JP2011124847A - Amplifier of output of resistance-type infrared sensor - Google Patents

Amplifier of output of resistance-type infrared sensor Download PDF

Info

Publication number
JP2011124847A
JP2011124847A JP2009281603A JP2009281603A JP2011124847A JP 2011124847 A JP2011124847 A JP 2011124847A JP 2009281603 A JP2009281603 A JP 2009281603A JP 2009281603 A JP2009281603 A JP 2009281603A JP 2011124847 A JP2011124847 A JP 2011124847A
Authority
JP
Japan
Prior art keywords
output
circuit
frame
temperature
infrared sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009281603A
Other languages
Japanese (ja)
Other versions
JP5507988B2 (en
Inventor
Hirobumi Morimoto
博文 森本
Naoki Nishigaki
直樹 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2009281603A priority Critical patent/JP5507988B2/en
Publication of JP2011124847A publication Critical patent/JP2011124847A/en
Application granted granted Critical
Publication of JP5507988B2 publication Critical patent/JP5507988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the saturation of an amplification circuit at a temperature drift caused by a change or the like in environmental temperature, in the amplification circuit which amplifies a variable resistance-type infrared detection element that is not temperature-controlled. <P>SOLUTION: The amplification circuit for the variable resistance-type infrared detection element includes a subtraction circuit that subtracts an output of a D-A converter from an output of the amplification circuit in a first stage. The saturation of the amplification circuit is prevented eve if the temperature control of a sensor element is not performed by subtraction-amplifying a drift component at a temperature change of an atmosphere by having a second-stage amplification circuit which amplifies an output from the subtraction circuit. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、抵抗変化型2次元赤外線センサアレイからの出力増幅に対し、環境温度変化でのセンサ出力のドリフトによる増幅回路の飽和を防ぎ、安定した増幅を行う増幅装置に関する。   The present invention relates to an amplifying apparatus that performs stable amplification by preventing saturation of an amplifying circuit due to drift of a sensor output due to a change in environmental temperature with respect to output amplification from a resistance change type two-dimensional infrared sensor array.

従来の抵抗型赤外線センサ出力の増幅方法として、ペルチェ素子等の温度コントロール素子を使いセンサ素子を一定の温度にコントロールし、環境温度変化によるセンサ出力の大きなドリフトを防止し、増幅回路の飽和を防ぎ一定の出力が得られるように温度コントロールを行っている。   As a conventional method of amplifying the output of a resistance infrared sensor, a temperature control element such as a Peltier element is used to control the sensor element to a constant temperature, preventing a large drift in sensor output due to environmental temperature changes, and preventing saturation of the amplifier circuit. Temperature control is performed to obtain a constant output.

抵抗型赤外線センサは測定物から放射される赤外線によるセンサ素子表面の温度変化による抵抗変化を検出し、電気的信号に変換して出力する。しかし、この測定物から放射される赤外線で変化するセンサ表面の温度変化は非常に小さく、たとえば、対象物の温度変化が1℃であったとすれば、センサ素子表面の温度変化は0.001℃程度である。このとき、赤外線センサ素子表面の温度が赤外線入力以外の要因、特に環境温度で変動した場合、この変動が電気信号にドリフト信号として変換され増幅回路が飽和してしまう。そこで、常に赤外線センサ周辺の温度を一定にコントロールしてやる必要がある。しかし、センサ周辺部を一定の温度に維持するためには温度コントロール素子搭載による消費電流が増加し、また、装置のコストを押し上げる要因になるため温度コントロールを行わない方法が考案されている。
特開2000−131148では外部からの赤外線を遮断した状態で撮像された画像データより温度ドリフト成分を抽出して補正をかける方法が考案されている。
The resistance-type infrared sensor detects a change in resistance due to a temperature change on the surface of the sensor element due to infrared rays radiated from an object to be measured, and converts it into an electrical signal for output. However, the temperature change of the sensor surface that is changed by infrared rays emitted from the measurement object is very small. For example, if the temperature change of the object is 1 ° C., the temperature change of the sensor element surface is 0.001 ° C. Degree. At this time, when the temperature of the surface of the infrared sensor element fluctuates due to a factor other than infrared input, particularly the environmental temperature, this fluctuation is converted into an electric signal as a drift signal, and the amplifier circuit is saturated. Therefore, it is necessary to always control the temperature around the infrared sensor to be constant. However, in order to maintain the sensor peripheral part at a constant temperature, the current consumption due to the temperature control element is increased, and the cost of the apparatus is increased. Therefore, a method of not performing the temperature control has been devised.
Japanese Patent Laid-Open No. 2000-131148 devises a method for extracting and correcting a temperature drift component from image data captured in a state where infrared rays from the outside are blocked.

