JP2011127525A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2011127525A
JP2011127525A JP2009287418A JP2009287418A JP2011127525A JP 2011127525 A JP2011127525 A JP 2011127525A JP 2009287418 A JP2009287418 A JP 2009287418A JP 2009287418 A JP2009287418 A JP 2009287418A JP 2011127525 A JP2011127525 A JP 2011127525A
Authority
JP
Japan
Prior art keywords
reduction catalyst
reducing agent
exhaust
selective reduction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009287418A
Other languages
Japanese (ja)
Other versions
JP5414504B2 (en
Inventor
Kenichi Tanioka
謙一 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2009287418A priority Critical patent/JP5414504B2/en
Publication of JP2011127525A publication Critical patent/JP2011127525A/en
Application granted granted Critical
Publication of JP5414504B2 publication Critical patent/JP5414504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, reducing risk of outflow of reduction agent downstream of a selective reduction catalyst, and setting a target adsorption proportion in the selective reduction catalyst used for calculating a target injection amount high. <P>SOLUTION: The exhaust emission control device for an internal combustion engine reduces nitrogen oxide in exhaust gas by using the selective reduction catalyst which can adsorb the reduction agent. The exhaust emission control device for the internal combustion engine includes: a reduction agent supply means supplying the reduction agent to an exhaust passage upstream of the selective reduction catalyst; a catalyst temperature estimation means estimating a temperature of the selective reduction catalyst; a passage area restriction means disposed to an exhaust passage downstream of the selective reduction catalyst; and a control means increasing pressure in the exhaust passage of a region, where the selective reduction catalyst is disposed, by the passage area restriction means, so as to increase an adsorbable amount of the reduction agent in the selective reduction catalyst. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関から排出される排気ガス中の窒素酸化物を還元するための内燃機関の排気浄化装置に関する。特に、還元剤を吸着可能な選択還元触媒を用いて排気ガス中の窒素酸化物を還元するための内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust purification device for an internal combustion engine for reducing nitrogen oxides in exhaust gas discharged from the internal combustion engine. In particular, the present invention relates to an exhaust gas purification apparatus for an internal combustion engine for reducing nitrogen oxides in exhaust gas using a selective reduction catalyst capable of adsorbing a reducing agent.

ディーゼルエンジン等の内燃機関から排出される排気ガス中には窒素酸化物(以下「NOX」と称する。)が含まれる場合が多い。このNOXを還元して排気ガスを浄化するための排気浄化装置として、排気通路に配置された選択還元触媒よりも上流側に液体還元剤を噴射することにより炭化水素(HC)やアンモニア等の還元剤を選択還元触媒に吸着させ、選択還元触媒に流入する排気ガス中のNOXを還元剤と反応させることで排気ガスを浄化する排気浄化装置が知られている。 In many cases, exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (hereinafter referred to as “NO x ”). As the exhaust gas purification device for purifying exhaust gas by reducing the NO X, by injecting liquid reducing agent in the upstream of the selective reduction catalyst disposed in an exhaust passage such as hydrocarbons (HC) or ammonia adsorbing the reducing agent to the selective reduction catalyst, the exhaust purification device for purifying exhaust gas by reacting with a reducing agent to NO X in the exhaust gas flowing into the selective reduction catalyst are known.

この種の排気浄化装置に用いられる選択還元触媒においては、還元剤の吸着可能量が決まっている。そのため、選択還元触媒への還元剤の供給量が吸着可能量を超えると還元剤の一部が選択還元触媒の下流側へ流出する一方、選択還元触媒における還元剤の吸着量が少なすぎると還元しきれないNOXが選択還元触媒の下流側へ流出することになる。 In the selective reduction catalyst used in this type of exhaust purification device, the amount of reducing agent that can be adsorbed is determined. Therefore, when the amount of reducing agent supplied to the selective reduction catalyst exceeds the adsorbable amount, a part of the reducing agent flows out downstream of the selective reduction catalyst, while when the amount of reducing agent adsorbed on the selective reduction catalyst is too small, not be nO X is flow out to the downstream side of the selective reduction catalyst.

この還元剤の吸着可能量は触媒温度に依存する値であり、図6(a)に示すように、触媒温度Tcatが高くなるにつれて吸着可能量Vmaxが減少するという性質がある。そのため、選択還元触媒の温度が下降する状況においては吸着可能量が増大するために還元剤の流出のおそれが極めて少ない一方、選択還元触媒の温度が急上昇する状況においては吸着可能量が急激に減少するため、吸着されていた還元剤が放出されて選択還元触媒よりも下流側に流出するおそれがある。   The adsorbable amount of the reducing agent is a value that depends on the catalyst temperature, and as shown in FIG. 6A, the adsorbable amount Vmax decreases as the catalyst temperature Tcat increases. Therefore, in the situation where the temperature of the selective reduction catalyst decreases, the adsorbable amount increases, so there is very little risk of the reducing agent flowing out, while in the situation where the temperature of the selective reduction catalyst rapidly rises, the adsorbable amount decreases rapidly. Therefore, the adsorbed reducing agent may be released and flow out downstream of the selective reduction catalyst.

そこで、還元剤供給装置では、例えばパティキュレートフィルタの再生時等、触媒温度が急上昇し吸着可能量が急激に減少するような状況においても還元剤が選択還元触媒の下流側に流出することのないように、液体還元剤の噴射量が設定されている。具体的に、液体還元剤の目標噴射量は、例えば、選択還元触媒における還元剤の実際の吸着量(以下「推定吸着量」と称する。)が現在の吸着可能量よりも少ない所定割合となるように、触媒温度や内燃機関の運転状態等に基づいて演算によって求められる(例えば特許文献1参照)。   Therefore, in the reducing agent supply device, the reducing agent does not flow downstream of the selective reduction catalyst even in a situation where the catalyst temperature rapidly rises and the adsorbable amount sharply decreases, for example, during regeneration of the particulate filter. Thus, the injection amount of the liquid reducing agent is set. Specifically, the target injection amount of the liquid reducing agent is, for example, a predetermined ratio in which the actual adsorption amount of the reducing agent in the selective reduction catalyst (hereinafter referred to as “estimated adsorption amount”) is smaller than the current adsorbable amount. Thus, it calculates | requires by a calculation based on the catalyst temperature, the operating state of an internal combustion engine, etc. (for example, refer patent document 1).

特開2006−22729号公報 (図3等)JP 2006-22729 A (FIG. 3 etc.)

しかしながら、選択還元触媒は、図6(b)に示すように、吸着可能量Vmaxに対する推定吸着量Vactの割合R(以下「吸着割合」と称する。)が高いほどNOXの浄化効率η(以下「触媒効率」と称する。)が高いという性質を有している。そのため、推定吸着量Vactが吸着可能量Vmaxよりも少ない吸着割合となるように目標噴射量を算出して液体還元剤の噴射制御を行う場合に、選択還元触媒の下流側への還元剤の流出を抑えるために目標吸着割合を低く設定しすぎると、選択還元触媒の浄化性能を充分に活かしきれないことになる。 However, as shown in FIG. 6B, the selective reduction catalyst has a higher NO x purification efficiency η (hereinafter referred to as “the adsorption ratio”) as the ratio R of the estimated adsorption amount Vact to the adsorbable amount Vmax (hereinafter referred to as “adsorption ratio”) increases. It is called “catalytic efficiency”). Therefore, when the target injection amount is calculated so that the estimated adsorption amount Vact is smaller than the adsorbable amount Vmax and the injection control of the liquid reducing agent is performed, the reducing agent flows out downstream of the selective reduction catalyst. If the target adsorption ratio is set too low in order to suppress this, the purification performance of the selective reduction catalyst cannot be fully utilized.

そこで、本発明の発明者は鋭意努力し、気体(排気ガス)の圧力が大きくなるにつれて還元剤の吸着可能量が増大する性質を選択還元触媒が有していることに着目し、選択還元触媒よりも下流側に通路面積絞り手段を備えることによってこのような問題を解決することができることを見出し、本発明を完成させたものである。すなわち、本発明は、還元剤が選択還元触媒よりも下流側に流出するおそれを低減し、目標噴射量の算出に用いられる選択還元触媒での目標吸着割合を高く設定することができる内燃機関の排気浄化装置を提供することを目的とする。   Accordingly, the inventors of the present invention diligently paid attention to the fact that the selective reduction catalyst has the property that the adsorbable amount of the reducing agent increases as the pressure of the gas (exhaust gas) increases. It has been found that such a problem can be solved by providing the passage area restricting means on the downstream side of the present invention, and the present invention has been completed. That is, the present invention reduces the risk that the reducing agent flows downstream from the selective reduction catalyst, and the internal combustion engine can set a high target adsorption ratio in the selective reduction catalyst used for calculating the target injection amount. An object is to provide an exhaust emission control device.

