蓄電要素を収装する容器と、蓄電要素の正極側および負極側に接続される1対の電極端子と、を備え、前記容器の外形が一方向へ相対する2面を含む多角形に形成され、1対の電極端子として、前記容器の一方向へ相対する2面の一方と略面一の正極接合面を持つ正極端子と、同じく2面の他方と略面一の負極接合面を持つ負極端子と、を備える、ことを特徴とする蓄電モジュール。   In a power storage module including a required number of power storage devices, the required number of power storage devices are divided into a plurality of power storage device groups, and the same number of power storage devices in each group are connected in series by joining electrode terminals, and a plurality of power storage device groups Are connected in parallel to each other, and each power storage device includes a power storage element for storing electric charge, a container for storing the power storage element, and a pair of electrode terminals connected to the positive electrode side and the negative electrode side of the power storage element, A positive electrode terminal in which the outer shape of the container is formed into a polygon including two surfaces facing in one direction, and has a positive electrode joining surface that is substantially flush with one of the two surfaces facing in one direction of the container as a pair of electrode terminals. And a negative electrode terminal having a negative electrode joint surface substantially flush with the other of the two surfaces. 前記各群同数の蓄電デバイスは、前記容器の一方向へ並べられ、前記1対の電極端子は、前記容器の一方向へ隣り合う蓄電デバイスの一方の正極端子または負極端子の接合面と、他方の負極端子または正極端子の接合面と、の異極同士が前記容器同士の一方向へ隣接する面を境として鏡面対称に配置され、前記一方向へ並ぶ蓄電デバイスは、前記鏡面対称となる異極同士の接合面の接合によって接続される、ことを特徴とする請求項1に記載の蓄電モジュール。   The same number of power storage devices in each group are arranged in one direction of the container, and the pair of electrode terminals includes a joint surface of one positive electrode terminal or negative electrode terminal of the power storage device adjacent in one direction of the container, and the other The negative electrodes of the first electrode terminal or the bonding surface of the positive electrode terminal are arranged in mirror symmetry with respect to a surface adjacent to the containers in one direction, and the electricity storage devices arranged in the one direction are different from each other in the mirror symmetry. The power storage module according to claim 1, wherein the power storage modules are connected by bonding of bonding surfaces of the electrodes. 前記充放電回路に対して並列接続される複数の蓄電デバイス群の、蓄電デバイス間の同一位置を互いに接続する導電部材を備える、ことを特徴とする請求項1または請求項2に記載の蓄電モジュール。   3. The power storage module according to claim 1, further comprising: a conductive member that connects a plurality of power storage device groups connected in parallel to the charge / discharge circuit at the same position between the power storage devices. . 所要数の蓄電デバイスから構成される蓄電モジュールにおいて、所要数の蓄電デバイスは、複数の蓄電デバイス群に分けられ、各群同数の蓄電デバイスが電極端子の接合によって直列接続され、複数の蓄電デバイス群が互いに並列接続され、各蓄電デバイスは、電荷を蓄える蓄電要素と、蓄電要素を収装する容器と、蓄電要素の正極側および負極側に接続される1対の電極端子と、を備え、前記容器の外形が一方向へ相対する2面と、前記一方向へ相対する2面と略直交する方向へ相対する2面と、を含む多角形に形成され、1対の電極端子として、前記容器の一方向へ相対する2面の一方と略面一の第1正極接合面を持つ正極端子と、同じく2面の他方と略面一の第1負極接合面を持つ負極端子と、が備えられ、前記正極端子に前記一方向へ相対する2面と略直交する方向へ相対する2面の一方と略面一の第2正極接合面、負極端子に同じく2面と略直交する方向へ相対する2面の他方と略面一の第2負極接合面、がそれぞれ形成される、ことを特徴とする蓄電モジュール。   In a power storage module including a required number of power storage devices, the required number of power storage devices are divided into a plurality of power storage device groups, and the same number of power storage devices in each group are connected in series by joining electrode terminals, and a plurality of power storage device groups Are connected in parallel to each other, and each power storage device includes a power storage element for storing electric charge, a container for storing the power storage element, and a pair of electrode terminals connected to the positive electrode side and the negative electrode side of the power storage element, An outer shape of the container is formed in a polygon including two surfaces facing in one direction and two surfaces facing in a direction substantially perpendicular to the two surfaces facing in the one direction, and the container is used as a pair of electrode terminals. A positive electrode terminal having a first positive electrode bonding surface substantially flush with one of the two surfaces facing in one direction, and a negative electrode terminal having a first negative electrode bonding surface substantially flush with the other of the two surfaces. The one-way to the positive terminal The second positive electrode joining surface that is substantially flush with one of the two surfaces facing in the direction substantially orthogonal to the two opposing surfaces, and substantially the same as the other of the two surfaces facing in the direction substantially perpendicular to the two surfaces of the negative electrode terminal. A power storage module, wherein a second negative electrode bonding surface is formed. 各群同数の蓄電デバイスは、前記容器の一方向へ並べられ、複数の蓄電デバイス群は、前記容器の一方向と略直交する方向へ並べられ、前記1対の電極端子は、前記容器の一方向へ隣り合う蓄電デバイスの一方の第1正極接合面または第1負極接合面と、他方の第1負極接合面または第1正極接合面と、の異極同士が前記容器同士の一方向へ隣接する面を境として鏡面対称に配置され、前記一方向へ並ぶ蓄電デバイスは、前記鏡面対称となる異極同士の接合面の接合によって接続され、前記容器の一方向と略直交する方向へ隣り合う蓄電デバイスの一方の第2正極接合面または第2負極接合面と、他方の第2負極接合面または第2正極接合面と、の同極同士が前記容器同士の一方向と略直交する方向へ隣接する面を境として鏡面対称に配置され、前記一方向と略直交する方向へ隣り合う蓄電デバイスは、前記鏡面対称となる同極同士の接合面の接合によって接続される、ことを特徴とする請求項4に記載の蓄電モジュール。   