JP2011128013A - Mounting structure of temperature sensor - Google Patents

Mounting structure of temperature sensor Download PDF

Info

Publication number
JP2011128013A
JP2011128013A JP2009286697A JP2009286697A JP2011128013A JP 2011128013 A JP2011128013 A JP 2011128013A JP 2009286697 A JP2009286697 A JP 2009286697A JP 2009286697 A JP2009286697 A JP 2009286697A JP 2011128013 A JP2011128013 A JP 2011128013A
Authority
JP
Japan
Prior art keywords
thermal expansion
screw hole
pressing portion
fixing member
screwing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009286697A
Other languages
Japanese (ja)
Other versions
JP5231386B2 (en
Inventor
Takashi Maeda
高志 前田
Takashi Morita
剛史 森田
Wakako Kinose
和香子 木野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009286697A priority Critical patent/JP5231386B2/en
Publication of JP2011128013A publication Critical patent/JP2011128013A/en
Application granted granted Critical
Publication of JP5231386B2 publication Critical patent/JP5231386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent generation of problems, such as sealing failures or loosening of a screwing state, even in a mounting structure of a temperature sensor used for temperature measurement of high-temperature gas, wherein a mounting screw hole formation portion on which the sensor is mounted has a high thermal expansion coefficient, whereas a circular pressing part or a fixing member for screwing on the sensor side has a relatively low thermal expansion coefficient, because of its being made of SUS, and the compressive stress in the axial direction of the circular pressing part is reduced due to the thermal expansion difference caused by a temperature rise, after bing mounted. <P>SOLUTION: A spacer 51, including a material having a higher thermal expansion coefficient than a material constituting the circular pressing part or the fixing member for screwing, and having a thermal expansion coefficient higher than that of a material forming the mounting screw hole 503, is interposed between the circular pressing part 31 and the fixing member 61 for screwing of the sensor 101. Reduction in the compressive stress, in the axial direction of the circular pressing part 31 in the mounted state can be reduced, by utilizing the thermal expansion of the spacer 51. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流体の温度を検出する温度センサの取付け構造に関し、詳しくは、エンジンの排気ガス等の流体の温度を測定するため、流体が通過する対象物(例えば排気管)に設けられた取付けねじ穴に取付けられる温度センサ(以下、単にセンサともいう)の取付け構造に関する。   The present invention relates to a temperature sensor mounting structure for detecting the temperature of a fluid, and more particularly, to mount a temperature sensor for measuring the temperature of a fluid such as an exhaust gas of an engine, provided on an object (for example, an exhaust pipe) through which the fluid passes. The present invention relates to a mounting structure of a temperature sensor (hereinafter also simply referred to as a sensor) attached to a screw hole.

図9は、この種の温度センサ201及びその取付け構造の一例を示した断面図である。図9に示した温度センサ201は、排気管500内の排気ガスの温度を測定するためのもの(排気温センサ)であり、先端(図示下端)が閉じられたチューブ11の内部の先端部分に、サーミスタなどの温度センサ素子(以下、センサ素子又は単に素子とも言う)21を備え、次のように構成されている。すなわち、このセンサ201を構成する素子21を内蔵するチューブ11は、例えばその後端寄り部位の外側にフランジ状に突出する環状押圧部31を備えている。この環状押圧部31は、排気管500の取付け対象部位(ボス)501に設けられた取付けねじ穴(以下、単にねじ穴ともいう)503の奥のシール保持用の環状座面505に押付けられるところであり、例えば溶接や圧入によりチューブ11に設けられている。また、この環状押圧部31における後端側において後方に突出状に設けられた筒状部の外側には、素子21を内蔵するチューブ11より大径をなす大径チューブ(保護チューブ)41がその先端を外嵌され、後方に延びる形で同心状に固定されている。そして、このフランジ状の環状押圧部31の後方には、後方にスライド可能でその大径チューブ41に遊嵌状に外嵌され、外周面に、上記取付けねじ穴503にねじ込み可能のねじ62を備えた筒状又は環状のねじ込み用固定部材61を備えている。なお、素子21から延びる電極線23は、シース管25に配置された芯線24に接続され、この芯線24が大径チューブ41の後端から外部に引き出される信号取り出し用のリード線28にカシメ端子27を介して接続されている。そして、このリード線28は、大径チューブ41の後端部45内に配置されたシール部材47内を通され、その後端部45を縮径状に加締めることで固定されている。   FIG. 9 is a cross-sectional view showing an example of this type of temperature sensor 201 and its mounting structure. The temperature sensor 201 shown in FIG. 9 is for measuring the temperature of the exhaust gas in the exhaust pipe 500 (exhaust temperature sensor), and is attached to the distal end portion of the tube 11 whose distal end (lower end in the figure) is closed. A temperature sensor element (hereinafter also referred to as a sensor element or simply an element) 21 such as a thermistor is provided and configured as follows. That is, the tube 11 containing the element 21 constituting the sensor 201 includes, for example, an annular pressing portion 31 that protrudes in a flange shape outside the rear end portion. The annular pressing portion 31 is pressed against an annular seating surface 505 for holding a seal at the back of an attachment screw hole (hereinafter also simply referred to as a screw hole) 503 provided in an attachment target portion (boss) 501 of the exhaust pipe 500. For example, it is provided in the tube 11 by welding or press fitting. In addition, a large-diameter tube (protective tube) 41 having a larger diameter than that of the tube 11 containing the element 21 is provided on the outer side of the cylindrical portion that protrudes rearward on the rear end side of the annular pressing portion 31. The tip is fitted externally, and is fixed concentrically so as to extend rearward. Then, behind the flange-shaped annular pressing portion 31, a screw 62 is slidable rearward and externally fitted into the large-diameter tube 41, and can be screwed into the mounting screw hole 503 on the outer peripheral surface. A cylindrical or annular screw fixing member 61 is provided. The electrode wire 23 extending from the element 21 is connected to a core wire 24 disposed in the sheath tube 25, and the core wire 24 is connected to a lead wire 28 for signal extraction from the rear end of the large-diameter tube 41 to the outside. 27 is connected. The lead wire 28 is passed through a seal member 47 disposed in the rear end portion 45 of the large-diameter tube 41, and is fixed by caulking the rear end portion 45 to a reduced diameter.

このような構成を有する温度センサ201では、それ自身が取付けられる排気管500における取付け対象部位であるボス501に設けられた取付けねじ穴503の奥の環状座面505に、上記の環状押圧部31の先端向き面(円錐状のテーパ面)36をあてがい、後方からねじ込み用固定部材61を前記取付けねじ穴503にねじ込む(締め付ける)ことで取付けられる。すなわち、ねじ込み用固定部材61の先端63にて環状押圧部31を先端側に押付けるようにし、環状押圧部31を、ねじ込み用固定部材61と環状座面505との間で、ねじ62の軸(軸線)G方向(先後方向)に圧縮し、センサ201をねじ穴503にシールを保持して取付けている。このような取付け構造では、環状押圧部31は先後方向に強く圧縮される。したがって、ねじ込み用固定部材61も同様に圧縮された状態に保持される。このため、これらは理論上、圧縮応力に対応して微量、軸G方向に縮むことになる。他方、排気管500に設けられたボス501の取付けねじ穴503は、軸G方向に前記圧縮応力に対応して引張り応力を受けることになり、理論上はその引張り応力に対応して微量、伸びる。ただし、ねじ込み用固定部材61と、取付けねじ穴503については、ねじの螺合がある部分での伸縮は無視できると考えられる。このようにして、上記従来のセンサ201の取付け構造においては、シールが保持されて、安定したセンサ201の取付けがなされているといえる。   In the temperature sensor 201 having such a configuration, the annular pressing portion 31 is provided on the annular seating surface 505 at the back of the attachment screw hole 503 provided in the boss 501 that is the attachment target portion in the exhaust pipe 500 to which the temperature sensor 201 is attached. Is attached by screwing (tightening) the fixing member 61 for screwing into the mounting screw hole 503 from the rear. That is, the annular pressing portion 31 is pressed against the distal end side at the distal end 63 of the screwing fixing member 61, and the annular pressing portion 31 is moved between the screwing fixing member 61 and the annular seating surface 505. (Axis) Compressed in the G direction (front-rear direction), the sensor 201 is attached to the screw hole 503 while holding a seal. In such an attachment structure, the annular pressing portion 31 is strongly compressed in the front-rear direction. Therefore, the fixing member 61 for screwing is similarly held in a compressed state. For this reason, they theoretically shrink in the direction of the axis G in a minute amount corresponding to the compressive stress. On the other hand, the mounting screw hole 503 of the boss 501 provided in the exhaust pipe 500 receives a tensile stress corresponding to the compressive stress in the direction of the axis G, and theoretically extends a small amount corresponding to the tensile stress. . However, with regard to the fixing member 61 for screwing and the mounting screw hole 503, it is considered that the expansion and contraction at the portion where the screw is screwed is negligible. Thus, in the conventional sensor 201 mounting structure, it can be said that the seal is held and the sensor 201 is mounted stably.