本発明によれば、還元剤を吸着可能な選択還元触媒を用いて排気ガス中の窒素酸化物を還元するための内燃機関の排気浄化装置において、選択還元触媒よりも上流側の排気通路に還元剤を供給するための還元剤供給手段と、選択還元触媒の温度を推定する触媒温度推定手段と、選択還元触媒よりも下流側の排気通路に備えられた通路面積絞り手段と、通路面積絞り手段によって選択還元触媒が配置された領域の排気通路内の圧力を上昇させることにより選択還元触媒における還元剤の吸着可能量を増大させる制御手段と、を備えることを特徴とする内燃機関の排気浄化装置が提供され、上述した問題を解決することができる。   According to the present invention, in an exhaust gas purification apparatus for an internal combustion engine for reducing nitrogen oxides in exhaust gas using a selective reduction catalyst capable of adsorbing a reducing agent, reduction is performed in an exhaust passage upstream of the selective reduction catalyst. Reducing agent supply means for supplying the agent, catalyst temperature estimation means for estimating the temperature of the selective reduction catalyst, passage area restriction means provided in the exhaust passage downstream of the selective reduction catalyst, and passage area restriction means And a control means for increasing the adsorbable amount of the reducing agent in the selective reduction catalyst by increasing the pressure in the exhaust passage in the region where the selective reduction catalyst is disposed. Can be provided to solve the above-mentioned problems.

また、本発明の内燃機関の排気浄化装置を構成するにあたり、排気浄化装置は選択還元触媒における還元剤の吸着量を推定する吸着量演算手段を備え、還元剤供給手段は、選択還元触媒における還元剤の吸着量が吸着可能量よりも少ない所定割合となるように還元剤を供給し、制御手段は、還元剤の吸着量が吸着可能量に対して所定割合を超えるときに排気通路内の圧力を上昇させることが好ましい。   Further, in configuring the exhaust gas purification apparatus for an internal combustion engine of the present invention, the exhaust gas purification apparatus includes an adsorption amount calculation means for estimating the adsorption amount of the reducing agent in the selective reduction catalyst, and the reducing agent supply means is a reduction in the selective reduction catalyst. The reducing agent is supplied so that the adsorbed amount of the reducing agent becomes a predetermined ratio smaller than the adsorbable amount, and the control means adjusts the pressure in the exhaust passage when the adsorbing amount of the reducing agent exceeds the predetermined amount with respect to the adsorbable amount Is preferably increased.

また、本発明の内燃機関の排気浄化装置を構成するにあたり、制御手段は、選択還元触媒の温度の上昇速度が所定の閾値を超えたときに排気通路内の圧力を上昇させることが好ましい。   In configuring the exhaust gas purification apparatus for an internal combustion engine of the present invention, it is preferable that the control means increases the pressure in the exhaust passage when the temperature increase rate of the selective reduction catalyst exceeds a predetermined threshold value.

また、本発明の内燃機関の排気浄化装置を構成するにあたり、排気浄化装置は選択還元触媒の下流側での還元剤濃度を検出する下流側還元剤濃度演算手段を備え、制御手段は、還元剤濃度が所定値を越えたときに排気通路内の圧力を上昇させることが好ましい。   Further, when configuring the exhaust gas purification apparatus for an internal combustion engine of the present invention, the exhaust gas purification apparatus includes a downstream side reducing agent concentration calculating means for detecting a reducing agent concentration on the downstream side of the selective reduction catalyst, and the control means includes a reducing agent. It is preferable to increase the pressure in the exhaust passage when the concentration exceeds a predetermined value.

また、本発明の内燃機関の排気浄化装置を構成するにあたり、制御手段は、選択還元触媒が活性化状態にあるときに排気通路内の圧力を上昇させる制御を実行可能であることが好ましい。   Further, in configuring the exhaust gas purification apparatus for an internal combustion engine of the present invention, it is preferable that the control means can execute control for increasing the pressure in the exhaust passage when the selective reduction catalyst is in an activated state.

本発明の内燃機関の排気浄化装置によれば、選択還元触媒よりも下流側の排気通路に通路面積絞り手段を備えるとともに、この通路面積絞り手段によって選択還元触媒が配置された領域の排気圧力を上昇させて選択還元触媒の吸着可能量を増大させる制御手段を備えることにより、選択還元触媒に供給される還元剤量が吸着可能量を超えて還元剤の一部が選択還元触媒の下流側に流出するおそれがある状況において、吸着可能量を増大させて還元剤の流出を抑えることができる。したがって、還元剤の目標噴射量の算出に使用する選択還元触媒での目標吸着割合を従来よりも高く設定することができ、NOXの浄化効率を高めることができる。 According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, the passage area restricting means is provided in the exhaust passage downstream of the selective reduction catalyst, and the exhaust pressure in the region where the selective reduction catalyst is disposed by the passage area restricting means. By providing a control means for increasing the adsorbable amount of the selective reduction catalyst, the amount of reducing agent supplied to the selective reduction catalyst exceeds the adsorbable amount and a part of the reducing agent is placed downstream of the selective reduction catalyst. In a situation where there is a possibility of flowing out, it is possible to suppress the outflow of the reducing agent by increasing the adsorbable amount. Therefore, the target adsorption ratio in the selective reduction catalyst used for calculating the target injection amount of the reducing agent can be set higher than before, and the NO x purification efficiency can be increased.

また、本発明の内燃機関の排気浄化装置において、選択還元触媒での吸着可能量に対する還元剤の吸着割合が所定割合を超えたときに制御手段が排気圧力を上昇させることにより、選択還元触媒に供給される還元剤量が吸着可能量を超えるおそれがある状況において、吸着可能量が増大され還元剤の流出を低減することができる。   Further, in the exhaust gas purification apparatus for an internal combustion engine of the present invention, the control means raises the exhaust pressure when the adsorption ratio of the reducing agent with respect to the adsorbable amount by the selective reduction catalyst exceeds a predetermined ratio, so that the selective reduction catalyst In a situation where the amount of supplied reducing agent may exceed the adsorbable amount, the adsorbable amount is increased and the outflow of the reducing agent can be reduced.

また、本発明の内燃機関の排気浄化装置において、選択還元触媒の温度の上昇速度が所定の閾値を超えたときに制御手段が排気圧力を上昇させることにより、選択還元触媒での吸着可能量が急激に減少する状況において吸着可能量の減少幅を小さく抑えることができる。したがって、選択還元触媒の下流側への還元剤の流出を低減することができる。   Further, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, when the rate of increase in the temperature of the selective reduction catalyst exceeds a predetermined threshold, the control means increases the exhaust pressure, so that the adsorbable amount on the selective reduction catalyst is reduced. In a situation where the amount of adsorption can be rapidly reduced, the amount of decrease in the amount that can be adsorbed can be kept small. Accordingly, it is possible to reduce the outflow of the reducing agent to the downstream side of the selective reduction catalyst.

また、本発明の内燃機関の排気浄化装置において、選択還元触媒の下流側における還元剤の流出量が所定値を超えたときに制御手段が排気圧力を上昇させることにより、選択還元触媒の下流側への還元剤の流出量を一定ラインよりも低く抑えることができる。   Further, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, when the outflow amount of the reducing agent on the downstream side of the selective reduction catalyst exceeds a predetermined value, the control means increases the exhaust pressure so that the downstream side of the selective reduction catalyst. It is possible to keep the amount of reducing agent flowing out to a level lower than a certain line.

また、本発明の内燃機関の排気浄化装置において、選択還元触媒が活性化状態にあるときに制御手段が排気圧力を上昇させる制御を実行することにより、排気圧力を上昇させることによる吸着可能量の増大の効果が顕著に得られ、本発明の制御の実行の有効性を得やすくなる。   Further, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, when the selective reduction catalyst is in the activated state, the control means executes control to increase the exhaust pressure, thereby increasing the amount of adsorption that can be performed by increasing the exhaust pressure. The effect of increase is remarkably obtained, and the effectiveness of execution of the control of the present invention is easily obtained.

本発明の実施の形態にかかる排気浄化装置の構成例を示す図である。It is a figure showing an example of composition of an exhaust-air-purification device concerning an embodiment of the invention. 排気圧力と還元触媒の吸着可能量との関係を示す図である。It is a figure which shows the relationship between exhaust pressure and the adsorption | suction possible amount of a reduction catalyst. 本発明の第1の実施の形態にかかる制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control apparatus concerning the 1st Embodiment of this invention. 還元剤の目標噴射量の演算方法の一例を説明するための図である。It is a figure for demonstrating an example of the calculation method of the target injection quantity of a reducing agent. 本発明の第1の実施の形態にかかる制御方法を説明するためのフロー図である。It is a flowchart for demonstrating the control method concerning the 1st Embodiment of this invention. 触媒温度と吸着可能量との関係、及び吸着割合と触媒効率との関係を示す図である。It is a figure which shows the relationship between catalyst temperature and the amount which can be adsorbed, and the relationship between adsorption | suction ratio and catalyst efficiency.

以下、図面を参照して、本発明の内燃機関の排気浄化装置に関する実施の形態について具体的に説明する。ただし、かかる実施形態は、本発明の一態様を示すものであって本発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。   DESCRIPTION OF EMBODIMENTS Embodiments relating to an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be specifically described below with reference to the drawings. However, this embodiment shows one aspect of the present invention and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. In addition, in each figure, what has attached | subjected the same code | symbol has shown the same member, and description is abbreviate | omitted suitably.

