JP2011128162A - Light receiving element and optical interconnection lsi - Google Patents

Light receiving element and optical interconnection lsi Download PDF

Info

Publication number
JP2011128162A
JP2011128162A JP2011011904A JP2011011904A JP2011128162A JP 2011128162 A JP2011128162 A JP 2011128162A JP 2011011904 A JP2011011904 A JP 2011011904A JP 2011011904 A JP2011011904 A JP 2011011904A JP 2011128162 A JP2011128162 A JP 2011128162A
Authority
JP
Japan
Prior art keywords
opening
light receiving
light
periodic structure
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011011904A
Other languages
Japanese (ja)
Inventor
Hideto Furuyama
英人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011011904A priority Critical patent/JP2011128162A/en
Publication of JP2011128162A publication Critical patent/JP2011128162A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve high-speed responsiveness without reducing a transmitted light volume of surface plasmon in an aperture for transmitting the surface plasmon. <P>SOLUTION: A light receiving element includes a conductive thin film 21 on one face of which a coupling periodic structure 22 to convert incident light into the surface plasmon is disposed, the aperture 23 penetrating the opposite faces being disposed in the coupling periodic structure 22, and a light receiving unit disposed at the end of the other face opposite to the one face of the aperture 23 on which the coupling periodic structure 22 is disposed. The shape of the aperture 23 is a crisscross formed by two orthogonally-crossed slits, wherein a long side length of each slit is longer than 1/2 of a surface plasmon wavelength, and its short side length is shorter than 1/2 of the surface plasmon wavelength. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラズモン集光アンテナを有する受光素子、及びそれを用いた光配線LSIに関する。   The present invention relates to a light receiving element having a plasmon condensing antenna and an optical wiring LSI using the same.

近年、バイポーラトランジスタや電界効果トランジスタ等の電子デバイスの性能向上により、大規模集積回路(LSI)の飛躍的な動作速度向上が図られてきている。しかしながら、トランジスタの微細化による性能向上の一方で、それを接続する電気配線は微細化により配線抵抗や配線間容量の増大が深刻な問題となり、これがLSI性能向上のボトルネックになりつつある。   In recent years, the performance of electronic devices such as bipolar transistors and field effect transistors has been improved, and the operating speed of large scale integrated circuits (LSIs) has been dramatically improved. However, while performance is improved by miniaturization of transistors, an increase in wiring resistance and inter-wiring capacitance becomes a serious problem due to miniaturization of electrical wiring connecting the transistors, which is becoming a bottleneck for improving LSI performance.

このような電気配線の問題を鑑み、LSI内を光で接続する光配線LSIが幾つか提案されている。光配線は、直流から100GHz以上の周波数で損失の周波数依存性が殆ど無く、配線路の電磁障害なども無いため数10Gbps以上の配線が容易に実現できる。   In view of such a problem of electrical wiring, several optical wiring LSIs for connecting the inside of the LSI with light have been proposed. Optical wiring has a frequency dependence of loss from DC to 100 GHz or higher, and there is no electromagnetic interference in the wiring path, so wiring of several tens of Gbps or more can be easily realized.

この種のLSI内光配線には、LSIの基板材料であるシリコン(Si)からなる高速受光素子が必要である。一般に、Siは間接遷移半導体であるため光吸収効率が低く、光受光効率と高速性を両立するのが難しい。これを解決するため、金属などの導電性材料の表面を伝わる表面プラズモンを利用した集光アンテナ型受光素子が知られている(例えば、非特許文献1参照)。さらに、この表面プラズモンによる集光と微小開口の光透過も公知となっている(例えば、非特許文献2参照)。一方、プラズモン集光アンテナ型受光素子とは異なるが、レーザ素子においては微小開口の光伝達効率を改善するため、非対称の開口を用いる手法が知られている(例えば、特許文献1参照)。 This type of intra-LSI optical wiring requires a high-speed light receiving element made of silicon (Si), which is the substrate material for the LSI. In general, since Si is an indirect transition semiconductor, light absorption efficiency is low, and it is difficult to achieve both light reception efficiency and high speed. In order to solve this problem, a converging antenna type light receiving element using surface plasmons transmitted on the surface of a conductive material such as metal is known (for example, see Non-Patent Document 1). Furthermore, light collection by this surface plasmon and light transmission through a minute aperture are also known (see, for example, Non-Patent Document 2). On the other hand, a method using an asymmetric aperture is known in order to improve the light transmission efficiency of a minute aperture in a laser device, although it is different from a plasmon condensing antenna type light receiving device (see, for example, Patent Document 1).

特開2001−189519号公報JP 2001-189519 A

Japanese Journal of Applied Physics Vol.44, No.12, p.L364 (2005)Japanese Journal of Applied Physics Vol.44, No.12, p.L364 (2005) Optics Letters Vol.26, No.24, p.1972 (2001)Optics Letters Vol.26, No.24, p.1972 (2001)

非特許文献1のような技術では、プラズモン集光アンテナにより集光した光が微小開口を通過した直後、即ち微小開口の出口にSi受光層を配して光電変換する必要がある。また、微小開口長さ(導電性薄膜厚さに相当)が長いと、開口を通過する光が大幅に減衰してしまうため、プラズモン集光アンテナを形成する導電性薄膜は光が透過しない程度に薄く形成する必要がある。   In the technique as described in Non-Patent Document 1, it is necessary to photoelectrically convert the light collected by the plasmon condensing antenna immediately after passing through the minute aperture, that is, by arranging the Si light receiving layer at the exit of the minute aperture. In addition, if the length of the minute aperture (corresponding to the thickness of the conductive thin film) is long, the light passing through the aperture is greatly attenuated. Therefore, the conductive thin film that forms the plasmon condensing antenna is such that light does not pass therethrough. It is necessary to form thinly.

このため、LSI配線に光を適用する場合、集光アンテナ型受光素子をトランジスタ形成面(Si基板表面)に形成する方法、集光アンテナ型受光素子を別基板に形成して張り合わせ、又はLSIの多層配線上にプラズモンアンテナとポリSi受光層を配置し、多層配線上で光電変換してトランジスタ形成面まで電気配線により信号伝達する方法、の何れかを用いる必要がある。   For this reason, when applying light to LSI wiring, a method of forming a condensing antenna type light receiving element on a transistor formation surface (Si substrate surface), a condensing antenna type light receiving element formed on another substrate, and bonding, It is necessary to use one of a method in which a plasmon antenna and a poly-Si light-receiving layer are arranged on a multilayer wiring and photoelectric conversion is performed on the multilayer wiring and a signal is transmitted to the transistor formation surface by electric wiring.

しかし、集光アンテナ型受光素子をトランジスタ形成面に形成する方法は、LSIのトランジスタ集積数を激減させてしまい、LSIの本質的機能を損なわせてしまうため現実的でない。また、LSI多層配線上に集光アンテナ型受光素子を形成し、そこからSi基板面まで電気配線する方法は、電気配線部分の寄生LCRによる信号劣化や雑音の増加、他の電気配線へのクロストーク発生などの問題を生じ易く、光配線による高速性が損なわれ易いという問題があった。   However, the method of forming the converging antenna type light receiving element on the transistor formation surface is not practical because the number of LSI transistors integrated is drastically reduced and the essential functions of the LSI are impaired. In addition, a method of forming a condensing antenna type light receiving element on an LSI multilayer wiring and electrically wiring from there to the Si substrate surface is due to signal degradation and noise increase due to parasitic LCR of the electrical wiring portion, and crossing to other electrical wiring. There is a problem that problems such as the occurrence of talk are likely to occur, and high-speed performance due to optical wiring is easily impaired.

また、非特許文献2の方法では、高速応答のためには開口を小さくした方が望ましいが、開口を小さくすると表面プラズモンの透過光量の低下を招く問題があった。   In the method of Non-Patent Document 2, it is desirable to reduce the opening for high-speed response. However, if the opening is reduced, there is a problem in that the amount of transmitted light of surface plasmons is reduced.