ところで、このような排気ガスの温度の測定に用いられるセンサ201は、その取付けは常温で行われるのが普通である。しかし、その取付け後においては排気ガスの熱による高温に晒される。このため、センサ201が取付けられている排気管500のボス501の部位、すなわち、取付けねじ穴503及びその環状座面505、さらには、これに押付けられている環状押圧部31、及びねじ込み用固定部材61を含むセンサ201の先端寄り部位は、例えば、200℃〜500℃、或いは、取付け対象部位によってはそれ以上の高温に晒される。したがって、センサ201を構成する環状押圧部31、及びねじ込み用固定部材61、さらに、センサ201が取付けられている取付けねじ穴503を形成するボス501の部位が異なる熱膨張係数を有する素材から形成されている場合には、それぞれの熱膨張係数の相違に基づく熱伸縮量の相違により、シール不良やねじ込み状態に緩みが生じることがあるといった問題があった。   By the way, the sensor 201 used for measuring the temperature of the exhaust gas is normally mounted at room temperature. However, it is exposed to the high temperature due to the heat of the exhaust gas after the mounting. For this reason, the part of the boss 501 of the exhaust pipe 500 to which the sensor 201 is attached, that is, the mounting screw hole 503 and the annular seating surface 505, the annular pressing portion 31 pressed against this, and the fixing for screwing The part near the tip of the sensor 201 including the member 61 is exposed to a high temperature of 200 ° C. to 500 ° C. or higher depending on the attachment target part. Therefore, the annular pressing portion 31 constituting the sensor 201, the fixing member 61 for screwing, and the boss 501 forming the mounting screw hole 503 to which the sensor 201 is attached are formed from materials having different thermal expansion coefficients. In such a case, there is a problem that a seal failure or looseness may occur due to a difference in thermal expansion / contraction amount based on a difference in each thermal expansion coefficient.

例えば、取付けねじ穴503を含むセンサ201の取付け対象部位(排気管500及びボス501)が、JIS H 5052にAC2Bとして規定されるアルミニウム合金製(熱膨張係数:23.5×10−6/℃)であり、センサ201側の環状押圧部31がSUS310製(熱膨張係数:17.3×10−6/℃)で、ねじ込み用固定部材61がSUS430製(熱膨張係数:10.4×10−6/℃)からなる場合には、その三者の熱膨張係数に大きな相違がある。このため、このような素材からなる上記センサの取付け構造において、それらが高温の排気ガスに晒されると、排気管500の取付けねじ穴503を構成するボス501が相対的に大きく(軸G方向に長く)膨張する。したがって、センサ201の環状押圧部31が取付けねじ穴503の環状座面505を押付けていた力(圧縮力)が小さくなり、シール性が低下する。そして、熱膨張量の差次第では、センサ201の環状押圧部31が取付けねじ穴503の環状座面505から浮き、ねじ込み状態に緩みが生じるなどの問題が発生することもある。なお、ねじの螺合がある部分では、取付けねじ穴503の軸方向の熱膨張は、自由状態での熱膨張はできないといえるが、その螺合のない環状座面505の近傍での熱膨張は自由状態に近い状態で膨張すると考えられる。 For example, the attachment target part (the exhaust pipe 500 and the boss 501) of the sensor 201 including the attachment screw hole 503 is made of an aluminum alloy specified as AC2B in JIS H 5052 (thermal expansion coefficient: 23.5 × 10 −6 / ° C.). The annular pressing portion 31 on the sensor 201 side is made of SUS310 (thermal expansion coefficient: 17.3 × 10 −6 / ° C.), and the screwing fixing member 61 is made of SUS430 (thermal expansion coefficient: 10.4 × 10). -6 / ° C), there is a great difference in the thermal expansion coefficient between the three. Therefore, in the sensor mounting structure made of such a material, when they are exposed to high-temperature exhaust gas, the bosses 501 constituting the mounting screw holes 503 of the exhaust pipe 500 are relatively large (in the direction of the axis G). Swells long). Therefore, the force (compression force) that the annular pressing portion 31 of the sensor 201 presses the annular seating surface 505 of the mounting screw hole 503 is reduced, and the sealing performance is lowered. Depending on the difference in the amount of thermal expansion, the annular pressing portion 31 of the sensor 201 may float from the annular seating surface 505 of the mounting screw hole 503, and a problem such as loosening of the screwed state may occur. It should be noted that the thermal expansion in the axial direction of the mounting screw hole 503 cannot be performed in a free state at a portion where the screw is screwed, but the thermal expansion in the vicinity of the annular seating surface 505 without the screwing is possible. Is expected to expand in a state close to the free state.

また、上記において、ねじ込み用固定部材61がボス501と同素材(アルミニウム合金)からなり、環状押圧部31がSUS310からなる場合、或いは、環状押圧部31がボス501と同素材(アルミニウム合金)からなり、ねじ込み用固定部材61がSUS430からなる場合でも、各素材の熱膨張係数の相違により、温度次第では同様の問題が生じることがある。そして、これらの問題は排気ガスのリークの発生という問題のみならず、センサ201の取付けが不完全となることを意味するから、振動によりセンサ201が故障する原因ともなる。   Further, in the above, when the screwing fixing member 61 is made of the same material (aluminum alloy) as the boss 501 and the annular pressing portion 31 is made of SUS310, or the annular pressing portion 31 is made of the same material (aluminum alloy) as the boss 501. Thus, even when the screwing fixing member 61 is made of SUS430, the same problem may occur depending on the temperature due to the difference in thermal expansion coefficient of each material. These problems are not only the problem of exhaust gas leaks, but also mean that the sensor 201 is not completely installed, and this causes the sensor 201 to fail due to vibration.

こうした中、センサ201の取付けねじ穴503を形成する取付け対象部位であるボス(センサの取付け座)501、センサ201における環状押圧部(封止部材、リブ)31、ねじ込み用固定部材(ナット)61の熱変形量が略同一となるようにして、高温時におけるねじの緩みを防止するという技術がある(特許文献1)。すなわち、センサ201の取付けねじ穴503を形成するボス(センサの取付け座)501、及びセンサ201における環状押圧部(封止部材、リブ)31、ねじ込み用固定部材(ナット)61の各熱膨張係数を略同一としたり、その差を、2×10−6/℃以下とするというものである。 Under such circumstances, a boss (sensor mounting seat) 501 which is a mounting target portion for forming the mounting screw hole 503 of the sensor 201, an annular pressing portion (sealing member, rib) 31 in the sensor 201, and a screwing fixing member (nut) 61. There is a technique that prevents the screws from loosening at a high temperature by making the amount of thermal deformation of the two substantially the same (Patent Document 1). That is, the thermal expansion coefficients of the boss (sensor mounting seat) 501 forming the mounting screw hole 503 of the sensor 201, the annular pressing portion (sealing member, rib) 31 and the screwing fixing member (nut) 61 in the sensor 201. Are substantially the same, or the difference is 2 × 10 −6 / ° C. or less.

特開2002−122486号公報JP 2002-122486 A

ところが、特許文献1の技術では、センサ201の取付けねじ穴503を形成するボス501、及びセンサ201をなす環状押圧部31、ねじ込み用固定部材61ともに熱変形量が略同一となる構成する技術であるから、センサ201側のみでなく、上記例におけるボス501のようなセンサ201の取付け対象部位をも略同一の熱膨張係数の素材(例えば、同一素材)で形成する必要があり、或いは、その差を、2×10−6/℃以下とする必要がある。したがって、センサの取付け構造として具体化できる範囲が極めて狭いという重大な欠点がある。例えば、センサ201をなす環状押圧部31、ねじ込み用固定部材61ともに上記のようなSUS310、又は430製であるような温度センサ201において、その取付け対象部位(ボス501)の取付けねじ穴503が上記のようなアルミニウム合金製からなるもののように、そのボス501の熱膨張係数が、センサ201のそれらより大きい金属素材で形成されている場合には、もはや特許文献1の技術の適用の余地はない。 However, in the technology of Patent Document 1, the boss 501 that forms the mounting screw hole 503 of the sensor 201, the annular pressing portion 31 that forms the sensor 201, and the screwing fixing member 61 are configured to have substantially the same amount of thermal deformation. Therefore, it is necessary to form not only the sensor 201 side but also the attachment target portion of the sensor 201 such as the boss 501 in the above example with a material having substantially the same thermal expansion coefficient (for example, the same material), or The difference needs to be 2 × 10 −6 / ° C. or less. Therefore, there is a serious drawback that the range that can be embodied as the sensor mounting structure is extremely narrow. For example, in the temperature sensor 201 made of SUS310 or 430 as described above, both the annular pressing portion 31 and the screwing fixing member 61 constituting the sensor 201 are provided with the mounting screw hole 503 of the mounting target portion (boss 501). If the thermal expansion coefficient of the boss 501 is made of a metal material larger than those of the sensor 201, such as that made of an aluminum alloy such as the above, there is no room for application of the technique of Patent Document 1. .

別の言い方をすると、アルミニウム合金は、加工容易であると共に、軽量で、耐食性を備えていることから、排気マニホールド系部位に広く適用されている。一方、センサ201をなす環状押圧部31、ねじ込み用固定部材61は、耐熱性等の要請からしてSUS310,430製など、相対的に熱膨張係数が小さい素材のものとせざるを得ない場合が多い。とくに、素子21を内蔵するチューブ11は、耐熱性の要請、強度の観点からステンレス鋼製としたい。そして、環状押圧部31をこれに固定するには溶接が好ましく、そのためには環状押圧部31もステンレス鋼製とするのが好ましい。   In other words, aluminum alloys are widely applied to exhaust manifold system parts because they are easy to process, are lightweight and have corrosion resistance. On the other hand, the annular pressing portion 31 and the screwing fixing member 61 constituting the sensor 201 may be made of a material having a relatively small coefficient of thermal expansion, such as those made of SUS310 or 430, due to a request for heat resistance or the like. Many. In particular, the tube 11 containing the element 21 is made of stainless steel from the viewpoint of heat resistance requirements and strength. And welding is preferable in order to fix the annular pressing part 31 to this, For that purpose, it is preferable that the annular pressing part 31 is also made of stainless steel.