[第1の実施の形態]
1.全体的構成
まず、本発明の実施の形態にかかる内燃機関の排気浄化装置(以下、単に「排気浄化装置」と称する。)の全体的構成の一例について説明する。
図1は、排気通路中に配設された選択還元触媒(以下、単に「還元触媒」と称する。)13よりも上流側で液体還元剤としての尿素水溶液を噴射供給し、還元触媒13において、尿素水溶液から生成されるアンモニアを用いて排気ガス中に含まれるNOXを選択的に還元浄化する排気浄化装置10の構成例を示している。
[First Embodiment]
1. Overall Configuration First, an example of the overall configuration of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention (hereinafter simply referred to as “exhaust emission control device”) will be described.
FIG. 1 shows a selective reduction catalyst (hereinafter simply referred to as “reduction catalyst”) 13 disposed in an exhaust passage by injecting and supplying an aqueous urea solution as a liquid reducing agent upstream of the reduction catalyst 13. 1 shows a configuration example of an exhaust purification apparatus 10 that selectively reduces and purifies NO x contained in exhaust gas using ammonia generated from an aqueous urea solution.

この排気浄化装置10は、内燃機関5に接続された排気通路の途中に設けられるものであり、排気ガス中に含まれるNOXを選択的に還元するための還元触媒13と、還元触媒13よりも上流側の排気通路内に液体還元剤を噴射供給するための還元剤供給装置40と、還元触媒13よりも下流側に備えられた通路面積絞り手段20とを主たる要素として備えている。また、排気浄化装置10は、還元剤供給装置40や通路面積絞り手段20の動作制御を行う制御装置30を備えている。 The exhaust purification device 10 is provided in the middle of an exhaust passage connected to the internal combustion engine 5, and includes a reduction catalyst 13 for selectively reducing NO x contained in the exhaust gas, and a reduction catalyst 13. The main components are a reducing agent supply device 40 for injecting and supplying the liquid reducing agent into the upstream exhaust passage, and a passage area restricting means 20 provided on the downstream side of the reduction catalyst 13. Further, the exhaust purification device 10 includes a control device 30 that controls the operation of the reducing agent supply device 40 and the passage area restricting means 20.

この排気浄化装置10において、還元触媒13よりも上流側には排気温度センサ26が設けられているとともに、還元触媒13よりも下流側にはNOXセンサ15が設けられている。上流側温度センサ26の代わりに、演算によってそれぞれの領域の排気温度を推定する温度推定手段が備えられていてもよい。NOXセンサ15は、排気ガス中のNOX濃度を検出するために用いられる。 In this exhaust purification device 10, an exhaust temperature sensor 26 is provided upstream of the reduction catalyst 13, and a NO x sensor 15 is provided downstream of the reduction catalyst 13. Instead of the upstream temperature sensor 26, temperature estimation means for estimating the exhaust temperature of each region by calculation may be provided. The NO x sensor 15 is used to detect the NO x concentration in the exhaust gas.

本実施形態の排気浄化装置10は液体還元剤として尿素水溶液が用いられる排気浄化装置である。尿素水溶液は還元触媒13よりも上流側で排気ガスに混合され、尿素水溶液が加水分解することによって生成されるアンモニアが還元触媒13に吸着される。ただし、使用する液体還元剤は尿素水溶液に限られず、その他、還元触媒13にアンモニアを供給できるものであればよく、さらには、HCを還元触媒13に供給可能な未燃燃料を液体還元剤として使用することもできる。   The exhaust purification device 10 of this embodiment is an exhaust purification device in which a urea aqueous solution is used as a liquid reducing agent. The urea aqueous solution is mixed with the exhaust gas on the upstream side of the reduction catalyst 13, and ammonia generated by hydrolysis of the urea aqueous solution is adsorbed by the reduction catalyst 13. However, the liquid reducing agent to be used is not limited to the urea aqueous solution, and any other liquid reducing agent may be used as long as it can supply ammonia to the reducing catalyst 13. Further, unburned fuel capable of supplying HC to the reducing catalyst 13 is used as the liquid reducing agent. It can also be used.

2.還元触媒
本実施形態の排気浄化装置10に用いられる還元触媒13は、還元剤供給装置40によって排気ガス中に噴射される尿素水溶液が加水分解を生じて生成されるアンモニアを吸着し、流入する排気ガス中のNOXを還元する触媒として構成されている。還元触媒13は、例えばゼオライト系の還元触媒が用いられる。
2. Reduction catalyst The reduction catalyst 13 used in the exhaust purification device 10 of the present embodiment adsorbs ammonia produced by hydrolysis of an aqueous urea solution injected into exhaust gas by the reducing agent supply device 40, and flows into the exhaust gas. The catalyst is configured to reduce NO x in the gas. As the reduction catalyst 13, for example, a zeolite-based reduction catalyst is used.

この還元触媒13は、図6(a)に示すように、触媒温度Tcatに応じてアンモニアの吸着可能量Vmaxが減少する特性を有している。また、還元触媒13は、図6(b)に示すように、吸着可能量Vmaxに対する吸着割合Rが大きいほど、また、触媒温度Tcatが高いほど、触媒効率ηが高くなる特性を有している。そのため、触媒温度Tcatのわずかな変化によってアンモニアの一部が還元触媒13よりも下流側に流出することがないように考慮する一方、触媒効率ηがなるべく高くなるように目標吸着割合Rtgtが定められる。   As shown in FIG. 6A, the reduction catalyst 13 has a characteristic that the ammonia adsorbable amount Vmax decreases according to the catalyst temperature Tcat. Further, as shown in FIG. 6B, the reduction catalyst 13 has a characteristic that the catalyst efficiency η increases as the adsorption ratio R with respect to the adsorbable amount Vmax increases and the catalyst temperature Tcat increases. . Therefore, the target adsorption ratio Rtgt is determined so that the catalyst efficiency η is as high as possible while considering that a part of ammonia does not flow downstream from the reduction catalyst 13 due to a slight change in the catalyst temperature Tcat. .

また、還元触媒13は、図2に示すように、還元触媒13が配置された領域の圧力、すなわち排気圧力が高いほど吸着可能量Vmaxが増大する特性を有している。この特性は、下記式(1)に示されるラングミュアー(Langmuir)の吸着等温式によって説明される。   Further, as shown in FIG. 2, the reduction catalyst 13 has a characteristic that the adsorbable amount Vmax increases as the pressure in the region where the reduction catalyst 13 is arranged, that is, the exhaust pressure is higher. This characteristic is explained by the Langmuir adsorption isotherm shown in the following formula (1).

V=a×b×p/(1+b×p) …(1)
V:吸着量
a:比例定数
b:吸着速度定数K/脱離速度定数K’
p:排気圧力
V = a × b × p / (1 + b × p) (1)
V: Adsorption amount a: Proportional constant b: Adsorption rate constant K / Desorption rate constant K ′
p: exhaust pressure

また、上記式(1)によれば、bの値が大きいほど、すなわち、脱離速度定数K’が小さい触媒温度Tcatの高温状態にあるときほど、吸着可能量Vmaxをより増大させることができることが理解される。   Further, according to the above formula (1), the adsorbable amount Vmax can be further increased as the value of b is larger, that is, as the catalyst temperature Tcat is smaller in the desorption rate constant K ′. Is understood.

3.還元剤供給装置
還元剤供給装置40は、還元触媒13よりも上流側において排気管11に固定された還元剤噴射弁43と、液体還元剤としての尿素水溶液が貯蔵された貯蔵タンク41と、貯蔵タンク41内の液体還元剤を還元剤噴射弁43に向けて圧送する還元剤圧送手段42とによって構成されている。還元剤圧送手段42と貯蔵タンク41とは第1の供給通路44によって接続され、還元剤圧送手段42と還元剤噴射弁43とは第2の供給通路45によって接続されている。
3. Reducing agent supply device A reducing agent supply device 40 includes a reducing agent injection valve 43 fixed to the exhaust pipe 11 upstream of the reducing catalyst 13, a storage tank 41 in which an aqueous urea solution as a liquid reducing agent is stored, and storage. The liquid reducing agent in the tank 41 is constituted by reducing agent pumping means 42 that pumps the liquid reducing agent toward the reducing agent injection valve 43. The reducing agent pressure feeding means 42 and the storage tank 41 are connected by a first supply passage 44, and the reducing agent pressure feeding means 42 and the reducing agent injection valve 43 are connected by a second supply passage 45.

