JP2011128244A - Oscillation element, optical scanner, image projector and image forming apparatus - Google Patents

Oscillation element, optical scanner, image projector and image forming apparatus Download PDF

Info

Publication number
JP2011128244A
JP2011128244A JP2009284739A JP2009284739A JP2011128244A JP 2011128244 A JP2011128244 A JP 2011128244A JP 2009284739 A JP2009284739 A JP 2009284739A JP 2009284739 A JP2009284739 A JP 2009284739A JP 2011128244 A JP2011128244 A JP 2011128244A
Authority
JP
Japan
Prior art keywords
vibration
unit
characteristic
optical mirror
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009284739A
Other languages
Japanese (ja)
Other versions
JP5415924B2 (en
Inventor
Shigemi Suzuki
成己 鈴木
Katsumi Arai
克美 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2009284739A priority Critical patent/JP5415924B2/en
Publication of JP2011128244A publication Critical patent/JP2011128244A/en
Application granted granted Critical
Publication of JP5415924B2 publication Critical patent/JP5415924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillation element in which the freedom degree of design can be remarkably improved while a desired oscillation characteristic is secured; and to provide an optical scanner, an image projector and an image forming apparatus. <P>SOLUTION: The oscillation element 30 includes: an oscillation part (beam part 31) on which an optical mirror part 322 is provided; and a driving part (magnetic field imposing means 70 or the like) which oscillates the oscillation part; wherein the oscillation part has an oscillation characteristic in which the peak form of the oscillation characteristic curve, which shows the relation between the variation in an resonance frequency and the magnitude of a distortion amplitude, is line symmetry, the freedom degree of design can be remarkably improved while a desired oscillation characteristic is assured. Further, components involved in driving together with the oscillation element 30 are made to be compact, thus the performance of an actuator device 1, an optical scanner, an image projector and an image forming apparatus or the like can be improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば、振動素子、光走査装置及び映像投影装置並びに画像形成装置に関する。   The present invention relates to a vibration element, an optical scanning device, a video projection device, and an image forming device, for example.

従来から、振動素子を備えた装置の一例としては、例えば、光スキャナ等の光走査装置が知られている(例えば、特許文献1参照)。この特許文献1記載の光走査装置においては、基板にステンレスからなる捻れ梁部を設け、圧電体等により基板に板波を誘起し、捻れ梁部に支持されたミラー部を揺動させるようになっている。   Conventionally, for example, an optical scanning device such as an optical scanner is known as an example of a device including a vibration element (see, for example, Patent Document 1). In the optical scanning device described in Patent Document 1, a torsion beam portion made of stainless steel is provided on a substrate, a plate wave is induced on the substrate by a piezoelectric body or the like, and a mirror portion supported by the torsion beam portion is swung. It has become.

特開2006−293116号公報JP 2006-293116 A

ところで、従来の光走査装置等の電子デバイスに振動素子を実装する際においては、振動素子をそのまま実装できない場合、振動素子の小型化を図ったり、あるいは素子構造を見直したり寸法等を変更したりする必要がある。上述した特許文献1記載の光走査装置においては、捻れ梁部がステンレスで形成されているために、上述したように振動素子の設計変更(例えば、捻れ梁部の寸法変更)等を行うと、振動が不安定となって所望の振動特性が得られず、デバイス性能が低下する等のおそれがある。   By the way, when mounting a vibration element on an electronic device such as a conventional optical scanning device, if the vibration element cannot be mounted as it is, the vibration element can be reduced in size, the element structure can be reviewed, or the dimensions can be changed. There is a need to. In the optical scanning device described in Patent Document 1 described above, since the torsion beam portion is formed of stainless steel, when the design change of the vibration element (for example, the dimension change of the torsion beam portion) is performed as described above, There is a risk that the vibration becomes unstable and a desired vibration characteristic cannot be obtained, and the device performance is deteriorated.

例えば、光走査装置を小型化するためには、振動素子の改良、特に素子構造の小型化と振動を制御する駆動部の小型化が必要であり、それには光走査装置の振動特性の確保と駆動の効率化が求められる。振動素子を小型化するにあたり、捻れ梁部を短くすると、捻れ梁部の応力の増加に伴ってばねの非線形性が強く現れ、周波数特性の非対称性が大きくなり、共振周波数近傍の振動が不安定になるという問題がある。この場合、共振周波数近傍を避けて使用することも可能であるが、結局、駆動効率が低下するために、振動素子の小型化は難しくなる。この周波数特性に現れる非対称性は、振動減衰率の影響を大きく受け、ばねの非線形性が同じで振動減衰率だけを低減した場合には、非対称性は大きくなる方向に変化する。このため、共振周波数近傍の振動が不安定になる現象を避けて小型化を実現するには、ばねの非線形性と振動減衰率の低減を併せて行う必要がある。   For example, in order to reduce the size of the optical scanning device, it is necessary to improve the vibration element, in particular, to reduce the size of the element structure and the drive unit that controls the vibration. Drive efficiency is required. If the torsion beam is shortened to reduce the size of the vibration element, the non-linearity of the spring becomes stronger with the increase of the stress in the torsion beam, the asymmetry of the frequency characteristic increases, and the vibration near the resonance frequency becomes unstable. There is a problem of becoming. In this case, it is possible to avoid the vicinity of the resonance frequency, but eventually the drive efficiency is lowered, so that it is difficult to reduce the size of the vibration element. The asymmetry appearing in this frequency characteristic is greatly affected by the vibration damping rate, and when the non-linearity of the spring is the same and only the vibration damping rate is reduced, the asymmetry changes in the increasing direction. For this reason, in order to avoid the phenomenon that the vibration in the vicinity of the resonance frequency becomes unstable and to realize the miniaturization, it is necessary to reduce both the nonlinearity of the spring and the vibration damping rate.

また、例えば、共振周波数と捻り角とを維持しながら振動素子を小型化する場合、捻り梁を短くすると捻れ梁部に加わる応力が増大してしまう。このため、ステンレスからなる捻れ針部を短くした場合においては、疲労特性が低下すると共に、振動減衰率の増加に伴う駆動効率の低下の問題が生じてしまう。一方、振動減衰率の低減と疲労特性改善のために、捻れ梁部に析出硬化型ステンレス鋼等を用いることも考えられるが、小型化に対応するには更なる振動特性の向上が求められる。   For example, when the vibration element is downsized while maintaining the resonance frequency and the torsion angle, if the torsion beam is shortened, the stress applied to the torsion beam portion is increased. For this reason, in the case where the twisted needle portion made of stainless steel is shortened, the fatigue characteristics are deteriorated, and the problem of a decrease in driving efficiency due to an increase in the vibration damping rate occurs. On the other hand, in order to reduce the vibration damping rate and improve the fatigue characteristics, it is conceivable to use precipitation hardening stainless steel or the like for the torsion beam part. However, in order to cope with the downsizing, further improvement of the vibration characteristics is required.

なお、振動減衰率は、捻り梁部を形成する材料の制振性やミラーの空気抵抗等の影響を受けて変動する。したがって、非線形性を考慮せずに単に制振性の低い材料を用いたのでは、振動素子の小型化は難しくなる。また、ジッタの低減のためにミラーの形状を工夫したり、減圧したりして空気抵抗を低減する場合にも、非線形性が強く現れるようになるために、振動素子の小型化は難しくなる。   Note that the vibration attenuation rate fluctuates due to the influence of the damping property of the material forming the torsion beam portion, the air resistance of the mirror, and the like. Therefore, it is difficult to reduce the size of the vibration element by simply using a material having low vibration damping properties without considering nonlinearity. Further, when the air resistance is reduced by devising the shape of the mirror or reducing the pressure in order to reduce jitter, the nonlinearity appears strongly, so that it is difficult to reduce the size of the vibration element.

いずれにしても、従来の光走査装置等に搭載される振動素子においては、上記の色々な問題が生じるため、現状では、所望の振動特性を確保しつつ振動素子の設計自由度を持たせる有効な手段は提案されていない。   In any case, since the above-mentioned various problems occur in the vibration element mounted on the conventional optical scanning device or the like, at present, it is effective to provide the freedom of design of the vibration element while ensuring the desired vibration characteristics. No means has been proposed.

なお、上述した問題は、振動素子を備えた各種光学機器、例えば、光走査装置や映像投影装置、画像形成装置等の性能を向上する際際においても同様である。   The above-described problem is the same when improving the performance of various optical devices including a vibrating element, such as an optical scanning device, a video projection device, and an image forming device.

本発明は上述した事情に鑑み、所望の振動特性を確保しつつ設計の自由度を格段に向上することができる振動素子、光走査装置及び映像投影装置並びに画像形成装置を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the circumstances described above, an object of the present invention is to provide a vibration element, an optical scanning device, a video projection device, and an image forming device that can significantly improve the degree of design freedom while ensuring desired vibration characteristics. To do.

上記目的を達成する本発明の振動素子は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部を振動させる駆動部とを備えていることを特徴とする。   The vibration element of the present invention that achieves the above object includes a vibration part having a vibration characteristic in which a peak shape of a resonance characteristic curve indicating a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is line symmetric, and the vibration part. And a drive unit that vibrates.

また、上記目的を達成する本発明の他の振動素子は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部を振動させる駆動部と、前記振動部の少なくとも一部が配置される減圧空間を形成する減圧空間形成部とを備えていることを特徴とする。   Further, another vibration element of the present invention that achieves the above object includes a vibration part having a vibration characteristic in which a peak shape of a resonance characteristic curve showing a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is line symmetric, A drive unit that vibrates the vibration unit and a decompression space forming unit that forms a decompression space in which at least a part of the vibration unit is disposed are provided.

さらに、上記目的を達成する本発明の他の振動素子は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部とを備えていることを特徴とする。   Furthermore, another vibration element of the present invention that achieves the above object includes a vibration part having a vibration characteristic in which a peak shape of a resonance characteristic curve showing a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is line symmetric, It is provided with the optical mirror part provided in the said vibration part, and the drive part which vibrates the said vibration part.

また、上記目的を達成する本発明の他の振動素子は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記振動部の少なくとも一部が配置される減圧空間を形成する減圧空間形成部とを備えていることを特徴とする。   Further, another vibration element of the present invention that achieves the above object includes a vibration part having a vibration characteristic in which a peak shape of a resonance characteristic curve showing a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is line symmetric, An optical mirror unit provided in the vibration unit, a drive unit that vibrates the vibration unit, and a decompression space forming unit that forms a decompression space in which at least a part of the vibration unit is disposed. To do.

また、上記目的を達成する本発明の光学走査装置は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記光学ミラー部のミラー面に光照射する光源とを備え、前記振動部による前記光学ミラー部の振動に基づいて光走査させることを特徴とする。   Further, an optical scanning device of the present invention that achieves the above object includes a vibrating section having a vibration characteristic in which a peak shape of a resonance characteristic curve showing a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is axisymmetric, An optical mirror unit provided in the vibration unit, a drive unit that vibrates the vibration unit, and a light source that irradiates light to the mirror surface of the optical mirror unit, and light based on the vibration of the optical mirror unit by the vibration unit It is characterized by scanning.

さらに、上記目的を達成する本発明の映像投影装置は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記光学ミラー部のミラー面に光照射する光源とを備え、前記振動部による前記光学ミラー部の振動に基づいて光走査して映像を投影することを特徴とする。   Furthermore, an image projection apparatus of the present invention that achieves the above object includes a vibration unit having a vibration characteristic in which a peak shape of a resonance characteristic curve showing a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is axisymmetric, An optical mirror unit provided in the vibration unit, a drive unit that vibrates the vibration unit, and a light source that irradiates light to the mirror surface of the optical mirror unit, and light based on the vibration of the optical mirror unit by the vibration unit It scans and projects an image.

さらに、上記目的を達成する本発明の画像形成装置は、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記光学ミラー部のミラー面に光照射する光源とを備え、前記振動部による前記光学ミラー部の振動に基づいて光走査して画像を形成することを特徴とする。   Furthermore, an image forming apparatus of the present invention that achieves the above object includes a vibration unit having a vibration characteristic in which a peak shape of a resonance characteristic curve showing a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is line symmetric, An optical mirror unit provided in the vibration unit, a drive unit that vibrates the vibration unit, and a light source that irradiates light to the mirror surface of the optical mirror unit, and light based on the vibration of the optical mirror unit by the vibration unit An image is formed by scanning.

本発明は、所望の振動特性を確保しつつ設計の自由度を格段に向上することができる振動素子、光走査装置及び映像投影装置並びに画像形成装置を実現することができるという効果を奏する。   The present invention has an effect that it is possible to realize a vibration element, an optical scanning device, a video projection device, and an image forming device that can remarkably improve design freedom while ensuring desired vibration characteristics.