本発明は、温度センサの取付け構造におけるかかる問題点に鑑みてなされたもので、温度センサが、排気管や排気マニホルド系部位内の排気ガスの温度のように、高温のガスの温度測定に使用されるものであり、そのセンサが取付けられる取付けねじ穴を形成する部位がアルミニウム合金製などのように熱膨張係数が大きいのに対し、センサ側の環状押圧部又はねじ込み用固定部材がSUS製などのために熱膨張係数が相対的に小さいとしても、高温時においても上記のようなシール不良やねじ込み状態の弛緩などの問題が発生することを有効に防止できる温度センサの取付け構造を提供することをその目的とする。   The present invention has been made in view of such problems in the temperature sensor mounting structure, and the temperature sensor is used for measuring the temperature of a high-temperature gas such as the temperature of exhaust gas in an exhaust pipe or an exhaust manifold system part. The portion where the mounting screw hole for mounting the sensor is formed has a large coefficient of thermal expansion, such as an aluminum alloy, while the annular pressing portion on the sensor side or the fixing member for screwing is made of SUS, etc. To provide a temperature sensor mounting structure that can effectively prevent the occurrence of problems such as poor sealing and loosening of the screwed state as described above even at a high temperature even if the coefficient of thermal expansion is relatively small. Is the purpose.

上記課題を解決するため、請求項1に記載の発明は、対象物内の流体の温度を測定するための温度センサの取付け構造であって、
温度センサをその対象物に設けられた取付けねじ穴へ取付けるのに、該取付けねじ穴の奥のシール保持用の環状座面に、温度センサ自身に設けられた環状押圧部をあてがい、環状又は筒状に形成されて自身の外周面に前記取付けねじ穴にねじ込み可能のねじが形成されたねじ込み用固定部材を、温度センサに外嵌して前記取付けねじ穴にねじ込み、このねじ込みによって、前記環状押圧部を、該ねじ込み用固定部材と前記環状座面との間でねじの軸方向に圧縮することで該温度センサを前記取付けねじ穴にシールを保持して取付け、
その取付け後の温度上昇による熱膨張差によって前記環状押圧部における前記軸方向の圧縮応力が減少することとなる温度センサの取付け構造において、
前記環状押圧部と前記ねじ込み用固定部材との間、又は前記環状押圧部と前記環状座面との間の少なくとも一方に、前記環状押圧部又は前記ねじ込み用固定部材の少なくともいずれか一方を構成する素材よりも熱膨張係数が大きく、且つ、前記取付けねじ穴を形成する素材以上の熱膨張係数を有する素材からなるスペーサを介在させたことを特徴とする。
In order to solve the above problem, the invention according to claim 1 is a temperature sensor mounting structure for measuring the temperature of a fluid in an object,
In order to attach the temperature sensor to the mounting screw hole provided in the object, an annular pressing portion provided in the temperature sensor itself is applied to the annular seating surface for holding the seal at the back of the mounting screw hole. A fixing member for screwing, which is formed in a shape and has a screw that can be screwed into the mounting screw hole on its outer peripheral surface, is externally fitted to a temperature sensor and screwed into the mounting screw hole. The temperature sensor is attached to the attachment screw hole by holding the seal in the axial direction of the screw by compressing the portion in the axial direction of the screw between the fixing member for screwing and the annular seating surface,
In the temperature sensor mounting structure in which the axial compressive stress in the annular pressing portion is reduced due to the difference in thermal expansion due to the temperature rise after the mounting,
At least one of the annular pressing portion and the screwing fixing member is formed between at least one of the annular pressing portion and the fixing member for screwing or between the annular pressing portion and the annular seating surface. A spacer made of a material having a thermal expansion coefficient larger than that of the material and having a thermal expansion coefficient equal to or greater than that of the material forming the mounting screw hole is interposed.

請求項2に記載の発明は、前記スペーサは、前記取付けねじ穴を形成する素材より熱膨張係数が大きい素材から形成されていることを特徴とする請求項1記載に温度センサの取付け構造である。請求項3に記載の発明は、前記スペーサは、前記ねじ込み用固定部材が前記取付けねじ穴にねじ込まれる前において、前記温度センサに外嵌され、該ねじ込み用固定部材のねじの軸方向にスライド可能の環状又は筒状のものであることを特徴とする請求項1又は2のいずれか1項に記載の温度センサの取付け構造である。そして、請求項4に記載の発明は、前記対象物が、エンジンの排気管であることを特徴とする、請求項1,2又は3のいずれか1項に記載の温度センサの取付け構造である。   The invention according to claim 2 is the temperature sensor mounting structure according to claim 1, wherein the spacer is formed of a material having a larger thermal expansion coefficient than a material forming the mounting screw hole. . According to a third aspect of the present invention, the spacer is fitted onto the temperature sensor before the screwing fixing member is screwed into the mounting screw hole, and is slidable in the axial direction of the screw of the screwing fixing member. The temperature sensor mounting structure according to claim 1, wherein the temperature sensor mounting structure is a ring-shaped or cylindrical shape. The invention according to claim 4 is the temperature sensor mounting structure according to any one of claims 1, 2, or 3, wherein the object is an exhaust pipe of an engine. .

本発明において、前記環状押圧部は、前記環状座面に間接的に(別部材を介して)押付けられる構成のものにおいても適用できる。また、前記ねじ込み用固定部材は、前記環状押圧部をねじの軸方向に、間接的に(別部材を介して)押付ける構成のものにおいても適用できる。すなわち、本発明において前記環状押圧部と前記ねじ込み用固定部材との間、又は前記環状押圧部と前記環状座面との間の少なくとも一方に介在させられる前記スペーサは、それらの間に直接介在させられるものだけでなく、ワッシャ等の別部材を介して間接的に介在させられるものとしてもよい。さらに、前記スペーサは、ねじの軸方向において、複数に分割されているものであってもよい。   In the present invention, the annular pressing portion can also be applied to a configuration in which the annular pressing portion is pressed against the annular seating surface indirectly (via another member). Further, the fixing member for screwing can be applied to a structure in which the annular pressing portion is pressed indirectly (through another member) in the axial direction of the screw. That is, in the present invention, the spacer interposed between the annular pressing portion and the screwing fixing member or at least one between the annular pressing portion and the annular seating surface is directly interposed between them. It is good also as what is indirectly interposed through another members, such as a washer. Further, the spacer may be divided into a plurality of parts in the axial direction of the screw.

本発明において、「その取付け後の温度上昇による熱膨張差によって前記環状押圧部における前記軸方向の圧縮応力が減少することとなる温度センサの取付け構造」ということは、その取付け後の温度上昇による熱膨張差によって、取付けねじ穴側の軸方向における熱膨張量が、環状押圧部及びねじ込み用固定部材のその軸方向における熱膨張量(合計膨張量)より大きくなることを意味する。典型例としては、取付けねじ穴を形成する部位が、上記のような熱膨張係数を有するアルミニウム合金からなり、環状押圧部及びねじ込み用固定部材が、SUS310、430からなる場合である。   In the present invention, “a temperature sensor mounting structure in which the axial compressive stress in the annular pressing portion is reduced due to a difference in thermal expansion due to a temperature increase after the mounting” refers to a temperature increase after the mounting. It means that the thermal expansion amount in the axial direction on the mounting screw hole side is larger than the thermal expansion amount (total expansion amount) in the axial direction of the annular pressing portion and the screwing fixing member due to the difference in thermal expansion. As a typical example, the part where the mounting screw hole is formed is made of the aluminum alloy having the thermal expansion coefficient as described above, and the annular pressing portion and the fixing member for screwing are made of SUS310 and 430.

前記したように、例えば、前記対象物における取付けねじ穴を形成する部位をなす素材がJIS H 5052にAC2Bとして規定されるアルミニウム合金製であり、その熱膨張係数が、23.5×10−6/℃であり、センサ側の環状押圧部がSUS310製であり、その熱膨張係数が、17.3×10−6/℃であり、ねじ込み用固定部材がSUS430製であり、その熱膨張係数が、10.4×10−6/℃である場合の従来のセンサの取付け構造の場合においては、次のようである。すなわち、この場合、取付けねじ穴を形成する部位が、環状押圧部及びねじ込み用固定部材を形成する素材の熱膨張係数より大きいため、その取付け後の温度上昇による熱膨張差によって、取付けねじ穴側の軸方向における熱膨張量が、環状押圧部及びねじ込み用固定部材のその軸方向における熱膨張量(合計膨張量)より大きくなる。このため、前記環状押圧部が受けていた軸方向の圧縮応力は、温度上昇によりその上昇前よりも低下する。したがって、シール性が低下し、取付けに緩みがでる可能性がある。 As described above, for example, the material forming the part for forming the mounting screw hole in the object is made of an aluminum alloy defined as AC2B in JIS H 5052, and the thermal expansion coefficient thereof is 23.5 × 10 −6. / ° C., the sensor-side annular pressing part is made of SUS310, its thermal expansion coefficient is 17.3 × 10 −6 / ° C., the screwing fixing member is made of SUS430, and its thermal expansion coefficient is In the case of the conventional sensor mounting structure in the case of 10.4 × 10 −6 / ° C., it is as follows. That is, in this case, since the portion where the mounting screw hole is formed is larger than the thermal expansion coefficient of the material forming the annular pressing portion and the screwing fixing member, the mounting screw hole side is caused by the difference in thermal expansion due to the temperature rise after the mounting. The amount of thermal expansion in the axial direction is larger than the amount of thermal expansion (total amount of expansion) in the axial direction of the annular pressing portion and the fixing member for screwing. For this reason, the compressive stress of the axial direction which the said annular press part received has fallen rather than the raise by the temperature rise. Therefore, there is a possibility that the sealing performance is lowered and the mounting is loosened.