還元剤圧送手段42は代表的には電動ポンプが用いられ、貯蔵タンク41内の液体還元剤を汲み上げて還元剤噴射弁43に圧送する。また、還元剤噴射弁43は、例えば、通電制御により開閉制御が行われる還元剤噴射弁が用いられる。これらの還元剤圧送手段42及び還元剤噴射弁43は制御装置30によってその動作の制御が行われる。還元剤圧送手段42によって還元剤噴射弁43に圧送される液体還元剤は、制御装置30から出力される制御信号によって還元剤噴射弁43が開かれたときに排気通路内に噴射される。   The reducing agent pumping means 42 is typically an electric pump, which pumps up the liquid reducing agent in the storage tank 41 and pumps it to the reducing agent injection valve 43. The reducing agent injection valve 43 is, for example, a reducing agent injection valve that is controlled to open and close by energization control. The operation of the reducing agent pumping means 42 and the reducing agent injection valve 43 is controlled by the control device 30. The liquid reducing agent pumped to the reducing agent injection valve 43 by the reducing agent pumping means 42 is injected into the exhaust passage when the reducing agent injection valve 43 is opened by a control signal output from the control device 30.

還元剤供給装置40の構成は、上述のような還元剤噴射弁43から直接排気管11内に液体還元剤を噴射する構成以外にも、例えば、高圧エアを用いて液体還元剤を霧状にした上で排気管11内に供給するエアアシスト式の構成であってもよい。   The configuration of the reducing agent supply device 40 is not limited to the configuration in which the liquid reducing agent is directly injected into the exhaust pipe 11 from the reducing agent injection valve 43 as described above. For example, the liquid reducing agent is atomized using high-pressure air. In addition, an air assist type configuration may be used in which the air is supplied into the exhaust pipe 11.

4.通路面積絞り手段
還元触媒13よりも下流側の排気管11に設けられた通路面積絞り手段20は、排気通路の面積を絞ることによってそれよりも上流側の排気圧力を上昇させるために用いられる。特に、還元触媒13が配置された領域の排気圧力Pgasを上昇させることが目的とされる。
4). Passage area restricting means The passage area restricting means 20 provided in the exhaust pipe 11 downstream of the reduction catalyst 13 is used to increase the exhaust pressure upstream of the exhaust passage by restricting the area of the exhaust passage. In particular, the object is to increase the exhaust pressure Pgas in the region where the reduction catalyst 13 is disposed.

この通路面積絞り手段20は、排気通路の面積を可変とすることができる手段であればその構成は特に制限されるものではない。本実施形態の排気浄化装置10において、通路面積絞り手段20は、内燃機関5に備えられる排気バルブと同様の構成を有するバタフライ弁が用いられている。この通路面積絞り手段20は制御装置30によってその動作の制御が行われる。   The configuration of the passage area restricting means 20 is not particularly limited as long as the area of the exhaust passage can be made variable. In the exhaust purification device 10 of the present embodiment, the passage area restricting means 20 uses a butterfly valve having the same configuration as the exhaust valve provided in the internal combustion engine 5. The operation of the passage area restricting means 20 is controlled by the control device 30.

5.制御装置
図3は、本実施形態の排気浄化装置10に備えられた制御装置30の構成のうち、還元剤供給装置40及び通路面積絞り手段20の制御を行う部分を機能的なブロックで表した構成例を示している。
5. FIG. 3 is a functional block diagram showing a part for controlling the reducing agent supply device 40 and the passage area restricting means 20 in the configuration of the control device 30 provided in the exhaust purification device 10 of the present embodiment. A configuration example is shown.

この制御装置30は、触媒温度演算部31と、還元剤噴射量演算部32と、還元剤供給装置制御部33と、通路面積絞り手段制御部34とを主要な構成要素として備えている。制御装置30は公知のマイクロコンピュータによって構成され、各部は、具体的にはマイクロコンピュータ(図示せず)によるプラグラムの実行によって実現される。   The control device 30 includes a catalyst temperature calculation unit 31, a reducing agent injection amount calculation unit 32, a reducing agent supply device control unit 33, and a passage area restricting means control unit 34 as main components. The control device 30 is configured by a known microcomputer, and each unit is specifically realized by executing a program by a microcomputer (not shown).

(1)触媒温度演算部
触媒温度演算部31は、排気温度センサ26のセンサ信号を読み込むとともに、このセンサ信号を用いて算出される排気ガス温度TUgasに基づき、触媒温度Tcatを推定する。具体的な算出方法は特に制限されるものではない。
(1) Catalyst Temperature Calculation Unit The catalyst temperature calculation unit 31 reads the sensor signal of the exhaust temperature sensor 26 and estimates the catalyst temperature Tcat based on the exhaust gas temperature TUgas calculated using this sensor signal. A specific calculation method is not particularly limited.

(2)還元剤噴射量演算部(推定吸着量演算部)
還元剤噴射量演算部32は、還元触媒13に供給すべきアンモニアの要求量を求め、要求量相当のアンモニアが生成されるような液体還元剤の目標噴射量Qudtgtを算出する。この目標噴射量Qudtgtの演算においては、還元触媒13における現在のアンモニアの推定吸着量Vactが得られるようになっており、還元剤噴射量演算部32は本発明における推定吸着量演算部の機能も兼ね備えている。
(2) Reducing agent injection amount calculation unit (estimated adsorption amount calculation unit)
The reducing agent injection amount calculation unit 32 obtains a required amount of ammonia to be supplied to the reduction catalyst 13 and calculates a target injection amount Qudtgt of the liquid reducing agent that generates ammonia corresponding to the required amount. In the calculation of the target injection amount Qudtgt, the current estimated adsorption amount Vact of ammonia in the reduction catalyst 13 is obtained, and the reducing agent injection amount calculation unit 32 also functions as the estimated adsorption amount calculation unit in the present invention. Have both.

図4は、本実施形態の排気浄化装置10に備えられた制御装置30の還元剤噴射量演算部32による液体還元剤の目標噴射量Qudtgtの演算処理の一例を概念的に表した図である。
この例では、まず、触媒温度演算部31で推定される触媒温度Tcatに応じて還元剤の吸着可能量Vmaxをマップ計算し、この吸着可能量Vmaxに対して目標吸着割合Rtgtを乗じて目標吸着量Vtgtを求める。ここで用いる吸着可能量Vmaxは排気通路の面積が絞られていない状態での吸着可能量Vmaxである。その後、前回の目標噴射量演算時に求められている還元触媒13における現在のアンモニアの推定吸着量Vactを目標吸着量Vtgtから減算して、目標吸着量Vtgtに対して過不足のアンモニア量ΔVを算出するとともに、過不足のアンモニア量ΔVに応じたアンモニアの流量を求める。
FIG. 4 is a diagram conceptually illustrating an example of a calculation process of the target injection amount Qudtgt of the liquid reducing agent by the reducing agent injection amount calculation unit 32 of the control device 30 provided in the exhaust purification device 10 of the present embodiment. .
In this example, first, a map of the adsorbable amount Vmax of the reducing agent is calculated according to the catalyst temperature Tcat estimated by the catalyst temperature calculation unit 31, and the target adsorption rate Rtgt is multiplied by this adsorbable amount Vmax. Find the quantity Vtgt. The adsorbable amount Vmax used here is the adsorbable amount Vmax when the area of the exhaust passage is not narrowed. Thereafter, the current estimated adsorption amount Vact of ammonia in the reduction catalyst 13 obtained at the time of the previous target injection amount calculation is subtracted from the target adsorption amount Vtgt to calculate an excess / deficiency ammonia amount ΔV with respect to the target adsorption amount Vtgt. In addition, the flow rate of ammonia corresponding to the excess / deficiency ammonia amount ΔV is obtained.

これと並行して、NOXセンサや演算によって求められる現在の排気ガス中のNOXの流量等に基づいて、このNOXを100%還元できると仮定した場合のアンモニアの流量を求める。NOXの流量は例えば排気ガスの流量にNOX濃度Dnoxを乗じて求めることができる。その後、求められたアンモニアの流量に対して、還元触媒13における現在のアンモニアの推定吸着量Vactに応じた触媒効率ηを乗じて、現在流れている排気ガス中のNOXを還元するためのアンモニアの流量を求める。 In parallel with this, on the basis of the NO X sensor and the flow rate of the NO X in the current exhaust gas obtained by the calculation or the like, obtaining the flow rate of ammonia assuming the NO X can be reduced to 100%. Flow rate of the NO X can be obtained by multiplying the NO X concentration Dnox the flow rate of the example exhaust gas. Thereafter, the ammonia for reducing NO x in the exhaust gas currently flowing by multiplying the obtained ammonia flow rate by the catalyst efficiency η according to the current estimated adsorption amount Vact of ammonia in the reduction catalyst 13. Obtain the flow rate of

そして、それぞれ求められた二つのアンモニアの流量を加算することにより、新たに供給すべきアンモニアの要求流量を算出する。液体還元剤の目標噴射量Qudtgtは、この供給すべき要求流量のアンモニアが生成される尿素水溶液の量として算出される。また、現在のアンモニアの推定吸着量Vactは、新たに供給すべきアンモニアの要求流量から排気ガス中のNOXを還元するためのアンモニアの流量を減算した値の積分値、すなわち、過不足のアンモニア量ΔVに応じたアンモニアの流量の積分値として求められる。 Then, the required flow rate of ammonia to be newly supplied is calculated by adding the two calculated flow rates of ammonia. The target injection amount Qudtgt of the liquid reducing agent is calculated as the amount of aqueous urea solution that generates ammonia at the required flow rate to be supplied. Further, the current estimated adsorption amount Vact of ammonia is the integral value of the value obtained by subtracting the flow rate of ammonia for reducing NO x in the exhaust gas from the required flow rate of ammonia to be newly supplied, that is, excess or deficient ammonia. It is obtained as an integral value of the flow rate of ammonia according to the amount ΔV.