The same number of power storage devices in each group are arranged in one direction of the container, the plurality of power storage device groups are arranged in a direction substantially orthogonal to the one direction of the container, and the pair of electrode terminals is one of the containers. Different polarities of one first positive electrode bonding surface or first negative electrode bonding surface of the electricity storage device adjacent in the direction and the other first negative electrode bonding surface or first positive electrode bonding surface are adjacent in one direction between the containers. The storage devices arranged in a mirror symmetry with respect to the surface to be aligned and connected in the one direction are connected by joining the joining surfaces of the different polarities that are mirror-symmetric and are adjacent to each other in a direction substantially orthogonal to the one direction of the container. In the direction in which the same polarity of one second positive electrode bonding surface or second negative electrode bonding surface of the electricity storage device and the other second negative electrode bonding surface or second positive electrode bonding surface is substantially orthogonal to one direction of the containers. Arranged mirror-symmetrically with respect to adjacent surfaces , The electric storage device adjacent to the one direction in a direction substantially perpendicular to, the power storage module according to claim 4, wherein connected by bonding the bonding surfaces of the same poles to be mirror-symmetric, characterized in that. 前記複数の蓄電デバイス群が前記容器の一方向と略直交する方向へ並ぶ両サイドの蓄電デバイス群の、前記容器の一方向へ並ぶ蓄電デバイス間の異極同士の接合部を、相互に接続する導電部材を備える、ことを特徴とする請求項4または請求項5に記載の蓄電モジュール。   A plurality of power storage device groups are connected to each other at the junctions between the power storage devices arranged in one direction of the container of the power storage device groups on both sides arranged in a direction substantially orthogonal to the one direction of the container. The power storage module according to claim 4, further comprising a conductive member. 電荷を蓄える蓄電要素と、蓄電要素を収装する容器と、蓄電要素の正極側および負極側に接続される1対の電極端子と、を備える蓄電デバイスにおいて、前記容器の外形が一方向へ相対する2面と、前記一方向へ相対する2面と略直交する方向へ相対する2面と、を含む多角形に形成され、1対の電極端子として、前記容器の一方向へ相対する2面の一方と略面一の第1正極接合面を持つ正極端子と、同じく2面の他方と略面一の第1負極接合面を持つ負極端子と、が備えられ、前記正極端子に前記一方向へ相対する2面と略直交する方向へ相対する2面の一方と略面一の第2正極接合面、前記負極端子に同じく2面と略直交する方向へ相対する2面の他方と略面一の第2負極接合面、がそれぞれ形成されることを特徴とする蓄電デバイス。   An electrical storage device comprising: an electrical storage element that stores electric charge; a container that houses the electrical storage element; and a pair of electrode terminals that are connected to the positive electrode side and the negative electrode side of the electrical storage element. The two surfaces facing each other in one direction as a pair of electrode terminals are formed into a polygon including two surfaces facing each other and two surfaces facing substantially perpendicular to the two surfaces facing one direction. A positive electrode terminal having a first positive electrode bonding surface substantially flush with one of the two, and a negative electrode terminal having a first negative electrode bonding surface substantially flush with the other of the two surfaces. The second positive electrode joining surface that is substantially flush with one of the two surfaces facing in the direction substantially orthogonal to the two surfaces facing to each other, and the other of the two surfaces facing in the direction substantially perpendicular to the two surfaces on the negative electrode terminal. Each of the first negative electrode bonding surfaces is formed. 前記1対の電極端子は、複数の前記蓄電デバイスを前記容器の一方向へ並べると、前記容器の一方向へ隣り合う蓄電デバイスの、一方の第1正極接合面と、他方の第1負極接合面と、の異極同士が前記容器同士の一方向へ隣接する面を境として鏡面対称に配置され、複数の前記蓄電デバイスを前記容器の一方向と略直交する方向へ並べると、前記容器の一方向と略直交する方向へ隣り合う蓄電デバイスの、一方の第2正極接合面または第2負極接合面と、他方の負極端子または正極端子の接合面と、の同極同士が前記容器同士の一方向と略直交する方向へ隣接する面を境として鏡面対称に配置される、ことを特徴とする請求項7に記載の蓄電デバイス。   When the plurality of power storage devices are arranged in one direction of the container, the pair of electrode terminals includes one first positive electrode bonding surface and the other first negative electrode bonding of power storage devices adjacent to the container in one direction. When the plurality of power storage devices are arranged in a direction substantially orthogonal to the one direction of the container, the different polarities of the surface are arranged in a mirror-symmetric manner with respect to the surface adjacent to the one direction of the containers. The same polarity of one of the second positive electrode bonding surface or the second negative electrode bonding surface and the other negative electrode terminal or the bonding surface of the positive electrode terminal of the electricity storage devices adjacent to each other in a direction substantially orthogonal to the one direction is between the containers. 8. The electricity storage device according to claim 7, wherein the electricity storage device is arranged in mirror symmetry with respect to a surface adjacent to a direction substantially orthogonal to one direction as a boundary.
JP2009286165A 2009-12-17 2009-12-17 Electric storage device, and electric storage module Pending JP2011129675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286165A JP2011129675A (en) 2009-12-17 2009-12-17 Electric storage device, and electric storage module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286165A JP2011129675A (en) 2009-12-17 2009-12-17 Electric storage device, and electric storage module

Publications (1)

Publication Number Publication Date
JP2011129675A true JP2011129675A (en) 2011-06-30

Family

ID=44291962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286165A Pending JP2011129675A (en) 2009-12-17 2009-12-17 Electric storage device, and electric storage module

Country Status (1)

Country Link
JP (1) JP2011129675A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058323A1 (en) * 2011-10-19 2013-04-25 矢崎総業株式会社 Power supply device
JP2014182900A (en) * 2013-03-18 2014-09-29 Gs Yuasa Corp Power storage element and method for manufacturing power storage element
US9966585B2 (en) 2014-11-04 2018-05-08 Gs Yuasa International Ltd. Energy storage apparatus and method of manufacturing energy storage aparatus
JP2019192342A (en) * 2018-04-18 2019-10-31 河村電器産業株式会社 Power storage device
WO2023099931A1 (en) * 2021-12-01 2023-06-08 日産自動車株式会社 Secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058323A1 (en) * 2011-10-19 2013-04-25 矢崎総業株式会社 Power supply device
JP2013089489A (en) * 2011-10-19 2013-05-13 Yazaki Corp Power supply device
CN103891005A (en) * 2011-10-19 2014-06-25 矢崎总业株式会社 Power supply device
JP2014182900A (en) * 2013-03-18 2014-09-29 Gs Yuasa Corp Power storage element and method for manufacturing power storage element
US9966585B2 (en) 2014-11-04 2018-05-08 Gs Yuasa International Ltd. Energy storage apparatus and method of manufacturing energy storage aparatus
JP2019192342A (en) * 2018-04-18 2019-10-31 河村電器産業株式会社 Power storage device
JP7190821B2 (en) 2018-04-18 2022-12-16 河村電器産業株式会社 power storage device
WO2023099931A1 (en) * 2021-12-01 2023-06-08 日産自動車株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
JP5439099B2 (en) Power storage device and power storage module
JP5364650B2 (en) Storage device, connection structure between storage devices, storage module
KR100920210B1 (en) Frame Member for Fabrication of Battery Module
KR101053208B1 (en) Battery module of improved welding reliability and battery pack employed with the same
JP6025319B2 (en) Battery module
KR101152635B1 (en) Voltage Sensing Assembly for Battery Module and Battery Module Employed with the Same
KR100933425B1 (en) Easy to manufacture battery module
JP5259602B2 (en) Cell module cartridge and medium-to-large battery module including the same
JP6731459B2 (en) Composite battery cell
JP5601739B2 (en) High power and large capacity battery pack
JP5367731B2 (en) Electrode terminal connection member for battery module
CN110140233A (en) Battery system and vehicle including it
JP6334725B2 (en) Battery module including voltage sensing member having receptacle structure
WO2007102669A1 (en) Middle or large-sized battery module
JP2011129675A (en) Electric storage device, and electric storage module
JP2015520932A (en) Battery assembly having a single electrode terminal coupling part
CN110710051A (en) Battery pack
KR20120016350A (en) Battery module and battery pack employed with the same
JP7062201B2 (en) ICB assembly, battery module including it and its manufacturing method
KR20120074425A (en) Battery module and battery pack employed with the same
TW201222916A (en) Secondary battery
KR20170037157A (en) Pouch-typed secondary battery comprising modified leads and battery module comprising the same
JP2010010145A (en) Flat type battery and battery pack using the same
KR101305229B1 (en) Unit Module Having External Covering Member and Heat Dissipation Member and Battery Module Comprising the Same
JP5368964B2 (en) Power storage module