これに対して本発明においては、上記の素材からなるセンサの取付け構造であるとしても、例えば、前記環状押圧部と前記ねじ込み用固定部材との間に、前記対象物における取付けねじ穴を形成する部位をなす素材と同じ又はそれよりも大きい熱膨張係数を有する素材からなるスペーサを介在させた取付け構造となっている。したがって、このような取付け構造では温度上昇がある場合でも、このスペーサが前記環状押圧部と前記ねじ込み用固定部材よりも大きく前記軸方向に膨張する。すなわち、このスペーサによる膨張が得られる分、前記環状押圧部及び前記ねじ込み用固定部材の先後方向における圧縮応力が減少するのを低減できるから、シール性の低下や取付け状態の緩みの発生の防止に寄与する。つまり、本発明では、取付け後に温度上昇があっても、上記のようなスペーサが介在されているため、それがある分、従来のようにそれがない場合に比べると、前記環状押圧部が前記環状座面を押していた圧縮力が低下することによるシール性能の低下や、ねじ込み状態の緩みの発生を低減又は防止できるという注目すべき効果が得られる。   On the other hand, in the present invention, even if the sensor mounting structure is made of the above material, for example, a mounting screw hole in the object is formed between the annular pressing portion and the fixing member for screwing. The mounting structure is provided with a spacer made of a material having the same or larger thermal expansion coefficient as the material forming the part. Therefore, in such a mounting structure, even when there is a temperature rise, the spacer expands in the axial direction larger than the annular pressing portion and the screwing fixing member. That is, since the expansion by the spacer can be obtained, the reduction of the compressive stress in the front-rear direction of the annular pressing portion and the screw-in fixing member can be reduced, thereby preventing the deterioration of the sealing performance and the looseness of the mounting state. Contribute. That is, in the present invention, even if there is a temperature rise after mounting, since the spacer as described above is interposed, the annular pressing portion is compared with the case where there is no spacer as in the conventional case. It is possible to obtain a remarkable effect that it is possible to reduce or prevent the deterioration of the sealing performance due to the reduction of the compressive force pushing the annular seating surface and the occurrence of looseness in the screwed state.

特許文献1の技術のように、取付けねじ穴を形成する取付け対象部位(センサの取付け座、ボス)、及びセンサをなす環状押圧部、ねじ込み用固定部材ともに熱変形量が略同一となる構成するには、センサ側のみでなく、センサの取付け対象部位をも略同一の熱膨張係数の素材(例えば、同一素材)で形成する必要があるから、前記の素材構成の場合には適用ないし対応の余地がなかったのに対し、本発明ではその対応が可能となるという意味で、その効果には際立って優れたものがある。   As in the technique of Patent Document 1, the mounting target part (sensor mounting seat, boss) for forming the mounting screw hole, the annular pressing portion forming the sensor, and the screwing fixing member are configured to have substantially the same amount of thermal deformation. In addition to the sensor side, it is necessary to form not only the sensor side but also the part to which the sensor is attached from a material having substantially the same thermal expansion coefficient (for example, the same material). In contrast to the lack of room, the present invention has an outstanding effect in the sense that it is possible to cope with it.

本発明における「スペーサ」は前記環状押圧部又は前記ねじ込み用固定部材の少なくともいずれか一方を構成する素材よりも熱膨張係数が大きく、且つ、取付けねじ穴を形成する素材以上の熱膨張係数を有する素材からなるものから選択すればよい。したがって、その両者よりも熱膨張係数が大きい素材からなるものを選択してもよいし、取付けねじ穴を形成する素材が環状押圧部及びねじ込み用固定部材の素材よりも熱膨張係数が大きい場合には、取付けねじ穴を形成する素材と同じ素材としてもよい。取付け後の温度上昇による熱膨張差によって前記環状押圧部における前記軸方向の圧縮応力が減少するのをできるだけ防止できるように、他の構成材の熱膨張係数等を考慮して設定する。   The “spacer” in the present invention has a thermal expansion coefficient larger than that of the material constituting at least one of the annular pressing portion and the screw-in fixing member, and has a thermal expansion coefficient greater than that of the material forming the mounting screw hole. What is necessary is just to select from the material. Therefore, a material having a larger thermal expansion coefficient than both of them may be selected, or when the material forming the mounting screw hole has a larger thermal expansion coefficient than the material of the annular pressing portion and the fixing member for screwing. May be the same material as the material forming the mounting screw hole. In order to prevent as much as possible the reduction of the axial compressive stress in the annular pressing portion due to the difference in thermal expansion due to the temperature rise after the mounting, it is set in consideration of the thermal expansion coefficient of the other components.

具体的には、ねじ込み用固定部材によるねじ込み時による締め付け力で、前記環状押圧部及び前記ねじ込み用固定部材が受けるねじ込み方向の圧縮応力、そしてこの圧縮応力に対応して発生する前記取付けねじ穴を形成する前記取付け対象部位が受ける同方向の引張り応力と、温度センサが受ける温度変化(上昇)の範囲、これら各部品や部分を形成する素材の材質(縦弾性係数、熱膨張係数等)、さらに、それらの先後方向の長さや横断面積との関係で、温度センサの前記取付けねじ穴への取付け時からその後の温度変化(熱サイクル)を考慮して、シールの低下や取付け状態の緩みの発生の防止に寄与するように設計すればよい。もちろん、取付けねじ穴を形成する部位や、前記環状押圧部と前記ねじ込み用固定部材とをなす素材、さらには、スペーサをなす素材によっては、その取付け後の温度上昇による熱膨張差によって前記環状押圧部における前記軸方向の圧縮応力を増大させることもできる。   Specifically, the tightening force generated when the screwing fixing member is screwed in is used to reduce the compression stress in the screwing direction received by the annular pressing portion and the screwing fixing member, and the mounting screw hole generated corresponding to the compression stress. The tensile stress in the same direction received by the part to be attached to be formed, the range of temperature change (rise) received by the temperature sensor, the material (longitudinal elastic modulus, thermal expansion coefficient, etc.) of the material forming these parts and parts, In view of the temperature change (thermal cycle) from the time of mounting the temperature sensor to the mounting screw hole in relation to the length and cross-sectional area in the front-rear direction, the deterioration of the seal and the looseness of the mounting state occur. What is necessary is just to design so that it may prevent. Of course, depending on the portion of the mounting screw hole, the material forming the annular pressing portion and the fixing member for screwing, and the material forming the spacer, the annular pressing may be caused by a difference in thermal expansion due to a temperature rise after the mounting. It is also possible to increase the axial compressive stress in the part.

本発明の温度センサの取付け構造を具体化した第1実施形態に用いられるセンサの縦断面図、及びその要部拡大図。The longitudinal cross-sectional view of the sensor used for 1st Embodiment which actualized the attachment structure of the temperature sensor of this invention, and its principal part enlarged view. 第1実施形態例の取付け構造を得る工程の説明用縦断面図。The longitudinal cross-sectional view for description of the process of obtaining the attachment structure of the example of 1st Embodiment. 第1実施形態例の取付け構造を得る工程の説明用縦断面図。The longitudinal cross-sectional view for description of the process of obtaining the attachment structure of the example of 1st Embodiment. 第1実施形態例の取付け構造の縦断面図。The longitudinal cross-sectional view of the attachment structure of the example of 1st Embodiment. 図4のA部拡大図。The A section enlarged view of FIG. 本発明の温度センサの取付け構造を具体化した第2実施形態の縦断面図。The longitudinal cross-sectional view of 2nd Embodiment which actualized the attachment structure of the temperature sensor of this invention. 図6のB部拡大図。The B section enlarged view of FIG. 本発明の温度センサの取付け構造を具体化した第3実施形態の要部拡大図。The principal part enlarged view of 3rd Embodiment which actualized the attachment structure of the temperature sensor of this invention. 従来の温度センサの取付け構造の縦断面図。The longitudinal section of the attachment structure of the conventional temperature sensor.

本発明を具体化した温度センサの取付け構造の実施の形態(第1実施形態)について、図1〜図5に基づいて詳細に説明する。ただし、本例ではエンジンの排気ガスの温度を測定する温度センサ101を排気管(又排気マニホールド)500の取付け対象部位(ボス)501に設けられた取付けねじ穴503に取付ける場合で説明する。図中、101は、センサであって、SUS310製で、先端(図示下端)が閉じられてなる横断面円形のチューブ11と、そのチューブ11内の先端又は先端寄り部位に配置された温度センサ素子21とを主体として構成されている。このうち、素子21は、チューブ11内に内挿、配置されたシース管25の先端側に配置されている。このシース管25内には、2本の芯線24を挿通させた状態で絶縁粉末が充填されており、シース管25の先端から突出する芯線24の先端部に、素子21の後方から延びる2本の電極線23が接続されている。なお、このチューブ11の先端寄り部位は、その内部においてシース管25の先端を受けるように若干、細くなるように縮径され、シース管25を内挿している部位より小径をなしている。そして、チューブ11内には、素子21の揺動を抑制するために、セメントが充填されている。   An embodiment (first embodiment) of a temperature sensor mounting structure embodying the present invention will be described in detail with reference to FIGS. However, in this example, the temperature sensor 101 for measuring the temperature of the exhaust gas of the engine will be described in a case where it is attached to the attachment screw hole 503 provided in the attachment target portion (boss) 501 of the exhaust pipe (or exhaust manifold) 500. In the figure, reference numeral 101 denotes a sensor made of SUS310 having a circular cross section 11 whose tip (lower end in the figure) is closed, and a temperature sensor element disposed at the tip or a portion near the tip in the tube 11. 21 as a main component. Among these elements, the element 21 is disposed on the distal end side of the sheath tube 25 inserted and disposed in the tube 11. The sheath tube 25 is filled with insulating powder in a state where the two core wires 24 are inserted, and two wires extending from the rear of the element 21 are provided at the tip of the core wire 24 protruding from the tip of the sheath tube 25. Electrode wire 23 is connected. Note that a portion closer to the distal end of the tube 11 is slightly reduced in diameter so as to receive the distal end of the sheath tube 25 therein, and has a smaller diameter than a portion in which the sheath tube 25 is inserted. The tube 11 is filled with cement in order to suppress the swing of the element 21.

このチューブ11の後端寄り部位の外周には、排気管500のセンサの取付け対象部位をなすボス501の取付けねじ穴503の奥のシール保持用の環状座面505に押付けられるよう、外方に突出するフランジ状の環状押圧部31が圧入され、さらに溶接により固定されている。この取付け用の環状押圧部31は、SUS310製(熱膨張係数:17.3×10−6/℃)で、センサ101をなすチューブ11の軸G方向から見て(先端側から見て)円形で環状をなすように形成され、その内周面に沿って後方に円筒状に延びる筒状部33を備えている。そして、環状押圧部31は、この筒状部33の内周面を介してチューブ11の後端寄り部位の外周面に、圧入、さらには溶接により固定されている。なお、環状押圧部31は、その後側が、チューブ11の中心軸(軸線)Gに垂直な円形環状の後端向き面35をなしているが、その先端面36は、その外周寄り部位が、図2,3に示したような、取付けねじ穴503の奥の急先すぼまり状の環状座面505に押付けられるように急先細り状に形成されたテーパ面部36aをなしており、チューブ11の中心軸寄り部位はその軸Gに垂直な環状平面36bをなしている。なお、この環状押圧部31の外周面37はその外径が取付けねじ穴503のねじの内径より小さい円筒面をなしている。 The outer periphery of the portion near the rear end of the tube 11 is outwardly pressed so as to be pressed against the annular seating surface 505 for holding the seal at the back of the mounting screw hole 503 of the boss 501 forming the sensor mounting target portion of the exhaust pipe 500. A projecting flange-shaped annular pressing portion 31 is press-fitted and further fixed by welding. The mounting annular pressing portion 31 is made of SUS310 (coefficient of thermal expansion: 17.3 × 10 −6 / ° C.) and is circular when viewed from the direction of the axis G of the tube 11 forming the sensor 101 (viewed from the front end side). It is formed so as to form an annular shape, and includes a cylindrical portion 33 extending rearward along the inner peripheral surface thereof. The annular pressing portion 31 is fixed to the outer peripheral surface near the rear end of the tube 11 via the inner peripheral surface of the cylindrical portion 33 by press-fitting and further welding. The annular pressing portion 31 has a circular annular rear end-facing surface 35 perpendicular to the central axis (axis line) G of the tube 11 on the rear side, but the tip end surface 36 is located near the outer periphery. 2 and 3, a tapered surface portion 36a formed in a tapered shape so as to be pressed against a sharply tapered annular seating surface 505 at the back of the mounting screw hole 503 is formed. The portion near the central axis forms an annular plane 36b perpendicular to the axis G. The outer peripheral surface 37 of the annular pressing portion 31 has a cylindrical surface whose outer diameter is smaller than the inner diameter of the screw of the mounting screw hole 503.

一方、この環状押圧部31において後方に延びる筒状部33の外周面には、チューブ11及びシース管25と同心で、それらより大径で後方に延びる横断面円形の大径チューブ(保護管)41が固定されている。この大径チューブ41は先端寄り部位を環状押圧部31の筒状部33の外周面に外嵌され、その先端を環状押圧部31の後端向き面35に当接状にし、環状押圧部31の筒状部33の外周面に溶接等により固定されている。一方、シース管25の後端は、この大径チューブ41内の先後の中間部位に位置しており、その後端から引き出された芯線24と、電気信号取り出し用の各電線(リード線)28とがカシメ端子27を介して接続され、その電線28が大径チューブ41の後端において外部に引き出されている。なお、大径チューブ41の後端部45内には弾性シール材47が配置され、各電線28はこのシール材47中を通されている。そして、大径チューブ41の後端部45を縮径状にカシメを行うことで、内部のシールを保持すると共に、各電線28をその後端において固定している。   On the other hand, on the outer peripheral surface of the tubular portion 33 extending rearward in the annular pressing portion 31, a large diameter tube (protective tube) concentric with the tube 11 and the sheath tube 25 and having a larger diameter than that of the tube 11 and the sheath tube 25 and extending rearward. 41 is fixed. The large-diameter tube 41 is fitted on the outer peripheral surface of the cylindrical portion 33 of the annular pressing portion 31 at a portion closer to the distal end, and its distal end is brought into contact with the rear end facing surface 35 of the annular pressing portion 31. Is fixed to the outer peripheral surface of the cylindrical portion 33 by welding or the like. On the other hand, the rear end of the sheath tube 25 is located at the front and rear intermediate portion in the large-diameter tube 41, and the core wire 24 drawn from the rear end and each electric wire (lead wire) 28 for taking out an electric signal Are connected via caulking terminals 27, and the electric wires 28 are drawn to the outside at the rear end of the large-diameter tube 41. An elastic sealing material 47 is disposed in the rear end portion 45 of the large-diameter tube 41, and each electric wire 28 is passed through the sealing material 47. Then, the rear end portion 45 of the large-diameter tube 41 is squeezed into a reduced diameter so that the internal seal is held and each electric wire 28 is fixed at the rear end.

さて、上記した環状押圧部31の後端向き面35の後側(後方)には、本発明の要部をなす環状又は筒状をなすスペーサ51が大径チューブ41の外側に同心状で、本例では遊嵌されて配置されている。このスペーサ51は、環状押圧部31の後端向き面35に先端側の一端(面)53が当接する円筒状(又は円環状)をなしており、本例では、内径が大径チューブ41の外径より大きく形成され、大径チューブ41に対してその軸G方向にスライド可能に(隙間嵌め状態で)、環状押圧部31の後端向き面35に直接当接するように配置されている。なお、このスペーサ51は、大径チューブ41の外側において環状押圧部31の後端向き面35に先端側の一端(面)53を当接させていればよく、したがって、後端向き面35又は大径チューブ41の外周面に圧入等により固定されていてもよいが、本例では大径チューブ41の後方から抜き取り可能に配置されている。なお、このスペーサ51は、その外周面55が円筒面をなし、その外径は、取付けねじ穴503のねじの内径より小さく、例えば、JIS H 4040にA5056として規定されるアルミニウム合金製(熱膨張係数:24.3×10−6/℃)のものとされている。 Now, on the rear side (rear side) of the annular pressing portion 31 on the rear end side 35, an annular or cylindrical spacer 51 forming the main part of the present invention is concentrically outside the large-diameter tube 41. In this example, they are loosely fitted. The spacer 51 has a cylindrical shape (or an annular shape) in which one end (surface) 53 on the front end side contacts the rear end-facing surface 35 of the annular pressing portion 31. In this example, the inner diameter of the large-diameter tube 41 is It is formed so as to be larger than the outer diameter, and is arranged so as to be in direct contact with the rear end-facing surface 35 of the annular pressing portion 31 so as to be slidable in the axis G direction with respect to the large-diameter tube 41 (with a gap fitted). The spacer 51 only needs to have one end (surface) 53 on the front end side in contact with the rear end facing surface 35 of the annular pressing portion 31 outside the large diameter tube 41. Although it may be fixed to the outer peripheral surface of the large-diameter tube 41 by press fitting or the like, in this example, the large-diameter tube 41 is disposed so as to be removable from the rear. The spacer 51 has a cylindrical outer peripheral surface 55 and an outer diameter smaller than the inner diameter of the screw of the mounting screw hole 503. For example, the spacer 51 is made of an aluminum alloy (thermal expansion) defined as A5056 in JIS H 4040. Coefficient: 24.3 × 10 −6 / ° C.).

そして、このスペーサ51の後端(面)57側であって大径チューブ41の外側には、SUS430製(熱膨張係数:10.4×10−6/℃)のねじ込み用固定部材61を遊嵌状に外嵌させている。このねじ込み用固定部材61は、内径が大径チューブ41の外径より大きい筒状部(筒状部)60を有し、その筒状部60の外周面に、排気管500に形成された取付けねじ穴503にねじ込み可能のねじ62をその略全長にわたり備えている。このようなねじ込み用固定部材61は、大径チューブ41の後方から抜き取り可能に配置されているが、本例では、ねじ込み用固定部材61はその先端63がスペーサ51の後端57に直接当接するように配置されている。なお、ねじ込み用固定部材61の後端の外周には、ねじ込み用の多角形部67形成されている。 A screw fixing member 61 made of SUS430 (thermal expansion coefficient: 10.4 × 10 −6 / ° C.) is idled on the rear end (surface) 57 side of the spacer 51 and outside the large diameter tube 41. It is fitted externally. This screwing fixing member 61 has a cylindrical part (cylindrical part) 60 whose inner diameter is larger than the outer diameter of the large-diameter tube 41, and an attachment formed in the exhaust pipe 500 on the outer peripheral surface of the cylindrical part 60. A screw 62 that can be screwed into the screw hole 503 is provided over substantially the entire length. Such a screwing fixing member 61 is arranged so as to be removable from the rear side of the large-diameter tube 41, but in this example, the screwing fixing member 61 has its tip 63 directly contacting the rear end 57 of the spacer 51. Are arranged as follows. A screw-in polygon part 67 is formed on the outer periphery of the rear end of the screw-in fixing member 61.