推定吸着量Vactに応じた触媒効率η(%)はマップ計算によって求めることができる。制御装置30には、触媒温度Tcatとアンモニアの吸着割合Rとに基づいて触媒効率η(%)が求められるようにデータマップmapがあらかじめ格納されている。アンモニアの吸着割合Rは、吸着可能量Vmaxに対する推定吸着量Vactの割合として求められる。ただし、触媒効率η(%)の推定方法はこのような方法に限られず、触媒温度Tcat、還元触媒13におけるアンモニアの推定吸着量Vact、排気ガスの流量Fgas、還元触媒13の上流側でのNOX濃度、上流NO濃度と上流NO2濃度との比率、還元触媒13の劣化度合い等を考慮して、触媒効率ηをモデル化することもできる。 The catalyst efficiency η (%) corresponding to the estimated adsorption amount Vact can be obtained by map calculation. The control device 30 stores in advance a data map map so that the catalyst efficiency η (%) is obtained based on the catalyst temperature Tcat and the ammonia adsorption ratio R. The ammonia adsorption ratio R is obtained as a ratio of the estimated adsorption amount Vact to the adsorbable amount Vmax. However, the estimation method of the catalyst efficiency η (%) is not limited to such a method, and the catalyst temperature Tcat, the estimated adsorption amount Vact of ammonia in the reduction catalyst 13, the exhaust gas flow rate Fgas, the NO on the upstream side of the reduction catalyst 13. The catalyst efficiency η can be modeled in consideration of the X concentration, the ratio between the upstream NO concentration and the upstream NO 2 concentration, the degree of deterioration of the reduction catalyst 13, and the like.

ただし、目標噴射量Qudtgtの算出方法は上述した例に限られるものではなく、種々の計算方法を採用することができる。また、推定吸着量Vactの算出方法についても上述した例に限られるものではなく、目標噴射量Qudtgtの演算とは別に求めるようにしてもよい。   However, the calculation method of the target injection amount Qudtgt is not limited to the above-described example, and various calculation methods can be employed. Further, the calculation method of the estimated adsorption amount Vact is not limited to the above-described example, and may be obtained separately from the calculation of the target injection amount Qudtgt.

(3)還元剤供給装置制御部
還元剤供給装置制御部33は、還元剤圧送手段42の制御を行うとともに、還元剤噴射量演算部32で算出された液体還元剤の目標噴射量Qudtgtに基づいて、還元剤噴射弁43の開閉制御を行う。本実施形態の排気浄化装置10において、還元剤圧送手段42は還元剤噴射弁13に供給される液体還元剤の圧力が所定値に維持されるようにフィードバック制御される。また、本実施形態の排気浄化装置10において、還元剤噴射弁13は噴射開始時期のサイクルが決められており、目標噴射量Qudtgtに応じた還元剤噴射弁13の駆動デューティに基づいて通電制御が行われる。
(3) Reductant Supply Device Control Unit The reductant supply device control unit 33 controls the reductant pumping means 42 and based on the liquid reductant target injection amount Qudtgt calculated by the reductant injection amount calculation unit 32. Thus, opening / closing control of the reducing agent injection valve 43 is performed. In the exhaust purification apparatus 10 of the present embodiment, the reducing agent pressure feeding means 42 is feedback controlled so that the pressure of the liquid reducing agent supplied to the reducing agent injection valve 13 is maintained at a predetermined value. Further, in the exhaust purification device 10 of the present embodiment, the reducing agent injection valve 13 has a predetermined injection start cycle, and the energization control is performed based on the drive duty of the reducing agent injection valve 13 according to the target injection amount Qudtgt. Done.

(4)通路面積絞り手段制御部
通路面積絞り手段制御部34は、還元触媒13よりも下流側に備えられている通路面積絞り手段20の制御を行う。本実施形態において、通路面積絞り手段制御部34は排気通路の面積が絞られた状態と絞られていない状態のいずれかの状態となるように通路面積絞り手段20の制御を行うように設定されている。
(4) Passage Area Restricting Means Control Unit The passage area restricting means control unit 34 controls the passage area restricting means 20 provided on the downstream side of the reduction catalyst 13. In the present embodiment, the passage area restricting means control unit 34 is set to control the passage area restricting means 20 so that the exhaust passage area is in either a restricted state or a non-restricted state. ing.

本実施形態においては、還元触媒13における推定吸着量Vactが制御最大閾値Vαを超えたときに排気通路の面積を絞るように設定されている。具体的に、制御最大閾値Vαは、アンモニアの吸着割合Rの上限閾値Rmaxに相当する値として触媒温度Tcatに応じて設定されており、通路面積絞り手段制御部34は、アンモニアの推定吸着量Vactが制御最大閾値Vαを超えているか否かを監視する。この吸着割合の上限閾値Rmaxは、液体還元剤の目標噴射量Qudtgtを算出する際の目標吸着割合Rtgtよりも大きい値に設定される。   In this embodiment, it is set so that the area of the exhaust passage is reduced when the estimated adsorption amount Vact in the reduction catalyst 13 exceeds the control maximum threshold value Vα. Specifically, the control maximum threshold value Vα is set according to the catalyst temperature Tcat as a value corresponding to the upper limit threshold value Rmax of the ammonia adsorption ratio R, and the passage area restricting means control unit 34 determines the estimated adsorption amount Vact of ammonia. Whether or not exceeds the control maximum threshold value Vα. The upper limit threshold value Rmax of the adsorption ratio is set to a value larger than the target adsorption ratio Rtgt when calculating the target injection amount Qudtgt of the liquid reducing agent.

そして、推定吸着量Vactが制御最大閾値Vαを超えている場合には、還元触媒13に供給されるアンモニアが吸着可能量Vmaxを超え、一部のアンモニアが還元触媒13よりも下流側に流出するおそれがあるため、通路面積絞り手段制御部34は通路面積絞り手段20に対して通路面積を絞るように制御信号を出力する。   When the estimated adsorption amount Vact exceeds the control maximum threshold value Vα, the ammonia supplied to the reduction catalyst 13 exceeds the adsorbable amount Vmax, and a part of the ammonia flows downstream from the reduction catalyst 13. Since there is a fear, the passage area restricting means controller 34 outputs a control signal to the passage area restricting means 20 so as to restrict the passage area.

通路面積が絞られると、還元触媒13が配置された領域の排気圧力Pgasが上昇し、還元触媒13での吸着可能量Vmaxが増大する。その結果、増大した後の吸着可能量Vmax’に対する推定吸着量Vactの割合R’は増大前の吸着割合Rよりも低下するため、還元触媒13よりも下流側へのアンモニアの流出のおそれが低減される。   When the passage area is reduced, the exhaust pressure Pgas in the region where the reduction catalyst 13 is disposed increases, and the adsorbable amount Vmax in the reduction catalyst 13 increases. As a result, the ratio R ′ of the estimated adsorption amount Vact with respect to the adsorbable amount Vmax ′ after the increase is lower than the adsorption ratio R before the increase, so that the risk of ammonia flowing out downstream from the reduction catalyst 13 is reduced. Is done.

また、通路面積絞り手段制御部34は、通路面積を絞った後においては、推定吸着量Vactが解除閾値Vβを下回ったか否かを監視する。具体的に、解除閾値Vβは、通路面積を絞らない状態におけるアンモニアの吸着可能量Vmaxに対する解除閾割合Roffに相当する値として触媒温度Tcatに応じて設定されている。この解除閾割合Roffは上限閾値Rmaxよりも小さい値に設定されている。また、解除閾割合Roffは、液体還元剤の目標噴射量Qudtgtの演算に用いられる目標吸着割合Rtgtよりも大きい値に設定されている。   Further, the passage area restricting means control unit 34 monitors whether or not the estimated adsorption amount Vact falls below the release threshold value Vβ after the passage area is reduced. Specifically, the release threshold value Vβ is set according to the catalyst temperature Tcat as a value corresponding to the release threshold ratio Roff with respect to the ammonia adsorbable amount Vmax when the passage area is not reduced. This cancellation threshold ratio Roff is set to a value smaller than the upper limit threshold Rmax. The release threshold ratio Roff is set to a value larger than the target adsorption ratio Rtgt used for calculating the target injection amount Qudtgt of the liquid reducing agent.

推定吸着量Vactが解除閾値Vβを下回った場合には、通路面積絞り手段制御部34は還元触媒13よりも下流側へのアンモニアの流出のおそれがなくなったと判断し、排気通路の面積を元に戻すように通路面積絞り手段20に対して制御信号を出力する。   When the estimated adsorption amount Vact falls below the release threshold value Vβ, the passage area restricting means control unit 34 determines that there is no risk of the ammonia flowing out downstream of the reduction catalyst 13, and based on the area of the exhaust passage. A control signal is output to the passage area restricting means 20 so as to return.

