JP2011126735A - Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold - Google Patents

Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold Download PDF

Info

Publication number
JP2011126735A
JP2011126735A JP2009285913A JP2009285913A JP2011126735A JP 2011126735 A JP2011126735 A JP 2011126735A JP 2009285913 A JP2009285913 A JP 2009285913A JP 2009285913 A JP2009285913 A JP 2009285913A JP 2011126735 A JP2011126735 A JP 2011126735A
Authority
JP
Japan
Prior art keywords
release agent
silicon
mold
agent layer
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009285913A
Other languages
Japanese (ja)
Inventor
Motoyuki Yamada
素行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009285913A priority Critical patent/JP2011126735A/en
Publication of JP2011126735A publication Critical patent/JP2011126735A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold release agent composition for silicon casting capable of forming a mold release agent layer free of adhesion to melted and solidified metallic silicon, a method for preparing the same and a method for manufacturing a silicon casting mold. <P>SOLUTION: The mold release agent composition for silicon casting is prepared by suspending and dispersing silicon dioxide particles having an average particle diameter of 0.05-10 μm in a liquid and slurrying those. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、珪素鋳造用鋳型に塗布し、特にこれを焼成して離型剤層を形成するための珪素鋳造用離型剤組成物、その調製方法及び珪素鋳造用鋳型の製造方法に関する。   The present invention relates to a mold release agent composition for silicon casting, which is applied to a mold for silicon casting and, in particular, is fired to form a release agent layer, a preparation method thereof, and a method for manufacturing a mold for silicon casting.

珪素は半金属に分類される元素で、一般的な金属とは異なる性質を持つ元素として様々な分野で使用されている。例えば、鉄中の酸素原子を除去することを目的に、溶融した鉄中に脱酸剤の成分として導入されたり、アルミニウムの合金の主要成分として添加されたりするような冶金的、金属的な使用方法や、珪素と酸素が結合したシロキサン結合に様々な有機官能基を付加したシリコーン化合物などの使用方法と共に、珪素の重要な工業的利用方法であるところの半導体としての利用方法などがある。   Silicon is an element classified as a semi-metal, and is used in various fields as an element having properties different from those of general metals. For example, metallurgical and metallic uses that are introduced into molten iron as a deoxidizer component or added as a major component of aluminum alloys for the purpose of removing oxygen atoms in iron In addition to a method and a method of using a silicone compound in which various organic functional groups are added to a siloxane bond in which silicon and oxygen are bonded, there are a method of using silicon as an important industrial method of using silicon.

これらの用途のうち、冶金的、金属的使用方法と、シリコーン化合物としての使用方法は、珪素元素単体としてそのまま使用することはほとんどないが、半導体材料としての用途は、珪素単体での使用、更に言えば高純度化した珪素としての使用が前提となる用途である。この半導体用の用途を更に分けると、LSI等の半導体デバイス用ウェハー、太陽電池用ウェハー、スパッタリーグターゲット用、高純度雰囲気炉用反射断熱材用などの用途がある。このうち、単結晶シリコンとしての使用方法に限定されるLSI用ウェハーを除いては、多結晶シリコンの結晶形態で使用可能な用途である。   Among these uses, metallurgical and metallic usage methods and usage methods as silicone compounds are rarely used as silicon elements alone, but as semiconductor materials are used as silicon alone, In other words, the use is premised on use as highly purified silicon. This semiconductor application is further divided into applications such as wafers for semiconductor devices such as LSI, wafers for solar cells, sputter league targets, and reflective insulation for high-purity atmosphere furnaces. Among these, except for LSI wafers, which are limited to the method of use as single crystal silicon, the present invention can be used in a crystalline form of polycrystalline silicon.

多結晶シリコンの製造方法は、通常、珪素を型に鋳込むことにより製造される。多結晶シリコンの鋳造方法については、耐熱材料、例えば黒鉛やシリカなどの材料製のるつぼが用いられ、溶融珪素が接触する部分のるつぼ側に、離型剤となる物質を層状に附着させたものが広く使用されている。   The method for producing polycrystalline silicon is usually produced by casting silicon into a mold. As for the casting method of polycrystalline silicon, a crucible made of a heat-resistant material such as graphite or silica is used, and a substance as a release agent is attached in a layered manner to the crucible side where molten silicon contacts. Is widely used.

例えば、特開平10−182133号公報(特許文献1)では、黒鉛製るつぼの内壁にSiC又はCを離型剤として使用する技術が開示されている。
特開2002−292449号公報(特許文献2)では、窒化珪素からなる下地剤と、窒化珪素及び二酸化珪素を28:72〜75:25の重量比率で混合した混合材料とを重ねて塗布する方法が開示されている。
特開2004−291027号公報(特許文献3)では、窒化珪素と、水素ガス及び酸素ガスの高温火炎中に四塩化珪素を噴射して加熱処理して得られる非晶質微細シリカとを含有し、この微細シリカを窒化珪素との総量の10〜90重量%となるように混合したものを離型剤として使用する技術が開示されている。
特開2006−334671号公報(特許文献4)では、窒化珪素と二酸化珪素を含有したものをプラズマ溶射法で塗布して離型剤層とする方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 10-182133 (Patent Document 1) discloses a technique of using SiC or C as a mold release agent on the inner wall of a graphite crucible.
In Japanese Patent Laid-Open No. 2002-292449 (Patent Document 2), a method of applying a base material made of silicon nitride and a mixed material in which silicon nitride and silicon dioxide are mixed at a weight ratio of 28:72 to 75:25 in an overlapping manner. Is disclosed.
JP 2004-291027 A (Patent Document 3) contains silicon nitride and amorphous fine silica obtained by heat treatment by injecting silicon tetrachloride into a high-temperature flame of hydrogen gas and oxygen gas. A technique is disclosed in which fine silica mixed with silicon nitride in an amount of 10 to 90% by weight is used as a release agent.
Japanese Patent Laid-Open No. 2006-334671 (Patent Document 4) discloses a method of applying a material containing silicon nitride and silicon dioxide by a plasma spraying method to form a release agent layer.