実施形態1の振動素子を備えたアクチュエータ装置の一例を示す概略図。Schematic which shows an example of the actuator apparatus provided with the vibration element of Embodiment 1. FIG. 実施形態1のアクチュエータ装置に接続される駆動手段の一例を示す概略図。Schematic which shows an example of the drive means connected to the actuator apparatus of Embodiment 1. FIG. 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線を示す図。The figure which shows the resonance characteristic curve which shows the relationship between the variation | change_quantity of a resonant frequency, and the magnitude | size of a distortion amplitude. 振動減衰率の捻り振幅依存性を示す図。The figure which shows the twist amplitude dependence of a vibration damping factor. 材料の振動減衰率とばね特性の非線形性とが振動素子の周波数特性に及ぼす影響を示す図。The figure which shows the influence which the vibration damping factor of material and the nonlinearity of a spring characteristic have on the frequency characteristic of a vibration element. 振動素子の振動減衰率と非線形性を併せて示した図。The figure which showed the vibration damping factor and nonlinearity of the vibration element together. 許容歪み振幅の変化率と捻り梁の長さの変化率との関係を示す図。The figure which shows the relationship between the change rate of an allowable distortion amplitude, and the change rate of the length of a torsion beam. ミラーの形状変形例を示す概略平面図。The schematic plan view which shows the shape modification of a mirror. 振動素子の特性データを示す図。The figure which shows the characteristic data of a vibration element. 実施形態2の振動素子を備えたアクチュエータ装置の一例を示す概略断面図。FIG. 6 is a schematic cross-sectional view illustrating an example of an actuator device including the vibration element according to the second embodiment. 実施形態3に係る振動素子を備えたアクチュエータ装置の一例を示す概略図。FIG. 6 is a schematic diagram illustrating an example of an actuator device including a vibration element according to a third embodiment. 実施形態4に係る振動素子を備えたアクチュエータ装置の一例を示す概略図。Schematic which shows an example of the actuator apparatus provided with the vibration element which concerns on Embodiment 4. FIG. 実施形態5に係る振動素子を備えた画像形成装置の概略図。FIG. 6 is a schematic diagram of an image forming apparatus including a vibration element according to a fifth embodiment. 実施形態6に係る振動素子を備えた映像投影装置の概略図。FIG. 7 is a schematic diagram of a video projection device including a vibration element according to a sixth embodiment.

以下に本発明を実施の形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の振動素子は、振動部と、振動部を振動させる駆動部とを備え、振動部が、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する点に特徴がある。   The vibration element of the present invention includes a vibration part and a drive part that vibrates the vibration part, and the vibration part is symmetrical with respect to the peak shape of the resonance characteristic curve indicating the relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude. The characteristic is that it has vibration characteristics.

ここで、本発明の振動素子は、共振特性曲線が線対称で且つ非常に急峻なピーク形状となる振動特性を有する、即ち、ばね特性の非線形性が非常に小さな振動特性を発揮する。特に、本発明の振動素子は、減圧環境下において、共振特性が尖鋭になっても振動の不安定性を生じさせない程度に非線形性が小さく、高い振動特性を発揮する。そして、このような本発明の振動素子によれば、高い振動特性が得られるため、所望の振動特性を確保しつつ設計の自由度を格段に向上することができる。   Here, the vibration element of the present invention has a vibration characteristic in which the resonance characteristic curve is axisymmetric and has a very steep peak shape, that is, exhibits a vibration characteristic in which the nonlinearity of the spring characteristic is very small. In particular, the vibration element according to the present invention exhibits high vibration characteristics under a reduced pressure environment so that non-linearity is small enough not to cause vibration instability even when the resonance characteristics become sharp. And according to such a vibration element of this invention, since a high vibration characteristic is obtained, the freedom degree of design can be improved significantly, ensuring a desired vibration characteristic.

また、本発明の振動素子は、従来と比べて同一寸法及び構造の振動素子と比べて格段に振動特性を向上することができるため、例えば、光走査装置等の電子デバイスに本発明の振動素子を実装する際において、振動素子の小型化を図ったり、あるいは素子構造を見直したり寸法等を変更したりする設計の自由度を持たせることができる。これにより、本発明の振動素子によれば、デバイス性能を維持しつつ様々な小型の電子デバイスを実現可能である。   In addition, since the vibration element of the present invention can significantly improve the vibration characteristics as compared with the vibration element having the same size and structure as compared with the related art, for example, the vibration element of the present invention is applied to an electronic device such as an optical scanning device. In mounting, it is possible to provide a degree of freedom in designing to reduce the size of the vibration element, or to review the element structure or change dimensions. Thereby, according to the vibration element of this invention, various small-sized electronic devices are realizable, maintaining device performance.

さらに、上述した高い振動特性を有する本発明の振動素子は、例えば、加工硬化処理により加工後のヤング率が低下し、その後の時効硬化処理によりヤング率が回復又は上昇するような材料、具体的には、加工硬化及び時効硬化型Co−Ni基合金等の金属材料により振動部を形成することで実現可能である。   Furthermore, the vibration element of the present invention having the above-described high vibration characteristics is, for example, a material whose Young's modulus after processing is lowered by work hardening treatment, and whose Young's modulus is recovered or raised by subsequent age hardening treatment, Can be realized by forming the vibration part with a metal material such as work-hardening and age-hardening type Co—Ni-based alloy.

具体的には、加工硬化処理により母材(加工対象物)のヤング率を一時的に低下させ、その後の時効硬化処理によりその母材のヤング率が回復、または、上昇するような材料からなる振動部を形成することが好ましい。より詳細には、振動部を形成する材料としては、例えば、室温で強加工を施すことにより加工硬化がなされ、その後、歪み時効熱処理により時効硬化がなされた材料であり、加工硬化の際に、塑性加工によりヤング率が低下する程度まで高密度に転位を導入され、その後の時効硬化によって、ヤング率が回復、または、上昇する程度まで転位の運動を阻害させられた材料により形成する。なお、本発明において「時効硬化処理によりヤング率を回復又は上昇させる」とは、例えば、加工硬化処理前のヤング率から上昇、あるいは加工硬化処理前のヤング率と同程度又はそれ以上に上昇させること含むものとする。また、本発明において「加工硬化処理によりヤング率を低下させる」とは、例えば、その後の時効硬化処理によってヤング率を回復又は上昇させることができる程度に低下させることを含むものとする。   Specifically, it is made of a material that temporarily lowers the Young's modulus of the base material (work object) by work hardening treatment, and recovers or increases the Young's modulus of the base material by subsequent age hardening treatment. It is preferable to form a vibration part. More specifically, as a material for forming the vibration part, for example, it is a material that has been work-hardened by applying strong processing at room temperature, and then age-hardened by strain aging heat treatment. Dislocations are introduced at a high density to such an extent that the Young's modulus is lowered by plastic working, and the material is formed by a material whose dislocation motion is inhibited by the subsequent age hardening until the Young's modulus is recovered or increased. In the present invention, “recovering or increasing Young's modulus by age hardening treatment” means, for example, increasing from Young's modulus before work hardening treatment, or raising the Young's modulus before work hardening treatment to the same level or higher. Including. Further, in the present invention, “reducing Young's modulus by work hardening treatment” includes, for example, lowering the Young's modulus to such an extent that it can be recovered or raised by subsequent age hardening treatment.

ここで、「加工硬化及び時効硬化型Co−Ni基合金」とは、例えば、加工硬化処理と時効硬化処理とがそれぞれ有効に施されたCo−Ni基合金のことである。振動部は、例えば、加工硬化及び時効硬化型Co−Ni基合金となる素材(出発原料)への加工硬化処理により歪みを形成後に、時効硬化処理を施すことで形成される。   Here, the “work-hardening and age-hardening type Co—Ni-based alloy” refers to, for example, a Co—Ni-based alloy that has been effectively subjected to work-hardening treatment and age-hardening treatment. The vibration part is formed, for example, by subjecting the material (starting raw material) to be work-hardened and age-hardened Co—Ni-based alloy to work-hardening treatment and then performing age-hardening treatment.

具体的には、溶製後に熱間鍛造、均質化熱処理等の工程を経て得られた、少なくともCo及びNiを含むマトリクスに置換型の溶質元素を含有する出発原料から、冷間圧延により加工硬化処理を経て、必要に応じて、例えば、プレス加工、レーザー加工、ワイヤーカット等の成形加工により所定形状に加工し、その後に真空中、または、還元雰囲気中で時効硬化熱処理を行うことにより、高強度、且つ、減衰能が低く、弾性限界が高いなどの良好な振動特性が有効に発現した振動部を得ることができる。   Specifically, work hardening is performed by cold rolling from a starting material containing a substitutional solute element in a matrix containing at least Co and Ni obtained through steps such as hot forging and homogenization heat treatment after melting. After processing, if necessary, for example, by processing into a predetermined shape by molding such as press processing, laser processing, wire cutting, etc., and then performing age hardening heat treatment in vacuum or reducing atmosphere, It is possible to obtain a vibration part that effectively exhibits good vibration characteristics such as strength, low damping ability, and high elastic limit.

ここで、振動部を形成する素材は、積層欠陥エネルギーの低い面心立方格子構造を持つ材料であることが好ましく、積層欠陥に溶質元素が偏析して拡張転位を固着する「鈴木効果」を有効に利用できるものであることが好ましい。これにより、拡張転位の幅が拡がり、加工硬化、及び、時効硬化時に、鈴木効果を促進して拡張転位を強固に固着することが可能になる。この鈴木効果は、高温でも有効に働く固着機構であり、時効熱処理時に特に有効である。また、これ以外にも、転位心に偏析するコットレル効果や微細な変態双晶形成による転位すべりの阻害機構を併せて利用しても良い。   Here, the material forming the vibration part is preferably a material having a face-centered cubic lattice structure with a low stacking fault energy, and the “Suzuki effect” is effective in which solute elements segregate in the stacking fault and fix the extended dislocation. It is preferable that it can be utilized. As a result, the width of the extended dislocation is expanded, and it becomes possible to promote the Suzuki effect and firmly fix the extended dislocation at the time of work hardening and age hardening. This Suzuki effect is a fixing mechanism that works effectively even at high temperatures, and is particularly effective during aging heat treatment. In addition to this, a Cottrell effect segregating in the dislocation center and a dislocation slip inhibiting mechanism due to the formation of fine transformation twins may be used together.

このような素材では、強加工で高密度の転位を導入することが可能であり、加工硬化により強度と耐久性が大幅に向上するが、この段階では未だ転位の張り出しがあるために、ヤング率は低下する。逆に言えば、ヤング率が低下する程度までひずみを導入して加工硬化を行う。その後、時効熱処理により転位を強固に固着することで、強度と耐久性がさらに向上すると共に、ヤング率を上昇あるいは回復、または、加工硬化前よりもさらに上昇させることができる。このようにヤング率を上昇あるいは回復、または、加工硬化前よりも上昇する程度に転位を強固に固着した状態では、転位線の振動による内部摩擦が低減して振動素子のQ値が大幅に向上し、さらに、強度向上による降伏点の上昇と内部摩擦の低減により弾性限界が向上し、応力−歪み線図上の線型弾性域が拡大する、即ち、バネ特性の線形性が向上する。   With such materials, it is possible to introduce high-density dislocations with strong processing, and the strength and durability are greatly improved by work hardening, but at this stage there are still overhangs of dislocations, so the Young's modulus Will decline. In other words, work hardening is performed by introducing strain to the extent that the Young's modulus decreases. Thereafter, by firmly fixing dislocations by aging heat treatment, the strength and durability can be further improved, and the Young's modulus can be increased or recovered, or further increased before work hardening. In this way, when the dislocations are firmly fixed to such an extent that the Young's modulus increases or recovers, or increases more than before work hardening, the internal friction due to the vibration of the dislocation lines is reduced and the Q value of the vibration element is greatly improved. Furthermore, the elastic limit is improved by increasing the yield point and reducing the internal friction due to the strength improvement, and the linear elastic region on the stress-strain diagram is expanded, that is, the linearity of the spring characteristics is improved.

また、面心立方格子構造をもつ材料では、ヤング率は原子間距離に依存して、<110>方位が最大、<111>方位が最小となり、<100>方位はその中間となる。冷間圧延により結晶配向させると、ヤング率は異方性を持ち、<110>集合組織が形成される方向が最大となる。特に限定されるわけではないが、撓みに対する強度を考慮すると、振動部にヤング率の大きい<110>集合組織が形成される方向の材料を用いるのが好ましく、時効硬化処理もこの方向のヤング率が回復、または、上昇するように施されることが好ましい。   In a material having a face-centered cubic lattice structure, the Young's modulus depends on the interatomic distance, and the <110> orientation is the maximum, the <111> orientation is the minimum, and the <100> orientation is the middle. When crystal orientation is achieved by cold rolling, the Young's modulus has anisotropy, and the direction in which the <110> texture is formed is maximized. Although not particularly limited, considering the strength against bending, it is preferable to use a material in the direction in which the <110> texture having a large Young's modulus is formed in the vibration part, and the age hardening treatment also has a Young's modulus in this direction. Is preferably applied so as to recover or rise.

また、冷間線引により加工硬化を施した線材を用いて振動部に形成しても良い。さらに、冷間線引した線材に冷間圧延を施して、集合組織の形成を制御した材料を用いても同様に良い。   Moreover, you may form in a vibration part using the wire which gave the work hardening by cold drawing. Further, it is also possible to use a material in which the cold-drawn wire rod is cold-rolled to control the formation of the texture.