しかして、上記の構成を有する温度センサ101は、排気管500に形成された取付けねじ穴503内に次のようにして取付けられる。すなわち、図2に示したように、ねじ込み用固定部材61を後方にスライドさせたこのセンサ101を、この取付けねじ穴503内にその先端側から内挿する。なお、図2では、スペーサ51を環状押圧部31の後端向き面35から離して図示している。そして、図3に示したように、奥のシール保持用の環状座面505に、温度センサ101に設けられた環状押圧部31をあてがうようにし、この環状押圧部31の後端向き面35に、スペーサ51を当接させる。そして、図4、5に示したように、スペーサ51の後方にあるねじ込み用固定部材61を取付けねじ穴503に所定の締め付けトルクでねじ込む。このねじ込みによって、環状押圧部31は、スペーサ51を介してねじ込み用固定部材61と環状座面505との間でねじ62の軸G方向に圧縮される。こうして温度センサ101は、その環状押圧部31を取付けねじ穴503の奥のシール保持用の環状座面505に押付けられ、そこでシールを保持して取付けねじ穴503に取付けられる。なお、本実施の形態では、取付けねじ穴503を有するボス501が、JIS H 5052にAC2Bとして規定されるアルミニウム合金製(熱膨張係数:23.5×10−6/℃)のものとされている。 Thus, the temperature sensor 101 having the above-described configuration is mounted in the mounting screw hole 503 formed in the exhaust pipe 500 as follows. That is, as shown in FIG. 2, the sensor 101 in which the screwing fixing member 61 is slid rearward is inserted into the mounting screw hole 503 from the tip side. In FIG. 2, the spacer 51 is illustrated away from the rear end facing surface 35 of the annular pressing portion 31. Then, as shown in FIG. 3, the annular pressing portion 31 provided in the temperature sensor 101 is applied to the annular seating surface 505 for holding the back seal, and the rearward facing surface 35 of the annular pressing portion 31 is applied. Then, the spacer 51 is brought into contact. 4 and 5, the fixing member 61 for screwing behind the spacer 51 is screwed into the mounting screw hole 503 with a predetermined tightening torque. By this screwing, the annular pressing portion 31 is compressed in the axis G direction of the screw 62 between the fixing member 61 for screwing and the annular seating surface 505 via the spacer 51. In this way, the temperature sensor 101 presses the annular pressing portion 31 against the annular seating surface 505 for holding the seal at the back of the attachment screw hole 503, and is attached to the attachment screw hole 503 while holding the seal there. In the present embodiment, the boss 501 having the mounting screw hole 503 is made of an aluminum alloy (thermal expansion coefficient: 23.5 × 10 −6 / ° C.) defined as AC2B in JIS H 5052. Yes.

この取付け状態においては、センサ101側の環状押圧部31、スペーサ51、さらにはねじ込み用固定部材61には、ねじ62の軸G方向に圧縮されており、環状押圧部31等は、その軸G方向に圧縮応力を受けている。一方、取付けねじ穴503は、環状座面505よりそのねじ穴503の入口側(図4上側)に向かう先後方向(ねじの軸G方向)に引張られており、ねじ穴503を含むボス501にはその軸G方向に引張り応力が生じている。すなわち、このようなセンサ101の取付け構造においては、センサ101側の環状押圧部31、スペーサ51、さらにはねじ込み用固定部材61には、ねじ62の軸G方向に圧縮歪みを生じており、これに対応して、取付けねじ穴503は、同方向に引張り歪みを生じている。ただし、ねじ込み用固定部材61及びねじ穴503を含むボス501のうち、螺合している部分はねじの遊び分のみ歪が生じていると考えられる。温度センサ101は、このようにしてその環状押圧部31の先端向き面36を、取付けねじ穴503における環状座面505に押付け、その間のシールを確保し、取付けられている。   In this attached state, the annular pressing portion 31 on the sensor 101 side, the spacer 51, and further the fixing member 61 for screwing are compressed in the direction of the axis G of the screw 62. Subjected to compressive stress in the direction. On the other hand, the mounting screw hole 503 is pulled from the annular seating surface 505 in the front-rear direction (screw axis G direction) toward the inlet side (upper side in FIG. 4) of the screw hole 503, and Has a tensile stress in the direction of its axis G. That is, in such a mounting structure of the sensor 101, the annular pressing portion 31 on the sensor 101 side, the spacer 51, and the screwing fixing member 61 are subjected to compressive strain in the direction of the axis G of the screw 62. Corresponding to the above, the mounting screw hole 503 has a tensile strain in the same direction. However, in the boss 501 including the screw fixing member 61 and the screw hole 503, it is considered that the screwed portion is distorted only by the play of the screw. The temperature sensor 101 is attached in such a manner as to press the tip-facing surface 36 of the annular pressing portion 31 against the annular seating surface 505 in the attachment screw hole 503, ensuring a seal therebetween.

このようなセンサ101の取付け構造においては、その後、その取付け構造部位が、例えば200℃〜500℃程度の温度上昇があると、その取付け構造部位はいずれも熱膨張する。このとき、各部(又は各部材)を構成する素材の熱膨張係数の差により、環状押圧部31及びねじ込み用固定部材61の軸G方向の熱膨張量の合計より、取付けねじ穴503の同軸G方向の熱膨張量の方が大きくなる。したがって、環状押圧部31及びねじ込み用固定部材61が温度上昇前にその内部に受けていた軸G方向の圧縮応力は、その温度上昇に起因して減少する。ただし、本例では、環状押圧部31とねじ込み用固定部材61の間に、それらを構成するステンレス鋼より熱膨張係数が大きいアルミニウム合金製のスペーサ51が介在されている。このため、環状押圧部31、スペーサ51、及びねじ込み用固定部材61の合計の軸G方向の熱膨張量は、従来のように、このようなスペーサ51がない場合の熱膨張量の合計よりも、全体として先後方向に大きく熱膨張することができる。したがって、本例のセンサ101の取付け構造によれば、センサ101の取付け後に温度上昇があっても、上記のようなスペーサ51が介在されているため、それが設けられている分、それが設けられていない従来の取付け構造に比べると、環状押圧部31が環状座面505を押していた圧縮力の低下を小さくできるから、シール性能の低下や、ねじ込み状態の緩みの発生を低減できる。   In such a mounting structure of the sensor 101, if there is a temperature rise of about 200 ° C. to 500 ° C., for example, then the mounting structure portion will thermally expand. At this time, the coaxial G of the mounting screw hole 503 is determined by the sum of the thermal expansion amounts in the axis G direction of the annular pressing portion 31 and the screwing fixing member 61 due to the difference in the thermal expansion coefficient of the material constituting each portion (or each member). The amount of thermal expansion in the direction is larger. Therefore, the compressive stress in the direction of the axis G that the annular pressing portion 31 and the screwing fixing member 61 received inside before the temperature rise decreases due to the temperature rise. However, in this example, an aluminum alloy spacer 51 having a larger thermal expansion coefficient than the stainless steel constituting them is interposed between the annular pressing portion 31 and the screwing fixing member 61. For this reason, the total amount of thermal expansion in the direction of the axis G of the annular pressing portion 31, the spacer 51, and the screwing fixing member 61 is larger than the total amount of thermal expansion in the case where there is no such spacer 51 as in the prior art. As a whole, it can expand greatly in the front-rear direction. Therefore, according to the mounting structure of the sensor 101 of this example, even if the temperature rises after the mounting of the sensor 101, the spacer 51 as described above is interposed, so that it is provided as much as it is provided. Compared to a conventional mounting structure that is not provided, since the decrease in compressive force that the annular pressing portion 31 has pressed the annular seating surface 505 can be reduced, the decrease in sealing performance and the occurrence of looseness in the screwed state can be reduced.

すなわち、本例のセンサ101の取付け構造による場合には、取付けねじ穴503を形成する取付け対象部位(ボス501)に比べて、センサ101側の構成部材である、環状押圧部31及びねじ込み用固定部材61の熱膨張係数が小さいが、別部材であるスペーサ51に、この環状押圧部31、及びねじ込み用固定部材61をなす素材よりも熱膨張係数が大きく、且つ、ボス501よりも大きい熱膨張係数を有する素材を用いているため、環状押圧部31が環状座面505を押していた圧縮力の低下を小さくできる。したがって、取付けねじ穴503を形成する取付け対象部位等をなす素材の相違に係わらず、広範な種類の温度センサ101の取付け構造において、広く適用できるという効果もある。   That is, in the case of the mounting structure of the sensor 101 of this example, the annular pressing portion 31 and the screw-in fixing, which are constituent members on the sensor 101 side, compared to the mounting target portion (boss 501) where the mounting screw hole 503 is formed. Although the member 61 has a small coefficient of thermal expansion, the spacer 51, which is a separate member, has a coefficient of thermal expansion greater than that of the material forming the annular pressing portion 31 and the screwing fixing member 61, and is larger than that of the boss 501. Since a material having a coefficient is used, the decrease in compressive force that the annular pressing portion 31 is pressing the annular seating surface 505 can be reduced. Therefore, there is an effect that the present invention can be widely applied to a wide variety of mounting structures of the temperature sensor 101 regardless of the difference in the material forming the mounting target portion or the like that forms the mounting screw hole 503.

スペーサ51は、温度センサ101の取付け構造部位が受ける温度上昇範囲や、その際においても、環状押圧部31に必要な圧縮応力が確保されるような熱膨張が得られるように、すなわち、温度上昇時においてシール確保に必要な圧縮応力が環状押圧部31に保持されるように、それ自身の軸G方向の長さ等の諸条件を設計すればよい。なお、本実施の形態のスペーサ51は、軸G方向の長さ(すなわち、厚み)を、4.0mmとしている。   The spacer 51 has a temperature rise range that is received by the mounting structure portion of the temperature sensor 101, and even in that case, the spacer 51 can be thermally expanded so as to ensure the necessary compressive stress for the annular pressing portion 31, that is, the temperature rise. Various conditions such as its own length in the direction of the axis G may be designed so that the compressive stress necessary for securing the seal is held in the annular pressing portion 31 at times. The spacer 51 of the present embodiment has a length (that is, thickness) in the direction of the axis G of 4.0 mm.