本実施形態の例では、通路面積絞り手段制御部34は触媒温度Tcatが活性化温度Tcat0以上であるときにのみ通路面積を絞るように構成されている。すなわち、通路面積を絞って排気圧力を上昇させた場合であっても吸着可能量Vmaxの増大効果が小さい状態においては排気圧力を上昇させないようになっている。したがって、吸着可能量Vmaxの増大効果が小さい場合においても排気圧力を上昇させることによる内燃機関5への負荷が抑えられるようになっている。排気圧力を上昇させる触媒温度Tcatの閾値は活性化温度に限られるものではなく、適宜設定することができる。   In the example of the present embodiment, the passage area restricting means controller 34 is configured to restrict the passage area only when the catalyst temperature Tcat is equal to or higher than the activation temperature Tcat0. That is, even when the exhaust pressure is increased by reducing the passage area, the exhaust pressure is not increased in a state where the effect of increasing the adsorbable amount Vmax is small. Therefore, even when the effect of increasing the adsorbable amount Vmax is small, the load on the internal combustion engine 5 by increasing the exhaust pressure can be suppressed. The threshold value of the catalyst temperature Tcat for increasing the exhaust pressure is not limited to the activation temperature, and can be set as appropriate.

なお、本実施形態の例では、通路面積絞り手段20が排気通路の面積を二段階で変えるようになっているが、さらに多くの段階で排気通路の面積を変えるように設定することもできる。ただし、場合によっては、それぞれの排気通路の面積に応じた排気圧力と吸着可能量のデータや触媒効率ηのデータ等をあらかじめ記憶させておく必要が生じる。   In the example of the present embodiment, the passage area restricting means 20 changes the area of the exhaust passage in two stages, but it can be set so that the area of the exhaust passage is changed in more stages. However, in some cases, it is necessary to previously store data on the exhaust pressure and the adsorbable amount corresponding to the area of each exhaust passage, data on the catalyst efficiency η, and the like.

6.排気浄化装置の制御方法
次に、これまで説明した本実施形態の制御装置30によって行われる排気浄化装置の制御方法の一例について、図5の制御フローに基づいて具体的に説明する。なお、以下のルーチンは液体還元剤の噴射制御の実行中において常時実行される。
6). Next, an example of the control method of the exhaust gas purification device performed by the control device 30 of the present embodiment described so far will be specifically described based on the control flow of FIG. The following routine is always executed during the execution of the liquid reducing agent injection control.

まず、スタート後のステップS1において、排気ガスの流量Fgas、排気ガス中のNOX濃度Dnox、還元触媒13の上流側での排気ガス温度TUgas、現在の推定吸着量Vactを読込む。次いで、ステップS2において、還元触媒13の上流側での排気ガス温度TUgasに基づいて触媒温度Tcatを算出するとともに、触媒温度Tcatに応じた吸着可能量Vmax、目標吸着量Vtgt、制御最大閾値Vα、解除閾値Vβを求める。 First, in step S1 after the start, the flow rate Fgas the exhaust gas, NO X concentration Dnox in the exhaust gas, the exhaust gas temperature TUgas on the upstream side of the reduction catalyst 13, reads the current estimated adsorption amount Vact. Next, in step S2, the catalyst temperature Tcat is calculated based on the exhaust gas temperature TUgas on the upstream side of the reduction catalyst 13, and the adsorbable amount Vmax, the target adsorption amount Vtgt, the control maximum threshold value Vα according to the catalyst temperature Tcat, The release threshold value Vβ is obtained.

次いで、ステップS3において、推定吸着量Vactが目標吸着量Vtgtを超えているか否かが判別される。推定吸着量Vactが目標吸着量Vtgt以内であればアンモニアが還元触媒13の下流側に流出するおそれが少ないことから、ステップS11に進み、液体還元剤の噴射制御を許可した後、ステップS12において目標噴射量Qudtgtを算出し、ステップS13で液体還元剤の噴射を実行して本ルーチンを終了する。   Next, in step S3, it is determined whether or not the estimated adsorption amount Vact exceeds the target adsorption amount Vtgt. If the estimated adsorption amount Vact is within the target adsorption amount Vtgt, it is less likely that ammonia will flow out downstream of the reduction catalyst 13, and thus the process proceeds to step S11, and after permitting the liquid reductant injection control, the target is set in step S12. The injection amount Qudtgt is calculated, the liquid reducing agent is injected in step S13, and this routine ends.

一方、ステップS3において、推定吸着量Vactが目標吸着量Vtgtを超えている場合には、アンモニアが還元触媒13の下流側に流出するおそれがあることから、ステップS4で液体還元剤の噴射を禁止する。次いで、ステップS5において、現在通路面積絞り手段20によって排気通路が絞られた状態か否かが判別される。排気通路が絞られた状態でなければステップS8に進み、推定吸着量Vactが制御最大閾値Vαを超えているか否かが判別される。推定吸着量Vactが制御最大閾値Vα以下であれば本ルーチンを終了してステップS1に戻る一方、推定吸着量Vactが制御最大閾値Vαを超えている場合にはステップS9に進む。   On the other hand, in step S3, when the estimated adsorption amount Vact exceeds the target adsorption amount Vtgt, ammonia may flow out downstream of the reduction catalyst 13, and therefore the injection of the liquid reducing agent is prohibited in step S4. To do. Next, in step S5, it is determined whether or not the exhaust passage is restricted by the current passage area restricting means 20. If the exhaust passage is not constricted, the process proceeds to step S8, and it is determined whether or not the estimated adsorption amount Vact exceeds the control maximum threshold value Vα. If the estimated adsorption amount Vact is less than or equal to the control maximum threshold value Vα, the routine is terminated and the process returns to step S1, while if the estimated adsorption amount Vact exceeds the control maximum threshold value Vα, the process proceeds to step S9.

ステップS9では、触媒温度Tcatが活性化温度Tcat0以上であるか否かが判別される。触媒温度Tcatが活性化温度Tcat0未満であれば、通路面積を絞って排気圧力を上昇させても吸着可能量Vmaxの増大効果が小さいことから、そのまま本ルーチンを終了してステップS1に戻る。一方、触媒温度Tcatが活性化温度Tcat0以上であれば、ステップS10に進み、通路面積絞り手段20を制御して通路面積を絞った後、本ルーチンを終了してステップS1に戻る。これにより、還元触媒13が配置された領域の排気圧力Pgasが上昇し、還元触媒13における吸着可能量Vmaxが増大後の吸着可能量Vmax’となる。   In step S9, it is determined whether or not the catalyst temperature Tcat is equal to or higher than the activation temperature Tcat0. If the catalyst temperature Tcat is lower than the activation temperature Tcat0, the effect of increasing the adsorbable amount Vmax is small even if the passage area is narrowed and the exhaust pressure is increased, so this routine is terminated and the routine returns to step S1. On the other hand, if the catalyst temperature Tcat is equal to or higher than the activation temperature Tcat0, the process proceeds to step S10, the passage area restricting means 20 is controlled to restrict the passage area, and then this routine is terminated and the process returns to step S1. As a result, the exhaust pressure Pgas in the region where the reduction catalyst 13 is disposed increases, and the adsorbable amount Vmax in the reduction catalyst 13 becomes the increased adsorbable amount Vmax ′.

上述のステップS5において、排気通路が絞られた状態である場合には、ステップS6に進み、推定吸着量Vactが解除閾値Vβを下回っているか否かが判別される。推定吸着量Vactが解除閾値Vβ以上であれば、排気通路を絞った状態のまま本ルーチンを終了し、ステップS1に戻る。一方、推定吸着量Vactが解除閾値Vβを下回っている場合にはステップS7に進み、通路面積絞り手段20を制御して通路面積を元に戻した後、本ルーチンを終了してステップS1に戻る。これにより、還元触媒13が配置された領域の排気圧力は元の状態に戻され、還元触媒13における吸着可能量Vmaxが通常の吸着可能量Vmaxに戻される。   In step S5 described above, if the exhaust passage is in a throttled state, the process proceeds to step S6, where it is determined whether or not the estimated adsorption amount Vact is below the release threshold value Vβ. If the estimated adsorption amount Vact is greater than or equal to the release threshold value Vβ, the routine ends with the exhaust passage being narrowed, and the process returns to step S1. On the other hand, if the estimated adsorption amount Vact is less than the release threshold value Vβ, the process proceeds to step S7, the passage area restricting means 20 is controlled to return the passage area to the original, the routine is terminated, and the process returns to step S1. . As a result, the exhaust pressure in the region where the reduction catalyst 13 is disposed is returned to the original state, and the adsorbable amount Vmax in the reduction catalyst 13 is returned to the normal adsorbable amount Vmax.