ここで、成形加工方法としては、超塑性加工を用いてもよい。また、時効硬化処理としては、有効に時効硬化が進むような温度条件、例えば、加工硬化処理の加工条件に応じて適宜調整される温度条件に基づいて行うのが好ましく、加工条件にもよるが、再結晶化温度以下、例えば、400〜700℃程度の環境下に数十分から数時間処理することで行うことができる。また、このような熱処理においては、例えば、1T以上の強磁場環境下で行うことにより鈴木効果を促進して、処理時間の短縮化を図ってもよい。   Here, as a forming method, superplastic processing may be used. In addition, the age hardening treatment is preferably performed based on a temperature condition that allows age hardening to proceed effectively, for example, a temperature condition that is appropriately adjusted according to the processing conditions of the work hardening treatment, although depending on the processing conditions. The treatment can be carried out by treating for several tens of minutes to several hours under an environment of recrystallization temperature or lower, for example, about 400 to 700 ° C. Moreover, in such a heat treatment, for example, the Suzuki effect may be promoted by performing it in a strong magnetic field environment of 1T or more to shorten the treatment time.

そして、本発明によれば、上述したように共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部を形成することで、疲労特性・機械特性等を高めることができる他、振動減衰率が非常に低く、特に、振動減衰率の低さに対して不安定性を生じないほどにバネの非線形性が小さくなり、振動減衰率の歪み振幅依存性も非常に小さくなる。このため、所望の疲労特性及び振動特性を有する振動素子及びこの振動素子を備えたアクチュエータ装置等の小型化を図ることができると共に、消費電力を低減することができる点でも有利である。   Then, according to the present invention, as described above, by forming the vibration part having the vibration characteristic in which the peak shape of the resonance characteristic curve indicating the relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is line symmetric, In addition to enhancing fatigue characteristics and mechanical properties, the vibration damping rate is very low, and in particular, the nonlinearity of the spring is so small that it does not cause instability with respect to the low vibration damping rate. Also, the distortion amplitude dependence is very small. Therefore, it is advantageous in that the vibration element having desired fatigue characteristics and vibration characteristics and the actuator device including the vibration element can be reduced in size and the power consumption can be reduced.

具体的には、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となるような特性、すなわち、ばね特性の非線形性が非常に小さな特性を得るためには、例えば、振動素子の歪み変形部を構成する振動部を、上述した加工硬化及び時効硬化型Co−Ni基合金で形成し、高強度で、線型弾性域が広く、且つ、内部摩擦の小さい部位となり、例えば、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が尖鋭で、且つ、線対称となるような特性、すなわち、Q値が高く、且つ、ばね特性の非線形性が非常に小さな特性が得られる。このような振動部は、振動変形による最大歪み振幅が3×10−3程度まで大きくなっても不安定性を生じることがなく、消費電力が少ない振動素子を得ることができる。一方、振動部は、振動のし易さを示すQ値が1000以上となり、振動減衰率が非常に小さくばね特性の非線形性も小さくなるため、このような振動部により光走査装置等の光学機器を製作することにより、振動特性を向上しつつ消費電力を大幅に低減することができる。したがって、本発明は、所望の疲労特性が得られる他、所望の振動特性を確保しつつ設計の自由度を格段に向上することができる振動素子、光走査装置及び映像投影装置並びに画像形成装置を実現することができる。 Specifically, in order to obtain a characteristic in which the peak shape of the resonance characteristic curve indicating the relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is axisymmetric, that is, a characteristic in which the nonlinearity of the spring characteristic is very small. For example, the vibration part constituting the strain deformation part of the vibration element is formed of the above-described work hardening and age hardening type Co-Ni based alloy, and has high strength, a wide linear elastic region, and internal friction. The characteristic is such that the peak shape of the resonance characteristic curve showing the relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is sharp and line symmetric, that is, the Q value is high, and A characteristic in which the nonlinearity of the spring characteristic is very small can be obtained. Such a vibration part does not cause instability even when the maximum strain amplitude due to vibration deformation increases to about 3 × 10 −3 , and a vibration element with low power consumption can be obtained. On the other hand, since the vibration unit has a Q value indicating ease of vibration of 1000 or more, the vibration damping rate is very small, and the non-linearity of the spring characteristics is small. As a result, the power consumption can be greatly reduced while improving the vibration characteristics. Therefore, the present invention provides a vibration element, an optical scanning device, a video projection device, and an image forming apparatus that can obtain desired fatigue characteristics and can significantly improve the degree of design freedom while ensuring desired vibration characteristics. Can be realized.

なお、上記の「Co−Ni基合金」とは、コバルト[Co]及びニッケル[Ni]を含有する合金であり、好ましくは、積層欠陥エネルギーを低下させるクロム[Cr]と、マトリクスの固溶強化、偏析により転位を固着して時効、及び、加工硬化能の向上に寄与する溶質元素としてモリブデン[Mo]、鉄[Fe]等を含み、例えば、Co−Ni−Cr−Mo合金、Co−Ni−Fe−Cr合金等がよい。また、これらの合金は、溶質元素として同様の働きをするニオブ[Nb]や、面心立方格子相を安定化させ、積層欠陥エネルギーを低下させるマンガン[Mn]、マトリクスの強化と積層欠陥エネルギーの低下に寄与するタングステン[W]、鋳塊組織の微細化や強度向上に寄与するチタン[Ti]、熱間加工性を改善するボロン[B]、マグネシウム[Mg]等を、マトリクスに固溶し、Cr、Mo、Nb等と炭化物を形成して粒界を強化する炭素[C]などを含有しても良い。   The above-mentioned “Co—Ni-based alloy” is an alloy containing cobalt [Co] and nickel [Ni]. Preferably, chromium [Cr] which reduces stacking fault energy and solid solution strengthening of the matrix In addition, molybdenum [Mo], iron [Fe] and the like are included as solute elements that fix dislocations by segregation and contribute to the improvement of aging and work hardening ability, for example, Co—Ni—Cr—Mo alloy, Co—Ni -Fe-Cr alloy etc. are good. In addition, these alloys include niobium [Nb] that functions similarly as a solute element, manganese [Mn] that stabilizes the face-centered cubic lattice phase and decreases stacking fault energy, matrix strengthening and stacking fault energy. Tungsten [W] that contributes to lowering, titanium [Ti] that contributes to refinement of the ingot structure and strength improvement, boron [B] that improves hot workability, magnesium [Mg], etc. are dissolved in the matrix. , Cr, Mo, Nb, etc., and carbon [C] that forms carbides and strengthens the grain boundaries may be contained.

ここで、Co−Ni−Cr−Mo合金としては、その主要組成を重量比でCo20.0〜50.0%、Ni20.0〜45.0%、Cr+Mo20.0〜40.0%(Cr:18〜26%、Mo:3〜11%)であることが好ましく、特に、Co31.0〜37.3%、Ni31.4〜33.4%、Cr19.5〜20.5%、Mo9.5〜10.5%とするのがさらに好ましい。このような組成のCo−Ni−Cr−Mo合金から振動部を形成することにより、振動素子等の小型化に非常に有利となる。このような合金では、圧延方向に<100>集合組織が形成され、圧延方向と直交する方向に<110>集合組織が形成されるため、振動部には圧延方向と直交する方向の材料を用いるのが好ましい。また、このような合金での時効熱処理は、500℃〜600℃の温度で2時間程度行うのが最適である。   Here, as a Co-Ni-Cr-Mo alloy, the main composition is Co20.0-50.0% by weight ratio, Ni20.0-45.0%, Cr + Mo20.0-40.0% (Cr: 18 to 26%, Mo: 3 to 11%), particularly Co 31.0 to 37.3%, Ni 31.4 to 33.4%, Cr 19.5 to 20.5%, Mo 9.5 More preferably, the content is set to ˜10.5%. By forming the vibration part from the Co—Ni—Cr—Mo alloy having such a composition, it is very advantageous for downsizing the vibration element and the like. In such an alloy, a <100> texture is formed in the rolling direction, and a <110> texture is formed in a direction orthogonal to the rolling direction. Therefore, a material in a direction orthogonal to the rolling direction is used for the vibration part. Is preferred. Further, it is optimal that the aging heat treatment with such an alloy is performed at a temperature of 500 ° C. to 600 ° C. for about 2 hours.

なお、本発明においては、非磁性を示す加工硬化及び時効硬化型Co−Ni基合金から振動部を形成することが好ましく、例えば、上記組成のCo−Ni−Cr−Mo合金などがこれにあたる。これは、振動部を振動させる手段(駆動部)として、例えば、磁界印加手段を採用した場合に、安定した電磁駆動を実現することができるからである。なお、駆動部は、磁界印加手段に限定されず、例えば、圧電素子等を採用してもよく、この場合には材料の磁性は問わない。   In the present invention, the vibration part is preferably formed from a work-hardening and age-hardening type Co—Ni based alloy exhibiting non-magnetism, for example, a Co—Ni—Cr—Mo alloy having the above composition. This is because stable electromagnetic driving can be realized when, for example, a magnetic field applying unit is used as the unit (driving unit) for vibrating the vibrating unit. Note that the driving unit is not limited to the magnetic field applying unit, and for example, a piezoelectric element or the like may be adopted, and in this case, the magnetism of the material does not matter.

また、本発明では、加工硬化及び時効硬化型Co−Ni基合金から振動素子の少なくとも一部を、減圧空間を形成する減圧空間形成部(封止構造体)内に配置することが好ましい。常圧下と比べて、振動特性を更に高めることができるからである。特に、振動部に各種機能部、具体的には光学ミラー等を設けて高機能デバイスとする場合においては、上述した振動部の少なくとも一部、すなわち、機能部等を減圧空間形成部内に配置することが更に好ましい。これにより、機能部等にかかる空気抵抗の影響を低減することができ、振動特性を更に高めることができる。本発明では、減圧空間形成部によって振動部や機能部等の構造体の全体を覆うようにしてもよい。   In the present invention, it is preferable to dispose at least a part of the vibration element from the work-hardening and age-hardening type Co—Ni-based alloy in a reduced-pressure space forming part (sealing structure) that forms a reduced-pressure space. This is because the vibration characteristics can be further enhanced as compared with normal pressure. In particular, when various functional parts, specifically optical mirrors or the like are provided in the vibration part to form a high-function device, at least a part of the above-described vibration part, that is, the functional part or the like is disposed in the decompression space forming part. More preferably. Thereby, the influence of the air resistance concerning a functional part etc. can be reduced and a vibration characteristic can be improved further. In this invention, you may make it cover the whole structures, such as a vibration part and a function part, by a decompression space formation part.

なお、本発明は、上述したように加工硬化及び時効硬化型Co−Ni基合金を用いて振動部を形成することが好ましいが、特にこれに限定されず、例えば、加工硬化処理により加工後のヤング率が低下すると共に、その後の時効硬化処理によりヤング率が上昇、あるいは加工硬化処理後と同等まで回復、または、加工硬化処理後よりも上昇上昇するような材料であれば好適に用いることができる。   In the present invention, as described above, it is preferable to form the vibration part using work-hardening and age-hardening type Co—Ni-based alloy, but the present invention is not particularly limited thereto. It is preferable to use any material that lowers the Young's modulus and increases the Young's modulus by subsequent age hardening treatment, recovers to the same level after work hardening treatment, or rises and rises after work hardening treatment. it can.

以下、図面を参照しながら、実施の形態に基づいて、本発明の振動素子を有するアクチュエータ装置、光走査装置、映像投影装置の具体例について詳細に説明する。
(実施形態1)
Hereinafter, specific examples of an actuator device, an optical scanning device, and an image projection device having the vibration element of the present invention will be described in detail with reference to the drawings based on the embodiments.
(Embodiment 1)

図1は、本発明の実施形態1に係る振動素子を備えたアクチュエータ装置の一例を示す概略図であり、図1(a)は概略上面図、図1(b)はA−A´断面図である。また、図2は、図1のアクチュエータ装置に接続される駆動手段の一例を示す概略図である。   1A and 1B are schematic views illustrating an example of an actuator device including a vibration element according to Embodiment 1 of the present invention. FIG. 1A is a schematic top view, and FIG. 1B is a cross-sectional view taken along line AA ′. It is. FIG. 2 is a schematic view showing an example of drive means connected to the actuator device of FIG.

図1(a)及び図1(b)に示すように、本実施形態に係るアクチュエータ装置1は、振動鏡装置であり、基板10と、この基板10が実装される保持部材20と、振動素子30とを備えている。保持部材20は、本実施形態では、図1(a)及び図1(b)に示すように、基板10の周縁部に沿って環状のフランジ部21が設けられており、その中央部は凹部22を構成している。そして、本実施形態では、振動素子30が、凹部22内に実装されており、基板10及び保持部材20とカバー部材40とで構成(区画)される減圧空間50内に配置されている。   As shown in FIGS. 1A and 1B, the actuator device 1 according to the present embodiment is a vibrating mirror device, and includes a substrate 10, a holding member 20 on which the substrate 10 is mounted, and a vibration element. 30. In this embodiment, the holding member 20 is provided with an annular flange portion 21 along the peripheral edge of the substrate 10 as shown in FIGS. 22 is constituted. In the present embodiment, the vibration element 30 is mounted in the recess 22 and is disposed in the decompression space 50 configured (partitioned) by the substrate 10, the holding member 20, and the cover member 40.

また、振動素子30は、例えば、本実施形態では、保持部材20との接合部となるフレーム(外枠部)60と、このフレーム60の対向する両端部を保持部材20の凹部(開口)22を跨ぐように架橋する1本の梁部31と、梁部31の長手方向中央部、すなわち、保持部材20の開口中心に対応する部分に設けられる質量体(機能部)32とを有する。また、基板10上には、質量体32に対向する部分に磁界印加手段70が設けられている。   In addition, in this embodiment, for example, the vibration element 30 includes a frame (outer frame portion) 60 that serves as a joint portion with the holding member 20, and the opposite end portions of the frame 60 at the concave portion (opening) 22 of the holding member 20. And a mass body (functional part) 32 provided at a central portion in the longitudinal direction of the beam portion 31, that is, a portion corresponding to the opening center of the holding member 20. A magnetic field applying unit 70 is provided on the substrate 10 at a portion facing the mass body 32.

ここで、このような振動素子30の変形部を構成する梁部31は、加工硬化処理により加工後のヤング率が減少し、且つその後の時効硬化処理によりヤング率が上昇するような材料、例えば、本実施形態では、非磁性を示す加工硬化及び時効硬化型Co−Ni基合金から形成されている。このような非磁性を示す加工硬化及び時効硬化型Co−Ni基合金としては、例えば、SPRON510(セイコーインスツル株式会社製商品名:SPRON[登録商標])のCo−Ni−Cr−Mo合金等を用いることができる。なお、このようなSPRON510等の素材を、例えば、圧延等の強加工により強度を上昇させた後に熱処理を施して梁部31を形成することにより、低減衰能の特性等の高振動特性を有する振動素子30を得ることができる。   Here, the beam portion 31 constituting the deformed portion of the vibration element 30 is made of a material whose Young's modulus after processing is reduced by work hardening processing and whose Young's modulus is increased by subsequent age hardening processing, for example, In this embodiment, it is formed from a work-hardening and age-hardening type Co—Ni based alloy exhibiting non-magnetism. Examples of such non-magnetic work-hardening and age-hardening type Co—Ni based alloys include, for example, Co-Ni—Cr—Mo alloys of SPRON510 (trade name: SPRON [registered trademark] manufactured by Seiko Instruments Inc.) Can be used. It should be noted that such a material such as SPRON 510 has a high vibration characteristic such as a characteristic of a low damping capacity by forming the beam portion 31 by performing a heat treatment after increasing the strength by a strong process such as rolling, for example. The vibration element 30 can be obtained.

また、梁部31は、例えば、プレス加工やレーザー加工、ワイヤーカット等で所定の形状に加工することができる。ここで、加工方法としては、例えば、超塑性加工を用いてもよい。なお、梁部31としては、非磁性の加工硬化及び時効硬化型Co−Ni基合金の線材を用い、フレーム60に接合することで形成してもよい。このようにして形作られる梁部31は、上述した加工効果処理の後、振動特性を高めるための時効硬化処理として、例えば、熱処理を施すことで得られる。ここでの梁部31への熱処理は、400〜700℃の温度で、数十分から数時間行うのがよいが、処理時間を短縮するには、例えば、強磁場中での熱処理を用いることも可能である。   Moreover, the beam part 31 can be processed into a predetermined shape by, for example, pressing, laser processing, wire cutting, or the like. Here, as a processing method, for example, superplastic processing may be used. The beam portion 31 may be formed by joining a nonmagnetic work-hardening and age-hardening Co—Ni-based alloy wire to the frame 60. The beam portion 31 formed in this way can be obtained, for example, by performing a heat treatment as an age hardening treatment for improving vibration characteristics after the processing effect treatment described above. The heat treatment to the beam portion 31 here is preferably performed at a temperature of 400 to 700 ° C. for several tens of minutes to several hours. However, in order to shorten the processing time, for example, heat treatment in a strong magnetic field is used. Is also possible.

例えば、本実施形態では、加工硬化及び時効硬化型Co−Ni基合金となる素材(出発原料)を用いて、圧延等による加工硬化処理を行って板状部材(図示しない)を作製し、この板状部材を所定の形状に加工後に時効硬化処理を施すことで、梁部31を形成した。ここで、板状部材を作製する際の加工硬化処理及び時効硬化処理においては、<100>結晶方位が圧延方向となるように結晶配向させると共に、<110>結晶方位が板状部材面内で圧延方向と直交する方向となるように結晶配向させ、且つ圧延方向と直交する方向においてヤング率を上昇させるように処理を行った。   For example, in this embodiment, a plate-like member (not shown) is produced by performing a work hardening treatment by rolling or the like using a material (starting material) that becomes a work hardening and age hardening type Co—Ni base alloy, The beam part 31 was formed by performing an age hardening process after processing a plate-shaped member into a predetermined shape. Here, in the work hardening process and the age hardening process when producing the plate-like member, the <100> crystal orientation is oriented in the rolling direction, and the <110> crystal orientation is within the plate-like member plane. The crystal orientation was performed so as to be in a direction orthogonal to the rolling direction, and the Young's modulus was increased in the direction orthogonal to the rolling direction.

なお、梁部31の略中央部には、後述する光学ミラー部322を設置するためのミラー設置部311が梁部31よりも幅広に設けられている。このミラー設置部311は、本実施形態では、梁部31と一体的に設けられ、梁部31として形状加工する際に同時に形成している。   Note that a mirror installation part 311 for installing an optical mirror part 322 described later is provided at a substantially central part of the beam part 31 so as to be wider than the beam part 31. In the present embodiment, the mirror installation portion 311 is provided integrally with the beam portion 31 and is formed simultaneously with the shape processing as the beam portion 31.

また、このような梁部31に設けられる質量体32は、図1(b)に示すように、ミラー設置部311に設置される光学ミラー部322と、ミラー配置部311の裏面、すなわち、光学ミラー部322とは反対側の面に設けられる磁石323とから構成されている。   Further, as shown in FIG. 1B, the mass body 32 provided in such a beam part 31 includes an optical mirror part 322 installed in the mirror installation part 311 and a back surface of the mirror arrangement part 311, that is, optical It is comprised from the magnet 323 provided in the surface on the opposite side to the mirror part 322. FIG.

ここで、光学ミラー部322及びミラー配置部311は、梁部31の幅寸法より大きい外形形状からなり、例えば、本実施形態では、光学ミラー部322及びミラー配置部311は板状で且つ外形形状が長方形である。また、磁石323は、ミラー配置部311の長手方向に亘って両端部に達するよう設けられている。さらに、磁石323は、本実施形態では、NS方向が水平方向、すなわち、基板10の面方向と平行となるように設けられている。一方、基板10上の磁界印加手段70は、コイル状の金属パターンからなり、質量体に対向する領域に設けられている。   Here, the optical mirror part 322 and the mirror arrangement part 311 have an outer shape larger than the width dimension of the beam part 31. For example, in this embodiment, the optical mirror part 322 and the mirror arrangement part 311 are plate-like and have an outer shape. Is a rectangle. Further, the magnet 323 is provided so as to reach both ends over the longitudinal direction of the mirror arrangement portion 311. Further, in the present embodiment, the magnet 323 is provided such that the NS direction is parallel to the horizontal direction, that is, the surface direction of the substrate 10. On the other hand, the magnetic field applying means 70 on the substrate 10 is made of a coiled metal pattern and is provided in a region facing the mass body.

また、光学ミラー部322は、例えば、蒸着等によって形成されたAlやAu等の反射膜であってもよいし、シリコンウエハ等、鏡面形成された部材を接合、または、接着して配置したものでもよく、特に限定されるものではない。   Further, the optical mirror unit 322 may be a reflective film such as Al or Au formed by vapor deposition or the like, or a member formed by bonding or bonding a mirror-formed member such as a silicon wafer. However, it is not particularly limited.

一方、磁石323の種類としては、できるだけ小型で振動素子30の重量への寄与が小さく、且つ、充分な磁力を有することが要求されるため、Nd−Fe−B系磁石やSm−Co系磁石等等を好適に用いることができる。また、磁石323の形態は、例えば、焼結磁石やボンド磁石の他、スパッタ法等で形成した薄膜磁石であってもよく、特に限定されるものではない。   On the other hand, the type of magnet 323 is required to be as small as possible, contribute little to the weight of the vibration element 30, and have a sufficient magnetic force. Therefore, an Nd—Fe—B magnet or an Sm—Co magnet is required. Etc. can be suitably used. Moreover, the form of the magnet 323 may be, for example, a thin film magnet formed by a sputtering method or the like in addition to a sintered magnet or a bonded magnet, and is not particularly limited.

そして、このような磁石323に磁界を作用させる磁界印加手段70は、振動素子30に捻り振動を励起できるトルクが磁石に加わるものであれば、特に限定されず、例えば、図1(a)のようなシートコイルの他、ヨークとなる軟磁性体を内包(内在)するコイル等であってもよい。また、光学ミラー部322を隠さない範囲で、振動素子30を挟むように両側に磁界印加手段70を設けるようにしてもよい。   And the magnetic field application means 70 which makes a magnetic field act on such a magnet 323 will not be specifically limited if the torque which can excite a torsional vibration to the vibration element 30 is added to a magnet, For example, Fig.1 (a) In addition to such a sheet coil, a coil or the like including a soft magnetic material serving as a yoke may be used. In addition, the magnetic field applying means 70 may be provided on both sides so as to sandwich the vibration element 30 within a range where the optical mirror portion 322 is not hidden.

なお、磁界印加手段70は、駆動手段の一部を構成する図2に示すように駆動回路75が接続されて、振動素子30の共振周波数近傍の周波数を含む信号を出力できるものであれば特に限定されず、例えば、正弦波以外に、三角波やパルス出力等であってもよい。   Note that the magnetic field applying unit 70 is not particularly limited as long as the driving circuit 75 is connected as shown in FIG. 2 constituting a part of the driving unit and can output a signal including a frequency near the resonance frequency of the vibration element 30. For example, a triangular wave or a pulse output may be used in addition to the sine wave.

このような構造からなる本実施形態に係るアクチュエータ装置1においては、駆動回路75で駆動される磁界印加手段70からの磁界により磁石323が回転力を受け、質量体32と梁部31からなる振動素子30に、捻り振動を励起する。具体的には、磁界印加手段70により磁界を生じさせると、磁石323がその磁界の作用を受けることにより質量体32に回転力が付与され、これに連動して梁部31が捻れ変形する。そして、駆動回路75の制御により、このような梁部31の捻れ変形を繰り返し動作させることにより、光学ミラー部322が一次元的に動作する振動ミラー(機能部)となる。   In the actuator device 1 according to the present embodiment having such a structure, the magnet 323 receives a rotational force by the magnetic field from the magnetic field applying means 70 driven by the drive circuit 75, and the vibration composed of the mass body 32 and the beam portion 31. Torsional vibration is excited in the element 30. Specifically, when a magnetic field is generated by the magnetic field applying means 70, the magnet 323 receives the action of the magnetic field, whereby a rotational force is applied to the mass body 32, and the beam portion 31 is twisted and deformed in conjunction with this. Then, by repeatedly operating such torsional deformation of the beam portion 31 under the control of the drive circuit 75, the optical mirror portion 322 becomes a vibrating mirror (functional portion) that operates one-dimensionally.

そして、本実施形態では、上述したように捻れ変形させる梁部31が加工硬化及び時効硬化型Co−Ni基合金から構成されるので、例えば、ステンレスで形成した場合と比べて、疲労特性・機械特性等を格段に高めることができる。また、振動減衰率が非常に低い振動素子30となり、特に、振動減衰率の低さに対して不安定性を生じないほどにバネの非線形性が小さく、振動減衰率の歪み振幅依存性も非常に小さい振動素子30となる。   In the present embodiment, as described above, the beam portion 31 to be twisted and deformed is made of work-hardened and age-hardened Co—Ni-based alloy. Characteristics and the like can be greatly improved. In addition, the vibration element 30 has a very low vibration damping rate. In particular, the non-linearity of the spring is so small that instability is not generated with respect to the low vibration damping rate, and the strain amplitude dependency of the vibration damping rate is also very high. A small vibration element 30 is obtained.

このため、本実施形態によれば、所望の疲労特性及び振動特性を確保しつつ梁部31を短くすることで振動素子30の小型化を図ることができる。また、このように小型化された振動素子30をMEMS(Micro Electro−Mechanical Systems)ミラーや光スイッチ等のようなデバイス構造に適用することにより、駆動に関わる部品と共に縮小が可能であり、デバイス構造全体の小型化にも寄与できる他、所望の振動特性が得られるため、消費電力の低い高機能デバイスを実現することができる。特に、本実施形態では、上述した加工硬化及び時効硬化型Co−Ni基合金からなる振動素子30を減圧空間50に配置することにより、常圧下と比べて、振動特性を更に高めることができる。また、機能部等にかかる空気抵抗の影響を低減することができ、機能性の向上にも寄与する。   For this reason, according to this embodiment, size reduction of the vibration element 30 can be achieved by shortening the beam portion 31 while ensuring desired fatigue characteristics and vibration characteristics. In addition, by applying the vibration element 30 thus downsized to a device structure such as a MEMS (Micro Electro-Mechanical Systems) mirror or an optical switch, it is possible to reduce the size together with components related to driving. In addition to contributing to the overall size reduction, desired vibration characteristics can be obtained, so that a highly functional device with low power consumption can be realized. In particular, in the present embodiment, the vibration characteristics can be further enhanced as compared with normal pressure by disposing the vibration element 30 made of the above-described work hardening and age hardening type Co—Ni based alloy in the reduced pressure space 50. In addition, it is possible to reduce the influence of air resistance on the functional part and the like, which contributes to improvement of functionality.