このように、先行技術では、離型剤成分として主に窒化珪素と二酸化珪素が使用されている。これらのうち窒化珪素は耐熱性材料であり、離型剤主成分として機能している。一方、二酸化珪素は、溶融珪素中に徐々に溶解する性質があり、しかも溶融珪素と親和するので、溶融珪素の凝固時に強固に固着してしまい、離型性ではなく結着剤としての性質が発揮される材料である。それにもかかわらず、上記先行技術に二酸化珪素が離型剤成分として積極的に使用されているのは、本来の離型剤である窒化珪素層が脆く、機械的作用や熱的な変動などでるつぼから剥離しやすいので、その剥離を抑制するためのバインダーとしての目的が主であった。   Thus, in the prior art, silicon nitride and silicon dioxide are mainly used as the release agent component. Of these, silicon nitride is a heat-resistant material and functions as a main component of the release agent. On the other hand, silicon dioxide has a property of gradually dissolving in molten silicon, and has an affinity for molten silicon, so that it firmly adheres during solidification of the molten silicon, and has a property as a binder rather than a releasability. It is a material to be demonstrated. Nevertheless, silicon dioxide is actively used as a release agent component in the above prior art because the silicon nitride layer that is the original release agent is brittle, due to mechanical action and thermal fluctuations. Since it is easy to peel from the crucible, the purpose was mainly as a binder for suppressing the peeling.

窒化珪素や炭化珪素などの実効的な耐熱性材料としての離型剤成分に対して、バインダーとして機能する二酸化珪素は、その形態や離型剤(耐熱材料)との混合状態で、バインダー機能が大きく変化することは上述の先行技術でも確認できる。例えば、特開2004−291027号公報(特許文献3)では、従来の平均粒径20μm程度の二酸化珪素に代わりに、酸水素燃焼法で作製した平均粒径0.05μmの非晶質シリカを使用することで、粗大窒化珪素の周囲に微細シリカが取り巻き、窒化珪素同士が強固に付着する効果を誘発するとされる。   Silicon dioxide, which functions as a binder, has a binder function when mixed with a release agent (heat-resistant material) in relation to a release agent component as an effective heat-resistant material such as silicon nitride or silicon carbide. It can be confirmed by the above-mentioned prior art that the change is large. For example, in Japanese Patent Application Laid-Open No. 2004-291027 (Patent Document 3), amorphous silica having an average particle diameter of 0.05 μm produced by an oxyhydrogen combustion method is used instead of the conventional silicon dioxide having an average particle diameter of about 20 μm. By doing so, it is supposed that fine silica is surrounded around coarse silicon nitride and induces an effect that silicon nitride adheres firmly.

ところで、二酸化珪素は、溶融した珪素に溶解するので、このバインダー成分となる二酸化珪素は溶融珪素中に融解することになる。そのため、二酸化珪素と接触している離型成分の窒化珪素や炭化珪素などの耐熱性材料は、バインダー成分としての二酸化珪素が融出してしまうので、耐熱性材料はバインダーレスの状態となり、その一部は粉体として溶融珪素中に移動し、珪素の凝固後は珪素中に固形不純物として混入することとなる。この固形不純物が、溶融凝固した珪素の用途に対して影響を及ぼすことが無ければ、上記の「離型成分(耐熱性材料)+バインダー成分としての二酸化珪素」よりなる離型剤層は効果のある離型剤となるが、凝固珪素の用途上から、珪素中の固形不純物の存在が問題となる用途であれば、「離型成分(耐熱性材料)+バインダー成分としての二酸化珪素」なる離型剤層は良好な離型剤とはいえない。   By the way, since silicon dioxide is dissolved in molten silicon, the silicon dioxide serving as the binder component is melted in the molten silicon. For this reason, the heat-resistant material such as silicon nitride and silicon carbide as the release component that is in contact with the silicon dioxide melts the silicon dioxide as the binder component, and the heat-resistant material becomes a binderless state. The part moves as a powder into molten silicon, and after silicon is solidified, it is mixed as solid impurities in the silicon. If the solid impurities do not affect the use of the melted and solidified silicon, the release agent layer composed of the above-mentioned “release component (heat-resistant material) + silicon dioxide as the binder component” is effective. If the use of solidified silicon is a problem where the presence of solid impurities in silicon is a problem, the release agent is "release component (heat-resistant material) + silicon dioxide as binder component". The mold layer is not a good mold release agent.

以上から、離型剤成分として、窒化珪素や炭化珪素などの耐熱性物質を使用せず、バインダーである二酸化珪素がそのまま離型剤層となるのであれば、不純物混入を本質的に防止できることとなるが、今までの技術では、二酸化珪素を離型剤の主成分として離型剤層を形成すると、その離型剤層は溶融・凝固した珪素と固着してしまい、珪素との分離が不可能であった。   From the above, if a heat-resistant substance such as silicon nitride or silicon carbide is not used as a release agent component, and silicon dioxide as a binder becomes a release agent layer as it is, contamination of impurities can be essentially prevented. However, in the conventional technology, when a release agent layer is formed with silicon dioxide as the main component of the release agent, the release agent layer is fixed to the molten and solidified silicon, and separation from silicon is not possible. It was possible.

更には、図1に示すように、るつぼ1の表面に形成された二酸化珪素を主成分とする離型剤層2が溶融・凝固した珪素3と固着するばかりでなく、離型剤層2は、二酸化珪素や黒鉛製のるつぼ1とも固着してしまうので、結果として、溶融・凝固珪素3はるつぼ1と固着することになり、そのためにるつぼ材と珪素との熱膨張差によって冷却時に内部応力が発生して亀裂4が生じ、インゴットが割れてしまっていた。   Furthermore, as shown in FIG. 1, the release agent layer 2 mainly composed of silicon dioxide formed on the surface of the crucible 1 not only adheres to the molten and solidified silicon 3, but the release agent layer 2 As a result, the molten and solidified silicon 3 adheres to the crucible 1 and, due to the difference in thermal expansion between the crucible material and the silicon, causes internal stress during cooling. And crack 4 was generated, and the ingot was broken.