特開2000−131148号JP 2000-131148 A

上記従来の技術では環境温度が大きく変化してしまえば、補正データを取得するための増幅回路が簡単に飽和してしまい、温度ドリフト成分を抽出できなきなってしまう問題がある。   In the above conventional technique, if the environmental temperature changes greatly, there is a problem that the amplification circuit for obtaining the correction data is easily saturated and the temperature drift component cannot be extracted.

本発明は、上記のような問題点を解消するためになされたものであり、環境温度が大きく変化するような環境下であっても、センサ周辺温度を一定にコントロールすることなく、増幅回路の飽和を防ぎ、センサ出力信号を増幅する増幅装置を提供することにある。   The present invention has been made in order to solve the above-described problems. Even in an environment where the environmental temperature changes greatly, the amplification circuit of the amplifier circuit can be controlled without constant control of the sensor ambient temperature. An object of the present invention is to provide an amplifying device that prevents saturation and amplifies a sensor output signal.

上記目的を達成するため、本発明の赤外線センサ出力の増幅装置は次の手段を提供する。
赤外線センサからの赤外線入力による出力は第一段増幅回路に入力し、第一段増幅回路は環境温度変化によって出力される赤外線センサからのドリフト信号によって飽和することがないように増幅度が設定されている。
この第一増幅回路からの出力は減算回路へ入力し、CPUからのデータをD/A変換した値を減算回路で減算処理した後、第2増幅回路に入力する。第2増幅回路の出力はA/D変換されCPUで読み取られる。CPUは第2増幅回路の出力を基準となるフレームデータと比較演算を行い、差分があった場合、差分データを次のフレームで減算処理するように演算処理し、D/Aを介して減算回路に減算データを出力し、常に第2増幅回路の出力が一定となるようにCPUで補正を行い、読み取った第2増幅回路からの出力データに減算データの加算処理を行う赤外線センサ出力の増幅装置。
In order to achieve the above object, the infrared sensor output amplifying device of the present invention provides the following means.
The output by infrared input from the infrared sensor is input to the first stage amplifier circuit, and the amplification degree is set so that the first stage amplifier circuit is not saturated by the drift signal from the infrared sensor output due to environmental temperature change. ing.
The output from the first amplifying circuit is input to the subtracting circuit, the value obtained by D / A converting the data from the CPU is subtracted by the subtracting circuit, and then input to the second amplifying circuit. The output of the second amplifier circuit is A / D converted and read by the CPU. The CPU compares the output of the second amplifier circuit with the reference frame data, and if there is a difference, the CPU performs an arithmetic process so that the difference data is subtracted in the next frame, and the subtractor circuit via the D / A An infrared sensor output amplifying device that outputs subtraction data to the CPU, performs correction by the CPU so that the output of the second amplifier circuit is always constant, and adds the subtraction data to the read output data from the second amplifier circuit .

測定物から放射される赤外線で変化するセンサ表面の温度変化は非常に小さく、たとえば、対象物の温度変化が1℃であったとすれば、センサ素子表面の温度変化は0.001℃程度である。仮に、環境温度が1℃変化すれば、一定温度に温度制御を行っていないセンサの場合、センサ素子表面の温度も1℃変化し、センサ素子からの出力は測定物の温度が1℃変化した信号に対し1000倍もの温度ドリフト信号を含んだものになってしまう。
このような状態では従来の技術での増幅回路は簡単にドリフト信号で飽和してしまう。
本発明によれば、ペルチェ素子等で赤外線センサ周辺を温度コントロールすることなく、ドリフト信号を含んだ赤外線センサからの出力信号であっても、飽和することなく増幅を行うことができ、温度コントロール素子の搭載に起因する消費電流の増加、製造コストの増加の問題を解決できる。
The temperature change of the sensor surface that is changed by infrared rays emitted from the measurement object is very small. For example, if the temperature change of the object is 1 ° C., the temperature change of the sensor element surface is about 0.001 ° C. . If the ambient temperature changes by 1 ° C., in the case of a sensor that does not control the temperature to a constant temperature, the temperature of the sensor element surface also changes by 1 ° C., and the output from the sensor element changes the temperature of the measured object by 1 ° C. The temperature drift signal is 1000 times as much as the signal.
In such a state, the amplifier circuit in the prior art is easily saturated with the drift signal.
According to the present invention, it is possible to perform amplification without saturation even if the output signal is from an infrared sensor including a drift signal without controlling the temperature around the infrared sensor with a Peltier element or the like. The problem of increase in current consumption and increase in manufacturing cost due to the mounting of can be solved.

本考案の形態を説明する図The figure explaining the form of this invention

実施の形態、以下、本発明の実施の形態を図に基づいて説明する。信号についてはデジタル出力、アナログ出力と混在しているが、値については同等として説明をする。
赤外線センサからのnフレームの出力100は第一増幅回路1で増幅され出力101となり、減算回路2でD/A6からの出力106を減算し、出力102となり、第2増幅回路3で増幅され信号103となる、この信号103はA/D4でアナログデジタル変換し、デジタル信号104をCPU5に出力する。CPU5は記憶しておいた基準フレームデータと比較演算処理を行い、差分データから第二増幅回路の増幅度を除算したものをn+1読み込み時の減算データとしてD/A6に出力し、差分データを加えnフレーム赤外線センサ信号データとして出力107を出力する。
ここで、第一増幅回路1の増幅度をG1、第二増幅回路3の増幅度をG2とし、順次読み込んでいく赤外線センサからの出力n番目フレームを基準フレームとし、赤外線センサ信号100の値をAとすれば、第一増幅回路から出力される信号101はG1×Aとなる。n番目のフレームは基準フレームであるから、減算回路2に入力する減算信号106は0であり、減算回路2からの出力102を第2増幅回路3で増幅した出力103をA/D4で変換した出力104はG1×G2×Aとなる。次にCPUは基準となるnフレーム減算値演算用データとしてG1×G2×Aを記憶し、G1×G2×Aの値に差分データを加えnフレームセンサ信号データ107として出力する。nフレームは基準フレームであるため差分は0である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Signals are mixed with digital output and analog output, but the values will be described as equivalent.
The output 100 of the n frame from the infrared sensor is amplified by the first amplifier circuit 1 to become an output 101, and the output 106 from the D / A 6 is subtracted by the subtractor circuit 2 to become the output 102, which is amplified by the second amplifier circuit 3 and the signal This signal 103, which becomes 103, is converted from analog to digital by A / D4, and a digital signal 104 is output to the CPU 5. The CPU 5 performs comparison operation processing with the stored reference frame data, outputs the difference data obtained by dividing the amplification degree of the second amplifier circuit to the D / A 6 as subtraction data at the time of reading n + 1, and adds the difference data. Output 107 is output as n-frame infrared sensor signal data.
Here, the amplification degree of the first amplification circuit 1 is G1, the amplification degree of the second amplification circuit 3 is G2, the output nth frame from the infrared sensor that is sequentially read is used as a reference frame, and the value of the infrared sensor signal 100 is Assuming A, the signal 101 output from the first amplifier circuit is G1 × A. Since the nth frame is a reference frame, the subtraction signal 106 input to the subtraction circuit 2 is 0, and the output 103 obtained by amplifying the output 102 from the subtraction circuit 2 by the second amplification circuit 3 is converted by A / D4. The output 104 is G1 × G2 × A. Next, the CPU stores G1 × G2 × A as reference n-frame subtraction value calculation data, adds difference data to the value of G1 × G2 × A, and outputs the result as n-frame sensor signal data 107. Since n frames are reference frames, the difference is zero.

次にフレームn+1を読み込み時、赤外線センサからの信号100の値Aにドリフト信号Ad1が重畳された場合、1つ前のnフレームは基準フレームであり減算信号は0であるから、第2増幅回路3の出力103はG1×G2×(A+Ad1)となる。この値と記憶しておいた基準nフレーム減算値演算用データG1×G2×(A)と比較演算し、差分G1×G2×Ad1を得る。そして、G1×G2×(A+Ad1)にn+1フレームを読み込むときに減算処理した差分データ0を加え赤外線センサn+1フレーム信号データ107としてG1×G2×(A+Ad1)を出力する。
次のn+2フレームを読み込む際CPU5はn+1フレームで得られた差分G1×G2×Ad1を第2増幅回路3の増幅度G2で割った値G1×Ad1をD/A6に出力105として出力する。D/A6は信号105をデジタルアナログ変換し減算信号106を出力する。n+2フレームにさらにドリフト信号Ad2が重畳された場合、赤外線センサからの出力信号100はA+Ad1+Ad2となり、CPU5は減算回路でG1×Ad1を減算したn+2フレームの減算回路2からの出力信号102を第2増幅回路3で増幅した出力103をA/D4でアナログデジタル変換したデータG1×G2×(A+Ad2)を得る。CPU5はこの出データに減算値を求めるために算出した差分G1×G2×Ad1を加え、赤外線センサn+2フレーム信号データ107としてG1×G2×(A+Ad1+Ad2)を出力する。同時に、nフレーム減算値演算用データG1×G2×Aと比較演算を行いn+3フレームデータ取得時の減算データG1×(Ad1+Ad2)/G2を得る。
Next, when reading the frame n + 1, if the drift signal Ad1 is superimposed on the value A of the signal 100 from the infrared sensor, the previous n frame is the reference frame and the subtraction signal is 0. The output 103 of 3 is G1 × G2 × (A + Ad1). This value is compared with the stored reference n frame subtraction value calculation data G1 × G2 × (A) to obtain a difference G1 × G2 × Ad1. Then, G1 × G2 × (A + Ad1) is added with difference data 0 subjected to subtraction processing when n + 1 frame is read, and G1 × G2 × (A + Ad1) is output as infrared sensor n + 1 frame signal data 107.
When reading the next n + 2 frame, the CPU 5 outputs a value G1 × Ad1 obtained by dividing the difference G1 × G2 × Ad1 obtained in the n + 1 frame by the amplification degree G2 of the second amplifier circuit 3 to the D / A6 as an output 105. The D / A 6 converts the signal 105 from digital to analog and outputs a subtraction signal 106. When the drift signal Ad2 is further superimposed on the n + 2 frame, the output signal 100 from the infrared sensor becomes A + Ad1 + Ad2, and the CPU 5 secondly amplifies the output signal 102 from the subtraction circuit 2 of the n + 2 frame obtained by subtracting G1 × Ad1 by the subtraction circuit. Data G1 × G2 × (A + Ad2) obtained by analog-digital conversion of the output 103 amplified by the circuit 3 by A / D4 is obtained. The CPU 5 adds the difference G1 × G2 × Ad1 calculated to obtain the subtraction value to the output data, and outputs G1 × G2 × (A + Ad1 + Ad2) as the infrared sensor n + 2 frame signal data 107. At the same time, comparison operation is performed with n frame subtraction value calculation data G1 × G2 × A to obtain subtraction data G1 × (Ad1 + Ad2) / G2 when n + 3 frame data is acquired.

