JP2011126730A - Single crystal pulling device - Google Patents

Single crystal pulling device Download PDF

Info

Publication number
JP2011126730A
JP2011126730A JP2009285238A JP2009285238A JP2011126730A JP 2011126730 A JP2011126730 A JP 2011126730A JP 2009285238 A JP2009285238 A JP 2009285238A JP 2009285238 A JP2009285238 A JP 2009285238A JP 2011126730 A JP2011126730 A JP 2011126730A
Authority
JP
Japan
Prior art keywords
hot water
single crystal
temperature
melt
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009285238A
Other languages
Japanese (ja)
Other versions
JP5392051B2 (en
Inventor
Kiyotaka Takano
清隆 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2009285238A priority Critical patent/JP5392051B2/en
Publication of JP2011126730A publication Critical patent/JP2011126730A/en
Application granted granted Critical
Publication of JP5392051B2 publication Critical patent/JP5392051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single crystal pulling device detectable of leakage of a melt from a crucible in the single crystal pulling device with high sensitivity and high precision. <P>SOLUTION: The single crystal pulling device for producing a single crystal ingot by Czochralski process includes: a crucible that houses a source melt; a main chamber that houses a heater to heat the source melt; a leaking melt receiving vessel that is disposed at the bottom of the main chamber and houses the melt leaking from the crucible; and a leakage detector that is disposed in the leaking melt receiving vessel and detects leakage of the melt. The leakage detector includes at least two temperature measuring means measuring temperatures at positions of different heights, and a leakage detecting means detecting leakage of the melt according to changes in the measured values of the at least two temperature measuring means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チョクラルスキー法により、単結晶棒を成長させる単結晶引上げ装置の湯漏れ検出に関するものである。   The present invention relates to detection of leaking water in a single crystal pulling apparatus for growing a single crystal rod by the Czochralski method.

例えば半導体シリコン単結晶棒製造に用いられる従来のチョクラルスキー法による単結晶引上げ装置の一例を図7により説明する。
図7に示すように、単結晶引上げ装置101は、メインチャンバー102と、メインチャンバー102中に設けられたルツボ103と、ルツボ103の周囲に配置されたヒータ106と、ルツボ103を回転させるルツボ保持軸110及びその回転機構(不図示)と、シリコンの種結晶113を保持するシードチャック114と、シードチャック114を引上げるワイヤ115と、ワイヤ115を回転または巻き取る巻き取り機構(不図示)を備えて構成されている。ルツボ103は、その内側の原料シリコン融液(湯)105を収容する側には石英ルツボ103aが設けられ、その外側には黒鉛ルツボ103bが設けられている。また、ヒータ106の外側周囲にはヒータ断熱材107が設置され、ルツボ103の下方には断熱板104が配置されている。
For example, an example of a conventional single crystal pulling apparatus using the Czochralski method used for manufacturing a semiconductor silicon single crystal rod will be described with reference to FIG.
As shown in FIG. 7, the single crystal pulling apparatus 101 includes a main chamber 102, a crucible 103 provided in the main chamber 102, a heater 106 disposed around the crucible 103, and a crucible holding device that rotates the crucible 103. A shaft 110 and its rotation mechanism (not shown), a seed chuck 114 for holding a silicon seed crystal 113, a wire 115 for pulling up the seed chuck 114, and a winding mechanism (not shown) for rotating or winding the wire 115. It is prepared for. The crucible 103 is provided with a quartz crucible 103a on the inner side containing the raw material silicon melt (hot water) 105 and a graphite crucible 103b on the outer side. A heater heat insulating material 107 is installed around the outside of the heater 106, and a heat insulating plate 104 is arranged below the crucible 103.

次に、上記の単結晶引上げ装置101による単結晶育成方法について説明する。まず、ルツボ103内でシリコンの高純度多結晶原料を融点(約1420℃)以上に加熱して融解する。そして、ワイヤ115を巻き出すことにより湯面の略中心部に種結晶113の先端を接触または浸漬させる。その後、ルツボ保持軸110を適宜の方向に回転させるとともに、ワイヤ115を回転させながら巻き取り、種結晶113を引上げることにより、単結晶育成が開始される。以後、引上げ速度と温度を適切に調節することにより略円柱形状の単結晶112を得ることができる。   Next, a single crystal growth method using the single crystal pulling apparatus 101 will be described. First, in a crucible 103, a high-purity polycrystalline raw material of silicon is melted by heating to a melting point (about 1420 ° C.) or higher. And the front-end | tip of the seed crystal 113 is made to contact or immerse in the approximate center part of the hot_water | molten_metal surface by unwinding the wire 115. FIG. Thereafter, the crucible holding shaft 110 is rotated in an appropriate direction, and the wire 115 is wound while being wound, and the seed crystal 113 is pulled up, whereby single crystal growth is started. Thereafter, a substantially cylindrical single crystal 112 can be obtained by appropriately adjusting the pulling rate and temperature.

上記した単結晶引上げ装置101における石英ルツボ103aおよび黒鉛ルツボ103bは、共に高い耐熱性を有しているが、石英ルツボ103aは、耐衝撃性に乏しいという欠点がある。そこで、単結晶引上げに際し、多結晶原料をルツボ103に投入すると、その衝撃によって石英ルツボ103aに亀裂が入ることがあり、そこから融液105が漏れる恐れがある。また、多結晶原料投入時にルツボ103内の湯がルツボ103の周囲に飛散することもある。さらに、使用により徐々に石英ルツボ103aが劣化したり、引上げ中の単結晶112が落下した場合には、石英ルツボ103a及び黒鉛ルツボ103bが破壊されて湯のほぼ全量が流出してしまう可能性もある。   The quartz crucible 103a and the graphite crucible 103b in the single crystal pulling apparatus 101 described above both have high heat resistance, but the quartz crucible 103a has a drawback that it is poor in impact resistance. Therefore, when pulling a single crystal into the crucible 103 when pulling the single crystal, the quartz crucible 103a may be cracked by the impact, and the melt 105 may leak from there. In addition, hot water in the crucible 103 may be scattered around the crucible 103 when the polycrystalline raw material is charged. Further, when the quartz crucible 103a gradually deteriorates due to use or the single crystal 112 being pulled falls, the quartz crucible 103a and the graphite crucible 103b may be destroyed and almost the entire amount of hot water may flow out. is there.

このように、高温の融液105がルツボ103外へ流出、飛散すると、ルツボ103の周りからメインチャンバー102の底部に至り、メインチャンバー102の底部やヒータ用端子部あるいはルツボ保持軸110等の金属部やルツボ駆動装置、下部冷却水配管等を侵食することになる。特に高温のシリコンは反応性が高く、金属に対する侵食作用が強いため、冷却水配管等が侵食されやすく、水蒸気爆発が発生する危険性がある。また、装置外に溢れ出すとそれが原因で事故等が発生する可能性がある。   As described above, when the high-temperature melt 105 flows out and scatters out of the crucible 103, it reaches the bottom of the main chamber 102 from around the crucible 103, and a metal such as the bottom of the main chamber 102, the heater terminal or the crucible holding shaft 110. Will erode the parts, crucible drive, lower cooling water piping, and the like. In particular, high-temperature silicon is highly reactive and has a strong erosion action on metals, so that cooling water pipes and the like are easily eroded and there is a risk of steam explosion. Moreover, if it overflows outside the apparatus, an accident or the like may occur due to the overflow.

そこで、図7に示す装置では、全溶融原料を収容することができる内容積を有する湯漏れ受け皿117をメインチャンバー102の底部に設置して、さらに、その湯漏れ受け皿117に、測定温度の変化により湯漏れを検出する湯漏れ検出器118を配設して、その上部の断熱板104に穴を開けて、湯漏れ検出器118の温度測定位置に融液が直接到達るような誘導構造116を設けている(特許文献1参照)。   Therefore, in the apparatus shown in FIG. 7, a hot water leaking tray 117 having an internal volume capable of containing all the molten raw materials is installed at the bottom of the main chamber 102, and the hot water leaking tray 117 has a change in measured temperature. An induction structure 116 is provided in which a hot water detector 118 for detecting a hot water leak is provided, a hole is formed in the heat insulating plate 104 on the upper portion thereof, and the melt directly reaches the temperature measurement position of the hot water detector 118. (See Patent Document 1).

特開2009−215126号公報JP 2009-215126 A

上記のような湯漏れ検出器と誘導構造を備えた装置を用いる事により、大量の湯漏れが発生した場合には正しく異常を感知することができるようになったが、比較的少量の湯漏れでは、漏れた融液による温度上昇量が少ないために、誤検出を起こしやすいことがわかってきた。例えば、ホットゾーン構造(炉内構造)を変えた場合には、湯漏れ検出器により測定される温度が大幅に異なるため、絶対値での湯漏れ判定を行うには、ホットゾーン毎にその判定基準を変更する必要があった。また、種付け前の条件設定等でヒータ位置を高速に移動する場合には、測定温度が急激に変化するため、温度上昇による判定では誤検出を起こす場合もあった。   By using a device equipped with a hot water leak detector and induction structure as described above, it has become possible to detect abnormalities correctly when a large amount of hot water leaks. Therefore, it has been found that since the amount of temperature rise due to the leaked melt is small, erroneous detection is likely to occur. For example, when the hot zone structure (in-furnace structure) is changed, the temperature measured by the hot water detector is greatly different. It was necessary to change the standard. Further, when the heater position is moved at a high speed by setting conditions before seeding or the like, since the measured temperature changes abruptly, an erroneous detection may occur in the determination based on the temperature rise.

本発明は、上記問題点に鑑みてなされたものであって、単結晶引上げ装置におけるルツボからの湯漏れを高感度かつ高精度に検出できる単結晶引上げ装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a single crystal pulling apparatus that can detect hot water leakage from a crucible in the single crystal pulling apparatus with high sensitivity and high accuracy.

上記目的を達成するために、本発明は、少なくとも、原料融液を収容するルツボと、前記原料融液を加熱するヒータを格納するメインチャンバーと、該メインチャンバーの底部に設置され前記ルツボから漏れてくる融液を収容する湯漏れ受け皿と、該湯漏れ受け皿に配設され湯漏れを検出する湯漏れ検出器とを具備したチョクラルスキー法によって単結晶インゴットを製造する単結晶引上げ装置であって、少なくとも、前記湯漏れ検出器が、異なる高さ位置で温度を測定する2以上の温度測定手段と、該2以上の温度測定手段の測定値の変化により湯漏れを検出する湯漏れ検出手段とを有するものであることを特徴とする単結晶引上げ装置を提供する。   In order to achieve the above object, the present invention provides at least a crucible for storing a raw material melt, a main chamber for storing a heater for heating the raw material melt, and a leakage from the crucible installed at the bottom of the main chamber. A single crystal pulling apparatus for producing a single crystal ingot by the Czochralski method, comprising a hot water leak tray that contains the molten melt and a hot water leak detector that is disposed in the hot water leak tray and detects a hot water leak. At least, the hot water detector has two or more temperature measuring means for measuring temperatures at different height positions, and a hot water leak detecting means for detecting a hot water leak by a change in measured values of the two or more temperature measuring means. A single crystal pulling apparatus is provided.

このように、単結晶引上げ装置の湯漏れ検出器が、異なる高さ位置で温度を測定する2以上の温度測定手段と、2以上の温度測定手段の測定値の変化により湯漏れを検出する湯漏れ検出手段とを有するものであれば、異なる高さ位置の温度を2以上の温度測定手段により測定して、その測定値の変化を比べることで、湯漏れ以外の要因の温度変化による誤検出を低減でき、湯漏れを正確に検出することができる。このため、わずかな湯漏れでも高精度に検出可能であり、安全で効率的に単結晶を製造できる装置となる。   As described above, the hot water detector of the single crystal pulling apparatus detects the hot water leak by detecting two or more temperature measuring means for measuring temperatures at different height positions and the change in the measured values of the two or more temperature measuring means. If there is a leak detection means, the temperature at different heights is measured by two or more temperature measurement means, and the changes in the measured values are compared, so that false detection due to temperature changes caused by factors other than hot water leaks Can be reduced, and a hot water leak can be accurately detected. For this reason, even a slight hot water leak can be detected with high accuracy, and the apparatus can manufacture a single crystal safely and efficiently.

このとき、前記湯漏れ検出手段が、前記2以上の温度測定手段の測定値の差の変化により湯漏れを検出するものであることが好ましい。
このように、湯漏れ検出手段が、2以上の温度測定手段の測定値の差の変化により湯漏れを検出するものであれば、より正確な湯漏れ検出を簡易に行うことができる装置となる。
At this time, it is preferable that the hot water leak detecting means detects a hot water leak by a change in a difference between measured values of the two or more temperature measuring means.
Thus, if the hot water detection means detects the hot water leak by a change in the difference between the measured values of two or more temperature measurement means, it becomes an apparatus that can easily perform more accurate hot water detection. .

このとき、前記湯漏れ検出器が、少なくとも、前記湯漏れ受け皿の底面位置の−10〜+10mmの高さ位置で温度を測定する温度測定手段と、前記湯漏れ受け皿の底面位置の+20mm〜前記ヒータの下端位置の高さ位置で温度を測定する温度測定手段とを有するものであることが好ましい。
このように、湯漏れ受け皿の底面位置の−10〜+10mmの高さ位置で温度を測定する温度測定手段であれば、漏れてきた融液による温度変化を高感度で測定でき、また、湯漏れ受け皿の底面位置の+20mm〜ヒータの下端位置の高さ位置で温度を測定する温度測定手段であれば、漏れてきた融液による測定温度への影響は少ないため、これら二つの温度測定手段を有することで、より高感度、高精度の湯漏れ検出を行うことができる装置となる。
At this time, the hot water detector has a temperature measuring means for measuring the temperature at least at a height position of −10 to +10 mm of the bottom position of the hot water tray, and +20 mm of the bottom position of the hot water tray and the heater. It is preferable to have temperature measuring means for measuring the temperature at the height position of the lower end position.
As described above, if the temperature measuring means measures the temperature at a height of −10 to +10 mm of the bottom position of the hot water receiving tray, the temperature change due to the leaked melt can be measured with high sensitivity. Since there is little influence on the measurement temperature by the leaked melt, if it is a temperature measurement means that measures the temperature from +20 mm of the bottom position of the saucer to the height position of the lower end position of the heater, it has these two temperature measurement means As a result, it becomes an apparatus capable of detecting a hot water leak with higher sensitivity and higher accuracy.

このとき、前記湯漏れ検出器の上方に、前記ルツボから漏れてくる融液を前記2以上の温度測定手段のいずれかの測定位置に誘導する誘導構造が設けられたものであることが好ましい。
このように、湯漏れ検出器の上方に、ルツボから漏れてくる融液を2以上の温度測定手段のいずれかの測定位置に誘導する誘導構造が設けられたものであれば、わずかな湯漏れでも早い段階での正確な検出が可能な装置となる。
At this time, it is preferable that an induction structure for guiding the melt leaking from the crucible to one of the measurement positions of the two or more temperature measuring means is provided above the hot water leak detector.
In this way, if a guiding structure that guides the melt leaking from the crucible to any one of the two or more temperature measuring means is provided above the hot water leak detector, a slight hot water leak may occur. However, it will be a device that can perform accurate detection at an early stage.

このとき、前記2以上の温度測定手段が、熱電対又は放射温度計であることが好ましい。
このように、2以上の温度測定手段が、熱電対又は放射温度計であれば、温度変化を高感度に測定することができ、より正確な湯漏れ検出が可能な装置となる。
At this time, the two or more temperature measuring means are preferably thermocouples or radiation thermometers.
Thus, if the two or more temperature measuring means are thermocouples or radiation thermometers, the temperature change can be measured with high sensitivity, and the apparatus can detect leaks more accurately.

以上のように、本発明の単結晶引上げ装置によれば、単結晶の製造において、わずかな湯漏れでも高感度かつ高精度に検出することができ、安全で効率的な単結晶製造を実施することができる。   As described above, according to the single crystal pulling apparatus of the present invention, a single crystal can be manufactured with high sensitivity and high accuracy even in slight leaks, and a safe and efficient single crystal can be manufactured. be able to.

本発明の単結晶引上げ装置の実施態様の一例を示す概略図である。It is the schematic which shows an example of the embodiment of the single crystal pulling apparatus of this invention. 本発明の単結晶引上げ装置の湯漏れ検出器の温度測定手段の一例を示す概略図である。It is the schematic which shows an example of the temperature measurement means of the hot water leak detector of the single crystal pulling apparatus of this invention. 本発明の単結晶引上げ装置の実施態様の他の一例を示す概略図である。It is the schematic which shows another example of the embodiment of the single crystal pulling apparatus of this invention. 単結晶引上げ装置において、ヒータの移動による温度測定手段の測定温度の変化を示すグラフである。It is a graph which shows the change of the measurement temperature of the temperature measurement means by the movement of a heater in a single crystal pulling apparatus. ホットゾーン構造の異なる単結晶引上げ装置において、原料溶融中の温度測定手段の測定温度を示すグラフである。It is a graph which shows the measurement temperature of the temperature measurement means in the raw material melting | fusing in the single crystal pulling apparatus from which a hot zone structure differs. 単結晶引上げ装置で単結晶を引上げ中に湯漏れが発生した際の温度測定手段の測定温度を示すグラフである。It is a graph which shows the measurement temperature of the temperature measurement means when a hot water leak generate | occur | produces during a single crystal pulling apparatus with a single crystal pulling apparatus. 従来の単結晶引上げ装置の例を示す概略図である。It is the schematic which shows the example of the conventional single crystal pulling apparatus.

以下、本発明の単結晶引上げ装置について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
図1は、本発明の単結晶引上げ装置の実施態様の一例を示す概略図である。図2は、本発明の単結晶引上げ装置の湯漏れ検出器の温度測定手段の一例を示す概略図である。
Hereinafter, the single crystal pulling apparatus of the present invention will be described in detail as an example of an embodiment with reference to the drawings. However, the present invention is not limited to this.
FIG. 1 is a schematic view showing an example of an embodiment of the single crystal pulling apparatus of the present invention. FIG. 2 is a schematic view showing an example of the temperature measuring means of the leak detector of the single crystal pulling apparatus of the present invention.

図1に示す本発明の単結晶引上げ装置11は、チョクラルスキー法により、ルツボ13内の原料融液15にシードチャック24に保持された種結晶23を浸漬させて、その後ワイヤ25により引き上げながら単結晶22を育成する装置である。   The single crystal pulling apparatus 11 of the present invention shown in FIG. 1 immerses the seed crystal 23 held in the seed chuck 24 in the raw material melt 15 in the crucible 13 by the Czochralski method, and then pulls it up with the wire 25. An apparatus for growing the single crystal 22.

このような本発明の単結晶引上げ装置11は、メインチャンバー12内に原料融液15を収容するルツボ13が設けられ、原料融液15を加熱するヒータ26と、ルツボ13を回転昇降動させるルツボ保持軸10及びその回転機構(不図示)を具備している。
ルツボ13は、その内側の原料融液(湯)15を収容する側には石英ルツボ13aが設けられ、その外側にはこれを保護する黒鉛ルツボ13bが設けられている。また、ルツボ13の外周にはヒータ26が、ヒータ26の外側周囲にはヒータ26からの熱がメインチャンバー12内壁に直接輻射されるのを防止するためのヒータ断熱材19が配置されている。
In such a single crystal pulling apparatus 11 of the present invention, a crucible 13 for containing the raw material melt 15 is provided in the main chamber 12, a heater 26 for heating the raw material melt 15, and a crucible for rotating the crucible 13 up and down. The holding shaft 10 and its rotation mechanism (not shown) are provided.
The crucible 13 is provided with a quartz crucible 13a on the inner side containing the raw material melt (hot water) 15 and on the outer side thereof with a graphite crucible 13b for protecting it. A heater 26 is disposed on the outer periphery of the crucible 13, and a heater heat insulating material 19 is disposed around the outer side of the heater 26 to prevent heat from the heater 26 from being directly radiated to the inner wall of the main chamber 12.

そして、メインチャンバー12の底部の内壁面に接して湯漏れ受け皿17が設置されている。この湯漏れ受け皿17をメインチャンバー12底部に嵌め込むことによって湯漏れ受け皿17はメインチャンバー12の底部内壁面のほぼ全面に密着する。また、湯漏れ受け皿17とルツボ13の間には、例えばCIP材(等方性黒鉛)で成形断熱材を挟むように構成した3層構造の断熱板14を配置することもできる。   And the hot water leak tray 17 is installed in contact with the inner wall surface at the bottom of the main chamber 12. By fitting the hot water leak receiving tray 17 into the bottom of the main chamber 12, the hot water receiving tray 17 is in close contact with almost the entire inner wall surface of the bottom of the main chamber 12. In addition, a heat insulating plate 14 having a three-layer structure configured such that a molded heat insulating material is sandwiched between, for example, a CIP material (isotropic graphite) can be disposed between the hot water receiving tray 17 and the crucible 13.

そして、上記のような本発明の単結晶引上げ装置11は、湯漏れ受け皿17に湯漏れを検出するための湯漏れ検出器27が配設され、湯漏れ検出器27は、異なる高さ位置で温度を測定する2以上の温度測定手段18a、18bと、2以上の温度測定手段18a、18bの測定値の変化により湯漏れを検出する湯漏れ検出手段28とを有するものである。
このような装置11であれば、測定する高さ位置が低い方の温度測定手段18aは湯漏れ受け皿17に収容された融液15による温度変化を感度良く測定できる。また、測定する高さ位置が高い方の温度測定手段18bは、湯漏れ受け皿17に収容された漏れてきた融液15には測定温度が影響されにくく、測定温度の変化は温度測定手段18aに比べて小さいものとなる。一方、ホットゾーン構造の変更や、ヒータ26の移動による温度変化は温度測定手段18a、18bの両方の測定温度に同様に影響する。これにより、本発明であれば、相対的な温度変化で湯漏れを検出でき、他の外乱要因による誤検出を低減して、わずかな湯漏れでも、高感度、高精度の検出が可能な装置となる。
In the single crystal pulling apparatus 11 of the present invention as described above, the hot water leak detector 27 for detecting the hot water leak is disposed in the hot water leak tray 17, and the hot water leak detector 27 is at different height positions. It has two or more temperature measuring means 18a and 18b for measuring the temperature, and a hot water leak detecting means 28 for detecting a hot water leak by changing the measured values of the two or more temperature measuring means 18a and 18b.
If it is such an apparatus 11, the temperature measurement means 18a with the lower height position to measure can measure the temperature change by the melt 15 accommodated in the molten metal leak tray 17 with high sensitivity. Further, the temperature measuring means 18b having the higher height position is not affected by the leaked melt 15 accommodated in the hot water receiving tray 17, and the change in the measured temperature is caused by the temperature measuring means 18a. It becomes small compared. On the other hand, changes in the hot zone structure and temperature changes due to the movement of the heater 26 similarly affect the measured temperatures of both the temperature measuring means 18a and 18b. Thereby, if it is this invention, the apparatus which can detect a hot water leak with a relative temperature change, reduces the erroneous detection by other disturbance factors, and can detect with high sensitivity and high accuracy even with a slight water leak. It becomes.

この際、湯漏れ検出手段28が、2以上の温度測定手段18a、18bの測定値の差の変化により湯漏れを検出するものであることが好ましい。
測定値の差の変化であれば、相対的な温度変化を簡易な方法で検出でき、湯漏れをより精度高く検出することができる。
At this time, it is preferable that the hot water leak detecting means 28 detects the hot water leak by a change in the difference between the measured values of the two or more temperature measuring means 18a and 18b.
If it is a change of the difference of a measured value, a relative temperature change can be detected by a simple method, and a hot water leak can be detected with higher accuracy.

本発明の温度測定手段18a、18bとしては、例えば熱電対とすることができる。
この場合、例えば図2に示すように、メインチャンバー12の底部の外側から、熱電対である温度測定手段18aが組み込まれたモジュール20を挿入し、このモジュール20側面とチャンバー12間、並びに、温度測定手段(熱電対)18aの取り出し口で真空シールを行う構造となっている。温度測定手段(熱電対)18aは、上部からステンレス製の保護キャップ30でカバーされるが、その保護キャップ30の下部にはスプリング21が埋め込まれており、これにより、保護キャップ30の上面が、湯漏れ受け皿17にねじ結合されたCIP材製の保護カバー29の内面と密着することができる。湯漏れ受け皿17底面より高い位置で温度測定する温度測定手段18bについても構造は同じであるが、ステンレス製の保護キャップ30と、保護カバー29を上方に延長することで、温度測定手段(熱電対)18bを温度を測定する高い位置まで延長することができる。
As the temperature measuring means 18a and 18b of the present invention, for example, a thermocouple can be used.
In this case, for example, as shown in FIG. 2, a module 20 incorporating a temperature measuring means 18 a that is a thermocouple is inserted from the outside of the bottom of the main chamber 12, and between the side surface of the module 20 and the chamber 12, the temperature The structure is such that vacuum sealing is performed at the outlet of the measuring means (thermocouple) 18a. The temperature measuring means (thermocouple) 18a is covered from above with a protective cap 30 made of stainless steel, and a spring 21 is embedded in the lower portion of the protective cap 30, whereby the upper surface of the protective cap 30 is It can be brought into close contact with the inner surface of the protective cover 29 made of CIP material screwed to the hot water receiving tray 17. The structure of the temperature measuring means 18b for measuring the temperature at a position higher than the bottom surface of the hot water pan 17 is the same, but the temperature measuring means (thermocouple) is extended by extending the protective cap 30 made of stainless steel and the protective cover 29 upward. ) 18b can be extended to a higher position where the temperature is measured.

温度測定手段18a、18bである熱電対にも、ある程度の個体差はあり、また保護キャップ30と保護カバー29の接触圧にも多少のバラツキがあるため、両温度測定手段18a、18bの測定温度には少なからずズレが存在する場合がある。このため、原料の溶融開始から5時間経過して、全ての原料の溶融はまだだが、炉内が明るくなり始めた時点で差分値のゼロ補正を行うことで、検出精度の向上を図ることができる。室温でも補正は可能だが、なるべく高温での補正を行うほうが望ましく、一方、原料が全て溶解してからではその間の湯漏れ検出精度が低くなるため、上記のタイミングが好ましい。   The thermocouples that are the temperature measuring means 18a and 18b also have a certain degree of individual difference, and the contact pressure between the protective cap 30 and the protective cover 29 also varies somewhat, so the measured temperatures of both temperature measuring means 18a and 18b There may be a certain amount of misalignment. For this reason, after 5 hours from the start of melting of the raw materials, all the raw materials are still melted, but the detection accuracy can be improved by performing zero correction of the difference value when the inside of the furnace starts to brighten. it can. Although correction is possible even at room temperature, it is desirable to perform correction at as high a temperature as possible. On the other hand, since all the raw materials are melted, the accuracy of detection of hot water leaks is low, so the above timing is preferable.

なお、温度測定手段18a、18bとしては、熱電対に限定されず、赤外線の放射エネルギーによって温度を測定する放射温度計を用いることもできる。その場合は、モジュール20の取り出し口から光ファイバーを熱電対の代わりに挿入し、保護キャップ30が放出する赤外線放射エネルギーを炉外に設置した放射温度計に取り込むことで、温度測定が可能となる。   The temperature measuring means 18a and 18b are not limited to thermocouples, and radiation thermometers that measure temperature with infrared radiation energy can also be used. In that case, an optical fiber is inserted from the outlet of the module 20 in place of the thermocouple, and the infrared radiation energy emitted from the protective cap 30 is taken into a radiation thermometer installed outside the furnace, thereby enabling temperature measurement.

また、図2に示すように、湯漏れ検出器27が、湯漏れ受け皿17の底面位置の−10〜+10mmの高さ位置で温度を測定する温度測定手段18aと、湯漏れ受け皿の底面位置の+20mm〜前記ヒータの下端位置の高さ位置で温度を測定する温度測定手段18bとを有するものであることが好ましい。例えば、図2の場合には、温度測定手段18aが湯漏れ受け皿17の底面位置の−7mmの高さ位置で温度を測定するものであり、温度測定手段18bが湯漏れ受け皿17の底面位置の+43mmの高さ位置で温度を測定するものである。
湯漏れ受け皿17の底面位置の−10〜+10mmの高さ位置で温度を測定する温度測定手段18aであれば、漏れてきた融液15による温度変化をより高感度に測定でき、また、湯漏れ受け皿の底面位置の+20mm〜前記ヒータの下端位置の高さ位置で温度を測定する温度測定手段18bであれば、漏れてきた融液15による測定温度への影響はあまり大きくないため、湯漏れによる測定温度変化の違いがより明確に生じる。従って、両者の測定値の差により、湯漏れを即座にかつ高精度で検出できる。このとき、ヒータ位置を変更することが可能な単結晶引上げ装置の場合は、温度測定手段18bの高さの上限をヒータの可動範囲の下端位置とすることにより、ヒータの位置を移動させた場合であっても、ヒータの影響を確実に防ぐことができる。
In addition, as shown in FIG. 2, the temperature detector 18 a for measuring the temperature at a height position of −10 to +10 mm of the bottom surface position of the water leak receiving tray 17, and the bottom position of the water leak receiving tray 17. It is preferable to have temperature measuring means 18b that measures temperature at a height position of +20 mm to the lower end position of the heater. For example, in the case of FIG. 2, the temperature measuring means 18 a measures the temperature at a height position of −7 mm from the bottom surface position of the hot water leak tray 17, and the temperature measuring means 18 b is the position of the bottom surface position of the hot water leak tray 17. The temperature is measured at a height of +43 mm.
If the temperature measuring means 18a measures the temperature at a height of −10 to +10 mm of the bottom surface position of the hot water receiving tray 17, the temperature change caused by the melt 15 that has leaked can be measured with higher sensitivity. If the temperature measuring means 18b measures the temperature from +20 mm of the bottom surface position of the tray to the height position of the lower end position of the heater, the influence of the leaked melt 15 on the measured temperature is not so great. Differences in measurement temperature change occur more clearly. Therefore, it is possible to detect the hot water leak immediately and with high accuracy by the difference between the measured values. At this time, in the case of a single crystal pulling apparatus capable of changing the heater position, the heater position is moved by setting the upper limit of the temperature measuring means 18b as the lower end position of the movable range of the heater. Even so, the influence of the heater can be reliably prevented.

また、湯漏れ検出器27の上方に、ルツボ13から漏れてくる融液15を2以上の温度測定手段18a、18bのいずれかの測定位置に誘導する誘導構造16が設けられたものであることが好ましい。誘導構造16としては、例えば図1に示すように、湯漏れ検出器27の上方の断熱板14の内周端と外周端に高さ10mm程度の堰31を設けて、漏れてきた融液15が断熱板14上に一定量溜まるようにし、温度測定手段18aの直上の貫通孔から湯漏れ受け皿17内に落ちて収容されるようにすることで、落ちてきた融液15が温度測定手段18aに直接到達するように誘導する誘導構造16を設けることができる。
このような、誘導構造16を設けることで、湯漏れが発生した場合には、漏れた融液15がいち早く温度測定手段18aに到達するため、より高感度に湯漏れを検出することができる。図1のような温度測定手段18a、18bが二つの場合には、漏れた融液を、低い位置で温度を測定する温度測定手段18aのみに誘導するようにすると、温度測定手段18bとの温度変化の違いがより明確になるため湯漏れ検出がより高精度になる。
In addition, a guiding structure 16 for guiding the melt 15 leaking from the crucible 13 to one of the measurement positions of the two or more temperature measuring means 18a and 18b is provided above the hot water leak detector 27. Is preferred. As the guiding structure 16, for example, as shown in FIG. 1, weirs 31 having a height of about 10 mm are provided at the inner peripheral end and the outer peripheral end of the heat insulating plate 14 above the hot water leak detector 27, and the melt 15 leaked. Is accumulated on the heat insulating plate 14 so as to fall and be accommodated in the hot water receiving tray 17 through the through hole directly above the temperature measuring means 18a, so that the melt 15 that has fallen is stored in the temperature measuring means 18a. A guiding structure 16 can be provided that guides to reach directly.
By providing such a guiding structure 16, when a hot water leak occurs, the leaked melt 15 quickly reaches the temperature measuring means 18a, so that the hot water leak can be detected with higher sensitivity. When there are two temperature measuring means 18a and 18b as shown in FIG. 1, if the leaked melt is guided only to the temperature measuring means 18a that measures the temperature at a low position, the temperature with the temperature measuring means 18b is reduced. Since the difference in change becomes clearer, the detection of the hot water leak becomes more accurate.

以上のような本発明の単結晶引上げ装置によれば、単結晶の製造において、わずかな湯漏れでも高感度に検出することができ、安全で効率的な単結晶製造を実施することができる。   According to the single crystal pulling apparatus of the present invention as described above, even in the case of manufacturing a single crystal, even a slight leak of water can be detected with high sensitivity, and safe and efficient single crystal manufacturing can be performed.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図1、2に示すような本発明の単結晶引上げ装置11を用いてシリコンの多結晶原料の溶融を行った。
また、図1に示す単結晶引上げ装置11と基本構造は同じ、ただしホットゾーンの構造が異なる図3に示す単結晶引上げ装置11’を用いて溶融を行った。図3に示すように、単結晶引上げ装置11’のヒータ断熱材19’は、ヒータ26の上方を覆うような構造になっている。この場合、図1の単結晶引上げ装置11と同一のパワー条件ではホットゾーンが異なるため溶融時間が短くなるので、図3の単結晶引上げ装置11’の溶融では、溶融時間が同じになるように、図1の単結晶引上げ装置11よりもパワーを小さくした。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
The single crystal pulling apparatus 11 of the present invention as shown in FIGS. 1 and 2 was used to melt the polycrystalline silicon raw material.
Further, melting was performed using the single crystal pulling apparatus 11 ′ shown in FIG. 3 having the same basic structure as that of the single crystal pulling apparatus 11 shown in FIG. 1, but having a different hot zone structure. As shown in FIG. 3, the heater heat insulating material 19 ′ of the single crystal pulling apparatus 11 ′ is structured to cover the heater 26. In this case, since the hot zone is different under the same power condition as that of the single crystal pulling apparatus 11 of FIG. 1, the melting time is shortened. Therefore, in the melting of the single crystal pulling apparatus 11 ′ of FIG. The power was made smaller than that of the single crystal pulling apparatus 11 in FIG.

これらの装置を用いて原料を溶融した際の温度測定手段18a、18bによる測定温度を図5に示す。図1の単結晶引上げ装置11での測定温度をホットゾーン1、図3の単結晶引上げ装置11’での測定温度をホットゾーン2としてグラフに示した。
図5に示すように、ホットゾーン2の方がパワーは低く設定してあるため、温度測定手段18a、18bが測定した温度も低くなる。従来法のように、一つの温度測定手段を用いて絶対温度で湯漏れの発生を検出する場合、図5のようにホットゾーンの構造によって100℃以上の差があるため、正確に湯漏れを検出することは不可能である。一方、本発明によれば、ホットゾーンが異なっても、温度測定手段18aと温度測定手段18bにより測定された温度の差分は、いずれのホットゾーンでも30℃以内に収まっている。
FIG. 5 shows the temperature measured by the temperature measuring means 18a and 18b when the raw materials are melted using these apparatuses. The measured temperature in the single crystal pulling apparatus 11 of FIG. 1 is shown as a hot zone 1, and the measured temperature in the single crystal pulling apparatus 11 ′ of FIG.
As shown in FIG. 5, since the power is set lower in the hot zone 2, the temperature measured by the temperature measuring means 18a, 18b is also lower. When detecting the occurrence of hot water leak at an absolute temperature using one temperature measuring means as in the conventional method, there is a difference of 100 ° C. or more depending on the hot zone structure as shown in FIG. It is impossible to detect. On the other hand, according to the present invention, even if the hot zones are different, the difference in temperature measured by the temperature measuring means 18a and the temperature measuring means 18b is within 30 ° C. in any hot zone.

次に、図1の単結晶引上げ装置11の溶融終了後に、故意にヒータ26の位置を手動にて上下に移動させた場合の測定温度とヒータ位置の関係を図4に示す。
図4に示すように、ヒータ26を100mm下げただけで、即座に測定温度が150℃程度上昇している。数分後、ヒータ位置を元に戻す場合も同程度の温度低下が見られている。本発明で追加した測定する高さ位置の異なる温度測定手段18bでも同様な挙動を示すものの、温度測定手段18aとの差分は20〜30℃程度で済むことから、手動操作等のヒータ移動による急激な温度変化が起きても、両者の差分による湯漏れ検出方法であれば、ヒータ移動を湯漏れとしてしまう誤検出をしなくてすむことがわかる。
Next, FIG. 4 shows the relationship between the measured temperature and the heater position when the position of the heater 26 is intentionally moved up and down after the melting of the single crystal pulling apparatus 11 in FIG.
As shown in FIG. 4, just by lowering the heater 26 by 100 mm, the measured temperature immediately rises by about 150.degree. After several minutes, the same temperature drop is observed when the heater position is returned to the original position. Although the temperature measuring means 18b with different height positions to be measured added in the present invention shows the same behavior, the difference from the temperature measuring means 18a is about 20 to 30 ° C. It can be seen that even if a temperature change occurs, if the method of detecting the hot water leak is based on the difference between the two, it is not necessary to perform a false detection that causes the heater movement to be a hot water leak.

次に、図1の単結晶引上げ装置11を用いて直胴成長中に湯漏れが発生した際の測定温度を図6に示す。
直胴成長中の測定温度は安定しているが、湯漏れの発生によって温度上昇が見られる。漏れた融液は誘導構造16を有する断熱板14により、温度測定手段18a付近に落下し、その周囲にて熱を放出するため、温度測定手段18aの測定温度は急上昇している。一方、温度測定手段18bの測定温度は、湯漏れ受け皿17に溜まった融液による放射熱によって温度上昇傾向にはあるが、温度測定手段18aほどには上昇していない。
Next, FIG. 6 shows the measured temperature when hot water leaks during straight body growth using the single crystal pulling apparatus 11 of FIG.
The measured temperature during the straight body growth is stable, but a temperature rise is observed due to the occurrence of hot water leakage. The leaked melt falls to the vicinity of the temperature measuring means 18a by the heat insulating plate 14 having the guiding structure 16 and releases heat around it, so that the measured temperature of the temperature measuring means 18a is rapidly increased. On the other hand, the temperature measured by the temperature measuring means 18b tends to increase due to the radiant heat generated by the melt accumulated in the hot water receiving tray 17, but not as high as the temperature measuring means 18a.

従来法では、測定温度がある一定の温度基準を超えた場合、ならびに、ある一定の温度上昇速度を検知した場合に警報を出力していたが、上記のホットゾーンの構造の変更や、ヒータ移動等で誤検出することが多々あった。本発明では、図6に示すように、温度測定手段18aの測定温度から温度測定手段18bの測定温度を差し引いた値が、図6に示すような明確な変化が見られるため、上記値がある一定の基準値を超えた場合に警報出力するようにすることで、高精度に湯漏れを検出することができる。もちろん、湯漏れの判定は、測定値の差によるもののみならず、両者の測定値の変化率の差や、比を取ることによって判定することもできる。   In the conventional method, an alarm is output when the measured temperature exceeds a certain temperature reference and when a certain temperature rise rate is detected. However, the hot zone structure is changed or the heater is moved. There were many cases of false detection. In the present invention, as shown in FIG. 6, the value obtained by subtracting the measured temperature of the temperature measuring means 18b from the measured temperature of the temperature measuring means 18a has a clear change as shown in FIG. By making an alarm output when a certain reference value is exceeded, it is possible to detect a hot water leak with high accuracy. Of course, the determination of leakage of water can be made not only by the difference between the measured values, but also by taking the difference in the rate of change between the two measured values or the ratio.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

10…ルツボ保持軸、 11、11’…単結晶引上げ装置、
12…メインチャンバー、 13…ルツボ、 13a…石英ルツボ、
13b…黒鉛ルツボ、 14…断熱板、 15…融液、 16…誘導構造、
17…湯漏れ受け皿、 18a、18b…温度測定手段、
19、19’…ヒータ断熱材、 20…モジュール、 21…スプリング、
22…単結晶、 23…種結晶、 24…シードチャック、 25…ワイヤ、
26…ヒータ、 27…湯漏れ検出器、 28…湯漏れ検出手段、
29…保護カバー、 30…保護キャップ、 31…堰。
10 ... crucible holding shaft 11, 11 '... single crystal pulling device,
12 ... main chamber, 13 ... crucible, 13a ... quartz crucible,
13b ... graphite crucible, 14 ... heat insulating plate, 15 ... melt, 16 ... induction structure,
17 ... Hot water leak tray, 18a, 18b ... Temperature measuring means,
19, 19 '... heater insulation, 20 ... module, 21 ... spring,
22 ... single crystal, 23 ... seed crystal, 24 ... seed chuck, 25 ... wire,
26 ... heater, 27 ... hot water leak detector, 28 ... hot water leak detection means,
29 ... Protective cover, 30 ... Protective cap, 31 ... Weir.

Claims (5)

少なくとも、原料融液を収容するルツボと、前記原料融液を加熱するヒータを格納するメインチャンバーと、該メインチャンバーの底部に設置され前記ルツボから漏れてくる融液を収容する湯漏れ受け皿と、該湯漏れ受け皿に配設され湯漏れを検出する湯漏れ検出器とを具備したチョクラルスキー法によって単結晶インゴットを製造する単結晶引上げ装置であって、少なくとも、
前記湯漏れ検出器が、異なる高さ位置で温度を測定する2以上の温度測定手段と、該2以上の温度測定手段の測定値の変化により湯漏れを検出する湯漏れ検出手段とを有するものであることを特徴とする単結晶引上げ装置。
At least a crucible for storing the raw material melt, a main chamber for storing a heater for heating the raw material melt, a hot water receiving tray for storing the melt that is installed at the bottom of the main chamber and leaks from the crucible, A single crystal pulling apparatus for producing a single crystal ingot by the Czochralski method, comprising a hot water leak detector disposed on the hot water tray and detecting a hot water leak, comprising:
The hot water leak detector has two or more temperature measuring means for measuring temperatures at different height positions, and a hot water leak detecting means for detecting a hot water leak by a change in measured values of the two or more temperature measuring means. A single crystal pulling apparatus characterized by
前記湯漏れ検出手段が、前記2以上の温度測定手段の測定値の差の変化により湯漏れを検出するものであることを特徴とする請求項1に記載の単結晶引上げ装置。   2. The single crystal pulling apparatus according to claim 1, wherein the hot water leak detecting means detects a hot water leak by a change in a difference between measured values of the two or more temperature measuring means. 前記湯漏れ検出器が、少なくとも、前記湯漏れ受け皿の底面位置の−10〜+10mmの高さ位置で温度を測定する温度測定手段と、前記湯漏れ受け皿の底面位置の+20mm〜前記ヒータの下端位置の高さ位置で温度を測定する温度測定手段とを有するものであることを特徴とする請求項1又は請求項2に記載の単結晶引上げ装置。   The temperature detector for measuring the temperature at least at a height position of −10 to +10 mm of the bottom position of the molten metal tray, and +20 mm of the bottom position of the molten metal tray to the lower end position of the heater. The single crystal pulling apparatus according to claim 1, further comprising a temperature measuring unit that measures temperature at a height position of the single crystal. 前記湯漏れ検出器の上方に、前記ルツボから漏れてくる融液を前記2以上の温度測定手段のいずれかの測定位置に誘導する誘導構造が設けられたものであることを特徴とする請求項1乃至請求項3のいずれか一項に記載の単結晶引上げ装置。   The induction structure for guiding the melt leaking from the crucible to any one of the two or more temperature measuring means is provided above the hot water detector. The single crystal pulling apparatus according to any one of claims 1 to 3. 前記2以上の温度測定手段が、熱電対又は放射温度計であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の単結晶引上げ装置。
The single crystal pulling apparatus according to any one of claims 1 to 4, wherein the two or more temperature measuring means are a thermocouple or a radiation thermometer.
JP2009285238A 2009-12-16 2009-12-16 Single crystal puller Active JP5392051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285238A JP5392051B2 (en) 2009-12-16 2009-12-16 Single crystal puller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285238A JP5392051B2 (en) 2009-12-16 2009-12-16 Single crystal puller

Publications (2)

Publication Number Publication Date
JP2011126730A true JP2011126730A (en) 2011-06-30
JP5392051B2 JP5392051B2 (en) 2014-01-22

Family

ID=44289754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285238A Active JP5392051B2 (en) 2009-12-16 2009-12-16 Single crystal puller

Country Status (1)

Country Link
JP (1) JP5392051B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173856A (en) * 2011-12-22 2013-06-26 浙江昱辉阳光能源有限公司 Device for detecting silicon leakage of ingot furnace
KR101384096B1 (en) 2012-09-13 2014-04-10 주식회사 에스이엠 Melt temperature measuring devicd for growing sapphire single crystal
JP2014091656A (en) * 2012-11-05 2014-05-19 Shin Etsu Handotai Co Ltd Molten liquid leakage detector of single crystal producing device
JP2016204178A (en) * 2015-04-16 2016-12-08 信越半導体株式会社 Single crystal production apparatus
DE112012000360B4 (en) 2011-02-07 2019-08-14 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and single-crystal manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302387A (en) * 2000-04-27 2001-10-31 Shin Etsu Handotai Co Ltd Device for detecting leakage of melt in apparatus for pulling single crystal, apparatus for pulling single crystal and method of detecting leakage of melt
JP2007147321A (en) * 2005-11-24 2007-06-14 Toshiba Corp Liquid quantity detection structure
JP2009215126A (en) * 2008-03-12 2009-09-24 Shin Etsu Handotai Co Ltd Single crystal pulling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302387A (en) * 2000-04-27 2001-10-31 Shin Etsu Handotai Co Ltd Device for detecting leakage of melt in apparatus for pulling single crystal, apparatus for pulling single crystal and method of detecting leakage of melt
JP2007147321A (en) * 2005-11-24 2007-06-14 Toshiba Corp Liquid quantity detection structure
JP2009215126A (en) * 2008-03-12 2009-09-24 Shin Etsu Handotai Co Ltd Single crystal pulling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN4007019932; レベル計測 第1版, 19861130, p.213〜218, 社団法人計測自動制御学会 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000360B4 (en) 2011-02-07 2019-08-14 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and single-crystal manufacturing method
CN103173856A (en) * 2011-12-22 2013-06-26 浙江昱辉阳光能源有限公司 Device for detecting silicon leakage of ingot furnace
KR101384096B1 (en) 2012-09-13 2014-04-10 주식회사 에스이엠 Melt temperature measuring devicd for growing sapphire single crystal
JP2014091656A (en) * 2012-11-05 2014-05-19 Shin Etsu Handotai Co Ltd Molten liquid leakage detector of single crystal producing device
JP2016204178A (en) * 2015-04-16 2016-12-08 信越半導体株式会社 Single crystal production apparatus

Also Published As

Publication number Publication date
JP5392051B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392051B2 (en) Single crystal puller
WO2006059453A1 (en) Molten metal leak detector in single crystal lift mechanism and single crystal lift mechanism and molten metal leak detecting method
JP4849083B2 (en) Single crystal puller
US7476274B2 (en) Method and apparatus for making a highly uniform low-stress single crystal by drawing from a melt and uses of said crystal
EP2877819B1 (en) Method and device for measuring levels of cast-iron and slag in a blast furnace
JP3861561B2 (en) Molten water detector, single crystal pulling apparatus and molten metal detection method for single crystal pulling apparatus
JP2018150219A (en) Apparatus and method for growing large diameter cz single crystal
WO2010086363A2 (en) Arrangement and method for measurement of the temperature and of the thickness growth of silicon rods in a silicon deposition reactor
JP3704710B2 (en) Method of setting seed crystal deposition temperature and silicon single crystal manufacturing apparatus
KR101623641B1 (en) Ingot growing apparatus having the same
JP2014091656A (en) Molten liquid leakage detector of single crystal producing device
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
JP2009120429A (en) Method for detecting melt leakage in single crystal pulling apparatus and single crystal pulling apparatus
JP4256576B2 (en) Semiconductor single crystal manufacturing equipment
KR101679071B1 (en) Melt Gap Controlling System, Method of Manufacturing Single Crystal including the Melt Gap Controlling System
JP2016204178A (en) Single crystal production apparatus
JP6919629B2 (en) A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.
JP2021080131A (en) Single crystal growth apparatus, method for using the same and single crystal growth method
JP3719332B2 (en) Silicon single crystal pulling device
JP2013199417A (en) Manufacturing apparatus and manufacturing method of cryatal
CN218994038U (en) Silicon carbide corrosion furnace
KR101366726B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JP2012001386A (en) Single crystal production apparatus and method for detecting leakage of melt
KR101528060B1 (en) Anti-deposition View port and ingot growing apparatus having the same
JP4407539B2 (en) Method for simulating pulling speed of single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5392051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250