特開平10−182133号公報Japanese Patent Laid-Open No. 10-182133 特開2002−292449号公報JP 2002-292449 A 特開2004−291027号公報JP 2004-291027 A 特開2006−334671号公報JP 2006-334671 A

本発明は、上記事情に鑑みなされたものであり、従来離型成分として用いられていた窒化珪素や炭化珪素等の耐熱性物質を含有せず、二酸化珪素のみを離型成分として含む離型剤であっても、金属珪素がるつぼに固着することなく鋳造できる離型剤層を形成することができる珪素鋳造用離型剤組成物及びその調製方法並びにこの離型剤組成物を用いた珪素鋳造用鋳型の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and does not contain a heat-resistant substance such as silicon nitride or silicon carbide, which has been conventionally used as a mold release component, and contains only silicon dioxide as a mold release component. Even so, a release agent composition for silicon casting that can form a release agent layer that can be cast without the metal silicon being fixed to the crucible, a method for preparing the release agent composition, and a silicon casting using the release agent composition It aims at providing the manufacturing method of the casting mold.

本発明者は、上記目的を達成するため鋭意検討した結果、特定の平均粒子径を有する二酸化珪素粒子、好ましくは内部に気孔が存在しない中実な非晶質二酸化珪素粒子を水等の液体に懸濁分散させ、混合して得られる離型剤組成物(スラリー)が、これを珪素鋳造用鋳型に塗布し、焼成することで、溶融・凝固した金属珪素と固着することのない離型剤層を形成できることを見出し、本発明をなすに至った。   As a result of intensive investigations to achieve the above object, the present inventor turned silicon dioxide particles having a specific average particle diameter, preferably solid amorphous silicon dioxide particles having no pores, into a liquid such as water. A release agent composition (slurry) obtained by suspending and dispersing and mixing is applied to a silicon casting mold and baked to prevent the release agent from adhering to molten and solidified metallic silicon. The inventors have found that a layer can be formed, and have made the present invention.

従って、本発明は、下記珪素鋳造用離型剤組成物、その調製方法及び珪素鋳造用鋳型の製造方法を提供する。
請求項1:
平均粒子径0.05〜10μmの二酸化珪素粒子を液体に懸濁分散させ、スラリー化してなることを特徴とする珪素鋳造用離型剤組成物。
請求項2:
二酸化珪素粒子の粒径より計算した比表面積ScとBET比表面積Sbとの比Sb/Scが0.5〜4の範囲である請求項1記載の離型剤組成物。
請求項3:
二酸化珪素粒子が非晶質である請求項1又は2記載の離型剤組成物。
請求項4:
二酸化珪素粒子を液体に懸濁分散させた後、混合してスラリー化することを特徴とする珪素鋳造用離型剤組成物の調製方法。
請求項5:
請求項1乃至3のいずれか1項記載の離型剤組成物を珪素鋳造用鋳型に塗布した後、焼成して、上記鋳型表面に離型剤層を形成することを特徴とする珪素鋳造用鋳型の製造方法。
請求項6:
予め窒化珪素を含む離型剤を珪素鋳造用鋳型に塗布後、焼成して上記鋳型表面に窒化珪素離型剤層を形成し、次いで、この窒化珪素離型剤層上に重ねて請求項1乃至3のいずれか1項記載の離型剤組成物を塗布後、焼成して二酸化珪素離型剤層を形成することで、上記鋳型表面に二層以上の離型剤層を形成することを特徴とする珪素鋳造用鋳型の製造方法。
Accordingly, the present invention provides the following mold release agent composition for silicon casting, a method for preparing the same, and a method for producing a mold for silicon casting.
Claim 1:
A release agent composition for silicon casting, characterized in that silicon dioxide particles having an average particle diameter of 0.05 to 10 μm are suspended and dispersed in a liquid and slurried.
Claim 2:
The mold release agent composition according to claim 1, wherein the ratio Sb / Sc of the specific surface area Sc and the BET specific surface area Sb calculated from the particle diameter of the silicon dioxide particles is in the range of 0.5-4.
Claim 3:
The release agent composition according to claim 1 or 2, wherein the silicon dioxide particles are amorphous.
Claim 4:
A method for preparing a release agent composition for casting silicon, wherein the silicon dioxide particles are suspended and dispersed in a liquid and then mixed to form a slurry.
Claim 5:
A mold release agent composition according to any one of claims 1 to 3 is applied to a silicon casting mold and then fired to form a mold release agent layer on the mold surface. Mold manufacturing method.
Claim 6:
2. A mold release agent containing silicon nitride is applied in advance to a silicon casting mold and then fired to form a silicon nitride release agent layer on the mold surface, and then overlaid on the silicon nitride release agent layer. After applying the release agent composition according to any one of claims 1 to 3, firing to form a silicon dioxide release agent layer, thereby forming two or more release agent layers on the mold surface. A method for producing a silicon casting mold.

本発明によれば、溶融・凝固した金属珪素と固着することのない離型剤層を形成できる珪素鋳造用離型剤組成物、その調製方法及び珪素鋳造用鋳型の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the mold release agent composition for silicon casting which can form the mold release agent layer which does not adhere to the molten and solidified metal silicon, its preparation method, and the manufacturing method of a silicon casting mold can be provided.

従来の離型剤層を有するるつぼで珪素を溶融したときの状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows a state when silicon | silicone is fuse | melted with the crucible which has the conventional mold release agent layer. 本発明の離型剤層の珪素溶融使用後の表面の光学顕微鏡写真である。It is an optical microscope photograph of the surface after the silicon melting use of the release agent layer of the present invention. 本発明の離型剤層を有するるつぼの断面の光学顕微鏡写真である。It is an optical microscope photograph of the cross section of the crucible which has a mold release agent layer of this invention. 本発明の離型剤層を有するるつぼで珪素を溶融したときの状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows a state when silicon | silicone is fuse | melted with the crucible which has a mold release agent layer of this invention.

本発明の離型剤組成物は、平均粒子径0.05〜10μmの二酸化珪素粒子を液体に懸濁分散させ、混合してスラリー化してなることを特徴とする。   The release agent composition of the present invention is characterized in that silicon dioxide particles having an average particle size of 0.05 to 10 μm are suspended and dispersed in a liquid and mixed to form a slurry.

本発明で用いられる二酸化珪素粒子としては、水晶を粉砕した微細粒子(粉状粒子)や、珪素化合物を酸化させて製造するヒューム状二酸化珪素等種々の形態の二酸化珪素粒子が挙げられる。   Examples of the silicon dioxide particles used in the present invention include various types of silicon dioxide particles such as fine particles (powder particles) obtained by pulverizing quartz and fumed silicon dioxide produced by oxidizing a silicon compound.

ここで、上述したように、溶融珪素は二酸化珪素とよく濡れ、離型剤条件によっては凝固時に強固に固着してしまうために、従来、二酸化珪素を主成分とする離型剤は珪素溶融用の離型剤として使用できなかった。即ち、珪素溶融時に曝される珪素の溶融温度である1450℃においては、離型剤である二酸化珪素が焼結する温度であるので、離型剤層の二酸化珪素が強固に焼結すると共に、るつぼ材である二酸化珪素やカーボン材等の耐火性材料とも固着している状態となっていた。このような離型剤層が形成されたるつぼで珪素を溶融すると、「るつぼ−離型剤層−溶融・凝固珪素」が固着してしまうので、珪素の凝固時に珪素インゴットが割れてしまっていた。   Here, as described above, the molten silicon wets well with silicon dioxide, and depending on the release agent conditions, it firmly adheres during solidification. Therefore, conventionally, a release agent mainly composed of silicon dioxide is used for melting silicon. Could not be used as a mold release agent. That is, at 1450 ° C., which is the melting temperature of silicon exposed when silicon is melted, is a temperature at which silicon dioxide as a release agent sinters, so that silicon dioxide in the release agent layer is strongly sintered, It was in a state where the crucible material such as silicon dioxide or carbon material was fixed. If silicon is melted in a crucible in which such a release agent layer is formed, the "crucible-release agent layer-melted / solidified silicon" is fixed, so that the silicon ingot was broken during the solidification of silicon. .

このような固着現象の対策として、本発明者が検討した結果、二酸化珪素粒子として、粒径が0.05〜10μmで、かつ、その粒径より計算した比表面積値Scと、BET比表面積計で測定した比表面積値Sbとの比Sb/Scが0.5〜4の範囲であり、非晶質である二酸化珪素粒子を、適当なバインダー成分などと共に水などの分散媒とよく撹拌し、スラリー化した状態でるつぼ(鋳型)に塗布、乾燥した後に、焼成及び1450℃以上で処理することにより形成した離型剤層を使用することで、るつぼと金属珪素の固着現象の発生しない乃至は固着現象が発生したとしても離型剤層やるつぼがその機能を損なう程に崩壊することなく鋳造が達成できる。   As a result of the study by the present inventor as a countermeasure against such a sticking phenomenon, the silicon dioxide particles have a particle diameter of 0.05 to 10 μm and a specific surface area value Sc calculated from the particle diameter, and a BET specific surface area meter. The ratio Sb / Sc to the specific surface area value Sb measured in (5) is in the range of 0.5 to 4, and the amorphous silicon dioxide particles are stirred well with a dispersion medium such as water together with an appropriate binder component, Applying and drying to a crucible (mold) in a slurry state, and then using a release agent layer formed by firing and processing at 1450 ° C. or higher, no sticking phenomenon between the crucible and metal silicon occurs. Even if the sticking phenomenon occurs, casting can be achieved without collapsing to such an extent that the release agent layer and the crucible impair the function.

即ち、本発明の二酸化珪素粒子を含有する離型剤組成物は、離型剤スラリー塗布後の焼成と、実際に使用する金属珪素の融点である1450℃以上に昇温することで、離型剤層中に大小多くの気孔をもった離型剤層となる。図2は、本発明の離型剤層の珪素溶融使用後の表面の光学顕微鏡による写真であり、図3は、本発明の離型剤層5(厚さw=約200μm)を有するるつぼ1の断面の光学顕微鏡写真であるが、このように多数の気孔が存在することによって、離型剤層の強度が適度に弱くなり、少しの加重印加で離型剤層が崩れる程となる。これを図4を用いて説明すると、本発明の二酸化珪素離型剤層5を有するるつぼ1で珪素3を溶融すると、溶融珪素の凝固時に珪素と二酸化珪素の固着がおきても、離型剤層5の強度が適度に弱いため、珪素近傍のごく一部の離型剤層、特には珪素と接触している離型剤層部分だけが崩壊することで、離型剤層のその他の部位やるつぼ本体に割れが発生することはない。   That is, the release agent composition containing the silicon dioxide particles of the present invention is released by firing after applying the release agent slurry and raising the temperature to 1450 ° C. or higher, which is the melting point of the metal silicon actually used. The release agent layer has a large and small number of pores in the agent layer. FIG. 2 is a photograph taken by an optical microscope of the surface of the release agent layer of the present invention after silicon melting use, and FIG. 3 shows a crucible 1 having the release agent layer 5 (thickness w = about 200 μm) of the present invention. As shown in the optical micrograph of the cross section, the presence of a large number of pores as described above causes the strength of the release agent layer to be moderately weakened, and the release agent layer collapses with a slight load application. This will be explained with reference to FIG. 4. When the silicon 3 is melted in the crucible 1 having the silicon dioxide release agent layer 5 of the present invention, the mold release agent even if the silicon and silicon dioxide are fixed during solidification of the molten silicon. Since the strength of the layer 5 is moderately weak, only a part of the release agent layer in the vicinity of silicon, in particular, only the part of the release agent layer in contact with silicon collapses, so that other parts of the release agent layer Cracks do not occur in the crucible body.

本発明では、この内部に大小多くの気孔をもった離型剤層を形成するための条件として、平均粒子径が0.05〜10μm、好ましくは0.1〜2.5μmである二酸化珪素粒子を使用する。この粒径の範囲の二酸化珪素粒子が、焼成と金属珪素溶融温度下の高温に曝されることで、二酸化珪素粒子同士が焼結するが、粒子サイズが小さすぎると焼結が緻密化しすぎてしまい、離型剤層の気孔の割合が低下してしまうので、離型剤層と珪素が固着してしまう場合がある。また、粒径が大きすぎると離型剤層中の気泡が大型化して、その気泡中に珪素が浸透し、同様に離型剤層と珪素が固着してしまう場合がある。この場合、二酸化珪素粒子が結晶質であると、結晶質を維持したまま焼結することとなり、焼結時の二酸化珪素粒子の移動速度が非晶質のものよりも低下するので焼結しづらく、しかも二酸化珪素焼結層(離型剤層)中の気孔の割合も低くなってしまう場合があるので、二酸化珪素粒子は非晶質であることが好ましい。離型剤層中の気孔の存在で離型剤層の強度が適度に弱くなり、珪素とるつぼを分離する際に離型剤層だけが崩れることによって、珪素とるつぼが固着しないこととなる。
なお、二酸化珪素粒子の粒子径は電子顕微鏡像あるいは遠心沈降式粒度分布測定で測定することができるが、本発明においては電子顕微鏡像から得られる値である。
In the present invention, silicon dioxide particles having an average particle diameter of 0.05 to 10 μm, preferably 0.1 to 2.5 μm, as a condition for forming a release agent layer having a large and small pores therein. Is used. Silicon dioxide particles within this particle size range are exposed to high temperatures under the firing and melting temperature of metal silicon, so that the silicon dioxide particles sinter, but if the particle size is too small, the sintering becomes too dense. As a result, the ratio of the pores in the release agent layer is lowered, so that the release agent layer and silicon may be fixed. Further, if the particle size is too large, the bubbles in the release agent layer are enlarged, and silicon penetrates into the bubbles, and the release agent layer and silicon may be fixed in the same manner. In this case, if the silicon dioxide particles are crystalline, the silicon dioxide particles are sintered while maintaining the crystallinity, and the movement speed of the silicon dioxide particles during the sintering is lower than that of the amorphous one, so that the sintering is difficult. Moreover, since the proportion of pores in the silicon dioxide sintered layer (release agent layer) may be lowered, the silicon dioxide particles are preferably amorphous. Due to the presence of pores in the release agent layer, the strength of the release agent layer is moderately weakened, and only the release agent layer collapses when the silicon release crucible is separated, so that the silicon release crucible does not adhere.
In addition, although the particle diameter of a silicon dioxide particle can be measured by an electron microscope image or a centrifugal sedimentation type particle size distribution measurement, it is a value obtained from an electron microscope image in the present invention.

また、本発明の二酸化珪素粒子は、球状として、その粒径より計算した比表面積値Scと、BET比表面積計で測定した比表面積値Sbとの比Sb/Scが、0.5〜4、特に0.8〜2の範囲であるのがよい。これは、使用する二酸化珪素粒子がその粒内に多くの開気孔がないことが望ましいためである。二酸化珪素粒子中に気孔が広く存在すると、珪素溶融温度下の高温に曝されるときに、粒子内部の気孔が膨張することで二酸化珪素粒子の実効的なサイズが低下してしまい、上記の粒径が小さい場合と同様の結果になってしまうからである。そのため、二酸化珪素粒子の形状としては、中実な球状であることが好ましい。このような二酸化珪素粒子は、市販品を用いることができ、例えば、商品名:アドマファイン SO−C5,SO−E1,SO−E2((株)アドマテックス製)等を用いることができる。   In addition, the silicon dioxide particles of the present invention are spherical, and the ratio Sb / Sc between the specific surface area value Sc calculated from the particle diameter and the specific surface area value Sb measured with a BET specific surface area meter is 0.5 to 4, In particular, it should be in the range of 0.8-2. This is because it is desirable that the silicon dioxide particles used do not have many open pores in the particles. If the pores are widely present in the silicon dioxide particles, the effective size of the silicon dioxide particles decreases due to expansion of the pores inside the particles when exposed to a high temperature under the silicon melting temperature, and the above particles This is because the same result as when the diameter is small is obtained. Therefore, it is preferable that the silicon dioxide particles have a solid spherical shape. A commercial item can be used for such a silicon dioxide particle, for example, brand name: Admafine SO-C5, SO-E1, SO-E2 (made by Admatechs Co., Ltd.) etc. can be used.

本発明の組成物(スラリー)中の二酸化珪素粒子の含有割合は特に制限されないが、スラリーの固形分全量に対して5〜50質量%が好ましく、より好ましくは20〜40質量%である。   The content ratio of silicon dioxide particles in the composition (slurry) of the present invention is not particularly limited, but is preferably 5 to 50% by mass, more preferably 20 to 40% by mass with respect to the total solid content of the slurry.

本発明の離型剤組成物は、二酸化珪素粒子に対し、スラリー化する水やエタノール、ブチルアルコール等のアルコール類などの液体や、ポリビニルアルコール(PVA)やセルロースなどのバインダー成分、スラリー化時に発生する気泡を消泡するための界面活性剤等を適宜添加した後に、ボールミル、ニーダー、スクリュー撹拌機等の混合機を用いて十分撹拌してスラリーとし、このスラリーを刷毛などによる塗布や、スプレー噴霧などによる塗布でるつぼ(鋳型)内壁に塗布して、離型剤層を形成する。この塗布方法としてどのような方法を選択するかによって、スラリーの粘度や、界面活性剤等の濃度を適宜調整することが好ましい。   The release agent composition of the present invention is generated when water is slurried with respect to silicon dioxide particles, liquids such as alcohols such as water, ethanol and butyl alcohol, binder components such as polyvinyl alcohol (PVA) and cellulose, and slurry. After appropriately adding a surfactant or the like to defoam bubbles, the mixture is sufficiently stirred using a mixer such as a ball mill, kneader, screw stirrer, etc., and this slurry is applied by brush or spraying. A mold release agent layer is formed by applying to the inner wall of the crucible (mold) by application. It is preferable to appropriately adjust the viscosity of the slurry and the concentration of the surfactant or the like depending on what method is selected as the coating method.