上記例では、スペーサ51を筒状又は環状のものとしたため、温度センサ101において、その大径チューブ41から容易に分離又は離脱することがない。ただし、このスペーサ51は、筒状又は環状のものである必要は必ずしもない。また、上記例では、スペーサ51を1個の筒状又は環状の部材(部品)からなるものとしたが、これは、軸G方向において複数に分割されていてもよい。このようにしておけば、取付け構造ごと、例えば、センサが取付けられる相手側の取付けねじ穴の熱膨張との関係で、センサ101側に要求される熱膨張量が異なる場合には、その分割された適数のスペーサ(分割体)を用いることで熱膨張に対応できるため、便利である。さらに、上記例では、スペーサ51が環状押圧部31とねじ込み用固定部材61とで直接挟まれる構成のものとして具体化したが、これらとの間に、例えばスリップワッシャを介在させることもできる。また、取付けねじ穴503の環状座面505と、センサ101側の環状押圧部31との間に、シール保持用のガスケットを介在させてもよい。   In the above example, since the spacer 51 is cylindrical or annular, the temperature sensor 101 is not easily separated or detached from the large diameter tube 41. However, the spacer 51 is not necessarily required to be cylindrical or annular. In the above example, the spacer 51 is made of one cylindrical or annular member (component). However, the spacer 51 may be divided into a plurality of parts in the axis G direction. In this way, if the amount of thermal expansion required on the sensor 101 side differs depending on the mounting structure, for example, the thermal expansion of the mounting screw hole on the counterpart side where the sensor is mounted, it is divided. It is convenient because it can cope with thermal expansion by using an appropriate number of spacers (divided bodies). Further, in the above example, the spacer 51 is embodied as a structure directly sandwiched between the annular pressing portion 31 and the screwing fixing member 61. However, for example, a slip washer may be interposed therebetween. Further, a gasket for holding a seal may be interposed between the annular seating surface 505 of the mounting screw hole 503 and the annular pressing portion 31 on the sensor 101 side.

さて、次に、本発明のセンサ101の取付け構造を具体化した第2実施形態について図6に基づいて説明する。ただし、本例は上記形態におけるスペーサ51(以下、第1スペーサ51ともいう)に加えて、取付けねじ穴503の環状座面505と、センサ101側の環状押圧部31との間にも、別のスペーサ(以下、第2スペーサともいう)71を配置した点のみが相違するのみであり、上記形態と本質的相違はない。したがって、この相違点のみ説明し、同一の部位には同一の符号を付すに止める。   Next, a second embodiment in which the sensor 101 mounting structure of the present invention is embodied will be described with reference to FIG. However, in this example, in addition to the spacer 51 in the above embodiment (hereinafter also referred to as the first spacer 51), there is another difference between the annular seating surface 505 of the mounting screw hole 503 and the annular pressing portion 31 on the sensor 101 side. The only difference is that the spacer (hereinafter also referred to as a second spacer) 71 is disposed, and there is no substantial difference from the above-described embodiment. Therefore, only this difference will be described, and the same parts will be denoted by the same reference numerals.

すなわち、本形態で用いられている第2スペーサ71は、第1スペーサ51と同様に、環状押圧部31、及びねじ込み用固定部材61をなす素材よりも熱膨張係数が大きく、且つ、ボス501と同じ熱膨張係数を有する素材からなり、具体的には、JIS H 4040にてA5056として規定されるアルミニウム合金製で環状をなし、先端73が環状押圧部31の先端向き面36と同形状で、外周面75がそれと同じ外径に形成されている。そして、後端77が環状押圧部31の先端向き面36に密着状をなす凹形状に形成され、内径がチューブ11の外径と同径又はそれより大径をなしており、取付けねじ穴503にセンサ101を内挿する前に、そのチューブ11に外嵌(圧入、又は遊嵌)されているか、センサ101を取付けねじ穴503に内挿する前に、その奥の環状座面505に事前に配置される。こうして、上記したのと同様に、センサ101を取付けねじ穴503に内挿し、第2スペーサ71を介して、その環状押圧部31の先端向き面36を環状座面505に押付けるようにする。ついで、上記したのと同様に、環状押圧部31の後端向き面35に第1スペーサ51を配置し介在させ、その状態の下で、後方からねじ込み用固定部材61を取付けねじ穴503にねじ込むことで、その取付けがなされている。   That is, the second spacer 71 used in this embodiment, like the first spacer 51, has a larger coefficient of thermal expansion than the material forming the annular pressing portion 31 and the screwing fixing member 61, and the boss 501. It is made of a material having the same thermal expansion coefficient, specifically, made of an aluminum alloy defined as A5056 in JIS H 4040, has an annular shape, and the tip 73 has the same shape as the tip-facing surface 36 of the annular pressing portion 31, The outer peripheral surface 75 is formed with the same outer diameter. The rear end 77 is formed in a concave shape that is in close contact with the tip-facing surface 36 of the annular pressing portion 31, the inner diameter is the same as or larger than the outer diameter of the tube 11, and the mounting screw hole 503 Before the sensor 101 is inserted into the tube 11, it is externally fitted (press-fit or loosely fitted) to the tube 11, or before the sensor 101 is inserted into the mounting screw hole 503, the inner annular seating surface 505 is preliminarily inserted. Placed in. Thus, in the same manner as described above, the sensor 101 is inserted into the mounting screw hole 503, and the tip-facing surface 36 of the annular pressing portion 31 is pressed against the annular seating surface 505 via the second spacer 71. Next, in the same manner as described above, the first spacer 51 is disposed and interposed on the rear-end-facing surface 35 of the annular pressing portion 31, and the fixing member 61 for screwing is screwed into the mounting screw hole 503 from the rear under this state. That is why it is installed.

しかして、本例では、そのねじ込みによって、環状押圧部31とねじ込み用固定部材61との間に配置された第1スペーサ51に加えて、及び環状押圧部31と環状座面505との間に配置された第2スペーサ71の双方をねじ62の軸G方向に圧縮して取付けられている。このような本例では、第1スペーサ51に加えて、第2スペーサ71を設けた分、第2スペーサ71の先後長や横断面積に対応して、高温時における先後方向の熱膨張量を大きく確保できるから、上記形態よりもシール性の低下やねじの緩みの発生防止に有効である。   Therefore, in this example, in addition to the first spacer 51 disposed between the annular pressing portion 31 and the screwing fixing member 61 by the screwing, and between the annular pressing portion 31 and the annular seating surface 505. Both the arranged second spacers 71 are attached by being compressed in the direction of the axis G of the screw 62. In this example, the amount of thermal expansion in the front-rear direction at a high temperature is increased corresponding to the front-rear length and the cross-sectional area of the second spacer 71 by providing the second spacer 71 in addition to the first spacer 51. Since it can be ensured, it is more effective than the above embodiment in preventing the deterioration of sealing performance and the occurrence of screw loosening.

なお、本例より明らかであるが、本例における第1スペーサ51を設けることなく、環状押圧部31と環状座面505との間に、第2スペーサ71のみを介在させるだけでもよい。図8は、その一例を示したものであるが、図6、7に示したものとは第1スペーサ51を設けていない点のみが相違するだけであるから、同一部位には同一の符号を付し、その説明を省略する。なお、このような第2スペーサ71は、シール保持機能を担うものでもあることから、センサ101を取付けねじ穴503に取付けた状態において塑性変形しないような弾性係数を有する素材から選択するのが好ましい。また、図6〜図8におけるような第2スペーサ71を設ける場合にも、上記したのと同様に、これを例えば先後に複数に分割しておいて、複数介在させるようにしてもよい。さらに、このような第2スペーサ71も、環状押圧部31又は環状座面505と間接的に接するようにワッシャ等を介在させてもよい。   As is clear from this example, only the second spacer 71 may be interposed between the annular pressing portion 31 and the annular seating surface 505 without providing the first spacer 51 in this example. FIG. 8 shows an example of this, but the only difference from the one shown in FIGS. 6 and 7 is that the first spacer 51 is not provided. A description thereof will be omitted. In addition, since such a 2nd spacer 71 also bears a seal | sticker holding function, it is preferable to select from the raw material which has an elastic coefficient which does not plastically deform in the state which attached the sensor 101 to the attachment screw hole 503. . Also, in the case where the second spacer 71 as shown in FIGS. 6 to 8 is provided, it may be divided into a plurality of pieces, for example, before and after that, as described above. Further, the second spacer 71 may also have a washer or the like so as to indirectly contact the annular pressing portion 31 or the annular seating surface 505.

本発明の温度センサ101は、上記した各例のものに限定されるものではなく、その要旨を逸脱しない範囲において、適宜に変更して具体化できる。例えば、上記例では、スペーサ51、71はJIS H 4040にてA5056として規定されるアルミニウム合金製としたが、対象物側の取付けねじ穴を形成する素材や、センサ側の環状押圧部又はねじ込み用固定部材をなす素材を考慮して、適宜の素材で形成すればよい。すなわち、センサの取付け後の温度上昇による熱膨張差によって環状押圧部のねじの軸G方向の圧縮応力が減少するのを低減できればよい。例えば、取付けねじ穴503を有するボス501が、JIS H 5052にAC2Bとして規定されるアルミニウム合金製(熱膨張係数:23.5×10−6/℃)である場合には、それと同じ素材(熱膨張係数)であるアルミニウム合金を用いてスペーサ51,71を構成するようにしてもよいし、亜鉛(熱膨張係数:26.3×10−6/℃)、マグネシウム(25.4×10−6/℃)、あるいはそれらの合金を用いて、ボス501以上の熱膨張係数を有する素材からなるスペーサを適用してもよい。 The temperature sensor 101 of the present invention is not limited to the above-described examples, and can be embodied with appropriate modifications within a range not departing from the gist thereof. For example, in the above example, the spacers 51 and 71 are made of an aluminum alloy defined as A5056 in JIS H 4040. However, the material for forming the mounting screw hole on the object side, the annular pressing portion on the sensor side, or for screwing In consideration of the material forming the fixing member, it may be formed of an appropriate material. That is, it is only necessary to reduce the reduction of the compressive stress in the axis G direction of the screw of the annular pressing portion due to the difference in thermal expansion due to the temperature rise after the sensor is attached. For example, when the boss 501 having the mounting screw hole 503 is made of an aluminum alloy (thermal expansion coefficient: 23.5 × 10 −6 / ° C.) defined as AC2B in JIS H 5052, the same material (heat The spacers 51 and 71 may be configured using an aluminum alloy having an expansion coefficient), zinc (thermal expansion coefficient: 26.3 × 10 −6 / ° C.), magnesium (25.4 × 10 −6). / ° C), or an alloy thereof, a spacer made of a material having a thermal expansion coefficient equal to or higher than that of the boss 501 may be applied.