本発明は、上記事情を考慮してなされたもので、その目的とするところは、表面プラズモンを伝送するための開口における表面プラズモンの透過光量の低下を招くことなく、高速応答性の向上をはかり得る受光素子を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to improve the high-speed response without causing a decrease in the amount of transmitted light of the surface plasmon in the opening for transmitting the surface plasmon. The object is to provide a light receiving element.

また、本発明の他の目的は、LSIチップ上で高速光配線を実現することができ、構成が簡潔で信号の劣化やクロストークなどの問題がなく、またLSI集積度や光配線の高速性を損なうことのない光配線LSIを提供することにある。   Another object of the present invention is that high-speed optical wiring can be realized on an LSI chip, the configuration is simple and there are no problems such as signal degradation and crosstalk, and the LSI integration degree and high-speed optical wiring It is to provide an optical wiring LSI that does not impair the performance.

上記課題を解決するために本発明は、次のような構成を採用している。   In order to solve the above problems, the present invention adopts the following configuration.

即ち、本発明の一態様は、入射光を表面プラズモンに変換するための結合周期構造が表面に設けられ、該結合周期構造中に表裏面を貫通する開口が設けられた導電性薄膜と、前記開口の前記結合周期構造が設けられた面と反対面の端部に配置された受光部とを有した受光素子であって、前記開口の形状は、2つのスリットを直交交差させた十字形であり、各々のスリットの長辺方向が前記表面プラズモン波長の1/2より長く、短辺方向が前記表面プラズモン波長の1/2より短いことを特徴とする。   That is, according to one aspect of the present invention, there is provided a conductive thin film in which a coupling periodic structure for converting incident light into surface plasmons is provided on the surface, and an opening penetrating the front and back surfaces is provided in the coupling periodic structure; A light receiving element having a light receiving portion disposed at an end of the opposite surface and a surface provided with the coupling periodic structure of the opening, wherein the shape of the opening is a cross shape in which two slits are orthogonally crossed. And the long side direction of each slit is longer than ½ of the surface plasmon wavelength, and the short side direction is shorter than ½ of the surface plasmon wavelength.

また、本発明の別の一態様は、光配線LSIにおいて、半導体基板上に集積形成されたトランジスタ素子と、前記トランジスタ素子上に設けられた多層配線構造部と、前記多層配線構造部上に設けられ、入射光を表面プラズモンに変換するための結合周期構造が上面に形成され、且つ該結合周期構造中に上下面を貫通する開口が形成された導電性薄膜と、前記多層配線構造部の上下面を貫通して設けられ、前記導電性薄膜の開口と連続する導波開口が内部に形成された導電性柱と、前記導電性柱の導波開口の端部に位置するように前記半導体基板の表面に設けられた半導体受光部と、を具備し、前記開口は、長辺方向が前記表面プラズモン波長の1/2より長く、短辺方向が前記表面プラズモン波長の1/2より短い2つのスリットを直交交差させた十字形であり、前記結合周期構造が前記開口を中心とする同心円構造であることを特徴とする。   According to another aspect of the present invention, in an optical wiring LSI, transistor elements integrated on a semiconductor substrate, a multilayer wiring structure provided on the transistor elements, and a multilayer wiring structure provided on the multilayer wiring structure A conductive thin film in which a coupling periodic structure for converting incident light into surface plasmons is formed on the upper surface, and an opening penetrating the upper and lower surfaces is formed in the coupling periodic structure; A conductive column provided through the lower surface and having a waveguide opening continuous with the opening of the conductive thin film; and the semiconductor substrate positioned at an end of the waveguide opening of the conductive column A semiconductor light-receiving portion provided on the surface of the aperture, and the opening has two long side directions longer than ½ of the surface plasmon wavelength and short side directions shorter than ½ of the surface plasmon wavelength. Crossing the slits orthogonally A cross shape was, wherein said coupling periodic structure is a concentric structure around the opening.

第1の実施形態に係わる受光素子におけるプラズモン集光アンテナの概略構成を示す平面図。The top view which shows schematic structure of the plasmon condensing antenna in the light receiving element concerning 1st Embodiment. 第1の実施形態に係わる受光素子の概略構成を一部切欠して示す斜視図。FIG. 2 is a perspective view showing the schematic configuration of the light receiving element according to the first embodiment with a part cut away. 第1の実施形態に係わる受光素子の要部を拡大して示す斜視図。The perspective view which expands and shows the principal part of the light receiving element concerning 1st Embodiment. 第1の実施形態に係わる受光素子の概略構成を示す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of a light receiving element according to the first embodiment. 第2の実施形態に係わる受光素子におけるプラズモン集光アンテナの概略構成を示す平面。The plane which shows schematic structure of the plasmon condensing antenna in the light receiving element concerning 2nd Embodiment. 第2の実施形態に係わる受光素子の概略構成を一部切欠して示す斜視図。FIG. 6 is a perspective view showing a schematic configuration of a light receiving element according to a second embodiment with a part cut away. 第2の実施形態に係わる受光素子の要部を拡大して示す斜視図。The perspective view which expands and shows the principal part of the light receiving element concerning 2nd Embodiment. 第3の実施形態に係わる光配線LSIの概略構成を一部切欠して示す斜視図。FIG. 9 is a perspective view showing a schematic configuration of an optical wiring LSI according to a third embodiment with a part cut away. 第3の実施形態に係わる光配線LSIの要部を拡大して示す斜視図。The perspective view which expands and shows the principal part of the optical wiring LSI concerning 3rd Embodiment.

本発明の骨子は、光を受光するためのプラズモン集光アンテナをLSIの多層配線の上又はLSIの多層配線中に設け、そこで集光された表面プラズモンを微小開口導波路によりSi基板面まで伝送して受光(光電変換)するようにしたことにある。一般に、光の波長以下の開口を透過する光は開口サイズ縮小に応じて劇的に透過光量が低下してしまうため、本発明では入射する光のうち一定の偏光方向を選択的に集光して非対称開口による偏光選択伝送を行う、又は偏光方向を非選択的に集光して直交する非対称開口の合成開口により偏光分離伝送を行うものである。   The essence of the present invention is that a plasmon condensing antenna for receiving light is provided on or in an LSI multilayer wiring, and the surface plasmon collected there is transmitted to the Si substrate surface by a micro-aperture waveguide. Then, light is received (photoelectric conversion). In general, the amount of light transmitted through an aperture having a wavelength equal to or smaller than the wavelength of the light dramatically decreases as the aperture size is reduced. Therefore, in the present invention, a certain polarization direction of the incident light is selectively condensed. Thus, polarization selective transmission by an asymmetric aperture is performed, or polarization separation transmission is performed by a synthetic aperture of an asymmetric aperture orthogonally focused by non-selectively condensing the polarization direction.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

ここでは、具体的受光材料としてSiを用いて説明を行っていくが、これは例えば、Ge,SiGe,SiC,GaAs,InP,GaInAs,GaInAsP,AlGaAsなど、光受信可能な材料が光受信部(光電変換部)にあれば同様に実施可能であり、本発明は以下の実施形態に限定されるものではない。また、ここでは1つの受光素子(光配線受信部)を抽出した形で示していくが、これは勿論、多数の受光素子を集積すること、LSIチップ上に集積することを意図しており、集積する受光素子や光配線の数は任意である。   Here, description will be made using Si as a specific light receiving material. For example, a material capable of receiving light such as Ge, SiGe, SiC, GaAs, InP, GaInAs, GaInAsP, and AlGaAs is used as the light receiving portion ( If it exists in a photoelectric conversion part), it can implement similarly, and this invention is not limited to the following embodiment. In addition, here, one light receiving element (optical wiring receiving unit) is shown in an extracted form, but of course, this is intended to integrate a large number of light receiving elements and to be integrated on an LSI chip. The number of light receiving elements and optical wirings to be integrated is arbitrary.