スラリー塗布された直後のるつぼは、スラリーの液体成分で湿潤状態であるので、これを乾燥させることを目的に50〜200℃程度の中温で適当な時間保持する工程が取られる。この工程によって離型剤層は湿潤状態ではなくなるので、重ね塗りで離型剤層の上に重ねて更にスラリーを塗布するなどして所望の離型剤層厚とする。   Since the crucible immediately after the slurry is applied is wet with the liquid component of the slurry, a step of holding it at an intermediate temperature of about 50 to 200 ° C. for an appropriate time is taken for the purpose of drying it. Since the release agent layer is not wet by this step, a desired release agent layer thickness is obtained by, for example, applying a slurry on the release agent layer by overcoating.

本発明の二酸化珪素離型剤層は、上述のように溶融珪素と接触しているので、離型剤層は珪素に徐々に溶解し、徐々に厚みを減少させる。従って、本発明においては、離型剤層厚が減少することを前提に離型剤層の厚さを決定しなければならない。この点に関し、本発明者の検討によれば、溶融時間や溶融温度にも依存するが、離型剤層の厚さは30μm以上、望ましくは100μm以上、特に400μm以上とするのがよい。また、離型剤層の厚みが厚すぎると、無駄に離型剤を使用することになって不経済となるので、通常はその厚みは1mmあれば十分であり、500μm以下が好ましく、特に450μm以下であることが好ましい。もし溶融時間が極端に長く、離型剤成分の二酸化珪素がどの程度珪素中に溶解するか不明な場合は、離型剤層として十分な厚みを持たせると共に、離型剤層を二酸化珪素以外の層を含む二層以上とし、るつぼ側の層には、例えば窒化珪素を主成分として含む離型剤を最小限塗布し、乾燥して窒化珪素離型剤層を形成した後、この上から重ねて本発明の二酸化珪素粒子を含む離型剤組成物を塗布して二酸化珪素離型剤層を形成することができる。   Since the silicon dioxide release agent layer of the present invention is in contact with molten silicon as described above, the release agent layer gradually dissolves in silicon and gradually decreases in thickness. Therefore, in the present invention, it is necessary to determine the thickness of the release agent layer on the assumption that the release agent layer thickness decreases. In this regard, according to the study of the present inventor, although depending on the melting time and the melting temperature, the thickness of the release agent layer is preferably 30 μm or more, desirably 100 μm or more, particularly 400 μm or more. Further, if the thickness of the release agent layer is too thick, it becomes uneconomical to use the release agent unnecessarily. Therefore, it is usually sufficient that the thickness is 1 mm, preferably 500 μm or less, particularly 450 μm. The following is preferable. If the melting time is extremely long and it is unclear how much the release agent component silicon dioxide dissolves in silicon, make the release agent layer thick enough and use a release agent layer other than silicon dioxide. The layer on the crucible side is coated with a release agent containing, for example, silicon nitride as a main component, and dried to form a silicon nitride release agent layer. The release agent composition containing the silicon dioxide particles of the present invention can be applied again to form a silicon dioxide release agent layer.

更に、上述のように、本発明の離型剤層は微細な気孔を多数有する構造をもつ。そして、この気孔が微細なため、溶融した珪素は気孔内部には侵入せず、離型剤層表面だけで二酸化珪素と接していることとなる。この気孔は、基本的に開気孔であるので、気孔内にまで溶融珪素が入り込めば離型剤層全体に珪素が浸透することとなって、離型剤層の役割を果たさなくなってしまうが、本発明においては気孔が微細であることによって珪素が浸透せずに離型剤層としての効果が発揮できることになる。   Furthermore, as described above, the release agent layer of the present invention has a structure having many fine pores. Since the pores are fine, the molten silicon does not enter the pores and is in contact with the silicon dioxide only on the surface of the release agent layer. Since these pores are basically open pores, if molten silicon penetrates into the pores, the silicon penetrates the entire release agent layer, and the role of the release agent layer is no longer fulfilled. In the present invention, since the pores are fine, the effect as a release agent layer can be exhibited without the penetration of silicon.

所望の離型剤層が形成できたら、この離型剤層が塗布されたるつぼを焼成する。焼成の主な目的は、離型剤層のバインダー成分や有機材料成分を離型剤層から蒸発や酸化反応等で除去することで、400〜1200℃の高温で10分〜2時間処理するのがよい。この場合、るつぼ材質が処理する温度で酸化されない物質、例えば炭化珪素、アルミナ、二酸化珪素などの酸化物製であるときは、処理雰囲気は大気等の酸化雰囲気とすることができるが、るつぼ材がグラファイトなど焼成温度で酸化されてしまう材料の際は、アルゴンや窒素などの不活性な雰囲気下で焼成するのがよい。
このようにして焼成した二酸化珪素離型剤層を有するるつぼは、特に金属珪素の溶融用として好適に使用することができる。
When a desired release agent layer can be formed, the crucible coated with the release agent layer is fired. The main purpose of firing is to remove the binder component and organic material component of the release agent layer from the release agent layer by evaporation, oxidation reaction, etc., and to treat at a high temperature of 400 to 1200 ° C. for 10 minutes to 2 hours. Is good. In this case, when the crucible material is made of a substance that is not oxidized at the processing temperature, for example, an oxide such as silicon carbide, alumina, or silicon dioxide, the processing atmosphere can be an oxidizing atmosphere such as the atmosphere. In the case of a material that is oxidized at a firing temperature such as graphite, it is preferable to fire in an inert atmosphere such as argon or nitrogen.
The crucible having the silicon dioxide release agent layer thus fired can be suitably used particularly for melting metal silicon.

以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例中、部は質量部を表す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example. In addition, in the following example, a part represents a mass part.

[実施例1]
平均粒子径0.5μm、BET比表面積Sb5.5m2/g、その粒子サイズより計算した比表面積値Sc5.2m2/gとBET比表面積計で測定した比表面積値Sbとの比Sb/Scが1.1である、非晶質の二酸化珪素粉(商品名:アドマファイン SO−E2、(株)アドマテックス製)1部、PVA1.8部、水1.8部及びブチルアルコール0.001部を樹脂製のボールミルに入れ、このボールミルを5時間回転させることで二酸化珪素を主成分としたスラリーを調製した。
このスラリーをシリカ製のるつぼの内壁全面に刷毛で塗布し、50℃の乾燥器で1時間乾燥させた。乾燥後離型剤層の厚みを測定したところ100μmであった。この塗布、乾燥を4回繰り返して400μm厚の離型剤層をシリカ製るつぼの内壁に形成した。
この離型剤層付きのるつぼを電気炉に入れて、大気中、1000℃で2時間焼成した。焼成後の離型剤層は、指先で擦ると離型剤のシリカが剥がれるものの、離型剤とるつぼが剥離するようなことはなかった。
[Example 1]
Average particle diameter 0.5 μm, BET specific surface area Sb 5.5 m 2 / g, ratio of specific surface area value Sc 5.2 m 2 / g calculated from the particle size and specific surface area value Sb measured by BET specific surface area meter Sb / Sc Amorphous silicon dioxide powder (trade name: Admafine SO-E2, manufactured by Admatechs Co., Ltd.) 1 part, PVA 1.8 parts, water 1.8 parts and butyl alcohol 0.001 Part was placed in a resin ball mill, and this ball mill was rotated for 5 hours to prepare a slurry mainly composed of silicon dioxide.
This slurry was applied to the entire inner wall of the silica crucible with a brush and dried in a dryer at 50 ° C. for 1 hour. When the thickness of the release agent layer after drying was measured, it was 100 μm. This coating and drying were repeated 4 times to form a release agent layer having a thickness of 400 μm on the inner wall of the silica crucible.
This crucible with a release agent layer was placed in an electric furnace and baked in air at 1000 ° C. for 2 hours. The release agent layer after firing peeled off the release agent silica when rubbed with a fingertip, but the release agent and crucible were not peeled off.

このるつぼに珪素を入れてから、電気炉にて1500℃で珪素を溶融した後に炉内でるつぼを徐々に降下することでるつぼ底から珪素を凝固させた。
電気炉を冷却後るつぼを取り出したところ、るつぼはクラックが入っていたものの、るつぼと珪素の融着は発生していなかった。
After putting silicon into the crucible, the silicon was melted at 1500 ° C. in an electric furnace, and then the crucible was gradually lowered in the furnace to solidify the silicon from the bottom of the crucible.
When the crucible was taken out after cooling the electric furnace, the crucible was cracked, but no fusion between the crucible and silicon occurred.

[実施例2]
平均粒子径0.25μm、比表面積Sb16m2/g、Sb/Scが1.6である、非晶質の二酸化珪素粉(商品名:アドマファイン SO−E1、(株)アドマテックス製)を使用する以外は実施例1と同様の処理にてスラリーを調製し、同様の方法で塗布、乾燥、焼成を実施した。離型剤層の厚さは420μmであった。
これを用いて実施例1と同様に珪素を溶融、凝固させたところ、るつぼはクラックが入っていたものの、るつぼと珪素の融着は発生していなかった。
[Example 2]
Amorphous silicon dioxide powder (trade name: Admafine SO-E1, manufactured by Admatechs Co., Ltd.) having an average particle size of 0.25 μm, specific surface area Sb16 m 2 / g, and Sb / Sc of 1.6 is used. A slurry was prepared by the same treatment as in Example 1 except that coating, drying, and baking were performed in the same manner. The thickness of the release agent layer was 420 μm.
When this was used to melt and solidify silicon in the same manner as in Example 1, the crucible had cracks, but no fusion between the crucible and silicon occurred.

[実施例3]
平均粒子径2.2μm、比表面積Sb1.9m2/g、Sb/Scが1.6である、非晶質の二酸化珪素粉(商品名:アドマファイン SO−C5、(株)アドマテックス製)を使用する以外は実施例1と同様の処理にてスラリーを調製し、同様の方法で塗布、乾燥、焼成を実施した。離型剤層の厚さは420μmであった。
これを用いて実施例1と同様に珪素を溶融、凝固させたところ、るつぼはクラックが入っていたものの、るつぼと珪素の融着は発生していなかった。
[Example 3]
Amorphous silicon dioxide powder having an average particle diameter of 2.2 μm, a specific surface area Sb of 1.9 m 2 / g, and Sb / Sc of 1.6 (trade name: Admafine SO-C5, manufactured by Admatechs) A slurry was prepared by the same treatment as in Example 1 except that was used, and coating, drying, and firing were performed in the same manner. The thickness of the release agent layer was 420 μm.
When this was used to melt and solidify silicon in the same manner as in Example 1, the crucible had cracks, but no fusion between the crucible and silicon occurred.

[比較例1]
平均粒子径0.02μm、比表面積Sb90m2/g、その粒子サイズより計算した比表面積値ScとBET比表面積計で測定した比表面積値Sbとの比Sb/Scが0.7である、非晶質の二酸化珪素粉(商品名:アエロジル90、エボニック(株)製)1部、PVA1.8部、水1.8部及びブチルアルコール0.001部を樹脂製のボールミルに入れ、このボールミルを5時間回転させることで二酸化珪素を主成分としたスラリーを調製した。
このスラリーをシリカ製のるつぼの内壁全面に刷毛で塗布し、50℃の乾燥器で1時間乾燥させた。乾燥後離型剤層の厚みを測定したところ80μmであった。この塗布、乾燥を5回繰り返して400μm厚の離型剤層をシリカ製るつぼの内壁に形成した。
この離型剤層付きのるつぼを電気炉に入れて、大気中、1000℃で2時間焼成した。焼成後の離型剤層は、指先で擦ると離型剤のシリカが剥がれるものの、離型剤とるつぼが剥離するようなことはなかった。
[Comparative Example 1]
Average particle size 0.02 μm, specific surface area Sb 90 m 2 / g, ratio Sb / Sc of specific surface area value Sc calculated from the particle size and specific surface area value Sb measured by BET specific surface area meter is 0.7, 1 part of crystalline silicon dioxide powder (trade name: Aerosil 90, manufactured by Evonik Co., Ltd.), 1.8 parts of PVA, 1.8 parts of water and 0.001 part of butyl alcohol are placed in a resin ball mill. A slurry containing silicon dioxide as a main component was prepared by rotating for 5 hours.
This slurry was applied to the entire inner wall of the silica crucible with a brush and dried in a dryer at 50 ° C. for 1 hour. It was 80 micrometers when the thickness of the mold release agent layer was measured after drying. This coating and drying were repeated 5 times to form a release agent layer having a thickness of 400 μm on the inner wall of the silica crucible.
This crucible with a release agent layer was placed in an electric furnace and baked in air at 1000 ° C. for 2 hours. The release agent layer after firing peeled off the release agent silica when rubbed with a fingertip, but the release agent and crucible were not peeled off.