このように、本実施形態の排気浄化装置10は、還元触媒13におけるアンモニアの推定吸着量Vactが吸着可能量Vmaxに対する上限閾割合Rmaxに相当する量を超えたときに排気圧力を上昇させて還元触媒13の吸着可能量Vmaxを増大させる制御を行う。これにより、還元触媒13よりも下流側にアンモニアが流出するおそれが低減する。したがって、通路面積を絞らない通常の状態で液体還元剤の目標噴射量Qudtgtの演算に使用する目標吸着割合Rtgtを高く設定することができ、触媒効率ηを高めることができる。   As described above, the exhaust gas purification apparatus 10 of the present embodiment reduces the exhaust pressure when the estimated ammonia adsorption amount Vact in the reduction catalyst 13 exceeds the amount corresponding to the upper limit threshold ratio Rmax with respect to the adsorbable amount Vmax. Control is performed to increase the adsorbable amount Vmax of the catalyst 13. Thereby, the possibility that ammonia flows out downstream of the reduction catalyst 13 is reduced. Therefore, the target adsorption ratio Rtgt used for calculating the target injection amount Qudtgt of the liquid reducing agent in a normal state where the passage area is not reduced can be set high, and the catalyst efficiency η can be increased.

[第2の実施の形態]
本発明の第2の実施の形態にかかる排気浄化装置は、通路面積絞り手段によって排気通路の面積を絞るきっかけを触媒温度Tcatの変化から判断するように設定されている点で第1の実施の形態の排気浄化装置と異なっている。以下、第1の実施の形態と異なる点を中心に説明する。
[Second Embodiment]
The exhaust emission control apparatus according to the second embodiment of the present invention is the first embodiment in that it is set so that the trigger for reducing the area of the exhaust passage by the passage area restricting means is determined from the change in the catalyst temperature Tcat. It differs from the exhaust gas purification device of the form. The following description will focus on differences from the first embodiment.

すでに述べたように、還元触媒13の吸着可能量Vmaxは触媒温度Tcatが高くなるにしたがって減少する特性を有していることから、触媒温度Tcatが急激に上昇した場合には、吸着可能量Vmaxが急激に減少し、アンモニアの吸着量が飽和状態となってアンモニアが還元触媒13の下流側に流出する可能性が高くなる。そのため、本実施形態の排気浄化装置10は、触媒温度Tcatが急激に上昇し始めたときに排気圧力Pgasを上昇させて、吸着可能量Vmaxを増大させるように設定されている。   As already described, since the adsorbable amount Vmax of the reduction catalyst 13 has a characteristic of decreasing as the catalyst temperature Tcat increases, the adsorbable amount Vmax when the catalyst temperature Tcat increases rapidly. Decreases rapidly, the ammonia adsorption amount becomes saturated, and the possibility that ammonia flows out downstream of the reduction catalyst 13 increases. Therefore, the exhaust purification device 10 of the present embodiment is set to increase the exhaust pressure Pgas and increase the adsorbable amount Vmax when the catalyst temperature Tcat starts to increase rapidly.

具体的に、本実施形態において、制御装置30を構成する通路面積絞り手段制御部34は、触媒温度Tcatを継続的に読み込むとともにその変化率Xを算出し、変化率Xがあらかじめ設定された温度上昇率X0を超えたときに排気通路の面積を絞るように制御を行うようになっている。   Specifically, in the present embodiment, the passage area restricting means control unit 34 constituting the control device 30 continuously reads the catalyst temperature Tcat and calculates the change rate X, and the change rate X is a preset temperature. Control is performed so that the area of the exhaust passage is reduced when the rate of increase X0 is exceeded.

温度上昇率X0は任意の値に設定することができる。例えば、液体還元剤の噴射制御における目標吸着割合Rtgtが1に近いほど推定吸着量Vactが吸着可能量Vmaxに到達するまでの時間が短くなるため、設定されている目標吸着割合Rtgtが高いほど温度上昇率X0を小さい値に設定することが好ましい。また、温度上昇率X0は固定値であってもよいが、現在の吸着割合Rが小さいほど推定吸着量Vactが吸着可能量Vmaxに到達するまでの時間が長くなるため、現在の吸着割合Rに応じて、吸着割合Rが小さいほど温度上昇率X0が大きい値となるような可変値とすることもできる。   The temperature rise rate X0 can be set to an arbitrary value. For example, the closer the target adsorption rate Rtgt in the liquid reductant injection control to 1, the shorter the time it takes for the estimated adsorption amount Vact to reach the adsorbable amount Vmax, so the higher the set target adsorption rate Rtgt, the higher the temperature It is preferable to set the rate of increase X0 to a small value. The temperature increase rate X0 may be a fixed value, but the smaller the current adsorption rate R, the longer the time it takes for the estimated adsorption amount Vact to reach the adsorbable amount Vmax. Accordingly, it is possible to set a variable value such that the temperature increase rate X0 increases as the adsorption ratio R decreases.

また、通路面積絞り手段制御部34は、通路面積を絞った後においては第1の実施の形態と同様に、推定吸着量Vactが解除閾値Vβを下回ったか否かを監視し、推定吸着量Vactが解除閾値Vβを下回った場合に、排気通路の面積を元に戻すように制御信号を出力するようになっている。   Further, after the passage area is reduced, the passage area restricting means controller 34 monitors whether or not the estimated adsorption amount Vact is lower than the release threshold value Vβ, as in the first embodiment, and the estimated adsorption amount Vact. Is lower than the release threshold value Vβ, a control signal is output so as to restore the area of the exhaust passage.

このように、本実施形態の排気浄化装置10は、吸着可能量Vmaxが急激に減少するような状態が検知されたときに排気圧力を上昇させて還元触媒13の吸着可能量Vmaxを増大させる制御を行う。これにより、還元触媒13よりも下流側にアンモニアが流出するおそれが低減する。したがって、通路面積を絞らない通常の状態で液体還元剤の目標噴射量Qudtgtの演算に使用する目標吸着割合Rtgtを高く設定することができ、触媒効率ηを高めることができる。   As described above, the exhaust gas purification apparatus 10 according to the present embodiment controls to increase the exhaust pressure and increase the adsorbable amount Vmax of the reduction catalyst 13 when a state in which the adsorbable amount Vmax is rapidly decreased is detected. I do. Thereby, the possibility that ammonia flows out downstream of the reduction catalyst 13 is reduced. Therefore, the target adsorption ratio Rtgt used for calculating the target injection amount Qudtgt of the liquid reducing agent in a normal state where the passage area is not reduced can be set high, and the catalyst efficiency η can be increased.

[第3の実施の形態]
本発明の第3の実施の形態にかかる排気浄化装置は、通路面積絞り手段によって排気通路の面積を絞るきっかけを還元触媒の下流側でのNOX濃度から判断するように設定されている点でこれまでの実施の形態の排気浄化装置と異なっている。以下、第1の実施の形態と異なる点を中心に説明する。
[Third Embodiment]
The exhaust emission control apparatus according to the third embodiment of the present invention is set so that the trigger for reducing the area of the exhaust passage by the passage area restricting means is determined from the NO x concentration downstream of the reduction catalyst. This is different from the exhaust purification apparatus of the previous embodiments. The following description will focus on differences from the first embodiment.

本実施形態の排気浄化装置は、還元触媒の下流側における排気ガス中のアンモニア濃度Aを検出し、そのアンモニア濃度Aが上限閾値A0を超えたときに排気圧力Pgasを上昇させて、吸着可能量Vmaxを増大させるように設定されている。   The exhaust purification device of the present embodiment detects the ammonia concentration A in the exhaust gas on the downstream side of the reduction catalyst, increases the exhaust pressure Pgas when the ammonia concentration A exceeds the upper limit threshold A0, and can be adsorbed It is set to increase Vmax.

具体的に、本実施形態の排気浄化装置は、還元触媒の下流側にアンモニア濃度を検出可能なアンモニア濃度検出センサを備えている。また、制御装置には、アンモニア濃度検出センサのセンサ信号に基づいてアンモニア濃度を求めるアンモニア濃度検出部が備えられている。このアンモニア濃度検出部は、アンモニア濃度Aを継続的に検出するとともに上限閾値A0と比較し、アンモニア濃度Aが上限閾値A0を超えたときに排気通路の面積を絞るように通路面積絞り手段制御部に対して指示を送る。上限閾値A0は、還元触媒よりも下流側でアンモニアを分解する触媒等の有無や、排気浄化基準等に応じて、任意の値に設定することができる。   Specifically, the exhaust purification apparatus of this embodiment includes an ammonia concentration detection sensor that can detect the ammonia concentration on the downstream side of the reduction catalyst. Further, the control device is provided with an ammonia concentration detection unit that obtains the ammonia concentration based on the sensor signal of the ammonia concentration detection sensor. This ammonia concentration detection unit continuously detects the ammonia concentration A and compares it with the upper limit threshold A0. When the ammonia concentration A exceeds the upper limit threshold A0, the passage area restricting means control unit controls the exhaust passage area. Send instructions to. The upper limit threshold A0 can be set to an arbitrary value according to the presence or absence of a catalyst that decomposes ammonia on the downstream side of the reduction catalyst, the exhaust purification standard, and the like.