(第1の実施形態)
図1は、本発明の第1の実施形態に係わる受光素子におけるプラズモン集光アンテナ部の概略構成を示す平面図である。
(First embodiment)
FIG. 1 is a plan view showing a schematic configuration of a plasmon condensing antenna portion in the light receiving element according to the first embodiment of the present invention.

図中の11は導電性薄膜、12は同心円状周期構造(部分掘り込みパターン)、13は開口である。開口13は、導電性薄膜11の表面から裏面まで貫通して設けられている。同心円状周期構造12は、導電性薄膜の表面の一部をエッチングした部分堀り込みパターンである。同心円状周期構造12の内側領域(A)は、紙面と垂直方向に入射する光を表面プラズモンに結合させる結合周期構造であり、外側領域(B)は、結合周期構造(A)で結合された表面プラズモンのうち素子の外側方向に発散する成分をブラッグ反射して内側へ戻す反射周期構造である。   In the figure, 11 is a conductive thin film, 12 is a concentric periodic structure (partial digging pattern), and 13 is an opening. The opening 13 is provided so as to penetrate from the front surface to the back surface of the conductive thin film 11. The concentric circular structure 12 is a partial excavation pattern obtained by etching a part of the surface of the conductive thin film. The inner region (A) of the concentric periodic structure 12 is a coupling periodic structure that couples light incident in the direction perpendicular to the paper surface to surface plasmons, and the outer region (B) is coupled by the coupling periodic structure (A). This is a reflection periodic structure in which a component that diverges from the surface plasmon toward the outside of the element is Bragg-reflected and returned to the inside.

導電性薄膜11には、例えばAg,Au,Cu,Al,Ni,Pd,Pt,W,Ti,Cr,Moなどの金属を用い、スパッタや加熱蒸着などの手法を用いて形成すれば良い。ここでは、導電性薄膜11としてAg用いることとし、後述する受光素子を形成するためのSi基板の表面に例えば100nmの厚さに形成する。   The conductive thin film 11 may be formed by using a metal such as Ag, Au, Cu, Al, Ni, Pd, Pt, W, Ti, Cr, or Mo and using a technique such as sputtering or heat evaporation. Here, Ag is used as the conductive thin film 11 and is formed to a thickness of, for example, 100 nm on the surface of a Si substrate for forming a light receiving element described later.

同心円状周期構造12は、受光する光の波長に合わせた周期を形成する必要がある。受光波長をλ、導電性薄膜11の誘電率をε1、導電性薄膜に接する物質の誘電率をε2とすると、結合周期構造(A)の周期Pcは、
Pc〜λ(1/ε1+1/ε2)1/2
という値で近似される。反射周期構造(B)の周期Pbは、
Pb=Pc/2
とすれば良い。
The concentric periodic structure 12 needs to form a period according to the wavelength of light to be received. When the received light wavelength is λ, the dielectric constant of the conductive thin film 11 is ε1, and the dielectric constant of the substance in contact with the conductive thin film is ε2, the period Pc of the coupling periodic structure (A) is
Pc to λ (1 / ε1 + 1 / ε2) 1/2
It is approximated by the value. The period Pb of the reflection periodic structure (B) is
Pb = Pc / 2
What should I do?

例として、導電性薄膜11(Ag厚100nm)表面に集束イオンビーム(FIB)装置を用いて50nmの深さで、図1に示すような同心円状の周期構造を形成し、導電性薄膜11の表面が空気の場合にPcを840nm(Pb=420nm)、導電性薄膜11の表面に厚さ1μm程度のSiO2 パッシベーション膜を形成した場合にPcを560nm(Pb=280nm)とすると、何れも受光可能な中心波長λが850nm近傍になる。このとき、同心円状周期構造12は、図1に示すように開口13を中心とする対称な扇形とし、その扇形の開き角を例えば45°とする。この形状は、同心円状周期構造12を中心対称に4分割し、それを1つおきに切り取って2つ残したときの形状に相当している。 As an example, a concentric periodic structure as shown in FIG. 1 is formed on the surface of the conductive thin film 11 (Ag thickness 100 nm) at a depth of 50 nm using a focused ion beam (FIB) apparatus. When Pc is 840 nm (Pb = 420 nm) when the surface is air, and Pc is 560 nm (Pb = 280 nm) when a SiO 2 passivation film having a thickness of about 1 μm is formed on the surface of the conductive thin film 11, both receive light. The possible center wavelength λ is in the vicinity of 850 nm. At this time, as shown in FIG. 1, the concentric periodic structure 12 has a symmetric fan shape centered on the opening 13, and the opening angle of the fan shape is, for example, 45 °. This shape corresponds to the shape when the concentric periodic structure 12 is divided into four in a central symmetry, and every other one is cut out to leave two.

こうすることにより、扇形の中心軸方向(紙面左右方向)に偏光した光は表面プラズモンに変換して集光し、それに直交する偏光成分は集光しない構造となる。このことは、中央の開口13を通して受光する光成分が扇形の中心軸方向に偏光した光になり、偏光選択受光が可能になることを意味している。偏光成分の分離をより確実にするためには、扇角度で45°近傍で受光する光を切り捨てればよく、例えば図1の扇形の開き角を30°とすればより確実である。   By doing so, the light polarized in the fan-shaped central axis direction (left and right direction in the drawing) is converted into surface plasmon and condensed, and the polarization component orthogonal to the surface plasmon is not condensed. This means that the light component received through the central opening 13 becomes light polarized in the direction of the central axis of the sector, and polarization selective light reception becomes possible. In order to more reliably separate the polarization components, light received at a fan angle of around 45 ° may be cut off. For example, if the fan-shaped opening angle in FIG.

図1の開口13は、光を光電変換する受光層が十分小さな領域に限定されるよう最小限の大きさとする。その基準として、図1の扇形の中心軸に直交する方向はプラズモン波長の1/2よりやや大きくし、扇形の中心軸に平行な方向はプラズモン波長の1/2より小さく設定する。即ち、開口13は入射光の偏光方向に関連したスリット状の開口とする。プラズモン波長λpは、厳密には開口内部でのプラズモン波長であるが、前述したPc(プラズモン集光アンテナ表面でのプラズモン波長に相当)とほぼ同程度の大きさとなるため、開口13は長辺(偏光方向に直交)をPc/2以上とすれば、短辺(偏光方向)はPc/2よりかなり小さな値でも構わない。   The opening 13 in FIG. 1 has a minimum size so that a light receiving layer for photoelectrically converting light is limited to a sufficiently small region. As a reference, the direction orthogonal to the central axis of the sector in FIG. 1 is set slightly larger than ½ of the plasmon wavelength, and the direction parallel to the central axis of the sector is set smaller than ½ of the plasmon wavelength. That is, the opening 13 is a slit-like opening related to the polarization direction of incident light. Strictly speaking, the plasmon wavelength λp is a plasmon wavelength inside the aperture, but since it has almost the same size as the above-mentioned Pc (corresponding to the plasmon wavelength on the surface of the plasmon focusing antenna), the aperture 13 has a long side ( The short side (polarization direction) may be much smaller than Pc / 2 as long as Pc / 2 or more is orthogonal to the polarization direction.

例えば、前記したλ〜850nmの場合で導電性薄膜11の表面に厚さ1μm程度のSiO2 パッシベーション膜を形成した場合に、開口13の長辺(偏光方向に直交)を280nm以上(例えば400nm)、短辺(偏光方向)を280nm以下(例えば100nm)とする。勿論、開口13は導電性薄膜11を貫通する穴であり、前述の例(Ag厚100nm)ではFIBを用いて長さ400nm、幅100nmの溝として深さ100nm以上の掘り込み加工を行えばよい。 For example, when a SiO 2 passivation film having a thickness of about 1 μm is formed on the surface of the conductive thin film 11 in the case of λ to 850 nm, the long side (perpendicular to the polarization direction) of the opening 13 is 280 nm or more (for example, 400 nm). The short side (polarization direction) is 280 nm or less (for example, 100 nm). Of course, the opening 13 is a hole penetrating the conductive thin film 11, and in the above example (Ag thickness 100 nm), the FIB is used to perform a digging process with a depth of 100 nm or more as a groove having a length of 400 nm and a width of 100 nm. .