このるつぼに珪素を入れてから、電気炉にて1500℃で珪素を溶融した後に炉内でるつぼを徐々に降下することでるつぼ底から珪素を凝固させた。
電気炉を冷却後るつぼを取り出したところ、るつぼと珪素の界面の30%程度が融着していた。
After putting silicon into the crucible, the silicon was melted at 1500 ° C. in an electric furnace, and then the crucible was gradually lowered in the furnace to solidify the silicon from the bottom of the crucible.
When the crucible was taken out after cooling the electric furnace, about 30% of the interface between the crucible and silicon was fused.

1 るつぼ
2 従来の離型剤層
3 金属珪素
4 亀裂
5 本発明の離型剤層
DESCRIPTION OF SYMBOLS 1 Crucible 2 Conventional release agent layer 3 Metallic silicon 4 Crack 5 Release agent layer of this invention

Claims (6)

平均粒子径0.05〜10μmの二酸化珪素粒子を液体に懸濁分散させ、スラリー化してなることを特徴とする珪素鋳造用離型剤組成物。   A release agent composition for silicon casting, characterized in that silicon dioxide particles having an average particle size of 0.05 to 10 μm are suspended and dispersed in a liquid to form a slurry. 二酸化珪素粒子の粒径より計算した比表面積ScとBET比表面積Sbとの比Sb/Scが0.5〜4の範囲である請求項1記載の離型剤組成物。   The mold release agent composition according to claim 1, wherein the ratio Sb / Sc of the specific surface area Sc and the BET specific surface area Sb calculated from the particle diameter of the silicon dioxide particles is in the range of 0.5-4. 二酸化珪素粒子が非晶質である請求項1又は2記載の離型剤組成物。   The release agent composition according to claim 1 or 2, wherein the silicon dioxide particles are amorphous. 二酸化珪素粒子を液体に懸濁分散させた後、混合してスラリー化することを特徴とする珪素鋳造用離型剤組成物の調製方法。   A method for preparing a release agent composition for casting silicon, wherein the silicon dioxide particles are suspended and dispersed in a liquid and then mixed to form a slurry. 請求項1乃至3のいずれか1項記載の離型剤組成物を珪素鋳造用鋳型に塗布した後、焼成して、上記鋳型表面に離型剤層を形成することを特徴とする珪素鋳造用鋳型の製造方法。   A mold release agent composition according to any one of claims 1 to 3 is applied to a silicon casting mold and then fired to form a mold release agent layer on the mold surface. Mold manufacturing method. 予め窒化珪素を含む離型剤を珪素鋳造用鋳型に塗布後、焼成して上記鋳型表面に窒化珪素離型剤層を形成し、次いで、この窒化珪素離型剤層上に重ねて請求項1乃至3のいずれか1項記載の離型剤組成物を塗布後、焼成して二酸化珪素離型剤層を形成することで、上記鋳型表面に二層以上の離型剤層を形成することを特徴とする珪素鋳造用鋳型の製造方法。   2. A mold release agent containing silicon nitride is applied in advance to a silicon casting mold and then fired to form a silicon nitride release agent layer on the mold surface, and then overlaid on the silicon nitride release agent layer. After applying the release agent composition according to any one of claims 1 to 3, firing to form a silicon dioxide release agent layer, thereby forming two or more release agent layers on the mold surface. A method for producing a silicon casting mold characterized by the above.
JP2009285913A 2009-12-17 2009-12-17 Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold Pending JP2011126735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285913A JP2011126735A (en) 2009-12-17 2009-12-17 Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285913A JP2011126735A (en) 2009-12-17 2009-12-17 Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold

Publications (1)

Publication Number Publication Date
JP2011126735A true JP2011126735A (en) 2011-06-30

Family

ID=44289759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285913A Pending JP2011126735A (en) 2009-12-17 2009-12-17 Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold

Country Status (1)

Country Link
JP (1) JP2011126735A (en)

Similar Documents

Publication Publication Date Title
CA2624887C (en) Crucible for the crystallization of silicon and process for making the same
JP4912598B2 (en) Thermal spray powder
TW200540130A (en) Crucible for the crystallization of silicon
JP2004131317A (en) Process for strengthening quartz glass member and strengthening-treated quartz glass crucible
JP2009062573A (en) Rotary disk used for centrifugal atomization method, and centrifugal atomization method using the same
WO2014036864A1 (en) Crucible for melting crystalline silicon, method for producing crucible and spray coating liquid
EP2025780A2 (en) Silicon release coating, method of making same, and method of using same
JP4328161B2 (en) Silicon casting mold
FR2691456A1 (en) A novel process for producing sintered vitreous silica refractory material, novel grain mixture and vitreous silica particles, and novel sintered vitreous silica material.
WO2017046517A1 (en) Melted magnesium aluminate grain rich in magnesium
JP2011089161A (en) Composite material
JP2005125380A (en) Mold for casting silicon and its production method
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
JP2011126735A (en) Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold
JP2009274905A (en) Crucible for melting silicon
JP2011126736A (en) Mold release agent composition for silicon casting, method for preparing the same and method for manufacturing silicon casting mold
JP6898509B1 (en) Joint layer structure
JP2010052996A (en) Vessel for producing polycrystalline silicon
JP2003041357A (en) Silicon holding vessel and manufacturing method therefor
JP4963893B2 (en) High-purity silicon melting and casting crucible
TW201343987A (en) Crucible for growing single crystal silicon, the manufacturing method thereof, and manufacturing method of single crystal silicon
JP6355096B2 (en) Liquid repellent composite material
TWI343830B (en)
EP0482981A1 (en) Refractory materials consisting of aluminium nitride-bonded grains, containing boron nitride or graphite inclusions, and a process for their manufacture
JP2007131512A (en) Crucible for high purity silicon melt casting