ここで、本実施形態のアクチュエータ装置1に適用される振動素子30においては、振動部の主要部を構成する梁部31を加工硬化及び時効硬化型Co−Ni基合金から構成することで、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となるような特性、すなわち、ばね特性の非線形性が非常に小さな振動特性が得られる。   Here, in the vibration element 30 applied to the actuator device 1 of the present embodiment, the beam portion 31 constituting the main portion of the vibration portion is made of work-hardening and age-hardening type Co—Ni based alloy, thereby resonating. A characteristic in which the peak shape of the resonance characteristic curve showing the relationship between the amount of change in frequency and the magnitude of the distortion amplitude is line symmetric, that is, a vibration characteristic with very small nonlinearity of the spring characteristic is obtained.

図3には、上述した実施形態1にかかる振動素子30の構造(図1)に基づいて作製した実施例1の振動素子及び比較例1〜3の各振動素子について、共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線(周波数特性)を示す。横軸は規格化した角周波数ω/ωであり、縦軸は捻り振幅の大きさθ(deg)である。ωの値には、捻り振幅がゼロのときの角周波数(外挿)値を用いている。
[実施例1]
FIG. 3 shows the amount of change in the resonance frequency for the vibration element of Example 1 and the vibration elements of Comparative Examples 1 to 3 manufactured based on the structure of the vibration element 30 according to Embodiment 1 described above (FIG. 1). The resonance characteristic curve (frequency characteristic) which shows the relationship with the magnitude | size of distortion amplitude is shown. The horizontal axis is the normalized angular frequency ω / ω 0 , and the vertical axis is the torsion amplitude magnitude θ (deg). As the value of ω 0 , an angular frequency (extrapolated) value when the torsional amplitude is zero is used.
[Example 1]

加工硬化及び時効硬化型Co−Ni基合金として、35%Co、32%Ni、20%Cr、10%Moの組成を有するSPRON510の圧延材を用い、時効処理として550℃で2時間の熱処理を施して形成した振動部を有するものを実施例1の振動素子とした。なお、実施例1の振動素子の共振周波数は約2kHzとした。
[比較例1]
Using a rolled material of SPRON 510 having a composition of 35% Co, 32% Ni, 20% Cr, 10% Mo as work hardening and age hardening type Co—Ni base alloy, heat treatment at 550 ° C. for 2 hours is performed as aging treatment. A resonator element according to Example 1 having a vibrating portion formed by applying the same was used. Note that the resonance frequency of the resonator element of Example 1 was about 2 kHz.
[Comparative Example 1]

SUS304と同じオーステナイト系ステンレス鋼の中で、機械特性のよいSUS301からなる振動部とした以外は実施例1と同様の構造を有するものを作製し、これを比較例1の振動素子とした。
[比較例2]
Among the same austenitic stainless steels as SUS304, those having the same structure as in Example 1 were prepared except that the vibration part was made of SUS301 having good mechanical properties, and this was used as the vibration element of Comparative Example 1.
[Comparative Example 2]

析出硬化系ステンレス鋼のSUS631からなる振動部とした以外は実施例1と同様の構造を有するものを作製し、これを比較例2の振動素子とした。
[比較例3]
A vibrating element of Comparative Example 2 was prepared by preparing a vibrating part having the same structure as that of Example 1 except that the vibrating part was made of precipitation hardening stainless steel SUS631.
[Comparative Example 3]

加工硬化のみを施した以外は実施例1と同様の構造を有するものを比較例3の振動素子とした。   A vibrating element of Comparative Example 3 was made having the same structure as that of Example 1 except that only work hardening was performed.

図3に示すように、実施例1と比較例1〜3との共振周波数特性を比較すると、比較例1〜3のSUS301、SUS631、及び加工硬化のみのCo−Ni基合金からなる振動素子は、振動のQ値が低い、すなわち、振動減衰率が大きく、また、共振特性が非対称であり、ばね特性の非線形性が現れている。   As shown in FIG. 3, when the resonance frequency characteristics of Example 1 and Comparative Examples 1 to 3 are compared, the vibration element made of SUS301 and SUS631 of Comparative Examples 1 to 3 and a work-hardening-only Co—Ni based alloy is obtained. The vibration Q value is low, that is, the vibration damping rate is large, the resonance characteristics are asymmetric, and the nonlinearity of the spring characteristics appears.

これに対し、実施例1の振動素子においては、大気圧環境下及び減圧環境下のいずれの場合においても、共振特性曲線のピーク形状が線対称となるような特性、すなわち、ばね特性の非線形性が非常に小さな振動特性が現れている。特に、実施例1の振動素子は、減圧環境下において、非常に尖鋭な特性であるにも関わらず非線形性は殆ど見られず、振動特性が高いことを示している。   On the other hand, in the vibration element of Example 1, the characteristic that the peak shape of the resonance characteristic curve is axisymmetric in both cases of the atmospheric pressure environment and the reduced pressure environment, that is, the nonlinearity of the spring characteristic. However, very small vibration characteristics appear. In particular, the vibration element of Example 1 shows very high non-linearity in a reduced pressure environment despite the fact that it has very sharp characteristics and high vibration characteristics.

このように実施例1の振動素子は、ばね特性の非線形性が非常に小さな振動特性を発揮し、高い振動特性が得られるため、所望の振動特性を確保しつつ設計の自由度を持たせることができる。すなわち、実施例1の振動素子は、例えば、比較例1(SUS301)及び比較例2(SUS631)の材料を振動部の素材に用いた場合と比べて、格段に振動特性を向上することができる。このため、例えば、光走査装置等の電子デバイスに実施例1の振動素子を実装する際において、振動素子の小型化を図ったり、あるいは素子構造を見直したり寸法等を変更したりする設計の自由度を格段に向上することができる。したがって、実施例1の振動素子によれば、デバイス性能を維持しつつ様々な小型の電子デバイスを実現可能である。   As described above, the vibration element according to the first embodiment exhibits vibration characteristics with very small non-linearity of the spring characteristics, and high vibration characteristics can be obtained. Therefore, design freedom can be ensured while ensuring desired vibration characteristics. Can do. That is, the vibration element of Example 1 can significantly improve the vibration characteristics as compared with, for example, the case where the materials of Comparative Example 1 (SUS301) and Comparative Example 2 (SUS631) are used as the material of the vibration part. . For this reason, for example, when mounting the resonator element according to the first embodiment on an electronic device such as an optical scanning device, the design freedom to reduce the size of the resonator element, review the element structure, change the dimensions, or the like. The degree can be remarkably improved. Therefore, according to the resonator element of the first embodiment, various small electronic devices can be realized while maintaining the device performance.

図4には、実施例1の振動素子に用いた、加工硬化及び時効硬化処理が施されたCo−Ni基合金と、比較例1、2の振動素子に用いたSUS301、SUS631についての振動減衰率の捻り振幅依存性を示す。なお、捻り振幅依存性は、梁の断面形状や長さによって変わるため、形状に依らない材料の特性として、捻り振幅θを梁に加わる最大せん断応力に対応する最大歪み振幅γに変換して示してある。また、図4は、空気抵抗が無視できる減圧下での測定結果であり、材料自体の振動減衰率(Q−1)、すなわち、制振特性を示すものである。 FIG. 4 shows vibration damping of the Co—Ni based alloy that has been subjected to work hardening and age hardening treatment, and SUS301 and SUS631 used for the vibration elements of Comparative Examples 1 and 2 used in the vibration element of Example 1. The torsional amplitude dependence of the rate is shown. The torsional amplitude dependency varies depending on the cross-sectional shape and length of the beam. Therefore, the torsional amplitude θ is converted to the maximum strain amplitude γ corresponding to the maximum shear stress applied to the beam as a property of the material independent of the shape. It is. FIG. 4 shows the measurement results under reduced pressure at which the air resistance can be ignored, and shows the vibration damping rate (Q −1 ) of the material itself, that is, the damping characteristics.

SUS301、及び、SUS631は歪み振幅の増加によって振動減衰率が大きく増加する。このため、SUS301やSUS631を用いた振動素子(比較例1及び2)を歪み振幅の大きい領域で使用する場合には、駆動力を得るために磁界印加手段に大きなヨークを用いたり、電源回路やバッテリーの容量を増加させたりする必要があり、駆動部の小型化が難しくなる。また、SUS631は、SUS301よりも振動減衰率の大きさにおいて良好な特性を示すが、歪み振幅が大きい領域ではまだ不充分である。これに対し、実施例1に用いる加工硬化及び時効硬化処理が施されたCo−Ni基合金を用いた振動素子においては、材料の振動減衰率に歪み振幅依存性は無く、歪み振幅の大きい領域で使用する場合にも大きな駆動力を必要としない。   In SUS301 and SUS631, the vibration damping rate greatly increases as the distortion amplitude increases. For this reason, when a vibration element using SUS301 or SUS631 (Comparative Examples 1 and 2) is used in a region where the distortion amplitude is large, a large yoke is used for the magnetic field application means in order to obtain a driving force, It is necessary to increase the capacity of the battery, which makes it difficult to reduce the size of the drive unit. In addition, SUS631 shows better characteristics in terms of vibration attenuation rate than SUS301, but is still insufficient in a region where the distortion amplitude is large. On the other hand, in the vibration element using the Co—Ni base alloy subjected to work hardening and age hardening used in Example 1, the vibration attenuation factor of the material has no distortion amplitude dependence, and the distortion amplitude is large. A large driving force is not required even when used in the above.

図5は、材料の振動減衰率とばね特性の非線形性が振動素子の周波数特性に及ぼす影響を示したものである。横軸は規格化された周波数であり、縦軸は捻り振幅である。ばね特性に非線形性がある場合には、振動振幅の増加に伴って最大振幅が得られる共振周波数が変化する。図5では共振周波数が低下し、それと共に低周波側の特性が急峻になり、さらに振動振幅が増加するとヒステリシスが現れる。周波数特性が急峻になると共振周波数付近は制御が難しい不安定な状態となる。このような特性の振動素子を用いる場合には、共振周波数を避けて使用する必要があるため、所望の振動振幅を得るには強制振動により大きい駆動力が必要となる。これは駆動部品の小型化の妨げとなる。周波数特性が急峻になり、ヒステリシスが発生しはじめるのは、共振周波数の変化量(δω/ω)が振動の減衰率Q−1=(δω/ω)を上回る振動振幅Aのときであり、共振周波数で安定して駆動できるのは振動振幅がA以下の範囲である。 FIG. 5 shows the influence of the vibration damping rate of the material and the nonlinearity of the spring characteristics on the frequency characteristics of the vibration element. The horizontal axis is the normalized frequency, and the vertical axis is the torsional amplitude. When the spring characteristic is non-linear, the resonance frequency at which the maximum amplitude is obtained changes with an increase in the vibration amplitude. In FIG. 5, the resonance frequency is lowered, and at the same time, the characteristics on the low frequency side become steep, and when the vibration amplitude further increases, hysteresis appears. When the frequency characteristics become steep, the vicinity of the resonance frequency becomes an unstable state that is difficult to control. When using a vibration element having such characteristics, it is necessary to avoid the resonance frequency and use a larger driving force for forced vibration in order to obtain a desired vibration amplitude. This hinders downsizing of the drive parts. The frequency characteristic becomes steep, the hysteresis begins to occur when the amount of change in resonance frequency (δω / ω o) is the vibration amplitude A r above the damping factor Q -1 = (δω / ω o ) of the vibration The vibration amplitude can be stably driven at the resonance frequency within the range of Ar or less.

図6は、振動素子の振動減衰率と非線形性を併せて示した図である。横軸は歪み振幅の大きさであり、縦軸は振動減衰率Q−1、及び、非線形性の大きさを表す共振周波数の変化量(δω/ω)である。図6(a)は大気圧下での測定結果であり、図6(b)は減圧下でのそれである。図6(b)の特性は空気抵抗を殆ど無視できる状態のものであり、空気抵抗の大きさに応じて図6(a)と図6(b)の中間の特性になる。振動減衰率と共振周波数変化量のグラフの交点が、図5で説明したように、共振周波数で安定して駆動できる限界の許容歪み振幅であり、それ以下の歪み振幅で使用する必要がある。図6(a)の大気圧下での振動減衰率のグラフは、ミラーの空気抵抗の影響を含んでいるため、ミラーの大きさ、及び、形状によって異なる。図6(a)のグラフは、2×3mmの矩形ミラーを用いた場合のものである。図6(a)のグラフ内で、Co−Ni基合金の振動素子の特性に交点は無く、許容歪み振幅の値が非常に大きいことが分かる。外挿値では、交点の歪み振幅はSUS301、及び、SUS631の3〜4倍になる。 FIG. 6 is a diagram showing both the vibration attenuation factor and the nonlinearity of the vibration element. The horizontal axis represents the magnitude of the distortion amplitude, and the vertical axis represents the vibration attenuation rate Q −1 and the change amount (δω / ω o ) of the resonance frequency representing the magnitude of the nonlinearity. FIG. 6 (a) shows the measurement result under atmospheric pressure, and FIG. 6 (b) shows that under reduced pressure. The characteristic shown in FIG. 6B is in a state where the air resistance is almost negligible, and becomes an intermediate characteristic between FIG. 6A and FIG. 6B according to the magnitude of the air resistance. As described with reference to FIG. 5, the intersection of the graph of the vibration attenuation rate and the amount of change in the resonance frequency is the limit allowable distortion amplitude that can be stably driven at the resonance frequency, and must be used at a distortion amplitude lower than that. The graph of the vibration attenuation rate under atmospheric pressure in FIG. 6A includes the influence of the air resistance of the mirror, and therefore varies depending on the size and shape of the mirror. The graph of FIG. 6A is a case where a 2 × 3 mm 2 rectangular mirror is used. In the graph of FIG. 6A, it can be seen that there is no intersection in the characteristics of the vibration element of the Co—Ni based alloy, and the value of the allowable strain amplitude is very large. In the extrapolated value, the distortion amplitude at the intersection is 3 to 4 times that of SUS301 and SUS631.

図7に、許容歪み振幅γの変化率と捻り梁の長さLの変化率との関係を示す。このグラフは、捻り梁の断面を円形、または、アスペクト比が一定の矩形として、同じミラー形状で、同じ共振周波数と同じ捻り振幅を得るのに必要な長さを求めたものである。つまり、ある材料を用いた振動部で許容歪み振幅がγ、梁の長さがLであるとき、許容歪み振幅がγの材料を用いると同じ仕様の振動部を作製するのにどのくらいの長さLが必要かを、比率で表したものである。このグラフから、許容歪み振幅が3〜4倍になれば、捻り梁の長さを1/4以下にでき、振動鏡を大幅に小型化することができることが分かる。 FIG. 7 shows the relationship between the change rate of the allowable strain amplitude γ and the change rate of the length L of the torsion beam. In this graph, the length required to obtain the same resonance frequency and the same torsion amplitude is obtained with the same mirror shape, with the cross section of the torsion beam being circular or a rectangle having a constant aspect ratio. That is, when the allowable strain amplitude is γ 0 and the length of the beam is L 0 in a vibrating portion using a certain material, how much can be made to produce a vibrating portion of the same specification if a material having an allowable strain amplitude of γ is used? This is a ratio indicating whether the length L is necessary. From this graph, it can be seen that if the allowable strain amplitude is 3 to 4 times, the length of the torsion beam can be reduced to ¼ or less, and the vibrating mirror can be greatly reduced in size.

図6(a)のグラフにおいて、SUS301とSUS631の許容歪み振幅は同程度の大きさである。これは、SUS631を用いた振動素子が、SUS301の振動素子に対して振動減衰率が低い分だけ駆動効率を向上させることはできるが、振動素子の小型化はできないことを示している。SUS631の非線形性は、SUS301よりは少ないが許容歪み振幅を向上させる程には少なくないことが原因であり、アクチュエータ装置(振動鏡装置等)を小型化するには、振動減衰率と非線形性との両方が最適な特性を持つことが重要であることを示している。   In the graph of FIG. 6A, the allowable distortion amplitudes of SUS301 and SUS631 are approximately the same. This indicates that the vibration element using SUS631 can improve the driving efficiency by the amount of the vibration attenuation factor lower than that of the vibration element of SUS301, but the vibration element cannot be reduced in size. The non-linearity of SUS631 is less than that of SUS301 but is not so small as to improve the allowable distortion amplitude. To reduce the size of the actuator device (vibrating mirror device, etc.), the vibration attenuation rate and the non-linearity Both show that it is important to have optimal characteristics.

なお、図6(b)の減圧下の特性では、図6(a)の大気圧下の特性と比較して、SUS301、及び、SUS631の許容歪み振幅が低下している。これは、空気抵抗を減らした場合、共振周波数で安定に動作させるために、捻り梁の長さを長くする必要があることを示している。つまり、減圧空間への配置や図8(a)〜図8(c)に示すような光学ミラー部322の形状の工夫でジッタの低減を行った場合、小型化がより難しくなることを示している。   In the characteristics under reduced pressure in FIG. 6B, the allowable strain amplitudes of SUS301 and SUS631 are lower than the characteristics under atmospheric pressure in FIG. This indicates that when the air resistance is reduced, it is necessary to increase the length of the torsion beam in order to operate stably at the resonance frequency. That is, when jitter is reduced by arrangement in a decompression space or by devising the shape of the optical mirror unit 322 as shown in FIGS. 8A to 8C, it is more difficult to reduce the size. Yes.

これに対し、加工硬化及び時効硬化処理が施されたCo−Ni基合金を用いた場合の振動素子の許容歪み振幅も低下しているが、SUS301、及び、SUS631に対しては40%以上高い値を維持している。図7のグラフから、捻り梁の長さとしてSUS301、及び、SUS631の60%程度に小型化できる。高精度なビーム走査を要求されるレーザービームプリンターやレーザープロジェクター等の用途ではジッタ対策は必須であり、これらの用途において本発明による小型化の効果は非常に大きい。   On the other hand, although the allowable strain amplitude of the vibration element when using a Co—Ni based alloy that has been subjected to work hardening and age hardening treatment is also reduced, it is 40% or more higher than SUS301 and SUS631. The value is maintained. From the graph of FIG. 7, the length of the torsion beam can be reduced to about 60% of SUS301 and SUS631. In applications such as laser beam printers and laser projectors that require highly accurate beam scanning, countermeasures against jitter are indispensable. In these applications, the effect of miniaturization according to the present invention is very large.

図9には、実施例1及び比較例1、2の各振動素子の特性データを示す。許容歪み振幅には、実際の捻り角も併せて記載している。Q値は振動減衰率の逆数であり、捻り振幅が25°のときの値を記載している。消費電力も同様に捻り振幅が25°のときの値を記載している。捻り振幅の25°という値は、比較例1、2の減圧下でのおおよその許容値であり、共振周波数近傍の振動が不安定にならない範囲で、同じ条件で各振動素子の特性を比較している。   In FIG. 9, the characteristic data of each vibration element of Example 1 and Comparative Examples 1 and 2 are shown. The actual twist angle is also described in the allowable strain amplitude. The Q value is the reciprocal of the vibration attenuation rate, and describes the value when the torsional amplitude is 25 °. Similarly, the power consumption is a value when the twist amplitude is 25 °. The value of 25 ° of the torsional amplitude is an approximate allowable value under reduced pressure in Comparative Examples 1 and 2, and the characteristics of each vibration element are compared under the same conditions as long as the vibration near the resonance frequency does not become unstable. ing.

実施例1及び比較例2の各振動素子を消費電力で比べると、大気圧下で1/5以下、減圧下では1/30となっており、また比較例2と比べても、実施例1の方が消費電力を大幅に低減できていることが分かる。このため、実施例1の振動素子は、大幅に駆動効率が向上しており、アクチュエータ装置の小型化が可能であることが分かる。   When the vibration elements of Example 1 and Comparative Example 2 are compared in terms of power consumption, they are 1/5 or less under atmospheric pressure and 1/30 under reduced pressure. Compared with Comparative Example 2, Example 1 It can be seen that the power consumption can be greatly reduced. For this reason, it can be seen that the vibration element of Example 1 has greatly improved driving efficiency, and the actuator device can be downsized.

また、実施例1及び比較例3の振動素子の許容歪み振幅は、3×10−3より大きくなっており、比較例1及び2の振動素子の許容歪み振幅よりも優れていることが分かる。なお、比較例3の振動素子については、振動部が加工硬化処理のみで形成されているためか、実施例1の振動素子と比べて、Q値が小さく消費電力が大きい、すなわち、振動減衰率が非常に高く駆動効率が低いため、小型化には不利である。 Further, the allowable strain amplitude of the vibration elements of Example 1 and Comparative Example 3 is larger than 3 × 10 −3 , and it can be seen that the allowable distortion amplitude of the vibration elements of Comparative Examples 1 and 2 is superior. In addition, regarding the vibration element of Comparative Example 3, because the vibration part is formed only by work hardening processing, the Q value is small and the power consumption is large compared to the vibration element of Example 1, that is, the vibration damping factor. Is very high and driving efficiency is low, which is disadvantageous for downsizing.

振動素子の小型化に際して、捻り梁の長さを最小にするには、要求される捻り振幅に対して、歪み振幅が許容値限界まで大きくなるようにすれば良い。図9に示された比較例1,2の減圧下におけるQ値の値は、ほぼ許容値限界の歪み振幅で動作させたときの値であり、ミラー形状や捻り振幅に依らず、最小の振動素子を作製した場合にはこの値となる。大気圧下では空気抵抗が加わるため、この値よりも低下する。つまり、振動が不安定にならない範囲で最小の振動素子を作製した場合、比較例1,2の材料でのQ値は550、ないし、740程度であり、1000を越えるQ値は得られない。   In miniaturizing the vibration element, in order to minimize the length of the torsion beam, the distortion amplitude may be increased to the allowable limit with respect to the required torsion amplitude. The Q value under reduced pressure in Comparative Examples 1 and 2 shown in FIG. 9 is a value when operated with a distortion amplitude almost at the limit of the allowable value, and is the minimum vibration regardless of the mirror shape and the torsional amplitude. This value is obtained when an element is manufactured. Since air resistance is added under atmospheric pressure, the value is lower than this value. That is, when a minimum vibration element is manufactured within a range in which vibration does not become unstable, the Q value in the materials of Comparative Examples 1 and 2 is about 550 to 740, and a Q value exceeding 1000 cannot be obtained.

これに対して、実施例の減圧下では、比較例1、2と同サイズで4000を越えるQ値が得られている。また、上述したように歪み振幅の許容値が大きいため、振動素子を小型化することができるが、図6(b)に示されているように実施例1の振動減衰率は減圧下で歪み振幅依存性が殆どなく、小型化により歪み振幅を増大させてもQ値は変わらない。つまり、振動素子のQ値向上と小型化を同時に実現することができる。   On the other hand, under the reduced pressure of the example, a Q value exceeding 4000 with the same size as Comparative Examples 1 and 2 was obtained. Moreover, since the allowable value of the distortion amplitude is large as described above, it is possible to reduce the size of the vibration element. However, as shown in FIG. There is almost no amplitude dependence, and the Q value does not change even if the distortion amplitude is increased by downsizing. That is, it is possible to simultaneously improve the Q value and reduce the size of the vibration element.

また、実施例の大気圧下では、小型化が可能であることは上述の通りであるが、Q値はミラー形状や捻り振幅などに応じた空気抵抗の影響を受けて低下する。しかし、比較例1、2と同サイズで図9に示したように1400を越える値が得られ、このことは、本発明に依れば比較例1、2の材料では得られない1000を越えるQ値を実現することが可能であることを示している。   In addition, as described above, it is possible to reduce the size under the atmospheric pressure of the embodiment, but the Q value decreases due to the influence of the air resistance according to the mirror shape, the torsional amplitude, and the like. However, a value exceeding 1400 is obtained at the same size as Comparative Examples 1 and 2 as shown in FIG. 9, which exceeds 1000, which cannot be obtained with the materials of Comparative Examples 1 and 2 according to the present invention. It shows that the Q value can be realized.

なお、実施例1の振動素子について、共振周波数の2kHzで捻り振幅40°、SUS301、及び、SUS631の許容歪み振幅を越える値で、耐久性試験を行ったところ、4×1010回以上(5000時間以上)の耐久性が得られることが分かった。 In addition, when the durability test was performed on the vibration element of Example 1 with a resonance frequency of 2 kHz and a twist amplitude of 40 ° and a value exceeding the allowable strain amplitude of SUS301 and SUS631, 4 × 10 10 times or more (5000) It was found that durability of more than hours) can be obtained.

なお、図9に示した実施例1の振動素子の特性データは、あくまでも比較例1〜3との比較のために、比較例1〜3と同形状の各振動素子を作製して得たものであり、本発明の特性を限定するものではない。
(実施形態2)
In addition, the characteristic data of the vibration element of Example 1 shown in FIG. 9 was obtained by producing each vibration element having the same shape as Comparative Examples 1 to 3 for comparison with Comparative Examples 1 to 3. It does not limit the characteristics of the present invention.
(Embodiment 2)

図10は、本発明の実施形態2に係る振動素子を備えたアクチュエータ装置の一例を示す概略断面図である。   FIG. 10 is a schematic cross-sectional view illustrating an example of an actuator device provided with the resonator element according to the second embodiment of the invention.

図10に示すように、本実施形態のアクチュエータ装置1Aは、振動素子30を封止するカバー部材を設けず、振動素子30を大気開放した構造とした以外は上述した実施形態1と同様である。なお、本実施形態では、上述した実施形態1で説明した同一の構成部分については同一の符号を付して重複する説明は省略する。   As shown in FIG. 10, the actuator device 1A of the present embodiment is the same as that of the first embodiment described above except that the cover member for sealing the vibration element 30 is not provided and the vibration element 30 is open to the atmosphere. . In the present embodiment, the same components described in the above-described first embodiment are denoted by the same reference numerals, and redundant description is omitted.

具体的には、本実施形態のアクチュエータ装置1Aは、振動部を構成する梁部31が大気開放されており、常圧状態で使用される。また、保持部材20Aは、その周縁部を残して中央に貫通穴21Aが設けられている。このような空気抵抗の影響がある使用環境においても、梁部31を加工硬化及び時効硬化処理が施されたCo−Ni基合金で形成しているため、所望の疲労特性及び振動特性を確保しつつ小型化するのに有利なデバイスとなる。なお、本実施形態では、梁部31を含む振動部が大気開放されているため、空気抵抗の影響を低減するためにも、捻り振動の回転中心から遠く移動速度の大きい箇所の面積を低減した、例えば、図8(d)〜図8(f)に示すような光学ミラー部322及び梁部31Bの形状を採用することが好ましい。
(実施形態3)
Specifically, in the actuator device 1A of the present embodiment, the beam part 31 constituting the vibration part is open to the atmosphere, and is used in a normal pressure state. Further, the holding member 20A is provided with a through hole 21A in the center, leaving the peripheral edge thereof. Even in such an environment where there is an influence of air resistance, the beam portion 31 is made of a Co—Ni based alloy that has undergone work hardening and age hardening treatment, so that desired fatigue characteristics and vibration characteristics are ensured. However, the device is advantageous for downsizing. In the present embodiment, since the vibrating portion including the beam portion 31 is open to the atmosphere, the area of the portion having a large moving speed is reduced from the rotational center of torsional vibration in order to reduce the influence of air resistance. For example, it is preferable to adopt the shapes of the optical mirror part 322 and the beam part 31B as shown in FIGS. 8D to 8F.
(Embodiment 3)

図11は、本発明の実施形態3に係る振動素子を備えたアクチュエータ装置の一例を示す概略図であり、図11(a)は上面図、図11(b)はB−B´断面図、図11(c)はカバー装着構造例である。   11A and 11B are schematic views illustrating an example of an actuator device including the resonator element according to the third embodiment of the invention, in which FIG. 11A is a top view, FIG. 11B is a cross-sectional view along BB ′, FIG. 11C shows an example of a cover mounting structure.

図11(a)及び図11(b)に示すように、本実施形態のアクチュエータ装置1Bは、梁部31Bを片持ち状に設けて振動素子30Bを構成した以外は上述した実施形態1と同様である。なお、本実施形態では、上述した実施形態2で説明した同一の構成部分については同一の符号を付して重複する説明は省略する。   As shown in FIGS. 11A and 11B, the actuator device 1B according to the present embodiment is the same as the above-described first embodiment except that the vibrating element 30B is configured by providing the beam portion 31B in a cantilever manner. It is. In the present embodiment, the same components as those described in the second embodiment are denoted by the same reference numerals, and redundant description is omitted.

図11(a)及び図11(b)に示すように、梁部31Bは、フレーム70に対して片側だけ、すなわち、片持ち梁状に設けられている。また、質量体32Bは、梁部31Bの自由端側である先端部に設けられている。このような構造を採用することにより、質量体32Bの重心が梁部31Bの延長線上に位置し、片側で支持された構成でも安定した振動が可能となる。   As shown in FIGS. 11A and 11B, the beam portion 31B is provided only on one side with respect to the frame 70, that is, in a cantilever shape. Further, the mass body 32B is provided at the distal end portion that is the free end side of the beam portion 31B. By adopting such a structure, the center of gravity of the mass body 32B is located on the extension line of the beam portion 31B, and stable vibration is possible even with a configuration supported on one side.

この構成では、特に、自重による撓みを防止するために、梁の長さ方向のヤング率が大きいほうが望ましく、<110>集合組織が形成された方向に梁を形成するのが好ましい。   In this configuration, in particular, in order to prevent bending due to its own weight, it is desirable that the Young's modulus in the length direction of the beam is large, and it is preferable to form the beam in the direction in which the <110> texture is formed.

また、図11(c)に示すように、アクチュエータ装置1Bの構造を採用しつつ、上述した実施形態1のようにカバー部材40を設けて、減圧空間50内に振動素子30Bを配設することにより、空気抵抗を低減して、より安定した振動特性を得ることができる。
(実施形態4)
Further, as shown in FIG. 11C, the cover member 40 is provided as in the first embodiment described above while adopting the structure of the actuator device 1B, and the vibration element 30B is disposed in the decompression space 50. Thus, the air resistance can be reduced and more stable vibration characteristics can be obtained.
(Embodiment 4)

図12は、本発明の実施形態4に係る振動素子を備えたアクチュエータ装置の一例を示す概略図であり、図12(a)は上面図、図12(b)はC−C´断面図、図12(c)はD−D´断面図である。   12A and 12B are schematic views illustrating an example of an actuator device including the resonator element according to the fourth embodiment of the invention, in which FIG. 12A is a top view, FIG. FIG.12 (c) is DD 'sectional drawing.

図12に示すように、本実施形態のアクチュエータ装置1Cは、フレーム70Cから梁状に架橋された一対の第1梁部31aと、この一対の第1梁部31aを架橋した第2梁部31bとを設けると共に、第1梁部31aに複数の圧電素子100を設け、第2梁部31bに質量体32Cを設けて振動素子30Cを構成した以外は上述した実施形態1と同様である。なお、本実施形態では、上述した実施形態1で説明した同一の構成部分については同一の符号を付して重複する説明は省略する。   As shown in FIG. 12, the actuator device 1C of the present embodiment includes a pair of first beam portions 31a that are bridged in a beam shape from a frame 70C, and a second beam portion 31b that bridges the pair of first beam portions 31a. And a plurality of piezoelectric elements 100 in the first beam portion 31a and a mass body 32C in the second beam portion 31b to configure the vibration element 30C. In the present embodiment, the same components described in the above-described first embodiment are denoted by the same reference numerals, and redundant description is omitted.

具体的には、フレーム70Cを略平行に架橋する一対の第1梁部31aには、第2梁部31bとの連結部分の両側に圧電素子100がそれぞれ設けられている。なお、圧電素子100は、チタン酸ジルコン酸鉛やチタン酸バリウム、チタン酸鉛、ニオブ酸鉛等の圧電体膜、上電極(図示なし)を積層して形成される。そして、図示しないが、駆動回路から、フレーム70Cと上電極とを介して各圧電素子100に電圧を印加し、圧電素子100に互いに逆方向の撓み振動を生じさせることにより、第1梁部31aに捻りトルクを与えることができる。これにより、振動素子30Cに捻り振動が励起される。光学ミラー部322Cはミラー配置部311Cの両面に配置されている。このような構造を採用することにより、反射膜を成膜する場合には膜応力のバランスをとって光学ミラー部322Cの変形を防止し、鏡面が形成された部材を接合する場合には、重心のバランスをとる役割を果たす。   Specifically, the pair of first beam portions 31a that bridge the frame 70C substantially in parallel are provided with the piezoelectric elements 100 on both sides of the connecting portion with the second beam portion 31b. The piezoelectric element 100 is formed by laminating a piezoelectric film such as lead zirconate titanate, barium titanate, lead titanate or lead niobate, and an upper electrode (not shown). Although not shown, a voltage is applied to each piezoelectric element 100 from the drive circuit via the frame 70C and the upper electrode, and the piezoelectric element 100 is caused to bend and vibrate in opposite directions, thereby causing the first beam portion 31a. Torsion torque can be applied to the. Thereby, torsional vibration is excited in the vibration element 30C. The optical mirror unit 322C is arranged on both surfaces of the mirror arrangement unit 311C. By adopting such a structure, when the reflective film is formed, the film stress is balanced to prevent the deformation of the optical mirror portion 322C, and when the member having the mirror surface is joined, the center of gravity is obtained. It plays the role of balancing.

フレーム70Cと一体に形成された質量体32C及び第1梁部31a及び第2梁部31bは、上述した実施形態1と同様に、加工硬化及び時効硬化型Co−Ni基合金から形成されている。本実施形態のように、圧電素子100の圧電体膜に、チタン酸ジルコン酸鉛(PZT)等、熱処理により金属材料と鉛の反応が問題になる圧電膜を用いる場合には、金属材料と圧電膜の間に鉛の拡散を防止する中間層を形成するのが圧電特性を向上させる点で好ましい。なお、圧電素子100の形成には、エアロゾルディポジション法(AD法)が好適に用いられる。   The mass body 32C, the first beam portion 31a, and the second beam portion 31b, which are formed integrally with the frame 70C, are formed of work-hardening and age-hardening type Co—Ni based alloys, as in the first embodiment. . As in the present embodiment, when a piezoelectric film such as lead zirconate titanate (PZT) such as lead zirconate titanate (PZT) that causes a reaction between the metal material and lead due to heat treatment is used as the piezoelectric film of the piezoelectric element 100, Forming an intermediate layer for preventing lead diffusion between the films is preferable in terms of improving the piezoelectric characteristics. For forming the piezoelectric element 100, an aerosol deposition method (AD method) is preferably used.

圧電素子100が形成された第1梁部31aは、圧電素子100と共に熱処理され、圧電素子100の特性向上とCo−Ni基合金の時効硬化が同時に行われる。これにより、製造プロセスを簡略化することができる。熱処理条件は、500〜700℃で1〜3時間、還元雰囲気で行われるのが望ましい。ここで、時効硬化後のCo−Ni基合金は耐熱性に優れているため、時効硬化後のCo−Ni基合金に圧電素子100を形成して、圧電膜の熱処理を行うことも可能である。   The first beam portion 31a on which the piezoelectric element 100 is formed is heat-treated together with the piezoelectric element 100, and the characteristics of the piezoelectric element 100 are improved and the age hardening of the Co—Ni based alloy is simultaneously performed. Thereby, the manufacturing process can be simplified. The heat treatment conditions are desirably performed at 500 to 700 ° C. for 1 to 3 hours in a reducing atmosphere. Here, since the age-hardened Co—Ni base alloy has excellent heat resistance, it is possible to heat-treat the piezoelectric film by forming the piezoelectric element 100 on the age-hardened Co—Ni base alloy. .

振動素子30Cの特性は、上述した実施形態1と同様であり、振動素子30Cの小型化も同様に可能である。また、本実施形態では、接着等で圧電素子100を配置した場合に比べて、圧電素子100の駆動電圧を大幅に低減することができるため、電源回路等の駆動部の小型化が可能になる。   The characteristics of the vibration element 30C are the same as those of the first embodiment described above, and the vibration element 30C can be similarly reduced in size. Further, in the present embodiment, since the driving voltage of the piezoelectric element 100 can be significantly reduced compared to the case where the piezoelectric element 100 is disposed by bonding or the like, the driving unit such as a power supply circuit can be downsized. .

なお、本実施形態では、アクチュエータ装置1Cの構造変形例を示したものであり、第1梁部31a及び第2梁部31bに、加工硬化及び時効硬化型Co−Ni基合金を用いた点で、上述した実施形態1と同様の作用効果を得ることができる。
(実施形態5)
In addition, in this embodiment, the structural modification of the actuator device 1C is shown, in that a work hardening and age hardening type Co—Ni based alloy is used for the first beam portion 31a and the second beam portion 31b. The same effects as those of the first embodiment described above can be obtained.
(Embodiment 5)

図13は、本発明の実施形態5に係る振動素子を備えた画像形成装置の概略図である。   FIG. 13 is a schematic diagram of an image forming apparatus including a resonator element according to the fifth embodiment of the invention.

図13に示すように、本実施形態の画像形成装置200は、上述した実施形態1〜4で説明した振動素子30等(図13では振動素子30と図示する)を適用することができるものであり、レーザーの光201から射出された光が、射出光学系202を通り振動素子30のミラーで反射され、結像光学系203を通過して感光体204に走査される。走査されたレーザー光は、BDセンサ205で検出され、その検出信号を基に走査角の制御信号が制御回路206から出力され、振動素子30の駆動回路207にフィードバックされる。本実施形態の画像形成装置200は、加工硬化及び時効硬化型Co−Ni基合金からなる振動部(梁部)を備えた振動素子30を有しているため、小型化に有利であり、ジッタ等の不安定性を低減させて安定したレーザー光走査が可能であり、走査角の高精度な制御が可能である。
(実施形態6)
As shown in FIG. 13, the image forming apparatus 200 of the present embodiment can apply the vibration element 30 or the like described in the first to fourth embodiments (illustrated as the vibration element 30 in FIG. 13). The light emitted from the laser beam 201 is reflected by the mirror of the vibration element 30 through the emission optical system 202, passes through the imaging optical system 203, and is scanned by the photoconductor 204. The scanned laser light is detected by the BD sensor 205, and a scanning angle control signal is output from the control circuit 206 based on the detection signal and fed back to the drive circuit 207 of the vibration element 30. The image forming apparatus 200 according to the present embodiment has the vibration element 30 including the vibration part (beam part) made of work-hardening and age-hardening type Co—Ni based alloy, which is advantageous for downsizing and jitter. Instability such as the above can be reduced and stable laser beam scanning is possible, and the scanning angle can be controlled with high accuracy.
(Embodiment 6)

図14は、本発明の実施形態6に係る振動素子を備えた映像投影装置の概略図である。   FIG. 14 is a schematic diagram of a video projection apparatus including a vibration element according to Embodiment 6 of the present invention.

図14に示すように、本実施形態の映像投影装置300は、上述した実施形態1〜4で説明した振動素子30等(図14では振動素子30と図示する)を適用することができるものであり、RGB3原色を含む光源装置301から射出された光は、振動素子30を介して垂直走査装置302により2次元走査され、スクリーン303に映像として投射される。   As shown in FIG. 14, the image projection apparatus 300 of the present embodiment can apply the vibration element 30 and the like (shown as the vibration element 30 in FIG. 14) described in the first to fourth embodiments. In addition, light emitted from the light source device 301 including the three primary colors of RGB is two-dimensionally scanned by the vertical scanning device 302 via the vibration element 30 and projected onto the screen 303 as an image.

また、垂直走査装置302の走査速度は振動素子30よりも遅い。垂直走査装置302には、非共振駆動で高精度な位置決めができるガルバノミラーを用いている。振動素子30は、制御回路304から出力される制御信号に基づいて駆動回路305によって走査角が制御される。また、垂直走査装置302も同様に、制御回路304からの出力に基づいて走査角が制御される。制御回路304は、入力手段306及び距離測定手段307による投射画角や投射サイズの設定と、映像のサイズや縦横比に基づいて、振動素子30と垂直走査装置302の走査角を変更する。映像の投射サイズは、走査角を変更しなくても、光源装置301のON/OFF制御で可能であるが、走査角を変更することにより光源のOFF時間を減らし、光を有効に利用することができる。   Further, the scanning speed of the vertical scanning device 302 is slower than that of the vibration element 30. The vertical scanning device 302 uses a galvanometer mirror that can be positioned with high accuracy by non-resonant driving. The scanning angle of the vibration element 30 is controlled by the drive circuit 305 based on a control signal output from the control circuit 304. Similarly, the scanning angle of the vertical scanning device 302 is controlled based on the output from the control circuit 304. The control circuit 304 changes the scanning angle of the vibration element 30 and the vertical scanning device 302 based on the setting of the projection field angle and the projection size by the input unit 306 and the distance measuring unit 307 and the size and aspect ratio of the image. The projection size of the image can be controlled by ON / OFF control of the light source device 301 without changing the scanning angle. However, by changing the scanning angle, the light source OFF time can be reduced and light can be used effectively. Can do.

本実施形態の映像投射装置300は、加工硬化及び時効硬化型Co−Ni基合金からなる振動部を構成する梁部を備えた振動素子30を有しているため、小型化に有利でありながら、ジッタ等の不安定性を低減させることができ、走査角を変更しても安定した動作が可能である。また、振動減衰率の歪み振幅依存性が小さいために、走査角を大きくしたときの急激な消費電力増加もない。さらに、光の有効利用により光源装置301の駆動電力を低減することができる。これらにより、小型化と併せて、駆動部やバッテリーの容積を低減させることができ、小型で高性能な映像投射装置300を実現することができる。   The image projection apparatus 300 of the present embodiment includes the vibration element 30 including the beam portion that constitutes the vibration portion made of work-hardening and age-hardening type Co—Ni-based alloy, which is advantageous for downsizing. Instability such as jitter can be reduced, and stable operation is possible even if the scanning angle is changed. In addition, since the distortion amplitude dependency of the vibration attenuation rate is small, there is no sudden increase in power consumption when the scanning angle is increased. Furthermore, the driving power of the light source device 301 can be reduced by the effective use of light. As a result, the volume of the drive unit and the battery can be reduced together with the miniaturization, and a small and high-performance video projector 300 can be realized.

1 アクチュエータ装置
10 基板
20 保持部材
30 振動素子
31 梁部
311 ミラー設置部
32 質量体
322 光学ミラー部
323 磁石
40 カバー部材
50 減圧空間
60 フレーム
70 電界印加手段
75 駆動回路
100 圧電素子
200 画像形成装置
300 映像投影装置
DESCRIPTION OF SYMBOLS 1 Actuator apparatus 10 Board | substrate 20 Holding member 30 Vibration element 31 Beam part 311 Mirror installation part 32 Mass body 322 Optical mirror part 323 Magnet 40 Cover member 50 Decompression space 60 Frame 70 Electric field application means 75 Drive circuit 100 Piezoelectric element 200 Image forming apparatus 300 Video projection device

Claims (15)

共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部を振動させる駆動部とを備えていることを特徴とする振動素子。   A vibration unit having a vibration characteristic in which a peak shape of a resonance characteristic curve indicating a relationship between a change amount of a resonance frequency and a magnitude of a distortion amplitude is line symmetric, and a drive unit that vibrates the vibration unit. And a vibration element. 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部を振動させる駆動部と、前記振動部の少なくとも一部が配置される減圧空間を形成する減圧空間形成部とを備えていることを特徴とする振動素子。   At least one of a vibration part having a vibration characteristic in which the peak shape of a resonance characteristic curve showing a relationship between the amount of change in resonance frequency and the magnitude of strain amplitude is line symmetric, a drive part that vibrates the vibration part, and the vibration part And a decompression space forming part that forms a decompression space in which the part is disposed. 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部とを備えていることを特徴とする振動素子。   A vibration part having a vibration characteristic in which the peak shape of a resonance characteristic curve showing a relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is line symmetric, an optical mirror part provided in the vibration part, and vibrating the vibration part A vibration element comprising: a drive unit for causing the vibration element. 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記振動部の少なくとも一部が配置される減圧空間を形成する減圧空間形成部とを備えていることを特徴とする振動素子。   A vibration part having a vibration characteristic in which the peak shape of a resonance characteristic curve showing a relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is line symmetric, an optical mirror part provided in the vibration part, and vibrating the vibration part An oscillating element comprising: a driving unit that causes the squeezing unit to form a depressurizing space in which at least a part of the oscillating unit is disposed. 前記光学ミラー部は、前記振動部上に設けられると共に、前記振動部の幅寸法より大きい外形形状であり且つ前記振動部に対向する部分から外側に突出した部分が先端ほど漸小する形状を有することを特徴とする請求項3又は4記載の振動素子。   The optical mirror portion is provided on the vibrating portion, and has an outer shape larger than the width of the vibrating portion, and a portion protruding outward from a portion facing the vibrating portion gradually decreases toward the tip. The vibrating element according to claim 3 or 4, 前記振動部は、歪み振幅が3×10−3より大きいことを特徴とする請求項1〜5のいずれか1項に記載の振動素子。 The vibration element according to claim 1, wherein the vibration unit has a strain amplitude larger than 3 × 10 −3 . 振動のし易さを示すQ値が1000以上であることを特徴とする請求項1〜6のいずれか1項に記載の振動素子。   The vibration element according to any one of claims 1 to 6, wherein a Q value indicating ease of vibration is 1000 or more. 前記振動部は、非磁性を示すことを特徴とする請求項1〜7のいずれか1項に記載の振動素子。   The vibration element according to claim 1, wherein the vibration part exhibits non-magnetism. 前記振動部は、梁状に設けられていることを特徴とする請求項1〜8のいずれか1項に記載の振動素子。   The vibrating element according to claim 1, wherein the vibrating portion is provided in a beam shape. 前記振動部は、片持ち梁状に設けられていることを特徴とする請求項1〜9のいずれか1項に記載の振動素子。   The vibration element according to claim 1, wherein the vibration unit is provided in a cantilever shape. 前記駆動部は、前記振動部に設けられる磁石と、前記磁石に作用する磁界を生じさせる磁界発生部とを有するものであることを特徴とする請求項1〜10のいずれか1項に記載の振動素子。   The said drive part has a magnet provided in the said vibration part, and a magnetic field generation part which produces the magnetic field which acts on the said magnet, The any one of Claims 1-10 characterized by the above-mentioned. Vibration element. 前記駆動部は、外部から電圧を印加可能な圧電素子を有することを特徴とする請求項1〜11のいずれか1項に記載の振動素子。   The vibration element according to claim 1, wherein the driving unit includes a piezoelectric element capable of applying a voltage from the outside. 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記光学ミラー部のミラー面に光照射する光源とを備え、前記振動部による前記光学ミラー部の振動に基づいて光走査させることを特徴とする光走査装置。   A vibration part having a vibration characteristic in which the peak shape of a resonance characteristic curve showing a relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is line symmetric, an optical mirror part provided in the vibration part, and vibrating the vibration part And a light source that irradiates the mirror surface of the optical mirror unit with light, and performs optical scanning based on vibration of the optical mirror unit by the vibration unit. 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記光学ミラー部のミラー面に光照射する光源とを備え、前記振動部による前記光学ミラー部の振動に基づいて光走査して映像を投影することを特徴とする映像投影装置。   A vibration part having a vibration characteristic in which the peak shape of a resonance characteristic curve showing a relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is line symmetric, an optical mirror part provided in the vibration part, and vibrating the vibration part And a light source for irradiating light onto the mirror surface of the optical mirror unit, and projecting an image by optical scanning based on vibration of the optical mirror unit by the vibration unit . 共振周波数の変化量と歪み振幅の大きさとの関係を示す共振特性曲線のピーク形状が線対称となる振動特性を有する振動部と、前記振動部に設けられる光学ミラー部と、前記振動部を振動させる駆動部と、前記光学ミラー部のミラー面に光照射する光源とを備え、前記振動部による前記光学ミラー部の振動に基づいて光走査して画像を形成することを特徴とする画像形成装置。   A vibration part having a vibration characteristic in which the peak shape of a resonance characteristic curve showing a relationship between the amount of change in the resonance frequency and the magnitude of the distortion amplitude is line symmetric, an optical mirror part provided in the vibration part, and vibrating the vibration part An image forming apparatus comprising: a driving unit configured to drive; and a light source that irradiates a mirror surface of the optical mirror unit, and forms an image by performing light scanning based on vibration of the optical mirror unit by the vibration unit. .
JP2009284739A 2009-12-16 2009-12-16 Vibration element, optical scanning device, video projection device, and image forming device Active JP5415924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284739A JP5415924B2 (en) 2009-12-16 2009-12-16 Vibration element, optical scanning device, video projection device, and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284739A JP5415924B2 (en) 2009-12-16 2009-12-16 Vibration element, optical scanning device, video projection device, and image forming device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013236253A Division JP5639249B2 (en) 2013-11-14 2013-11-14 Vibration element, optical scanning device, video projection device, and image forming device

Publications (2)

Publication Number Publication Date
JP2011128244A true JP2011128244A (en) 2011-06-30
JP5415924B2 JP5415924B2 (en) 2014-02-12

Family

ID=44290927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284739A Active JP5415924B2 (en) 2009-12-16 2009-12-16 Vibration element, optical scanning device, video projection device, and image forming device

Country Status (1)

Country Link
JP (1) JP5415924B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382165A (en) * 1986-09-26 1988-04-12 Konica Corp Picture forming device
JPH07175005A (en) * 1993-12-20 1995-07-14 Nippon Signal Co Ltd:The Planar type galvanomirror and its production
JP2005241482A (en) * 2004-02-27 2005-09-08 Canon Inc Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector
JP2009165608A (en) * 2008-01-15 2009-07-30 Olympus Medical Systems Corp Internal diameter measuring device
JP2010054652A (en) * 2008-08-27 2010-03-11 Panasonic Corp Optical scanner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382165A (en) * 1986-09-26 1988-04-12 Konica Corp Picture forming device
JPH07175005A (en) * 1993-12-20 1995-07-14 Nippon Signal Co Ltd:The Planar type galvanomirror and its production
JP2005241482A (en) * 2004-02-27 2005-09-08 Canon Inc Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector
JP2009165608A (en) * 2008-01-15 2009-07-30 Olympus Medical Systems Corp Internal diameter measuring device
JP2010054652A (en) * 2008-08-27 2010-03-11 Panasonic Corp Optical scanner

Also Published As

Publication number Publication date
JP5415924B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5587912B2 (en) Vibration element, optical scanning device, actuator device, video projection device, and image forming device
US7394583B2 (en) Light-beam scanning device
US8879132B2 (en) Mirror driving apparatus, method of driving same and method of manufacturing same
JP5744917B2 (en) Vibration element, optical scanning device, and image forming apparatus and image projection apparatus using the same
JP5157499B2 (en) Optical scanner
JP4704537B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2011128245A (en) Oscillation element, optical scanner, image projector and image forming apparatus
JP2012113146A (en) Oscillation element, optical scanner, actuator device, video projection device, and image forming apparatus
JP5639249B2 (en) Vibration element, optical scanning device, video projection device, and image forming device
JP2011128246A (en) Oscillation element, optical scanner, image projector and image forming apparatus
JP5415924B2 (en) Vibration element, optical scanning device, video projection device, and image forming device
JP6162933B2 (en) Vibrating device, optical scanning device, video projection device, and image forming device
JP2012145650A (en) Vibration element and optical scanner, and image forming apparatus and image projection device using these
JP2015210450A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2012145652A (en) Vibration element and optical scanner, and image forming apparatus and image projection device using the same
JP2013152449A (en) Vibration element, optical scanner, and image forming apparatus and image projection device using the same
JP2012145651A (en) Vibration element and optical scanner, and image forming apparatus and image projection device using these
JP2018180466A (en) Oscillating element, optical scanning device, and electronic device
JP6301184B2 (en) Vibration element, optical scanning device, image forming device, image projection device, and optical pattern reading device
JP5327813B2 (en) Optical scanning device
JP2015210453A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2016012023A (en) Vibration element and optical scanner
JP2015210449A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP2013134467A (en) Vibrating device, optical scanner, video projection device, and image forming apparatus
JP2020088284A (en) Piezoelectric laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5415924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250