このように構成することで、(特許文献1)に示されている原理により、開口13の伝播損失を低減でき、開口13の部分だけ厚く形成しても開口13の中でのプラズモン減衰を大幅に低減可能になる。例として、開口13の部分の厚さ(開口長)を1μmとし、400nm×100nmのスリット状開口の長辺に直交する偏光の透過率を見積もると、約41%の透過率となる。一方、上記スリット状開口の長辺に平行な偏光の透過率は実質ゼロ(〜1×10-18)であった。また、開口13の厚さ(開口長)を10μmとしても、400nm×100nmのスリット状開口の長辺に直交する方向の偏光の透過率は、約6%が確保可能である。 With this configuration, the propagation loss of the opening 13 can be reduced by the principle shown in (Patent Document 1), and the plasmon attenuation in the opening 13 can be greatly reduced even if only the opening 13 is formed thick. Can be reduced. As an example, when the thickness of the opening 13 (opening length) is 1 μm and the transmittance of polarized light orthogonal to the long side of the slit-shaped opening of 400 nm × 100 nm is estimated, the transmittance is about 41%. On the other hand, the transmittance of polarized light parallel to the long side of the slit-shaped opening was substantially zero (˜1 × 10 −18 ). Even if the thickness (opening length) of the opening 13 is 10 μm, the transmittance of polarized light in the direction perpendicular to the long side of the 400 nm × 100 nm slit-like opening can be secured to about 6%.

参考までに、上記のスリット状開口と同じ面積の円開口(直径226nm)で透過率を見積もると2×10-9とこれもゼロに近く、従来技術では開口部の厚さを非常に薄くするか、開口径を大きくする必要があることが分かる。例えば、上記の円形開口で開口部分の厚さを100nmとすると透過率は16%程度となる。また、開口部厚さを1μmとして開口径を500nmとすれば80%程度の透過率が可能であるが、その開口面積は本実施形態のスリット状開口の5倍程度に大きくなってしまう。 For reference, when the transmittance is estimated with a circular opening (diameter 226 nm) having the same area as the slit-shaped opening described above, it is 2 × 10 −9 , which is close to zero, and the thickness of the opening is made extremely thin in the prior art. Or it turns out that it is necessary to enlarge an opening diameter. For example, when the thickness of the circular opening is 100 nm, the transmittance is about 16%. Further, if the opening thickness is 1 μm and the opening diameter is 500 nm, a transmittance of about 80% is possible, but the opening area becomes about five times that of the slit-shaped opening of the present embodiment.

また、500nmもの大きな円形開口を用意するためには、それより大きな導電性円柱(例えば直径800nm)が必要であり、後述のLSIへの搭載において多層膜配線のレイアウト制限やトランジスタ配置に影響が大きく、更に受光素子部でのトランジスタ集積数減少によりLSIのトランジスタ集積数が低下する問題がある。さらに、開口系の増大に伴い受光素子の面積が大きくなり、例えばpn接合でフォトダイオードを形成した場合、接合容量が大きいことから高速応答が難しくなる。   In addition, in order to prepare a large circular opening as large as 500 nm, a larger conductive cylinder (for example, a diameter of 800 nm) is required, which greatly affects the layout limitation of multilayer wiring and the transistor arrangement in mounting on an LSI described later. Furthermore, there is a problem that the number of integrated transistors in the LSI is lowered due to a decrease in the number of integrated transistors in the light receiving element section. Furthermore, as the aperture system increases, the area of the light receiving element increases. For example, when a photodiode is formed with a pn junction, high-speed response is difficult because of the large junction capacitance.

ここで、本実施形態(図1)の開口13の長辺は入射光の偏光方向に直交していることが必要であるが、その条件を満たすため前述したように扇形のプラズモン集光アンテナを用いている。上述したスリット形開口13に対し、従来例のような完全同心円のプラズモン集光アンテナを適用すると、スリット形開口の長辺に平行な偏光成分が開口13の中に入ることができず、プラズモン集光アンテナ上で散乱又は吸収により減衰するまで反射周期構造(B)により多重反射して閉じ込められてしまう。その際、散乱された表面プラズモンの一部がスリット状開口13に入射可能な成分となり、遅延入射光となって受信波形の劣化や雑音の増加を引き起こしてしまう問題がある。   Here, the long side of the opening 13 of this embodiment (FIG. 1) needs to be orthogonal to the polarization direction of the incident light. In order to satisfy this condition, the fan-shaped plasmon condensing antenna is used as described above. Used. When a completely concentric plasmon condensing antenna as in the conventional example is applied to the slit-shaped aperture 13 described above, a polarization component parallel to the long side of the slit-shaped aperture cannot enter the aperture 13, and the plasmon collection It is confined by multiple reflection by the reflection periodic structure (B) until it attenuates by scattering or absorption on the optical antenna. At this time, a part of the scattered surface plasmon becomes a component that can be incident on the slit-shaped opening 13, and there is a problem that it becomes delayed incident light and causes deterioration of the received waveform and increase in noise.

次に、図1に示したプラズモン集光アンテナを適用した受光素子の詳細を、図2〜図4に示す。図2及び図3は、図1の平面図のI−13−I’部分で1/4領域を切り取った斜視図であり、14はn型Si基板、15は裏面電極(例えばAl)、16は受光のための低濃度Si層、17は受光領域規定のためのSiO2 熱酸化膜である。図4は、図1の平面図のI−I”部分で切った断面図である。 Next, details of the light receiving element to which the plasmon condensing antenna shown in FIG. 1 is applied are shown in FIGS. 2 and FIG. 3 are perspective views in which a 1/4 region is cut out at a portion I-13-I ′ in the plan view of FIG. 1, 14 is an n-type Si substrate, 15 is a back electrode (for example, Al), 16 Is a low-concentration Si layer for receiving light, and 17 is a SiO 2 thermal oxide film for defining a light receiving region. 4 is a cross-sectional view taken along a line II ″ in the plan view of FIG.

図2〜図4では図示していないが、導電性薄膜11の上にSiO2 パッシベーション膜が形成されていても良く、その場合、同心円状周期構造12の周期を変更することで機能は同等になる。 Although not shown in FIGS. 2 to 4, a SiO 2 passivation film may be formed on the conductive thin film 11, and in that case, the function is equivalent by changing the period of the concentric circular structure 12. Become.

プラズモン集光アンテナは、例えば低濃度Si層16とのショットキー電極及びSiO2 熱酸化膜17との密着金属としてTi膜(図示せず)を10nm設けた上に、導電性薄膜11としてAgを100nm設ける。そして、スリット形開口13を400nm×100nmとし、同心円状周期構造12を深さ50nmで、図1と同様に結合周期構造A(例えば10周期)、その外側に反射周期構造B(例えば5周期)を配置する。 For example, the plasmon condensing antenna is provided with a Ti film (not shown) having a thickness of 10 nm as an adhesion metal with the Schottky electrode with the low-concentration Si layer 16 and the SiO 2 thermal oxide film 17, and Ag as the conductive thin film 11. Provide 100 nm. The slit-shaped opening 13 is 400 nm × 100 nm, the concentric periodic structure 12 is 50 nm deep, the coupling periodic structure A (for example, 10 periods) as in FIG. 1, and the reflective periodic structure B (for example, 5 periods) outside thereof. Place.

このとき、受光波長を850nmとすると、SiO2 パッシベーション型の素子(Pc=560nm)で約14μmφの周期構造径となる。また、受光径は約11μmφとなり、単一モード光ファイバで伝送された光をバットジョイント結合で受光することが可能になる。受光層16は例えば厚さを2μmとし、受光領域規定の熱酸化SiO2 膜17を2μm形成する。これにより、受光部(開口13下部)以外の低濃度Si層16は約1μmほどが熱酸化SiO2 膜17に変化し、残厚が約1μmになる。 At this time, assuming that the light receiving wavelength is 850 nm, a periodic structure diameter of about 14 μmφ is obtained in the SiO 2 passivation type element (Pc = 560 nm). The light receiving diameter is about 11 μmφ, and light transmitted through the single mode optical fiber can be received by butt joint coupling. The light receiving layer 16 has a thickness of 2 μm, for example, and a thermally oxidized SiO 2 film 17 defining the light receiving region is formed to 2 μm. As a result, the low-concentration Si layer 16 other than the light receiving portion (below the opening 13) changes to about 1 μm into the thermally oxidized SiO 2 film 17 and the remaining thickness becomes about 1 μm.

このような構成とすることにより、受光効率約10%(光電変換係数0.08A/W)、応答速度15GHz以上といった特性の受光素子が得られた。   With such a configuration, a light receiving element having characteristics such as a light receiving efficiency of about 10% (photoelectric conversion coefficient 0.08 A / W) and a response speed of 15 GHz or more was obtained.

このように本実施形態によれば、受光素子の光電変換面積が受光アンテナ(プラズモン集光アンテナ)面積より遥かに小さく、受光波長を直径とする円よりも大幅に小さくすることができる。しかも、表面プラズモンを透過させるための開口13をスリット状に形成することにより、同じ径の円形開口に比べて、透過光量の低下を招くことなく開口面積を小さくすることができ、高速応答性の向上をはかることができる。即ち、受光効率及び応答速度の優れた受光素子を実現することができる。   As described above, according to this embodiment, the photoelectric conversion area of the light receiving element is much smaller than the area of the light receiving antenna (plasmon condensing antenna), and can be significantly smaller than the circle whose diameter is the light receiving wavelength. Moreover, by forming the opening 13 for transmitting the surface plasmon in the shape of a slit, the opening area can be reduced without causing a decrease in the amount of transmitted light compared to a circular opening having the same diameter, and high-speed response can be achieved. Improvements can be made. That is, a light receiving element having excellent light receiving efficiency and response speed can be realized.

(第2の実施形態)
図5は、本発明の第2の実施形態に係わる受光素子のプラズモン集光アンテナ部の概略構成を示す平面図である。なお、図5中の21〜23は図1中の11〜13に相当している。
(Second Embodiment)
FIG. 5 is a plan view showing a schematic configuration of a plasmon focusing antenna portion of a light receiving element according to the second embodiment of the present invention. In addition, 21-23 in FIG. 5 is corresponded to 11-13 in FIG.

前述した第1の実施形態では、入射する光のうち一定の偏光方向を選択的に集光して非対称開口(スリット)による偏光選択伝送を行ったが、本実施形態では、偏光方向を非選択的に集光し、直交する非対称開口(スリット状開口)の合成開口により偏光分離伝送を行っている。   In the first embodiment described above, the polarization direction is selectively collected by selectively condensing a certain polarization direction of the incident light. However, in this embodiment, the polarization direction is not selected. The light is condensed and polarized light is split and transmitted by a synthetic aperture of orthogonal asymmetric apertures (slit apertures).

即ち、図1の偏光選択型プラズモン集光アンテナ及びスリット状開口の組み合わせを2つ用意し、スリット状開口の中心を重ねて直交配置したものが、図5である。その結果、本実施形態では、プラズモン集光アンテナは、従来技術と同様な同心円型周期構造となるが、中央の開口23は従来例と異なる十字型開口になっている。ここで、十字形開口23の各々のスリットの長辺方向が表面プラズモン波長の1/2より長く、短辺方向が表面プラズモン波長の1/2より短くなっている。   That is, FIG. 5 shows two combinations of the polarization-selective plasmon condensing antenna and the slit-shaped aperture shown in FIG. As a result, in this embodiment, the plasmon condensing antenna has a concentric periodic structure similar to that of the prior art, but the central opening 23 has a cross-shaped opening different from that of the conventional example. Here, the long side direction of each slit of the cross-shaped opening 23 is longer than ½ of the surface plasmon wavelength, and the short side direction is shorter than ½ of the surface plasmon wavelength.

十字型開口23の特徴はスリット型開口13と同様であり、十字型の頂点間距離(頂部長さ、即ちスリットの長辺方向)をプラズモン波長の1/2以上とすることで、十字型の溝幅(線幅、即ちスリットの短辺方向)をプラズモン波長の1/2よりかなり狭くしても開口の透過率を高く保つことができる。   The characteristics of the cross-shaped opening 23 are the same as those of the slit-shaped opening 13, and the distance between the apexes of the cross-shaped (the length of the top, that is, the long side direction of the slit) is ½ or more of the plasmon wavelength. Even if the groove width (line width, that is, the short side direction of the slit) is considerably narrower than ½ of the plasmon wavelength, the transmittance of the opening can be kept high.

その原理はスリット状開口と基本的に同じであり、十字型を分離して2つのスリット開口に分けて考えれば理解し易い。即ち、それぞれのスリットは特定方向の偏光に対して透過率が高く、それに直交する偏光の透過率が低い。ところが、各スリットが直交配置される結果、何れの方向の偏光が入ってきても、それぞれのスリットの透過率が高い方向成分に分割され、2つスリットが各成分を透過するため、結果として偏光方向に関係なく開口透過するようになる。   The principle is basically the same as that of the slit-shaped opening, and it is easy to understand if the cross shape is separated and divided into two slit openings. That is, each slit has high transmittance for polarized light in a specific direction, and low transmittance for polarized light orthogonal thereto. However, as a result of the orthogonal arrangement of the slits, no matter which direction of polarization enters, the slits are divided into high-direction components and the two slits transmit each component, resulting in polarization. The aperture is transmitted regardless of the direction.

例えば、十字型を分割した1つのスリットの長手方向に対し、45°傾いた偏光の光を入射する場合、スリット開口が1つの場合は1/2の成分の光が開口入射し、残りの1/2分は前述したようにプラズモン集光アンテナ内で多重反射して、やがて散乱や吸収で消滅する。ところが、もう一つの直交するスリット開口がある場合、上記の残り1/2分は速やかにもう一方のスリット開口に入射する。結果として、十字型開口の反対側にはそれぞれ直交する成分の表面プラズモンが別々のスリットを通ってきた如く現われ、十字開口の出口で合成されて元の表面プラズモンが復元される。   For example, when polarized light inclined by 45 ° with respect to the longitudinal direction of one slit obtained by dividing the cross shape is incident, if there is one slit opening, light having a half component is incident on the opening, and the remaining 1 As described above, the / 2 minutes are multiple-reflected in the plasmon condensing antenna and eventually disappear due to scattering and absorption. However, when there is another orthogonal slit opening, the remaining half of the time immediately enters the other slit opening. As a result, surface plasmons having orthogonal components appear on the opposite side of the cross-shaped opening as if they passed through separate slits, and are synthesized at the exit of the cross-opening to restore the original surface plasmon.

以上の結果、十字型スリットの頂部長さはプラズモン波長の1/2以上に設定し、その溝幅を十分狭くすることで、開口面積を縮小しながら、プラズモン波長の1/2よりも十分大きな円形開口と同様な高い透過率特性が得られる。しかも、入射光の偏光方向依存のない微小受光面積の高速受光素子が実現可能になる。   As a result, the top length of the cross-shaped slit is set to 1/2 or more of the plasmon wavelength, and by sufficiently narrowing the groove width, the opening area is reduced and sufficiently larger than 1/2 of the plasmon wavelength. High transmittance characteristics similar to a circular opening can be obtained. In addition, it is possible to realize a high-speed light receiving element having a small light receiving area that does not depend on the polarization direction of incident light.