このように、本実施形態の排気浄化装置は、還元触媒よりも下流側でのアンモニア濃度が上限閾値A0を超えたときに排気圧力を上昇させて還元触媒の吸着可能量Vmaxを増大させる制御を行う。これにより、還元触媒よりも下流側に著しく多くのアンモニアが流出するおそれが低減する。したがって、通路面積を絞らない通常の状態で液体還元剤の目標噴射量Qudtgtの演算に使用する目標吸着割合Rtgtを高く設定することができ、触媒効率ηを高めることができる。   As described above, the exhaust purification apparatus of the present embodiment performs control to increase the exhaust pressure and increase the adsorbable amount Vmax of the reduction catalyst when the ammonia concentration downstream of the reduction catalyst exceeds the upper limit threshold A0. Do. As a result, the possibility of a significant amount of ammonia flowing downstream from the reduction catalyst is reduced. Therefore, the target adsorption ratio Rtgt used for the calculation of the target injection amount Qudtgt of the liquid reducing agent in a normal state where the passage area is not reduced can be set high, and the catalyst efficiency η can be increased.

5:内燃機関、10:排気浄化装置、11:排気管、13:還元触媒、15:NOXセンサ、20:通路面積絞り手段、26:排気温度センサ、30:制御装置、31:触媒温度演算部、32:還元剤噴射量演算部、33:還元剤供給装置制御部、34:通路面積絞り手段制御部、40:還元剤供給装置、41:貯蔵タンク、42:還元剤圧送手段、43:還元剤噴射弁 5: engine, 10: exhaust gas purification device, 11: exhaust pipe, 13: reduction catalyst, 15: NO X sensor 20: passage area throttle means, 26: exhaust gas temperature sensor, 30: controller, 31: catalyst temperature calculation Unit: 32: reducing agent injection amount calculating unit, 33: reducing agent supply device control unit, 34: passage area restricting means control unit, 40: reducing agent supply device, 41: storage tank, 42: reducing agent pressure feeding unit, 43: Reducing agent injection valve

Claims (5)

還元剤を吸着可能な選択還元触媒を用いて排気ガス中の窒素酸化物を還元するための内燃機関の排気浄化装置において、
前記選択還元触媒よりも上流側の排気通路に還元剤を供給するための還元剤供給手段と、
前記選択還元触媒の温度を推定する触媒温度推定手段と、
前記選択還元触媒よりも下流側の前記排気通路に備えられた通路面積絞り手段と、
前記通路面積絞り手段によって前記選択還元触媒が配置された領域の前記排気通路内の圧力を上昇させることにより前記選択還元触媒における前記還元剤の吸着可能量を増大させる制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine for reducing nitrogen oxides in exhaust gas using a selective reduction catalyst capable of adsorbing a reducing agent,
Reducing agent supply means for supplying a reducing agent to the exhaust passage upstream of the selective reduction catalyst;
Catalyst temperature estimating means for estimating the temperature of the selective reduction catalyst;
Passage area restricting means provided in the exhaust passage downstream of the selective reduction catalyst;
Control means for increasing the adsorbable amount of the reducing agent in the selective reduction catalyst by increasing the pressure in the exhaust passage in the region where the selective reduction catalyst is arranged by the passage area restricting means;
An exhaust emission control device for an internal combustion engine, comprising:
前記排気浄化装置は前記選択還元触媒における前記還元剤の吸着量を推定する吸着量演算手段を備え、
前記還元剤供給手段は、前記選択還元触媒における前記還元剤の吸着量が前記吸着可能量よりも少ない所定割合となるように前記還元剤を供給し、
前記制御手段は、前記還元剤の吸着量が前記吸着可能量に対して前記所定割合を超えるときに前記排気通路内の圧力を上昇させることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The exhaust purification device includes an adsorption amount calculation means for estimating an adsorption amount of the reducing agent in the selective reduction catalyst,
The reducing agent supply means supplies the reducing agent so that the amount of adsorption of the reducing agent in the selective reduction catalyst is a predetermined ratio smaller than the adsorbable amount,
The exhaust of the internal combustion engine according to claim 1, wherein the control means increases the pressure in the exhaust passage when the amount of the reducing agent adsorbed exceeds the predetermined ratio with respect to the adsorbable amount. Purification equipment.
前記制御手段は、前記選択還元触媒の温度の上昇速度が所定の閾値を超えたときに前記排気通路内の圧力を上昇させることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。   The exhaust purification of an internal combustion engine according to claim 1 or 2, wherein the control means increases the pressure in the exhaust passage when the rate of temperature increase of the selective reduction catalyst exceeds a predetermined threshold. apparatus. 前記排気浄化装置は前記選択還元触媒の下流側での前記還元剤濃度を検出する下流側還元剤濃度演算手段を備え、
前記制御手段は、前記還元剤濃度が所定値を越えたときに前記排気通路内の圧力を上昇させることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の排気浄化装置。
The exhaust purification device includes a downstream side reducing agent concentration calculating means for detecting the reducing agent concentration on the downstream side of the selective reduction catalyst,
The exhaust purification device for an internal combustion engine according to any one of claims 1 to 3, wherein the control means increases the pressure in the exhaust passage when the reducing agent concentration exceeds a predetermined value. .
前記制御手段は、前記選択還元触媒が活性化状態にあるときに前記排気通路内の圧力を上昇させる制御を実行可能であることを特徴とする請求項1〜4のいずれか一項に記載の内燃機関の排気浄化装置。   The said control means can perform control which raises the pressure in the said exhaust passage when the said selective reduction catalyst is in an activated state, The control method as described in any one of Claims 1-4 characterized by the above-mentioned. An exhaust purification device for an internal combustion engine.
JP2009287418A 2009-12-18 2009-12-18 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5414504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287418A JP5414504B2 (en) 2009-12-18 2009-12-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287418A JP5414504B2 (en) 2009-12-18 2009-12-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011127525A true JP2011127525A (en) 2011-06-30
JP5414504B2 JP5414504B2 (en) 2014-02-12

Family

ID=44290369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287418A Expired - Fee Related JP5414504B2 (en) 2009-12-18 2009-12-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5414504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167920A (en) * 2018-03-26 2019-10-03 マツダ株式会社 Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238336A (en) * 1997-02-26 1998-09-08 Toyota Motor Corp Exhaust gas cleaning device for internal combustion engine
JPH1150833A (en) * 1997-07-31 1999-02-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH11294142A (en) * 1998-04-14 1999-10-26 Toyota Motor Corp Nox purifier
JP2008128066A (en) * 2006-11-20 2008-06-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2009121413A (en) * 2007-11-16 2009-06-04 Toyota Motor Corp Apparatus for diagnosis of abnormality in exhaust gas purifuication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238336A (en) * 1997-02-26 1998-09-08 Toyota Motor Corp Exhaust gas cleaning device for internal combustion engine
JPH1150833A (en) * 1997-07-31 1999-02-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH11294142A (en) * 1998-04-14 1999-10-26 Toyota Motor Corp Nox purifier
JP2008128066A (en) * 2006-11-20 2008-06-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2009121413A (en) * 2007-11-16 2009-06-04 Toyota Motor Corp Apparatus for diagnosis of abnormality in exhaust gas purifuication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167920A (en) * 2018-03-26 2019-10-03 マツダ株式会社 Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP7155566B2 (en) 2018-03-26 2022-10-19 マツダ株式会社 Engine catalyst abnormality determination method and engine catalyst abnormality determination device

Also Published As

Publication number Publication date
JP5414504B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5843699B2 (en) Exhaust gas purification system for internal combustion engine
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
CN107448265B (en) Controlling nitrogen oxide emissions in the exhaust of an internal combustion engine
WO2006006481A1 (en) Method of controlling exhaust purification apparatus
JP6090257B2 (en) Exhaust gas purification device for internal combustion engine
JP4661814B2 (en) Exhaust gas purification device for internal combustion engine
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
JP2005240811A (en) Exhaust emission control device of internal-combustion engine
JP2008255905A (en) Exhaust emission control system of internal combustion engine
JP2009257226A (en) Exhaust emission control device for internal combustion engine
JP5914180B2 (en) Abnormality detection device for reducing agent supply device and reducing agent supply device
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP6187519B2 (en) Exhaust purification device
US20180230878A1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6911479B2 (en) Exhaust gas purification system control device
JP2010209737A (en) Exhaust emission control device for internal combustion engine
WO2015163235A1 (en) Exhaust purifying system
JP5414504B2 (en) Exhaust gas purification device for internal combustion engine
JP5880593B2 (en) Exhaust gas purification device for internal combustion engine
JP2016037903A (en) Internal combustion engine exhaust purification device
JP5749450B2 (en) SCR system
JP6627724B2 (en) Exhaust gas purification device
JP6877138B2 (en) Control device for reducing agent supply device
CN104395571A (en) Exhaust purification system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R151 Written notification of patent or utility model registration

Ref document number: 5414504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees