JP2011125814A - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method Download PDF

Info

Publication number
JP2011125814A
JP2011125814A JP2009288237A JP2009288237A JP2011125814A JP 2011125814 A JP2011125814 A JP 2011125814A JP 2009288237 A JP2009288237 A JP 2009288237A JP 2009288237 A JP2009288237 A JP 2009288237A JP 2011125814 A JP2011125814 A JP 2011125814A
Authority
JP
Japan
Prior art keywords
exhaust gas
treatment method
gas treatment
dust
electrical resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009288237A
Other languages
Japanese (ja)
Inventor
Goki Sasaki
郷紀 佐々木
Naoki Oda
直己 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009288237A priority Critical patent/JP2011125814A/en
Publication of JP2011125814A publication Critical patent/JP2011125814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment method for high-S oil burning boiler without using ammonia. <P>SOLUTION: The exhaust gas treatment method includes: denitrating oil combustion exhaust gas discharged from an oil burning boiler 2; introducing the denitrated exhaust gas into an air preheater 4 for heat recovery; introducing the exhaust gas from which the heat is recovered into an electric dust collector 5 and collecting dust contained in the exhaust gas; and desulfurizing the exhaust gas from which the dust is captured. SO<SB>3</SB>removing agent composed of an alkaline material is added to the exhaust gas from which heat is recovered from the upstream side of the electric dust collector 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排ガス処理方法に関し、特にイオウ分の含有率の高い高イオウ油燃料(以下、「高S油燃料」という)を燃料とする高イオウ油焚きボイラ(以下、「高S油焚きボイラ」という)等の排ガスに含まれるSO(三酸化硫黄)の除去に関する。 The present invention relates to an exhaust gas treatment method, and in particular, a high sulfur oil fired boiler (hereinafter referred to as a “high S oil fired boiler”) that uses high sulfur oil fuel (hereinafter referred to as “high S oil fuel”) having a high sulfur content. It relates to the removal of SO 3 contained in the exhaust gas of "hereinafter) or the like (sulfur trioxide).

油焚きボイラの排ガスに含まれる煤塵は、電気集塵機により捕集される。しかし、煤塵に含まれる水分やSOの割合が高いため、排ガスの酸露点が高くなり、機器腐食や灰詰まりが発生し、酸性の強いスマットが生成されるという問題があった。さらに、煤塵に多く含まれるカーボンダストは、非常に微細な粒子であり、電気抵抗率が低いため、電気集塵機の電極板に捕集されても再飛散しやすく、集塵効率が低下するという問題もあった。 Dust contained in the exhaust gas of the oil fired boiler is collected by an electric dust collector. However, since the ratio of moisture and SO 3 contained in the dust is high, there is a problem that the acid dew point of exhaust gas becomes high, equipment corrosion and ash clogging occur, and a strongly acidic smut is generated. Furthermore, carbon dust, which is abundant in soot dust, is a very fine particle and has a low electrical resistivity. Therefore, even if it is collected on the electrode plate of the electrostatic precipitator, it is likely to be scattered again and the dust collection efficiency is reduced. There was also.

そこで、図9に示すように、電気集塵機の上流側にアンモニア(NH)供給装置9を設け、アンモニアガスを注入してSOを中和することにより、機器腐食や灰詰まりの問題に対応していた。SOガスは、空気予熱器4の出口で排ガス中の水分と反応して硫酸(HSO)のガス又はミストとなっており、ここにアンモニアガスを注入することにより、硫安[(NHSO]の固体が生成され、これが電気集塵機により捕集除去される。 Therefore, as shown in FIG. 9, an ammonia (NH 3 ) supply device 9 is provided upstream of the electrostatic precipitator, and ammonia gas is injected to neutralize SO 3 to deal with problems of equipment corrosion and ash clogging. Was. The SO 3 gas reacts with moisture in the exhaust gas at the outlet of the air preheater 4 to become sulfuric acid (H 2 SO 4 ) gas or mist. By injecting ammonia gas here, ammonium sulfate [(NH 4 ) 2 SO 4 ] solid is produced and collected by an electric dust collector.

アンモニア注入量は、油焚きボイラでのSOの生成量に応じた量とすることが望ましいが、排ガス中のSO濃度は、定期的に手分析等により測定する必要があった。そこで、特許文献1では、試運転時等の排ガス中のSO濃度の測定結果に基づき、燃料消費量に比例したアンモニア量を注入することが記載されている。また、燃料中のS分を定期的に確認し、その変化に応じて、注入比率を変更することが記載されている。 The ammonia injection amount is desirably an amount corresponding to the amount of SO 3 produced in the oil-fired boiler, but the SO 3 concentration in the exhaust gas needs to be periodically measured by manual analysis or the like. Therefore, Patent Document 1 describes that an ammonia amount proportional to the fuel consumption is injected based on the measurement result of the SO 3 concentration in the exhaust gas at the time of trial operation or the like. Further, it is described that the S content in the fuel is periodically checked and the injection ratio is changed in accordance with the change.

特開2002−191935号公報JP 2002-191935 A

ところで、油焚きボイラでは、運転コストの低減のために低品質な高S油燃料、例えばオイルコークスや残渣油と呼ばれる超重質油(燃料中のS分が約3%以上)が使用される頻度が増えている。   By the way, in oil-fired boilers, low-quality, high-S oil fuel, for example, super heavy oil called oil coke or residual oil (the S content in the fuel is about 3% or more) is used to reduce operating costs. Is increasing.

高S油焚きボイラの場合、SOの生成量の変化は不安定であり、燃料消費量と必ずしも一致しない。その結果、従来のように、電気集塵機の上流で排ガス中にアンモニアガスを注入すると、注入量が過不足するという問題が生じる。アンモニア注入量が不足した場合、未反応のSOによって、前述したように機器腐食や灰詰まりが生じやすくなる。さらに、生成した硫安が分解して酸性硫安(NHSO)が生成される。酸性硫安は、融点が約147℃と低く、電気集塵機内のガス温度領域で溶解するため、電気集塵機の電極汚染や、ホッパでの灰詰まりの原因となる。この問題を回避するためには、アンモニアを過剰に注入すればよいが、アンモニアの過剰注入は経済的でないとともに、電気集塵機から未反応のアンモニアが多量に排出され、新たな公害の原因となる。 In the case of a high S oil fired boiler, the change in the amount of SO 3 produced is unstable and does not necessarily match the fuel consumption. As a result, when ammonia gas is injected into the exhaust gas upstream of the electrostatic precipitator as in the prior art, there is a problem that the injection amount becomes excessive or insufficient. When the ammonia injection amount is insufficient, unreacted SO 3 tends to cause equipment corrosion and ash clogging as described above. Furthermore, the produced ammonium sulfate is decomposed to produce acidic ammonium sulfate (NH 4 SO 4 ). Acidic ammonium sulfate has a low melting point of about 147 ° C. and dissolves in the gas temperature range in the electrostatic precipitator, which causes electrode contamination of the electrostatic precipitator and ash clogging in the hopper. In order to avoid this problem, ammonia may be excessively injected. However, excessive ammonia injection is not economical, and a large amount of unreacted ammonia is discharged from the electrostatic precipitator, causing new pollution.

本発明が解決しようとする課題は、アンモニアを使用することなく、高S油焚きボイラの排ガスを処理することにある。   The problem to be solved by the present invention is to treat the exhaust gas of a high-S oil-fired boiler without using ammonia.

上記課題を解決するため、本発明の排ガス処理方法は、油焚きボイラから排出される油燃焼排ガスを脱硝処理し、該脱硝処理された排ガスを空気予熱器に導入して熱回収し、該熱回収された排ガスを電気集塵機に導入して当該排ガスに含まれる粉粒体を捕集し、該粉粒体が捕集された排ガスを脱硫処理する排ガス処理方法において、電気集塵機上流から熱回収された排ガスに、アルカリ性物質からなるSO除去剤を添加することを特徴とする。 In order to solve the above problems, the exhaust gas treatment method of the present invention performs denitration treatment of oil combustion exhaust gas discharged from an oil fired boiler, introduces the denitration exhaust gas into an air preheater, recovers heat, and In the exhaust gas treatment method of introducing the recovered exhaust gas into an electric dust collector, collecting the particulate matter contained in the exhaust gas, and desulfurizing the exhaust gas from which the particulate matter has been collected, heat is recovered from the upstream side of the electrostatic precipitator. An SO 3 remover made of an alkaline substance is added to the exhaust gas.

本発明によれば、アルカリ性物質からなるSO除去剤を用いるから、未反応のアンモニアが発生することはない。アルカリ性物質としては、アルカリ金属又はアルカリ土類金属の炭酸塩、重炭酸塩、亜硫酸塩、水酸化物を用いることができ、例えば、NaCO、NaHCO、NaHSO、NaSO、NaOH、CaCO、Ca(OH)等が使用できる。また、これらの混合物や、これらを含む鉱物等も使用できる。これらのアルカリ性物質の作用は、SOガス、又は硫酸ガス、ミストと中和反応して硫酸塩を生成して粒子として固定化することである。硫酸塩は、粉粒体とともに集塵機で捕集される。また、未反応のアルカリ性物質も粉粒体とともに捕集されるので、下流の機器に影響を与えることがない。 According to the present invention, since the SO 3 remover made of an alkaline substance is used, unreacted ammonia is not generated. As the alkaline substance, alkali metal or alkaline earth metal carbonate, bicarbonate, sulfite, hydroxide can be used, for example, Na 2 CO 3 , NaHCO 3 , NaHSO 3 , Na 2 SO 3 , NaOH, CaCO 3 , Ca (OH) 2 and the like can be used. Moreover, these mixtures and the mineral containing these can also be used. The action of these alkaline substances is to neutralize with SO 3 gas, sulfuric acid gas, or mist to produce sulfate and fix it as particles. Sulfate is collected by the dust collector together with the granular material. Moreover, since unreacted alkaline substance is also collected with a granular material, it does not affect downstream equipment.

また、排ガスの粉粒体に多く含まれるカーボンダストは、非常に微細な粒子であり、電気抵抗率が低いため、電気集塵機の電極板に捕集されても再飛散しやすい。そこで、電気抵抗率を調整する調整剤を添加することによって、ダストの電気抵抗率を高くして、集塵機の集塵効率を高めることができる。調整剤としては、例えば、石炭燃焼ボイラから排出される石炭灰を用いることができる。さらに、SiO、Alや、それを主成分とした無機鉱物を用いることも可能である。これら調整剤の電気抵抗率は、カーボンダストに比べてかなり高く、その添加量はカーボンダスト濃度に比べて非常に少ないため、電気集塵機へのダスト負荷の影響は殆どなく、電気集塵機やファンの容量アップ等の改良は必要ない。さらに、調整剤はカーボンダストと比べて流動性が高いので、その添加により粉粒体の流動性が確保され、SOとアルカリ性物質の中和生成物である硫酸塩による流動性の低下を防止できる。なお、粉粒体には、排ガス中の煤塵、排ガスに添加されたSO除去剤、SO除去剤の化合物、排ガスに添加された調整剤が含まれ、以下、ダストという。 In addition, carbon dust contained in a large amount of exhaust gas particles is very fine particles and has a low electrical resistivity, so that it is likely to be scattered again even if collected on the electrode plate of the electrostatic precipitator. Therefore, by adding a regulator that adjusts the electrical resistivity, the electrical resistivity of the dust can be increased and the dust collection efficiency of the dust collector can be increased. As the regulator, for example, coal ash discharged from a coal combustion boiler can be used. Furthermore, it is possible to use SiO 2 , Al 2 O 3, and inorganic minerals based on it. The electrical resistivity of these regulators is considerably higher than that of carbon dust, and the amount added is very small compared to the carbon dust concentration, so there is almost no influence of dust load on the electrostatic precipitator, and the capacity of the electrostatic precipitator and fan No improvement such as up is required. Furthermore, since the modifier has higher fluidity than carbon dust, its addition ensures the fluidity of the powder and prevents deterioration of fluidity due to sulfate, which is a neutralized product of SO 3 and alkaline substances. it can. Note that the granular material includes soot and dust in the exhaust gas, a SO 3 remover added to the exhaust gas, a compound of the SO 3 remover, and a modifier added to the exhaust gas, and hereinafter referred to as dust.

この場合において、ダストの電気抵抗率が設定範囲内になるように、調整剤の量を調整することが望ましい。調整剤として用いられる石炭灰は、電気抵抗が5×1010[Ωcm]以上で高いものが多い。(電気抵抗率をρで表すと、ρ=RA/L[Ωm]の関係がある。Rは電気抵抗[Ω]、Aは導体の断面積[m]、Lは導体の長さ[m]であり、電気抵抗率はその物質の寸法に依らない電気抵抗の指数を示す単位である。)よって、添加する調整剤が多くなり、ダストの電気抵抗率が高くなり過ぎると、集塵機の電極板上の石炭灰層を流れる電流により大きな電圧降下が生じ、石炭灰層内での絶縁破壊が起きる。このため、石炭灰層内よりストリーマ放電が伸張し、火花放電が集塵機内で頻発する。その結果、集塵機の荷電が不安定となり、放電電流が減少して集塵効率が低下する。さらに、ダストの電気抵抗率が1012[Ωcm]以上の領域では、集塵極表面のダスト層が広範囲に電離して発光する。ダスト層が放電状態になり、多量のイオンが集塵空間に向かって放出されるため、電流が急激に増加し、同時に電圧が降下する。集塵空間の帯電したダストは、集塵極から逆極性のイオンが供給されるため、電気的に中和して電荷を失い、集塵効率が低下する。この現象は、逆コロナと呼ばれている。そこで、ダストの電気抵抗率が設定範囲内になるように調整剤の量を調整することでこのような現象を抑えて、集塵効率を高めることができる。 In this case, it is desirable to adjust the amount of the adjusting agent so that the electrical resistivity of the dust is within the set range. Most of the coal ash used as a regulator has a high electric resistance of 5 × 10 10 [Ωcm] or more. (When the electrical resistivity is represented by ρ, there is a relationship of ρ = RA / L [Ωm]. R is the electrical resistance [Ω], A is the cross-sectional area of the conductor [m 2 ], and L is the length of the conductor [m. The electrical resistivity is a unit indicating an index of electrical resistance that does not depend on the size of the substance.) Therefore, if the amount of the adjusting agent to be added increases and the electrical resistivity of the dust becomes too high, the electrode of the dust collector A large voltage drop occurs due to the current flowing through the coal ash layer on the plate, and dielectric breakdown occurs in the coal ash layer. For this reason, streamer discharge extends from within the coal ash layer, and spark discharge frequently occurs in the dust collector. As a result, the charge of the dust collector becomes unstable, the discharge current is reduced, and the dust collection efficiency is lowered. Further, in a region where the electrical resistivity of dust is 10 12 [Ωcm] or more, the dust layer on the surface of the dust collecting electrode is ionized in a wide range and emits light. Since the dust layer is in a discharge state and a large amount of ions are released toward the dust collection space, the current increases rapidly and the voltage drops at the same time. Since the charged dust in the dust collection space is supplied with ions of opposite polarity from the dust collection electrode, it is electrically neutralized and loses its charge, resulting in a decrease in dust collection efficiency. This phenomenon is called reverse corona. Therefore, by adjusting the amount of the adjusting agent so that the electrical resistivity of the dust is within the set range, such a phenomenon can be suppressed and the dust collection efficiency can be increased.

また、ダストの電気抵抗率が設定範囲内になるように、電気集塵機上流の熱回収された排ガスの温度を調整することが望ましい。ダストの電気抵抗率は、その温度に依存する。よって、排ガスの温度を調整することで、電気抵抗率を調整することができる。特に、過剰に調整剤が添加されたり、ボイラ側の負荷変動によりカーボンダスト濃度が変化した場合に、電気抵抗率が一時的に適正範囲を超えることを防ぐことができる。また、排ガス温度を調整して電気集塵機内の温度を低温側(90〜100℃)に少しシフトさせれば、SOガスをほぼミスト化できるため、SO除去剤中のアルカリ性物質による中和効果が上がる。 In addition, it is desirable to adjust the temperature of the exhaust gas that has been heat-recovered upstream of the electrostatic precipitator so that the electrical resistivity of the dust falls within the set range. The electrical resistivity of dust depends on its temperature. Therefore, the electrical resistivity can be adjusted by adjusting the temperature of the exhaust gas. In particular, it is possible to prevent the electrical resistivity from temporarily exceeding the appropriate range when the adjusting agent is added excessively or the carbon dust concentration changes due to load fluctuation on the boiler side. Moreover, if the exhaust gas temperature is adjusted and the temperature in the electrostatic precipitator is slightly shifted to the low temperature side (90 to 100 ° C.), SO 3 gas can be almost misted, so neutralization with an alkaline substance in the SO 3 remover. The effect goes up.

また、粉粒体の電気抵抗率が設定範囲内になるように、SO除去剤と調整剤の比率を調整することが望ましい。これにより、SO濃度に応じてSO除去剤、集塵率に応じて調整剤のそれぞれの添加量を制御するのが容易となる。 In addition, it is desirable to adjust the ratio of the SO 3 removing agent and the adjusting agent so that the electrical resistivity of the granular material is within the set range. Thereby, it becomes easy to control the respective addition amounts of the SO 3 removing agent and the adjusting agent according to the dust collection rate according to the SO 3 concentration.

また、粉粒体の電気抵抗率の設定範囲が10〜1010[Ωcm]であることが望ましい。前述したように、粉粒体の電気抵抗率は、高すぎても低すぎても集塵効率が下がる。そこで、電気抵抗率を10〜1010[Ωcm]の範囲にしておくことで、集塵効率を維持できる。 Moreover, it is desirable that the setting range of the electrical resistivity of the granular material is 10 4 to 10 10 [Ωcm]. As described above, the dust collection efficiency decreases if the electrical resistivity of the granular material is too high or too low. Therefore, dust collection efficiency can be maintained by keeping the electrical resistivity in the range of 10 4 to 10 10 [Ωcm].

また、アルカリ性物質を水溶液で供給し、蒸発した該アルカリ性物質に調整剤を加えて排ガスに添加することもできる。すなわち、蒸発したアルカリ性物質に調整剤を添加した方が調整剤の凝縮が生じにくく、また、アルカリ性物質の粒径が微細化され、SOとの反応性が高まる。排ガス中に含まれるカーボンダストは、水溶液噴霧により凝縮すると考えられるが、集塵効率は向上する。 It is also possible to supply an alkaline substance as an aqueous solution, add a regulator to the evaporated alkaline substance, and add it to the exhaust gas. That is, when the adjusting agent is added to the evaporated alkaline substance, the adjusting agent is less likely to condense, and the particle size of the alkaline substance is refined to increase the reactivity with SO 3 . The carbon dust contained in the exhaust gas is considered to be condensed by the aqueous solution spray, but the dust collection efficiency is improved.

また、SO除去剤に含まれるアルカリ性物質の量は、当該排ガスに含まれるSOの量に対し、当量比1以上であることが望ましい。これにより、SOはほぼ中和可能となる。例えば、SO=10[ppm]の場合、アルカリ性物質は50[mg/m3N]程度であり、同時に添加する調整剤を加えても一般的なボイラにおけるダスト負荷の20〜100分の1程度で抑えられる。なお、前述したように、未反応のアルカリ性物質が残ったとしても、調整剤とともにダストとして捕集される。 Further, the amount of the alkaline substance contained in the SO 3 removal agent is desirably an equivalent ratio of 1 or more with respect to the amount of SO 3 contained in the exhaust gas. Thereby, SO 3 can be almost neutralized. For example, in the case of SO 3 = 10 [ppm], the alkaline substance is about 50 [mg / m 3 N], and even if a regulator added at the same time is added, it is about 20 to 1/100 of the dust load in a general boiler. It can be suppressed. As described above, even if an unreacted alkaline substance remains, it is collected as dust together with the adjusting agent.

また、本発明において、電気集塵機の上流及び下流において排ガスのダスト濃度を検出し、電気集塵機の集塵率を測定し、ダスト濃度及び集塵率に基づいてSO除去剤の添加量を制御する構成とすることもできる。これにより、従来のように、燃料のS濃度と、燃焼量と排ガス中のSO濃度の関係を事前に求めておいて、S濃度、燃料消費量に応じて、SO除去剤又は調整剤の添加量を制御することができる。 Further, in the present invention, the dust concentration of the exhaust gas is detected upstream and downstream of the electric dust collector, the dust collection rate of the electric dust collector is measured, and the addition amount of the SO 3 removal agent is controlled based on the dust concentration and the dust collection rate. It can also be configured. As a result, as in the prior art, the relationship between the S concentration of fuel, the combustion amount, and the SO 3 concentration in the exhaust gas is obtained in advance, and the SO 3 removing agent or the adjusting agent is determined according to the S concentration and the fuel consumption amount. The amount of addition of can be controlled.

また、SO除去剤及び調整剤双方の働きを有するセスキ炭酸ナトリウムを用いることができる。セスキ炭酸ナトリウムは、そのまま粉砕して使用することができる。 Further, sodium sesquicarbonate having both functions of SO 3 removing agent and adjusting agent can be used. The sesquisodium carbonate can be used after being pulverized as it is.

本発明によれば、アンモニアを使用することなく、高S油焚きボイラの排ガスを処理することができる。   According to the present invention, exhaust gas from a high-S oil-fired boiler can be treated without using ammonia.

本発明の実施例1の排ガス処理システムの構成を示した図である。It is the figure which showed the structure of the waste gas processing system of Example 1 of this invention. SO濃度に対するCa(OH)の添加量を試験した結果を示す図である。SO 3 is a graph showing the results of testing the amount of Ca (OH) 2 for concentration. ダストの電気抵抗率と電気集塵機における集塵率η、荷電圧V、電流値mAの一般的な関係を示す図である。It is a figure which shows the general relationship of the electrical resistivity of dust, the dust collection rate (eta) in an electrical dust collector, the load voltage V, and the electric current value mA. 灰の混合比と電気抵抗率の関係を示した図である。It is the figure which showed the relationship between the mixing ratio of ash, and an electrical resistivity. 2種類の石炭灰の電気抵抗率と温度の関係を示した図である。It is the figure which showed the relationship between the electrical resistivity of two types of coal ash, and temperature. 本発明の実施例2の排ガス処理システムの構成を示した図である。It is the figure which showed the structure of the waste gas processing system of Example 2 of this invention. 本発明の実施例3,4の排ガス処理システムの構成を示した図である。It is the figure which showed the structure of the waste gas processing system of Example 3, 4 of this invention. 温度の異なる石炭灰の電気抵抗率と温度の関係を示した図である。It is the figure which showed the relationship between the electrical resistivity of coal ash from which temperature differs, and temperature. 従来法によるシステム構成を示した図である。It is the figure which showed the system configuration by the conventional method.

以下、本発明の排ガス処理方法を適用した排ガス処理システムについて、図面を参照して説明する。図1に示すように、本実施例の排ガス処理システムは、高S油燃料1を燃焼する油焚きボイラ2から排出される油燃焼排ガスを、脱硝装置3で窒素酸化物を還元除去して脱硝処理を行い、該脱硝処理された排ガスを空気予熱器4に導入して熱回収し、該熱回収された排ガスを電気集塵機5に導入して当該排ガスに含まれるダストを捕集し、該ダストが捕集された排ガスをファン6で脱硫装置7に導入して排ガス中の硫黄酸化物(SOx)を除去する脱硫処理を行った後、煙突8から排出するように構成されている。空気予熱器4出口の排ガス温度は一般的に150〜170℃の範囲にある。   Hereinafter, an exhaust gas treatment system to which the exhaust gas treatment method of the present invention is applied will be described with reference to the drawings. As shown in FIG. 1, the exhaust gas treatment system of the present embodiment performs denitration by reducing and removing nitrogen oxides from oil combustion exhaust gas discharged from an oil-fired boiler 2 that burns high-S oil fuel 1 with a denitration device 3. Treatment, introducing the denitrated exhaust gas into the air preheater 4 for heat recovery, introducing the heat recovered exhaust gas into the electric dust collector 5 to collect dust contained in the exhaust gas, The exhaust gas in which the gas is collected is introduced into the desulfurization device 7 by the fan 6 and subjected to desulfurization treatment for removing sulfur oxide (SOx) in the exhaust gas, and then discharged from the chimney 8. The exhaust gas temperature at the outlet of the air preheater 4 is generally in the range of 150 to 170 ° C.

ここで、本実施例の特徴について説明する。本実施例の特徴は、電気集塵機5上流から熱回収された排ガスに、アルカリ性物質からなるSO除去剤とダストの電気抵抗率を調整する調整剤とを添加することである。 Here, the features of the present embodiment will be described. The feature of this embodiment is that an SO 3 remover made of an alkaline substance and a regulator that adjusts the electrical resistivity of dust are added to the exhaust gas heat-recovered from the upstream side of the electrostatic precipitator 5.

SO除去剤及び調整剤は、添加剤供給装置10内に粉体で充填されている。添加剤供給装置10は、搬送ガス供給装置11と搬送ガスライン12で接続されており、さらに、添加剤供給装置10は搬送ライン13にて、空気予熱器4と電気集塵機5の間の煙道に接続されている。SO除去剤は調整剤と混合して供給する。なお、本実施例では、SO除去剤としてCa(OH)を、調整剤として石炭灰を用いる。 The SO 3 removing agent and the adjusting agent are filled with powder in the additive supply apparatus 10. The additive supply device 10 is connected to the carrier gas supply device 11 and the carrier gas line 12, and the additive supply device 10 is further connected to the carrier line 13 through the flue between the air preheater 4 and the electrostatic precipitator 5. It is connected to the. The SO 3 remover is supplied after being mixed with a regulator. In this example, Ca (OH) 2 is used as the SO 3 removing agent, and coal ash is used as the adjusting agent.

ここで、SO濃度に対するCa(OH)の添加量を試験した結果を図2に示す。図2からわかるように、電気集塵機5の入口温度160[℃]の条件で、Ca(OH)量に対して当量比1まではSO除去率は増加傾向であるが、当量比1以上では一定値となる。本実施例では、余裕を見てSO濃度に対する当量比が2となるようにCa(OH)を添加する。 Here, the results of testing the amount of Ca (OH) 2 added to the SO 3 concentration are shown in FIG. As can be seen from FIG. 2, the SO 3 removal rate tends to increase up to an equivalent ratio of 1 with respect to the amount of Ca (OH) 2 under the condition of the inlet temperature of the electrostatic precipitator 5 of 160 [° C.], but the equivalent ratio of 1 or more. In, it becomes a constant value. In this example, Ca (OH) 2 is added so that the equivalent ratio to the SO 3 concentration is 2 with a margin.

一方、調整剤は、排ガス中のカーボンダスト濃度に応じて、ダストの電気抵抗率が適正範囲となるような添加量を選ぶ。図3(プラズマ・核融合学会誌 第74巻第2号 電気集塵 三坂俊明)に、ダストの電気抵抗率と電気集塵機5における集塵率(図3中のη)、荷電圧V、電流値mAの一般的な関係を示す。一般的に、カーボンダストは電気抵抗率が低過ぎ(10〜10Ωcm)、石炭灰は高過ぎる(5×1010Ωcm)傾向にあり、それぞれ集塵率が低下する領域にある。図3から分かるように、適正な電気抵抗率は10〜1010[Ωcm]である。 On the other hand, the adjusting agent is selected in such an amount that the electric resistivity of the dust falls within an appropriate range according to the carbon dust concentration in the exhaust gas. Fig. 3 (Journal of Plasma and Fusion Research, Vol. 74, No. 2, Electric Dust Collection Toshiaki Misaka) shows the electrical resistivity of dust, the dust collection rate in electric dust collector 5 (η in Fig. 3), load voltage V, and current value. The general relationship of mA is shown. In general, carbon dust tends to be too low in electrical resistivity (10 3 to 10 4 Ωcm) and coal ash tends to be too high (5 × 10 10 Ωcm). As can be seen from FIG. 3, the proper electrical resistivity is 10 4 to 10 10 [Ωcm].

ここで、一般的な石炭燃焼ボイラにおいては、電気集塵機の集塵効率を高める方法として、以下のような対応をしている。
1)電気集塵機温度を高温側(300〜370℃)、または、低温側(90℃)にして、ダストの電気抵抗率を1010[Ωcm]以下に下げる。
2)電気集塵機は連続荷電であるが、これを間欠荷電、パルス荷電などに変更し、逆コロナ現象を抑えて集塵効率を高める。
3)ダスト層の厚さを逆コロナが発生する限界厚さ以下に薄く保つことで、逆コロナ現象を抑えつつ、集塵効率を高める。
Here, in a general coal-fired boiler, the following measures are taken as a method for increasing the dust collection efficiency of the electric dust collector.
1) The electric dust collector temperature is set to the high temperature side (300 to 370 ° C.) or the low temperature side (90 ° C.), and the electric resistivity of the dust is reduced to 10 10 [Ωcm] or less.
2) Although the electrostatic precipitator is continuously charged, it is changed to intermittent charge, pulse charge, etc., and the reverse corona phenomenon is suppressed to increase the dust collection efficiency.
3) Maintaining the thickness of the dust layer below the limit thickness where reverse corona occurs, the dust collection efficiency is increased while suppressing the reverse corona phenomenon.

1)の電気集塵機温度を高温側にする方法(高温集塵)は、経時的な集塵効率の低下、処理ガス量の増大、熱損失の増加などの問題があり、あまり使用されなくなっている。低温集塵はコストの問題はあるが、ダストの電気抵抗率が適正値に低下し、ダスト除去は十分行われる。   The method of increasing the temperature of the electrostatic precipitator (1) (high temperature dust collection) in 1) has problems such as a decrease in dust collection efficiency over time, an increase in the amount of processing gas, and an increase in heat loss. . Although low-temperature dust collection has a problem of cost, the electrical resistivity of dust decreases to an appropriate value, and dust removal is sufficiently performed.

2)の間欠荷電は、パルス荷電方式よりも集塵効率が劣るという問題がある。また、パルス荷電方式は、電源装置のコストアップの問題がある。3)のダスト層除去方式は、電気集塵機装置そのものの変更が必要となる。電気集塵機は装置規模が大きいため、既設対応の場合は膨大なコストが掛かる。   The intermittent charge of 2) has a problem that the dust collection efficiency is inferior to that of the pulse charge system. Further, the pulse charging method has a problem of increasing the cost of the power supply device. The dust layer removal method of 3) requires a change in the electric dust collector device itself. Since the electrostatic precipitator has a large device scale, enormous costs are required for existing equipment.

以上のように、石炭灰のような高電気抵抗率となるものを過剰に添加した場合には問題が発生するため、石炭灰を調整剤として用いる場合には、適正な添加量を選択する必要がある。   As described above, problems occur when excessive amounts of high electrical resistivity such as coal ash are added, so when using coal ash as a regulator, it is necessary to select an appropriate addition amount. There is.

そこで、本実施例では、電気集塵機5の通常運転温度(150〜170℃)において、適正な電気抵抗率の範囲となるように、調整剤の添加量を調整することにより、その運転温度における電気集塵機の集塵効率を最大にしてダストの集塵効率を向上させる。   Therefore, in this embodiment, by adjusting the addition amount of the adjusting agent so as to be in an appropriate electrical resistivity range at the normal operating temperature (150 to 170 ° C.) of the electrostatic precipitator 5, The dust collection efficiency of the dust collector is maximized to improve the dust collection efficiency.

本実施例では、電気集塵機5の入口排ガス中のカーボンダスト濃度をJIS法Z8808に準じて求めた後、ろ紙に付着したダストをサンプリングし、石炭火力発電所の電気集塵機回収灰(石炭灰)を定量加えて、その電気抵抗率を測定した。そのときの相関図を図4に示す。なお、図4中の適正範囲Aは、調整剤として石炭灰Aを使用した場合の望ましい範囲であり、適正範囲Bは、調整剤として石炭灰Bを使用した場合の望ましい範囲である。   In this embodiment, after obtaining the carbon dust concentration in the exhaust gas at the inlet of the electrostatic precipitator 5 in accordance with JIS method Z8808, the dust adhering to the filter paper is sampled, and the electric dust collector recovered ash (coal ash) of the coal-fired power plant is collected. In addition to quantification, the electrical resistivity was measured. The correlation diagram at that time is shown in FIG. In addition, the appropriate range A in FIG. 4 is a desirable range when using the coal ash A as the adjusting agent, and the appropriate range B is a desirable range when using the coal ash B as the adjusting agent.

本実施例では、10[Ωcm]まで電気抵抗率を高める比率(図4中の点14)まで石炭灰を添加する。なお、規定値一杯に添加すると、ボイラ負荷の変化により電気抵抗率が適正範囲以上となるため、添加量の上限を少し下回る量とする。この比率は、カーボンダスト、石炭灰の特性(石炭灰A、石炭灰B)、及び使用温度に影響されるためこの条件に限定されない。上記比率となるように石炭灰の必要量を求め、前述したSO除去剤の必要量と石炭灰必要量の比率で混合したものを添加剤供給装置10にセットして添加した。本実施例での電気集塵機5前後におけるSO除去率は、92[%]であった。 In this embodiment, coal ash is added up to a ratio (point 14 in FIG. 4) that increases the electrical resistivity to 10 8 [Ωcm]. In addition, since it will become more than an appropriate range by the change of boiler load if it adds to a regulation value full, it is set as the quantity slightly less than the upper limit of addition amount. This ratio is not limited to this condition because it is affected by carbon dust, characteristics of coal ash (coal ash A, coal ash B), and use temperature. The required amount of coal ash was determined so that the above ratio was obtained, and the mixture of the above-mentioned required amount of SO 3 removing agent and the required amount of coal ash was set in the additive supply device 10 and added. The SO 3 removal rate before and after the electrostatic precipitator 5 in this example was 92 [%].

以上説明したように本実施例によれば、アルカリ性物質からなるSO除去剤を用いるから、未反応のアンモニアが発生することはない。アルカリ性物質としては、他に、NaCO、NaHCO、NaHSO、NaSO、NaOH、CaCO等が使用できる。また、これらの混合物や、これらを含む鉱物等も使用できる。硫酸塩は、ダストとともに電気集塵機5で捕集される。また、未反応のアルカリ性物質も粉粒体とともに捕集されるので、下流の機器に影響を与えることがない。 As described above, according to the present embodiment, since the SO 3 removing agent made of an alkaline material is used, unreacted ammonia is not generated. In addition, as the alkaline substance, Na 2 CO 3 , NaHCO 3 , NaHSO 3 , Na 2 SO 3 , NaOH, CaCO 3 and the like can be used. Moreover, these mixtures and the mineral containing these can also be used. Sulfate is collected by the electric dust collector 5 together with dust. Moreover, since unreacted alkaline substance is also collected with a granular material, it does not affect downstream equipment.

また、電気抵抗率を調整する調整剤を添加することによって、ダストの電気抵抗率を高くして、電気集塵機5の集塵効率を高めることができる。これら調整剤の電気抵抗率は、カーボンダストに比べてかなり高く、その添加量はカーボンダスト濃度に比べて非常に少ないため、電気集塵機5へのダスト負荷の影響は殆どなく、電気集塵機5やファン6の容量アップ等の改良は必要ない。さらに、調整剤はカーボンダストと比べて流動性が高いので、その添加によりダストの流動性が確保され、SOとアルカリ性物質の中和生成物である硫酸塩による流動性の低下を防止できる。 Moreover, by adding a regulator that adjusts the electrical resistivity, the electrical resistivity of the dust can be increased and the dust collection efficiency of the electrostatic precipitator 5 can be increased. The electrical resistivity of these regulators is considerably higher than that of carbon dust, and the amount added is very small compared to the concentration of carbon dust, so there is almost no influence of the dust load on the electrostatic dust collector 5, and the electrical dust collector 5 and fan No improvement such as 6 capacity increase is necessary. Furthermore, since the modifier has higher fluidity than carbon dust, its addition ensures the fluidity of the dust, and prevents the fluidity from being lowered by sulfate, which is a neutralized product of SO 3 and an alkaline substance.

また、ダストの電気抵抗率が設定範囲内(10〜1010[Ωcm])になるように調整剤の量を調整するので逆コロナ現象等を抑えて、集塵効率を高めることができる。また、SO除去剤に含まれるアルカリ性物質の量は、当該排ガスに含まれるSOの量に対し、当量比2としたのでSOはほぼ中和できる。なお、未反応のアルカリ性物質が残ったとしても、調整剤とともにダストとして捕集される。 Moreover, since the amount of the adjusting agent is adjusted so that the electrical resistivity of the dust is within the set range (10 4 to 10 10 [Ωcm]), the reverse corona phenomenon and the like can be suppressed, and the dust collection efficiency can be increased. The amount of the alkaline substances contained in the SO 3 removal agent to the amount of SO 3 contained in the flue gas, SO 3 because the equivalent ratio 2 can substantially neutralized. In addition, even if an unreacted alkaline substance remains, it is collected as dust together with the adjusting agent.

また、調整剤として石炭焚きボイラから回収される石炭灰を使用することができ、これは安価に入手することが可能であり、コストアップ要因にならない。   Moreover, the coal ash collect | recovered from a coal burning boiler can be used as a regulator, and this can be obtained cheaply and does not become a cost increase factor.

以上、本実施例について説明したが、本発明は、これらに限らず適宜構成を変更して適用することができる。例えば、電気抵抗率が適正かどうかの判断には、電気集塵機5の荷電(図3中の荷電圧V、電流mA)が安定かどうか、または、集塵効率ηが安定しているかどうかで判断することができるため、電気集塵機5の上流下流のダスト濃度を測定する手段を備えると、オンラインで監視することが可能になる。   Although the present embodiment has been described above, the present invention is not limited to these, and can be applied by appropriately changing the configuration. For example, whether or not the electrical resistivity is appropriate is determined based on whether or not the charge (load voltage V and current mA in FIG. 3) of the electrostatic precipitator 5 is stable or whether the dust collection efficiency η is stable. Therefore, if a means for measuring the dust concentration upstream and downstream of the electrostatic precipitator 5 is provided, it becomes possible to monitor online.

また、図5に示すように、石炭灰の電気抵抗率は温度に対し変化する。石炭の種類にも影響するが、IIに示す電気集塵機5の通常運転温度近傍(150℃)では、その電気抵抗率が1012[Ωcm]以上と高くても、処理温度をIに示す低温側(90〜100℃)、又はIIIに示す高温側(370℃)にすれば電気抵抗率は低下する。特に電気集塵機温度を低温側(90〜100℃)に少しシフトさせれば、SO3ガスをほぼミスト化できるため、SO3除去剤中のアルカリ性物質による中和効果が上がる。また、過剰に調整剤が添加されたり、火炉側の負荷変動によりカーボンダスト濃度が変化したような場合に、電気抵抗率が一時的に適正範囲を超えることを防ぐことが可能となる。無論、従来のように、燃料中のS濃度、燃焼量と排ガス中のSO3濃度の関係を事前に求めておいて、S濃度、燃料消費量に応じて、SO3除去剤又は調整剤の添加量を制御することも可能である。 Moreover, as shown in FIG. 5, the electrical resistivity of coal ash changes with temperature. Although it affects the type of coal, in the vicinity of the normal operating temperature (150 ° C.) of the electrostatic precipitator 5 shown in II, even if the electrical resistivity is as high as 10 12 [Ωcm] or higher, the treatment temperature is shown on the low temperature side I (90 to 100 ° C.) or the high temperature side (370 ° C.) shown in III decreases the electrical resistivity. In particular, if the temperature of the electrostatic precipitator is slightly shifted to the low temperature side (90 to 100 ° C.), the SO 3 gas can be almost misted, so that the neutralizing effect by the alkaline substance in the SO 3 remover increases. Further, when the adjusting agent is excessively added or the carbon dust concentration changes due to load fluctuation on the furnace side, it is possible to prevent the electrical resistivity from temporarily exceeding the appropriate range. Of course, as in the prior art, the relationship between the S concentration in the fuel, the combustion amount, and the SO 3 concentration in the exhaust gas is obtained in advance, and depending on the S concentration and the fuel consumption, the SO 3 remover or regulator It is also possible to control the amount of addition.

次に、図6を参照して実施例2を説明する。本実施例では、搬送ガス供給装置11から、搬送ガスライン12がEP灰搬送ライン15に接続されており、電気集塵機5で捕集されるEP灰の一部を、添加剤供給装置10内に搬送し、装置内で混合した後、搬送ライン13経由で電気集塵機5上流の煙道内に供給するようにしたものである。また、本実施例では、SO除去剤と調整剤の両方の性質を持つセスキ炭酸ナトリウム(商品名Trona)を粉末状で用いる。本実施例でのSO除去率は、92%であった。 Next, Embodiment 2 will be described with reference to FIG. In this embodiment, the carrier gas line 12 is connected to the EP ash carrier line 15 from the carrier gas supply device 11, and a part of the EP ash collected by the electric dust collector 5 is put into the additive supplier 10. After being transported and mixed in the apparatus, it is supplied into the flue upstream of the electrostatic precipitator 5 via the transport line 13. In this example, sesquisodium carbonate (trade name Trona) having both properties of SO 3 removing agent and adjusting agent is used in powder form. The SO 3 removal rate in this example was 92%.

本実施例では、電気集塵機5内の温度の高い灰を循環使用するため、未反応のSO除去剤を再利用できて、使用量の節約ができる。ただし、排ガス中の水分濃度が高い場合は、添加剤供給装置10内で結露し、アルカリ成分などが吸湿する可能性があるため、EP灰搬送ライン15を添加剤供給装置10に直接接続せず、搬送ライン13の途中で接続してもよいし、吸湿しないように搬送ライン13、EP灰搬送ライン15を保温することでも対応できる。 In the present embodiment, the high temperature ash in the electric dust collector 5 is circulated and used, so that the unreacted SO 3 removal agent can be reused, and the amount of use can be saved. However, when the moisture concentration in the exhaust gas is high, condensation may occur in the additive supply device 10 and the alkali components and the like may absorb moisture. Therefore, the EP ash transport line 15 is not directly connected to the additive supply device 10. Further, it may be connected in the middle of the transport line 13, or it can be handled by keeping the transport line 13 and the EP ash transport line 15 warm so as not to absorb moisture.

さらに、電気集塵機5前後にダスト濃度測定装置16,17を設け、コントローラ18にて集塵率を演算し、その値を元に添加剤供給装置10を制御してSO除去剤の添加量を増減させる。そうすることで、電気抵抗率を適正範囲内に制御することができる。なお、ダスト濃度測定装置16(電気集塵機5の入口側)は、SO除去剤と調整剤の供給位置よりも下流側とするのが望ましい。 Further, dust concentration measuring devices 16 and 17 are provided before and after the electrostatic precipitator 5, the dust collection rate is calculated by the controller 18, and the additive supply device 10 is controlled based on the calculated value to control the additive amount of the SO 3 removal agent. Increase or decrease. By doing so, the electrical resistivity can be controlled within an appropriate range. The dust concentration measuring device 16 (on the inlet side of the electrostatic precipitator 5) is preferably downstream of the supply position of the SO 3 removing agent and the adjusting agent.

次に、図7を参照して実施例3を説明する。本実施例では、添加剤供給装置10では調整剤のみ供給し、その上流で噴霧器19によりSO除去剤のアルカリ溶液20を供給する。噴霧器19の構成としては、アルカリ溶液20と搬送ガス21を噴霧器19内で予混合してもよいし、噴霧器19のノズル出口で後混合する方式でもよい。アルカリ溶液20は水溶性のものが望ましいが、不溶性物質の場合も、適切なノズルを選択することで噴霧させることができる。一流体ノズルを用いることも可能であるが、ノズルが詰まる可能性もあるため、水洗できるような別ラインを設けるか、二流体ノズルにする方がより望ましい。 Next, Embodiment 3 will be described with reference to FIG. In the present embodiment, the additive supply device 10 supplies only the adjusting agent, and the upstream side thereof supplies the alkaline solution 20 of the SO 3 removing agent by the sprayer 19. As a configuration of the sprayer 19, the alkali solution 20 and the carrier gas 21 may be premixed in the sprayer 19 or may be postmixed at the nozzle outlet of the sprayer 19. The alkaline solution 20 is preferably water-soluble, but in the case of an insoluble material, it can be sprayed by selecting an appropriate nozzle. Although it is possible to use a one-fluid nozzle, there is a possibility that the nozzle may be clogged. Therefore, it is more preferable to provide another line that can be washed with water or to use a two-fluid nozzle.

本実施例では、SOと反応するアルカリ成分だけ水溶液で噴霧させて供給することで、アルカリを微粒化させて反応性を高めることができ、また、吸湿性の高いアルカリ性化合物を用いた場合に、SO除去剤が吸湿により添加剤供給装置10内で固化するのを防ぐことができる。本実施例では、5wt%のNaCO溶液をSO濃度に対して当量比2となるように添加した。図4が添加量とSO除去率の関係を求めた結果である。特に、当量比1でも95[%]以上の除去性能が得られたものの、これも余裕を見て当量比2とした。その蒸発に必要な時間は0.1秒であったため、余裕を見て電気集塵機5入口から滞留時間2秒に当たる上流煙道から該NaCO溶液を投入し、該溶液投入位置から滞留時間1秒に相当する下流部に調整剤(石炭灰)を投入した。蒸発に必要な滞留時間はガス温度などの条件で変わるため、この値に限定されない。こうすることで、アルカリ溶液20により調整剤が湿って詰まりが生じることを防止できる。 In this example, by supplying only the alkaline component that reacts with SO 3 by spraying with an aqueous solution, the alkali can be atomized to increase the reactivity, and when a highly hygroscopic alkaline compound is used. , The SO 3 remover can be prevented from solidifying in the additive supply device 10 due to moisture absorption. In this example, a 5 wt% Na 2 CO 3 solution was added so that the equivalent ratio was 2 with respect to the SO 3 concentration. FIG. 4 shows the result of obtaining the relationship between the addition amount and the SO 3 removal rate. In particular, although removal performance of 95 [%] or more was obtained even with an equivalent ratio of 1, this was also set to an equivalent ratio of 2 with a margin. Since the time required for the evaporation was 0.1 second, the Na 2 CO 3 solution was introduced from the upstream flue corresponding to a residence time of 2 seconds from the inlet of the electrostatic precipitator 5 with a margin, and the residence time was reached from the solution introduction position. A regulator (coal ash) was introduced into the downstream portion corresponding to 1 second. The residence time required for evaporation varies depending on conditions such as gas temperature, and is not limited to this value. By doing so, it is possible to prevent the adjusting agent from getting wet and clogged by the alkaline solution 20.

また、実施例2と同様に、電気集塵機5の出入口にダスト濃度測定装置16,17を設置し、コントローラ18により、集塵率に応じて添加剤供給装置10を制御する。電気抵抗率を制御するのは主に調整剤の方であるため、これにより調整剤の添加量のみを適正値に制御することが可能となり、より確実に集塵効率を高くできる。さらに、図7に示すように、火炉負荷側に、燃料燃焼量を検知するコントローラ18を設け、SO濃度を比例計算で割り出し、アルカリ溶液20の供給量を制御することもできる。本実施例では常に当量比2となる量を添加する制御を行う。本実施例でのSO除去率は、95%であった。 Similarly to the second embodiment, dust concentration measuring devices 16 and 17 are installed at the entrance and exit of the electric dust collector 5, and the additive supply device 10 is controlled by the controller 18 according to the dust collection rate. Since the adjusting agent mainly controls the electrical resistivity, it is possible to control only the amount of the adjusting agent added to an appropriate value, and the dust collection efficiency can be increased more reliably. Furthermore, as shown in FIG. 7, a controller 18 for detecting the amount of fuel combustion can be provided on the furnace load side, and the supply amount of the alkaline solution 20 can be controlled by calculating the SO 3 concentration by proportional calculation. In this embodiment, control is always performed to add an amount that gives an equivalent ratio of 2. The SO 3 removal rate in this example was 95%.

次に、図7,8を参照して実施例4を説明する。本実施例は、図7の実施例3と同じ構成であるが、石炭灰の代わりにNaOHをSO除去剤として、SiOを調整剤として用いる。図8は、温度の異なる石炭灰の混合比と電気抵抗率の関係を示した図である。なお、図8中の適正範囲(150℃)は、調整剤として150℃の石炭灰を使用した場合の望ましい範囲であり、適正範囲(100℃)は、調整剤として100℃の石炭灰を使用した場合の望ましい範囲である。 Next, Embodiment 4 will be described with reference to FIGS. This example has the same configuration as that of Example 3 in FIG. 7, but instead of coal ash, NaOH is used as the SO 3 removing agent and SiO 2 is used as the adjusting agent. FIG. 8 is a diagram showing the relationship between the mixing ratio of coal ash having different temperatures and the electrical resistivity. In addition, the appropriate range (150 degreeC) in FIG. 8 is a desirable range at the time of using 150 degreeC coal ash as a regulator, and the appropriate range (100 degreeC) uses 100 degreeC coal ash as a regulator. This is a desirable range.

本実施例では、NaOHは水溶液として当量比2、SiOはカーボンダストに対して、その混合物の電気抵抗率が温度150℃において、1010[Ωcm]となるように添加する(図8の点23に相当)。しかし、この条件では、火炉負荷変化によるカーボンダスト量の変化により、電気抵抗率が1010[Ωcm]を超える状況になるときもあるため、空気予熱器4により電気集塵機5入口の排ガス温度をさらに100℃まで低減させ、電気抵抗率を10[Ωcm]まで低下させる(図8の点24に相当する)。本実施例でのSO除去率は、96%であった。 In this example, NaOH is added as an aqueous solution in an equivalent ratio of 2, and SiO 2 is added to carbon dust so that the electrical resistivity of the mixture becomes 10 10 [Ωcm] at a temperature of 150 ° C. (point of FIG. 8). 23). However, under this condition, the electrical resistivity may exceed 10 10 [Ωcm] due to the change in the amount of carbon dust due to the furnace load change, so that the exhaust gas temperature at the inlet of the electric dust collector 5 is further increased by the air preheater 4. The temperature is decreased to 100 ° C., and the electrical resistivity is decreased to 10 8 [Ωcm] (corresponding to the point 24 in FIG. 8). The SO 3 removal rate in this example was 96%.

以上、説明した実施例1乃至4について、それぞれのSO除去率を表1に示す。なお、表1に示す比較例1は、実施例4において、SiOをカーボンダストに対して、その混合物の電気抵抗率が温度150℃で1011[Ωcm]となるように添加したものである。SO除去剤は、NaOHを同量添加した。また、比較例2は、従来法としてアンモニアを電気集塵機5(温度150℃)上流から添加したものである。 Table 1 shows the SO 3 removal rates of Examples 1 to 4 described above. In Comparative Example 1 shown in Table 1, in Example 4, the SiO 2 with respect to the carbon dust, in which the electrical resistivity of the mixture was added to a 10 11 [Ωcm] at a temperature 0.99 ° C. . As the SO 3 remover, the same amount of NaOH was added. Moreover, the comparative example 2 adds ammonia from the electrostatic precipitator 5 (temperature 150 degreeC) upstream as a conventional method.

Figure 2011125814
Figure 2011125814

実施例1,2は、SO除去剤を粉体で供給しているため、調整剤量を集塵率で制御しても除去率は90%程度で推移したが、アルカリ性物質を水溶液で添加した実施例3,4では95%以上の除去率が得られ、アルカリ性物質粒子の微小化による効果とともに、火炉負荷によるアルカリ性物質の添加量制御の効果による除去率の向上が見られた。 In Examples 1 and 2, since the SO 3 removal agent was supplied in powder form, the removal rate remained at about 90% even if the amount of the adjusting agent was controlled by the dust collection rate, but an alkaline substance was added as an aqueous solution. In Examples 3 and 4, a removal rate of 95% or more was obtained. In addition to the effect of reducing the size of the alkaline substance particles, the removal rate was improved due to the effect of controlling the addition amount of the alkaline substance by the furnace load.

2 油焚きボイラ
3 脱硝装置
4 空気予熱器
5 電気集塵機
6 ファン
7 脱硫装置
9 アンモニア供給装置
10 添加剤供給装置
12 搬送ガスライン
13 搬送ライン
15 EP灰搬送ライン
16 ダスト濃度測定装置
17 ダスト濃度測定装置
18 コントローラ
19 噴霧器
20 アルカリ溶液
21 搬送ガス
2 Oil fired boiler 3 Denitration device 4 Air preheater 5 Electric dust collector 6 Fan 7 Desulfurization device 9 Ammonia supply device 10 Additive supply device 12 Carrier gas line 13 Carrier line 15 EP ash carrier line 16 Dust concentration measuring device 17 Dust concentration measuring device 18 Controller 19 Nebulizer 20 Alkaline solution 21 Carrier gas

Claims (13)

油焚きボイラから排出される油燃焼排ガスを脱硝処理し、該脱硝処理された排ガスを空気予熱器に導入して熱回収し、該熱回収された排ガスを電気集塵機に導入して当該排ガスに含まれる粉粒体を捕集し、該粉粒体が捕集された排ガスを脱硫処理する排ガス処理方法において、
前記電気集塵機上流から前記熱回収された排ガスに、アルカリ性物質からなるSO除去剤を添加することを特徴とする排ガス処理方法。
Oil-fired exhaust gas discharged from an oil fired boiler is denitrated, the denitrated exhaust gas is introduced into an air preheater for heat recovery, and the heat-recovered exhaust gas is introduced into an electric dust collector and included in the exhaust gas. In the exhaust gas treatment method of collecting the granular material to be collected and desulfurizing the exhaust gas from which the granular material has been collected,
An exhaust gas treatment method, comprising adding an SO 3 remover made of an alkaline substance to the exhaust gas recovered from the upstream side of the electric dust collector.
請求項1に記載の排ガス処理方法において、
前記電気集塵機上流から前記熱回収された排ガスに、前記SO除去剤に加えて、前記粉粒体の電気抵抗率を調整する調整剤を添加することを特徴とする排ガス処理方法。
The exhaust gas treatment method according to claim 1,
An exhaust gas treatment method comprising adding, to the exhaust gas recovered from the upstream side of the electrostatic precipitator, a regulator that adjusts the electrical resistivity of the granular material in addition to the SO 3 removing agent.
請求項2に記載の排ガス処理方法において、
前記粉粒体の電気抵抗率が設定範囲内になるように、前記調整剤の量を調整することを特徴とする排ガス処理方法。
The exhaust gas treatment method according to claim 2,
An exhaust gas treatment method, wherein the amount of the adjusting agent is adjusted so that the electrical resistivity of the granular material is within a set range.
請求項2又は3に記載の排ガス処理方法において、
前記粉粒体の電気抵抗率が設定範囲内になるように、前記電気集塵機上流の前記熱回収された排ガスの温度を調整することを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to claim 2 or 3,
An exhaust gas treatment method characterized by adjusting the temperature of the heat-recovered exhaust gas upstream of the electric dust collector so that the electrical resistivity of the granular material is within a set range.
請求項2乃至4のいずれか1項に記載の排ガス処理方法において、
前記粉粒体の電気抵抗率が設定範囲内になるように、前記SO除去剤と前記調整剤の比率を調整することを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to any one of claims 2 to 4,
An exhaust gas treatment method, wherein a ratio of the SO 3 removing agent and the adjusting agent is adjusted so that an electric resistivity of the granular material is within a set range.
請求項2乃至5のいずれか1項に記載の排ガス処理方法において、
前記粉粒体の電気抵抗率の設定範囲が10〜1010Ωcmであることを特徴とする排ガス処理方法。
The exhaust gas treatment method according to any one of claims 2 to 5,
The exhaust gas treatment method according to claim 1, wherein a setting range of the electrical resistivity of the granular material is 10 4 to 10 10 Ωcm.
請求項2乃至6のいずれか1項に記載の排ガス処理方法において、
前記SO除去剤のアルカリ性物質を水溶液で供給し、蒸発した該アルカリ性物質に前記調整剤を加えて前記排ガスに添加することを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to any one of claims 2 to 6,
An exhaust gas treatment method, wherein an alkaline substance of the SO 3 removing agent is supplied as an aqueous solution, and the regulator is added to the evaporated alkaline substance and added to the exhaust gas.
請求項2乃至7のいずれか1項に記載の排ガス処理方法において、
前記調整剤は石炭灰であることを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to any one of claims 2 to 7,
The exhaust gas treating method, wherein the adjusting agent is coal ash.
請求項2乃至8のいずれか1項に記載の排ガス処理方法において、
前記調整剤には、SiO又はAlが含まれることを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to any one of claims 2 to 8,
The exhaust gas treating method, wherein the adjusting agent contains SiO 2 or Al 2 O 3 .
請求項2乃至9のいずれか1項に記載の排ガス処理方法において、
前記SO除去剤及び前記調整剤の働きを有するセスキ炭酸ナトリウムを用いることを特徴とする排ガス処理方法。
The exhaust gas treatment method according to any one of claims 2 to 9,
An exhaust gas treatment method using sodium sesquicarbonate having the functions of the SO 3 removing agent and the adjusting agent.
請求項1乃至10のいずれか1項に記載の排ガス処理方法において、
前記SO除去剤のアルカリ性物質の量は、当該排ガスに含まれるSOの量に対し、当量比1以上であることを特徴とする排ガス処理方法。
The exhaust gas treatment method according to any one of claims 1 to 10,
The exhaust gas treatment method according to claim 1, wherein an amount of the alkaline substance of the SO 3 removing agent is an equivalent ratio of 1 or more with respect to an amount of SO 3 contained in the exhaust gas.
請求項1乃至11のいずれか1項に記載の排ガス処理方法において、
前記電気集塵機の上流及び下流において前記排ガスの粉粒体濃度を検出し、前記電気集塵機の集塵率を測定し、前記粉粒体濃度及び前記集塵率に基づいて前記SO除去剤又は前記調整剤の添加量を制御することを特徴とする排ガス処理方法。
The exhaust gas treatment method according to any one of claims 1 to 11,
The particulate matter concentration of the exhaust gas is detected upstream and downstream of the electric dust collector, the dust collection rate of the electric dust collector is measured, and the SO 3 removing agent or the above based on the particulate matter concentration and the dust collection rate An exhaust gas treatment method characterized by controlling an addition amount of a regulator.
請求項1乃至12のいずれか1項に記載の排ガス処理方法において、
前記SO除去剤のアルカリ性物質には、アルカリ金属又はアルカリ土類金属の炭酸塩、重炭酸塩、亜硫酸塩、水酸化物の少なくとも1つが含まれることを特徴とする排ガス処理方法。
The exhaust gas treatment method according to any one of claims 1 to 12,
The exhaust gas treatment method according to claim 1, wherein the alkaline substance of the SO 3 removing agent includes at least one of alkali metal or alkaline earth metal carbonate, bicarbonate, sulfite, and hydroxide.
JP2009288237A 2009-12-18 2009-12-18 Exhaust gas treatment method Pending JP2011125814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288237A JP2011125814A (en) 2009-12-18 2009-12-18 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288237A JP2011125814A (en) 2009-12-18 2009-12-18 Exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2011125814A true JP2011125814A (en) 2011-06-30

Family

ID=44288997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288237A Pending JP2011125814A (en) 2009-12-18 2009-12-18 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2011125814A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103602A1 (en) * 2012-12-26 2014-07-03 三菱重工業株式会社 Exhaust gas processing device and exhaust gas processing method
KR101491442B1 (en) 2012-05-22 2015-02-10 가톨릭대학교 산학협력단 Dry absorbent or inorganic carbonate conversion agent for carbon dioxide capture and storage using fly ash, and method for manufacturing thereof
CN105664687A (en) * 2016-03-30 2016-06-15 浙江菲达环保科技股份有限公司 Smoke co-processing technique based on wet type electric precipitator
CN107311714A (en) * 2017-04-27 2017-11-03 上海秀特化工科技有限公司 A kind of hypergravity is electrolysed sylvite desulphurization denitration multi-component composite fertilizer processing method
CN107923610A (en) * 2016-07-08 2018-04-17 傲华容客有限责任公司 For improving the method and system of boiler availability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197130A (en) * 1986-02-24 1987-08-31 Kansai Electric Power Co Inc:The Method for treating exhaust gas
JPH01171661A (en) * 1987-12-28 1989-07-06 Taiho Ind Co Ltd Dust collecting method for combustion gas of boiler in electrostatic precipitator
JPH07275647A (en) * 1994-04-07 1995-10-24 Babcock Hitachi Kk High performance exhaust gas treatment apparatus and method therefor
JP2001165425A (en) * 1999-12-02 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd Method for separating solid content of exhaust gas of heavy oil burning boiler
JP2005125234A (en) * 2003-10-23 2005-05-19 Sumitomo Osaka Cement Co Ltd Dust collecting apparatus and dust collecting method of cement production facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197130A (en) * 1986-02-24 1987-08-31 Kansai Electric Power Co Inc:The Method for treating exhaust gas
JPH01171661A (en) * 1987-12-28 1989-07-06 Taiho Ind Co Ltd Dust collecting method for combustion gas of boiler in electrostatic precipitator
JPH07275647A (en) * 1994-04-07 1995-10-24 Babcock Hitachi Kk High performance exhaust gas treatment apparatus and method therefor
JP2001165425A (en) * 1999-12-02 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd Method for separating solid content of exhaust gas of heavy oil burning boiler
JP2005125234A (en) * 2003-10-23 2005-05-19 Sumitomo Osaka Cement Co Ltd Dust collecting apparatus and dust collecting method of cement production facility

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491442B1 (en) 2012-05-22 2015-02-10 가톨릭대학교 산학협력단 Dry absorbent or inorganic carbonate conversion agent for carbon dioxide capture and storage using fly ash, and method for manufacturing thereof
WO2014103602A1 (en) * 2012-12-26 2014-07-03 三菱重工業株式会社 Exhaust gas processing device and exhaust gas processing method
JP2014124580A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Apparatus and method for treating exhaust gas
CN104736224A (en) * 2012-12-26 2015-06-24 三菱日立电力系统株式会社 Exhaust gas processing device and exhaust gas processing method
US9573095B2 (en) 2012-12-26 2017-02-21 Mitsubishi Hitachi Power Systems, Ltd. Flue gas treatment apparatus and flue gas treatment method
CN104736224B (en) * 2012-12-26 2017-03-22 三菱日立电力系统株式会社 Exhaust gas processing device and exhaust gas processing method
CN105664687A (en) * 2016-03-30 2016-06-15 浙江菲达环保科技股份有限公司 Smoke co-processing technique based on wet type electric precipitator
CN107923610A (en) * 2016-07-08 2018-04-17 傲华容客有限责任公司 For improving the method and system of boiler availability
CN107923610B (en) * 2016-07-08 2020-05-19 傲华容客有限责任公司 Method and system for improving boiler effectiveness
CN107311714A (en) * 2017-04-27 2017-11-03 上海秀特化工科技有限公司 A kind of hypergravity is electrolysed sylvite desulphurization denitration multi-component composite fertilizer processing method

Similar Documents

Publication Publication Date Title
CA2285162C (en) Mercury removal in utility wet scrubber using a chelating agent
US8883107B2 (en) Air pollution control system, air pollution control method, spray drying device of dewatering filtration fluid from desulfurization discharged water, and method thereof
EP2959959B1 (en) Exhaust gas treatment system
RU2578685C2 (en) Dry sorbent feed to dry cleaning scrubber under stationary conditions
JP6212401B2 (en) Exhaust gas treatment equipment
US9839916B2 (en) Wet-type electric dust collection device and dust removal method
US20110044872A1 (en) Flue gas control system of coal combustion boiler and operating method thereof
CN104984640A (en) Comprehensive purification process of glass kiln smoke
US5965095A (en) Flue gas humidification and alkaline sorbent injection for improving vapor phase selenium removal efficiency across wet flue gas desulfurization systems
CN105148709B (en) A kind of flue gas processing method
Moretti et al. Advanced emissions control technologies for coal-fired power plants
US10307728B1 (en) High reactivity lime hydrate and methods of manufacturing and uses thereof
JP2011125814A (en) Exhaust gas treatment method
KR20150060967A (en) Exhaust gas processing device and exhaust gas processing method
CN104684627B (en) Flue gas treatment method and flue gas treatment device
WO2009101918A1 (en) Heavy fuel-oil burning boiler system and operation method of same
KR19980079806A (en) Flue gas treatment method and facility
KR101424129B1 (en) Boiler System for Petro Coke with Wet Scrubber and Dust Collector Equipment
Ueda et al. SO3 removal system for flue gas in plants firing high-sulfur residual fuels
KR102336759B1 (en) Sintered exhaust gas treatment apparatus and treatment method using the same
CN108187910B (en) Flue gas dust removal method
WO2017022520A1 (en) Method for inhibiting degradation of denitration device
JP2002273159A (en) Method for neutralizing combustion exhaust gas of fossil fuel containing sulfur
Jielong et al. ESP Application on Combustion of High-Sulfur Heavy Crude Oil
Gao et al. Multi-pollutant Removal System and Technology Evaluations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401