また、スペーサは、環状押圧部31又はねじ込み用固定部材61のいずれか一方より熱膨張係数が大なる材質のものから、取付けねじ穴503が軸G方向において生じる熱膨張量を考慮し、その取付け後の温度上昇による熱膨張差によって環状押圧部31の前記軸G方向の圧縮応力が減少するのを低減できるように、取付け時の圧縮歪みや、スペーサ自身の寸法等に基づいて、温度センサに応じて設定すればよい。なお、上記例では、エンジンの排気管(マニホルド)に取付けられ、排気ガスの温度を測定するセンサで具体化したが、本発明は、その他の流体(気体、液体)の温度測定用のセンサの取付け構造においても適用できる。   In addition, the spacer is made of a material having a larger thermal expansion coefficient than either the annular pressing portion 31 or the screwing fixing member 61, and the mounting screw hole 503 takes into account the amount of thermal expansion that occurs in the direction of the axis G. In order to reduce the decrease in the compressive stress in the direction of the axis G of the annular pressing portion 31 due to the difference in thermal expansion due to the subsequent temperature rise, the temperature sensor is adjusted based on the compressive strain at the time of installation, the dimensions of the spacer itself, and the like It may be set accordingly. In the above example, the sensor is mounted on the exhaust pipe (manifold) of the engine and measures the temperature of the exhaust gas. However, the present invention is a sensor for measuring the temperature of other fluids (gas, liquid). It can also be applied to the mounting structure.

36 温度センサの環状押圧部
51,71 スペーサ
61 ねじ込み用固定部材
62 ねじ込み用固定部材のねじ
101 温度センサ
500 排気管(対象物)
503 取付けねじ穴
505 取付けねじ穴の奥のシール保持用の環状座面
G ねじの軸
36 Temperature sensor annular pressing portions 51, 71 Spacer 61 Screw-in fixing member 62 Screw-in fixing member screw 101 Temperature sensor 500 Exhaust pipe (object)
503 Mounting screw hole 505 Annular seating surface G for holding the seal at the back of the mounting screw hole Screw shaft

Claims (4)

対象物内の流体の温度を測定するための温度センサの取付け構造であって、
温度センサをその対象物に設けられた取付けねじ穴へ取付けるのに、該取付けねじ穴の奥のシール保持用の環状座面に、温度センサ自身に設けられた環状押圧部をあてがい、環状又は筒状に形成されて自身の外周面に前記取付けねじ穴にねじ込み可能のねじが形成されたねじ込み用固定部材を、温度センサに外嵌して前記取付けねじ穴にねじ込み、このねじ込みによって、前記環状押圧部を、該ねじ込み用固定部材と前記環状座面との間でねじの軸方向に圧縮することで該温度センサを前記取付けねじ穴にシールを保持して取付け、
その取付け後の温度上昇による熱膨張差によって前記環状押圧部における前記軸方向の圧縮応力が減少することとなる温度センサの取付け構造において、
前記環状押圧部と前記ねじ込み用固定部材との間、又は前記環状押圧部と前記環状座面との間の少なくとも一方に、前記環状押圧部又は前記ねじ込み用固定部材の少なくともいずれか一方を構成する素材よりも熱膨張係数が大きく、且つ、前記取付けねじ穴を形成する素材以上の熱膨張係数を有する素材からなるスペーサを介在させたことを特徴とする温度センサの取付け構造。
A temperature sensor mounting structure for measuring the temperature of a fluid in an object,
In order to attach the temperature sensor to the mounting screw hole provided in the object, an annular pressing portion provided in the temperature sensor itself is applied to the annular seating surface for holding the seal at the back of the mounting screw hole. A fixing member for screwing, which is formed in a shape and has a screw that can be screwed into the mounting screw hole on its outer peripheral surface, is externally fitted to a temperature sensor and screwed into the mounting screw hole. The temperature sensor is attached to the attachment screw hole by holding the seal in the axial direction of the screw by compressing the portion in the axial direction of the screw between the fixing member for screwing and the annular seating surface,
In the temperature sensor mounting structure in which the axial compressive stress in the annular pressing portion is reduced due to the difference in thermal expansion due to the temperature rise after the mounting,
At least one of the annular pressing portion and the screwing fixing member is formed between at least one of the annular pressing portion and the fixing member for screwing or between the annular pressing portion and the annular seating surface. A temperature sensor mounting structure comprising a spacer made of a material having a thermal expansion coefficient larger than that of the material and having a thermal expansion coefficient equal to or greater than that of the material forming the mounting screw hole.
前記スペーサは、前記取付けねじ穴を形成する素材より熱膨張係数が大きい素材から形成されていることを特徴とする請求項1記載に温度センサの取付け構造。   2. The temperature sensor mounting structure according to claim 1, wherein the spacer is formed of a material having a larger coefficient of thermal expansion than a material for forming the mounting screw hole. 前記スペーサは、前記ねじ込み用固定部材が前記取付けねじ穴にねじ込まれる前において、前記温度センサに外嵌され、該ねじ込み用固定部材のねじの軸方向にスライド可能の環状又は筒状のものであることを特徴とする請求項1又は2のいずれか1項に記載の温度センサの取付け構造。   The spacer is an annular or cylindrical shape that is externally fitted to the temperature sensor and is slidable in the axial direction of the screw of the fixing member for screwing before the fixing member for screwing is screwed into the mounting screw hole. The temperature sensor mounting structure according to any one of claims 1 and 2. 前記対象物が、エンジンの排気管であることを特徴とする、請求項1,2又は3のいずれか1項に記載の温度センサの取付け構造。   4. The temperature sensor mounting structure according to claim 1, wherein the object is an exhaust pipe of an engine. 5.
JP2009286697A 2009-12-17 2009-12-17 Temperature sensor mounting structure Active JP5231386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286697A JP5231386B2 (en) 2009-12-17 2009-12-17 Temperature sensor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286697A JP5231386B2 (en) 2009-12-17 2009-12-17 Temperature sensor mounting structure

Publications (2)

Publication Number Publication Date
JP2011128013A true JP2011128013A (en) 2011-06-30
JP5231386B2 JP5231386B2 (en) 2013-07-10

Family

ID=44290760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286697A Active JP5231386B2 (en) 2009-12-17 2009-12-17 Temperature sensor mounting structure

Country Status (1)

Country Link
JP (1) JP5231386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967909A (en) * 2014-04-25 2014-08-06 徐存然 Bolt with temperature measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057947U (en) * 1991-07-09 1993-02-02 ダイハツ工業株式会社 Exhaust system mounting sensor mounting device
JPH08110267A (en) * 1994-10-12 1996-04-30 Nippondenso Co Ltd Temperature sensor
JP2004239716A (en) * 2003-02-05 2004-08-26 Ngk Spark Plug Co Ltd Mounting structure of temperature sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057947U (en) * 1991-07-09 1993-02-02 ダイハツ工業株式会社 Exhaust system mounting sensor mounting device
JPH08110267A (en) * 1994-10-12 1996-04-30 Nippondenso Co Ltd Temperature sensor
JP2004239716A (en) * 2003-02-05 2004-08-26 Ngk Spark Plug Co Ltd Mounting structure of temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967909A (en) * 2014-04-25 2014-08-06 徐存然 Bolt with temperature measuring device

Also Published As

Publication number Publication date
JP5231386B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4300663B2 (en) Combustion pressure sensor structure
JP5134701B2 (en) Temperature sensor
EP1096141B1 (en) Glow Plug having a combustion pressure sensor
JP4534870B2 (en) Spark plug
JP4351272B2 (en) Spark plug
JP5198934B2 (en) Temperature sensor
JP2002122486A (en) Mounting structure of temperature sensor
JP3900059B2 (en) Mounting structure and mounting method of glow plug with combustion sensor and glow plug with combustion pressure sensor
US9581503B2 (en) Sensor and sensor mounting structure
JP5295743B2 (en) Glow plug with combustion pressure sensor
JP5231386B2 (en) Temperature sensor mounting structure
JP4289273B2 (en) Glow plug
JP5848548B2 (en) Glow plug with combustion pressure detection sensor
JP2013190197A (en) Glow plug
JP6013684B2 (en) Ceramic glow plug with combustion pressure sensor
JP2011128014A (en) Temperature sensor and mounting structure therefor
US8389904B2 (en) Glow plug
JP2001324402A (en) Pressure sensor and its production method
JP2020034506A (en) Gas sensor
JP4207070B2 (en) Glow plug with combustion sensor
US10048153B2 (en) Pressure sensor including variable member having rear end connected to housing at a predetermined axial position
US9909929B2 (en) Temperature sensor and process of manufacturing same
JP7021029B2 (en) Gas sensor
JP7238700B2 (en) Combustion engine sensor
JP2012032235A (en) Temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250