図6及び図7は、図5の平面図のII−23−II’部分で1/4領域を切り取った斜視図であり、図6,図7中の21〜25は図2,図3の11〜15に相当している。   FIGS. 6 and 7 are perspective views in which a quarter region is cut out at the II-23-II ′ portion of the plan view of FIG. 5, and reference numerals 21 to 25 in FIGS. 6 and 7 denote FIGS. It corresponds to 11-15.

この場合のプラズモン集光アンテナは、例えば低濃度Si層26とのショットキー電極及びSiO2 膜27との密着金属としてTiを10nm設けた上に、導電性薄膜21としてAgを100nm設ける。そして、十字開口23の頂部長さをそれぞれ400nm、十字開口23の溝幅(線幅)を100nmとし、同心円状周期構造22を深さ50nmで図1と同様に結合周期構造A(例えば10周期)、その外側に反射周期構造B(例えば5周期)を、図5のように同心円状に配置する。 The plasmon condensing antenna in this case is provided with, for example, 10 nm of Ti as the conductive thin film 21 and 10 nm of Ag as the adhesion metal between the Schottky electrode with the low concentration Si layer 26 and the SiO 2 film 27. The top length of the cross opening 23 is 400 nm, the groove width (line width) of the cross opening 23 is 100 nm, and the concentric periodic structure 22 is 50 nm in depth with the coupling periodic structure A (for example, 10 periods) as in FIG. ), And the reflection periodic structure B (for example, 5 periods) is arranged concentrically as shown in FIG.

このとき、受光波長を850nmとすると、SiO2 パッシベーション型の素子(Pc=560nm)で約14μmφの周期構造径となる。また、受光径は約11μmφとなり、単一モード光ファイバで伝送された光をバットジョイント結合で受光することが可能になる。受光層26は例えば厚さを2μmとし、受光領域規定の熱酸化SiO2 膜27を2μm形成する。これにより、受光部(開口23下部)以外の低濃度Si層26は約1μm程が熱酸化SiO2 膜27に変化し、残厚が約1μmになる。 At this time, assuming that the light receiving wavelength is 850 nm, a periodic structure diameter of about 14 μmφ is obtained in the SiO 2 passivation type element (Pc = 560 nm). The light receiving diameter is about 11 μmφ, and light transmitted through the single mode optical fiber can be received by butt joint coupling. The light receiving layer 26 has a thickness of 2 μm, for example, and a thermally oxidized SiO 2 film 27 defining the light receiving region is formed to 2 μm. As a result, the low-concentration Si layer 26 other than the light receiving portion (below the opening 23) changes to about 1 μm into the thermally oxidized SiO 2 film 27, and the remaining thickness becomes about 1 μm.

このような構成とすることにより、受光効率約10%(光電変換係数0.08A/W)、応答速度15GHz以上といった特性で、入射光の偏光方向依存がない受光素子が得られた。この場合、開口23の断面積が第1の実施形態の約2倍になっており、受光面積も約2倍になっているが、素子の寄生容量は十分小さく、受光素子応答特性がSi層26をキャリアが通過する時間で支配されるため、第1の実施形態と同等な応答速度が得られている。   With such a configuration, a light receiving element having characteristics such as a light receiving efficiency of about 10% (photoelectric conversion coefficient 0.08 A / W) and a response speed of 15 GHz or more and having no dependence on the polarization direction of incident light was obtained. In this case, the cross-sectional area of the opening 23 is about twice that of the first embodiment and the light receiving area is also about twice, but the parasitic capacitance of the element is sufficiently small and the light receiving element response characteristic is Si layer. 26, the response speed equivalent to that of the first embodiment is obtained.

(第3の実施形態)
図8及び図9は、本発明の第3の実施形態に係わる光配線LSIの概略構成を示す断面斜視図である。なお、図8、図9の中で、図6、図7と同じ番号は同様であり、その説明を省略する。
(Third embodiment)
8 and 9 are cross-sectional perspective views showing a schematic configuration of an optical interconnection LSI according to the third embodiment of the present invention. In FIG. 8 and FIG. 9, the same numbers as those in FIG. 6 and FIG.

図8中の31は半導体受光部、32はCMOSトランジスタ、33はCu配線、34は層間絶縁膜、35は多層配線構造、36は円柱導電体(金属柱)である。ここでは、図6、図7で示した偏光依存のない十字型開口の受光素子を用いて光配線LSIを構成した例を示している。図9において、31aはp型ウェル、31bはn型受光層であり、p型ウェル31aはn型基板24と電気的に分離可能にするための反転導電ウェルである。   In FIG. 8, 31 is a semiconductor light receiving portion, 32 is a CMOS transistor, 33 is a Cu wiring, 34 is an interlayer insulating film, 35 is a multilayer wiring structure, and 36 is a cylindrical conductor (metal column). Here, an example is shown in which the optical wiring LSI is configured using the light receiving element having a cross-shaped aperture that does not depend on polarization shown in FIGS. 6 and 7. In FIG. 9, 31 a is a p-type well, 31 b is an n-type light-receiving layer, and p-type well 31 a is an inverted conductive well that is electrically separable from n-type substrate 24.

また、開口(十字型)23は、多層配線構造部35上のプラズモン集光アンテナからの表面プラズモンを多層配線構造部35中を貫いて伝送するため、集光アンテナ部分より厚い金属柱(導電性柱)36がSi基板面まで延長されている。なお、開口部23が十字型であることから、多層配線構造部35を貫く延長部での金属柱36の外形も十字型とすることで、円筒金属柱のように大きなレイアウト面積を占有することなく、多層配線構造部35及びトランジスタレイアウトのセクション(四角領域)間境界の隙間などに埋め込むことが可能になる。   Further, the opening (cross-shaped) 23 transmits a surface plasmon from the plasmon condensing antenna on the multilayer wiring structure portion 35 through the multilayer wiring structure portion 35, so that a metal column (conductive) that is thicker than the condensing antenna portion. (Column) 36 is extended to the Si substrate surface. Since the opening 23 has a cross shape, the outer shape of the metal column 36 extending through the multilayer wiring structure 35 is also formed in a cross shape, thereby occupying a large layout area like a cylindrical metal column. Instead, it is possible to embed in the gap between the multilayer wiring structure 35 and the section (square area) of the transistor layout.

多層配線構造部35中の十字型金属柱36は多層配線金属であるCuを用いても良いが、吸収損失がやや大きいため、可能であればAgを用いることが望ましい。その場合、例えば多層配線の工程終了後、多層配線の層間絶縁膜34及び一部Cu配線33(受光素子のバイアスラインなど)を貫く十字溝を設け、メッキによりAg充填を行って十字型金属柱36を形成する。その後、プラズモン集光アンテナの形成とドライエッチングによる十字開口の形成を行えばよい。   The cross-shaped metal column 36 in the multilayer wiring structure portion 35 may be made of Cu, which is a multilayer wiring metal. However, since absorption loss is somewhat large, it is desirable to use Ag if possible. In that case, for example, after completion of the multilayer wiring process, a cross-shaped groove extending through the interlayer insulating film 34 of the multilayer wiring and a part of the Cu wiring 33 (such as a bias line of the light receiving element) is provided, and Ag-filling is performed by plating, thereby 36 is formed. Thereafter, a plasmon focusing antenna may be formed and a cross opening may be formed by dry etching.

LSIの多層配線は、一般的に10μm程度の厚さを有しており、十字型開口のプラズモン伝送距離は10μm前後となる。これは、前述した第2の実施形態の導電性薄膜21を貫くだけの伝送とは異なり、やや余裕を持ったサイズで開口を用意することが伝送損失低減のため望ましい。例えば、十字型開口23として頂部長さ450nm、十字溝幅200nmといったAg導波路で10μm伝送すると、波長850nmの入射光で約20%の伝送効率を得ることができる。このときの開口面積(受光面積)は直径420nmの円形開口程度の面積であり、受光素子の応答速度を15GHz程度から低下させる程の面積にはならない。   LSI multilayer wiring generally has a thickness of about 10 μm, and the plasmon transmission distance of the cross-shaped opening is about 10 μm. This is different from the transmission only through the conductive thin film 21 of the second embodiment described above, and it is desirable to prepare an opening with a size having a margin to reduce transmission loss. For example, when 10 μm is transmitted through an Ag waveguide having a top length of 450 nm and a cross groove width of 200 nm as the cross-shaped opening 23, a transmission efficiency of about 20% can be obtained with incident light having a wavelength of 850 nm. The opening area (light receiving area) at this time is an area of a circular opening having a diameter of 420 nm, and does not become an area that reduces the response speed of the light receiving element from about 15 GHz.

従って本実施形態では、LSI多層配線の上部からSi基板面まで表面プラズモンのまま伝送しても−7dB程度の損失で、僅か1〜2個のトランジスタを用いた利得で十分回復可能であり、逆に光配線による高速動作(例えば10GHzクロック)が波形の劣化や過剰ジッタの増加がない状態で実現できるという効果を持っている。   Therefore, in the present embodiment, even if the surface plasmon is transmitted from the upper part of the LSI multilayer wiring to the Si substrate surface, the loss is about -7 dB, and it can be sufficiently recovered with a gain using only one or two transistors. In addition, there is an effect that a high-speed operation (for example, 10 GHz clock) by the optical wiring can be realized in a state where there is no deterioration in waveform or increase in excess jitter.

このように本実施形態によれば、先の第2の実施形態と同様の効果が得られるのは勿論のこと、受光アンテナがLSIのトランジスタ集積面から離れた位置に形成可能であるため、トランジスタ集積度を殆ど低下することなく光配線が導入でき、多層配線のレイアウトも制限を非常に小さくすることができる。これにより、受光素子光電変換部をLSIのトランジスタ集積面(Si基板)の僅かな隙間領域に形成可能で、トランジスタにほぼ直結して配線可能なため電気配線による劣化や雑音増加が殆ど生じない、などの特徴を有する。従って、LSIチップ内の高速光配線が効果的に構築可能になり、LSIの高速化、高性能化を促進して情報通信機器などの高度化に大きく貢献可能である。   As described above, according to this embodiment, the same effect as that of the second embodiment can be obtained, and the light receiving antenna can be formed at a position away from the transistor integration surface of the LSI. Optical wiring can be introduced with almost no decrease in the degree of integration, and the layout of the multilayer wiring can be made extremely small. As a result, the light receiving element photoelectric conversion portion can be formed in a slight gap region of the LSI transistor integration surface (Si substrate), and can be wired almost directly to the transistor, so that deterioration due to electric wiring and noise increase hardly occur. It has the features such as. Therefore, high-speed optical wiring in the LSI chip can be effectively constructed, and it is possible to greatly contribute to the advancement of information communication equipment by promoting the high speed and high performance of the LSI.

(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。例えば、上述した本発明実施形態はいくつかの具体例を示しているが、これはあくまで構成例であり、本発明の主旨に従い個々の要素に他の手段(材料、寸法など)を用いても構わないものである。また、実施形態に示された材料、形状、配置などはあくまで一例であり、また、各実施形態を組み合わせて実施することも可能である。例えば、第1の実施形態では受光素子が偏光依存性を強く持ち、偏光面のずれに敏感となってしまうが、これを逆に利用し、2つの第1の実施形態による受光素子を用意し、それぞれ直交する配置とすることにより、偏光多重した一括照射の光に対し光を偏光分離して受信できるようにすることができる。
(Modification)
The present invention is not limited to the above-described embodiments. For example, the above-described embodiments of the present invention show some specific examples. However, these are merely configuration examples, and other means (materials, dimensions, etc.) may be used for individual elements in accordance with the gist of the present invention. It doesn't matter. In addition, the materials, shapes, arrangements, and the like shown in the embodiments are merely examples, and the embodiments can be implemented in combination. For example, in the first embodiment, the light receiving element has strong polarization dependence and is sensitive to the deviation of the polarization plane. By utilizing this, the light receiving elements according to the first embodiment are prepared. By arranging them orthogonal to each other, it is possible to receive the light by polarization-separation with respect to the collectively irradiated light that has been polarization multiplexed.

また、開口内は必ずしも空洞にする必要はなく、SiO2 やSiN等の誘電体を埋め込んでも良い。また、受光部はフォトダイオードに限るものではなく、フォトトランジスタを用いることもできる。さらに、光を電気信号に変換する光電変換材料を設けるようにしても良い。 Further, the inside of the opening does not necessarily need to be hollow, and a dielectric such as SiO 2 or SiN may be embedded. The light receiving portion is not limited to a photodiode, and a phototransistor can be used. Further, a photoelectric conversion material that converts light into an electrical signal may be provided.

その他、本発明はその要旨を逸脱しない範囲で、種々変形して実施することができるものである。   In addition, the present invention can be variously modified and implemented without departing from the spirit of the present invention.

11,21…導電性薄膜、12,22…周期構造、13,23…微小開口、14,24…Si基板、15,25…電極、16…低濃度i層(受光層)、17…SiO2 熱酸化膜、31…半導体受光部、31a…p型ウェル、31b…n型受光層、32…CMOSトランジスタ、33…Cu配線、34…層間絶縁膜、35…多層配線構造部、36…金属柱(導電性柱)。 11, 21 ... conductive thin film, 12, 22 ... periodic structure, 13, 23 ... minute aperture, 14, 24 ... Si substrate, 15, 25 ... electrode, 16 ... low concentration i layer (light receiving layer), 17 ... SiO 2 Thermal oxide film 31... Semiconductor light receiving portion, 31 a... P type well, 31 b... N type light receiving layer, 32... CMOS transistor, 33. (Conductive pillar).

Claims (5)

入射光を表面プラズモンに変換するための結合周期構造が表面に設けられ、該結合周期構造中に表裏面を貫通する開口が設けられた導電性薄膜と、前記開口の前記結合周期構造が設けられた面と反対面の端部に配置された受光部とを有した受光素子であって、
前記開口の形状は、2つのスリットを直交交差させた十字形であり、各々のスリットの長辺方向が前記表面プラズモン波長の1/2より長く、短辺方向が前記表面プラズモン波長の1/2より短いことを特徴とする受光素子。
A coupling periodic structure for converting incident light into surface plasmons is provided on the surface, a conductive thin film provided with an opening penetrating the front and back surfaces in the coupling periodic structure, and the coupling periodic structure of the opening is provided. A light receiving element having a light receiving portion disposed at an end of the opposite surface and the opposite surface,
The shape of the opening is a cruciform shape in which two slits are orthogonally crossed. The long side direction of each slit is longer than ½ of the surface plasmon wavelength, and the short side direction is ½ of the surface plasmon wavelength. A light receiving element characterized by being shorter.
前記結合周期構造は、前記開口を中心とする同心円構造であることを特徴とする請求項1記載の受光素子。   The light receiving element according to claim 1, wherein the coupling periodic structure is a concentric structure centered on the opening. 前記導電性薄膜の表面で前記結合周期構造の外側に、前記表面プラズモンを反射して閉じ込めるための反射周期構造が更に形成されていることを特徴とする請求項1又は2に記載の受光素子。   The light receiving element according to claim 1, wherein a reflection periodic structure for reflecting and confining the surface plasmon is further formed outside the coupling periodic structure on the surface of the conductive thin film. 前記導電性薄膜は半導体基板上に形成され、前記受光部は前記半導体基板の表面にフォトダイオードを形成したものであることを特徴とする請求項1〜3の何れかに記載の受光素子。   The light-receiving element according to claim 1, wherein the conductive thin film is formed on a semiconductor substrate, and the light-receiving portion is formed by forming a photodiode on a surface of the semiconductor substrate. 半導体基板上に集積形成されたトランジスタ素子と、
前記トランジスタ素子上に設けられた多層配線構造部と、
前記多層配線構造部上に設けられ、入射光を表面プラズモンに変換するための結合周期構造が上面に形成され、且つ該結合周期構造中に上下面を貫通する開口が形成された導電性薄膜と、
前記多層配線構造部の上下面を貫通して設けられ、前記導電性薄膜の開口と連続する導波開口が内部に形成された導電性柱と、
前記導電性柱の導波開口の端部に位置するように前記半導体基板の表面に設けられた半導体受光部と、
を具備し、
前記開口は、長辺方向が前記表面プラズモン波長の1/2より長く、短辺方向が前記表面プラズモン波長の1/2より短い2つのスリットを直交交差させた十字形であり、前記結合周期構造が前記開口を中心とする同心円構造であることを特徴とする光配線LSI。
Transistor elements integrated on a semiconductor substrate;
A multilayer wiring structure provided on the transistor element;
A conductive thin film provided on the multilayer wiring structure, the coupling periodic structure for converting incident light into surface plasmons is formed on the upper surface, and the openings penetrating the upper and lower surfaces are formed in the coupling periodic structure; ,
A conductive pillar provided penetrating the upper and lower surfaces of the multilayer wiring structure portion, and having a waveguide opening formed continuously with the opening of the conductive thin film;
A semiconductor light receiving portion provided on the surface of the semiconductor substrate so as to be positioned at an end portion of the waveguide opening of the conductive pillar;
Comprising
The opening has a cross shape in which two slits having a long side direction longer than ½ of the surface plasmon wavelength and a short side direction shorter than ½ of the surface plasmon wavelength are orthogonally crossed, and the coupling period structure An optical wiring LSI characterized by having a concentric circular structure centered on the opening.
JP2011011904A 2011-01-24 2011-01-24 Light receiving element and optical interconnection lsi Pending JP2011128162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011904A JP2011128162A (en) 2011-01-24 2011-01-24 Light receiving element and optical interconnection lsi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011904A JP2011128162A (en) 2011-01-24 2011-01-24 Light receiving element and optical interconnection lsi

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006069535A Division JP4703443B2 (en) 2006-03-14 2006-03-14 Light receiving element and optical wiring LSI

Publications (1)

Publication Number Publication Date
JP2011128162A true JP2011128162A (en) 2011-06-30

Family

ID=44290865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011904A Pending JP2011128162A (en) 2011-01-24 2011-01-24 Light receiving element and optical interconnection lsi

Country Status (1)

Country Link
JP (1) JP2011128162A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763229B1 (en) * 2016-02-18 2017-07-31 국방과학연구소 Selective emitter based on surface plasmon resonance
WO2018131805A1 (en) * 2017-01-11 2018-07-19 연세대학교 산학협력단 Infrared stealth element using dual band completely absorptive metamaterial
KR101920046B1 (en) 2017-02-28 2018-11-19 광운대학교 산학협력단 Aluminum plasmonic metasurface device enabling wavelength insensitive phase gradient
JP2019068019A (en) * 2017-10-05 2019-04-25 株式会社東芝 Semiconductor light receiving element and method of manufacturing the same

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CSNC200759070138; 藤方 潤一 J. Fujikata: '表面プラズモン導波開口を有するプラズモンアンテナの検討 Study on surface plasmon antenna with a SPP' 2006年(平成18年)秋季 第67回応用物理学会学術講演会講演予稿集 第3分冊 Extended Abstracts 第3巻, 20060829, p.938, (社)応用物理学会 *
CSNC200802144010; 大橋 啓之 Keishi OHASHI: '"プラズモン共鳴を用いた近接場光増強Siナノフォトダイオード"' 応用物理 Vol.74, No.11, 20051110, pp.1453-1457 *
JPN6010066643; K.Ishihara, 他: '"Terahertz Wave Enhanced Transmission through a Single Subwavelength Aperture with Periodic Surface' Japanese Journal of Applied Physics Vol.44, No.32, 20050729, pp.L1005-L1007 *
JPN6012063806; 大橋 啓之 Keishi OHASHI: '"プラズモン共鳴を用いた近接場光増強Siナノフォトダイオード"' 応用物理 Vol.74, No.11, 20051110, pp.1453-1457 *
JPN6012063807; EBBESEN,T.W. 他: '"Extraordinary optical transmission through sub-wavelength hole arrays"' NATURE Vol.391, 19980202, pp.667-669 *
JPN6012063808; QIANG,R. 他: '"Modelling of infrared bandpass filters using three-dimensional FDTD method"' ELECTRONICS LETTERS Vol.41, No.16, 20050804, pp.43-44 *
JPN6012063810; 藤方 潤一 J. Fujikata: '表面プラズモン導波開口を有するプラズモンアンテナの検討 Study on surface plasmon antenna with a SPP' 2006年(平成18年)秋季 第67回応用物理学会学術講演会講演予稿集 第3分冊 Extended Abstracts 第3巻, 20060829, p.938, (社)応用物理学会 *
JPN6012063813; OHASHI,K. 他: '"Optical interconnect technologies for high-speed VLSI chips using silicon nano-photonics"' Digest of Technical Papers. IEEE International Solid-State Circuits Conference 2006 [ISSCC 2006] , 200602, pp.1686-1695 *
JPN6012063815; 藤方潤一 他: '"プラズモンアンテナを利用したSiナノフォトダイオード"' 電子情報通信学会技術研究報告 Vol.105, No.606, 20060210, pp.47-51 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763229B1 (en) * 2016-02-18 2017-07-31 국방과학연구소 Selective emitter based on surface plasmon resonance
WO2018131805A1 (en) * 2017-01-11 2018-07-19 연세대학교 산학협력단 Infrared stealth element using dual band completely absorptive metamaterial
US11230086B2 (en) 2017-01-11 2022-01-25 Industry-Academic Cooperation Foundation Yonsei University Infrared stealth element using dual band perfect absorption metamaterial
KR101920046B1 (en) 2017-02-28 2018-11-19 광운대학교 산학협력단 Aluminum plasmonic metasurface device enabling wavelength insensitive phase gradient
JP2019068019A (en) * 2017-10-05 2019-04-25 株式会社東芝 Semiconductor light receiving element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4703443B2 (en) Light receiving element and optical wiring LSI
US8290325B2 (en) Waveguide photodetector device and manufacturing method thereof
KR100853067B1 (en) Photodiode and method for manufacturing same
JP6094268B2 (en) Semiconductor integrated photo detector
TW201806172A (en) Semiconductor device and its manufacturing method
JP6482790B2 (en) Optical semiconductor device
JP4410274B2 (en) Light receiving element and optical wiring LSI
US9243952B2 (en) Light-receiving device, light receiver using same, and method of fabricating light-receiving device
US20150076641A1 (en) Avalanche Photodiodes with Defect-assisted Silicon Absorption Regions
JP2011128162A (en) Light receiving element and optical interconnection lsi
JP4291521B2 (en) Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device
JP5914605B2 (en) Semiconductor photo detector
JP2007013065A (en) Near infrared photodetection element
TWI576627B (en) Integrated chip and integrated dielectric waveguide forming method
US20090269084A1 (en) Light receiving circuit and digital system
JP7087308B2 (en) Manufacturing method of photoreceiver, balanced photoreceiver, and photoreceiver
JP2006053472A (en) Optical waveguide module and optical information processing apparatus
JP5150216B2 (en) Waveguide-type photodetector and manufacturing method thereof
JP2013246444A (en) Optoelectronic device with reflector and method for manufacturing optoelectronic device
US8211730B1 (en) Nanophotonic transceiver
JP2018082036A (en) Semiconductor device
US11719885B2 (en) Apparatus for optical coupling and system for communication
KR19990043106A (en) Wavelength Division Multiplexing with Integrated Semiconductor Laser and Photodetector in a Single Chip
TW202341458A (en) A cavity-enhanced waveguide photodetector
WO2014041674A1 (en) Semiconductor photoreceptor element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507