このような処理を繰り返すことによって、赤外線センサ出力に重畳されていくドリフト信号がA,A+Ad1、A+Ad1+Ad2、A+Ad1+Ad2+Ad3と重畳されていった場合でも、減算処理を行うことにより第2増幅回路に入力される信号はG1×(A)、G1×(A+Ad1),G1×(A+Ad2)、G1×(A+Ad3)、となり第2増幅回路の飽和を防止しながら増幅を行うことができ、減算データを加算処理することによって、G1×G2×(A),G1×G2×(A+Ad1)、G1×G2×(A+Ad1+Ad2)、G1×G2×(A+Ad1+Ad2+Ad3)とドリフト信号を含んだ場合でもデータの欠落することなく赤外線センサ出力を増幅した値を得ることができる。
赤外線センサからの出力電圧を1μVとしたとき、温度が1℃変化すればその1000倍の1mVがドリフト信号として重畳され10万倍の増幅回路で増幅すれば、ドリフト信号だけで100Vになり、増幅器が飽和してしまい、正しい値を得ることができない。しかし、本発明で1段目増幅を1000倍、2段目を100倍の10万倍の増幅回路とすれば、赤外線出力1μVにドリフト信号1mVが重畳された場合、第一増幅回路の出力は1mV+1Vとなり、この1Vは減算回路で減算処理され、1mVが第2増幅回路で増幅され0.1Vの出力をだす。CPUは減算した1Vに第2増幅回路の増幅度100を乗算し増幅した赤外線信号100.1Vを得ることができる。
By repeating such processing, even when the drift signal superimposed on the infrared sensor output is superimposed on A, A + Ad1, A + Ad1 + Ad2, and A + Ad1 + Ad2 + Ad3, it is input to the second amplifier circuit by performing subtraction processing. The signals are G1 × (A), G1 × (A + Ad1), G1 × (A + Ad2), G1 × (A + Ad3), and can be amplified while preventing saturation of the second amplifier circuit, and the subtraction data is added. Therefore, even if the drift signal is included in G1 × G2 × (A), G1 × G2 × (A + Ad1), G1 × G2 × (A + Ad1 + Ad2), and G1 × G2 × (A + Ad1 + Ad2 + Ad3), an infrared sensor is used. A value obtained by amplifying the output can be obtained.
When the output voltage from the infrared sensor is 1 μV, if the temperature changes by 1 ° C., 1000 mV of 1 mV is superimposed as a drift signal and amplified by a 100,000 times amplification circuit, the drift signal alone becomes 100 V, and the amplifier Is saturated and the correct value cannot be obtained. However, if the first stage amplification is 1000 times and the second stage is 100 times the amplification circuit of 100,000 times, when the drift signal of 1 mV is superimposed on the infrared output of 1 μV, the output of the first amplification circuit is This 1V is subtracted by the subtracting circuit, and 1 mV is amplified by the second amplifying circuit to give an output of 0.1V. The CPU can obtain the amplified infrared signal 100.1V by multiplying the subtracted 1V by the amplification degree 100 of the second amplifier circuit.

1 第一増幅回路
2 減算回路
3 第2増幅回路
4 A/D変換機
5 演算装置CPU
6 D/A変換機
100 赤外線センサからのアナログ出力信号
101 第1増幅器からのアナログ増幅信号
102 減算回路からアナログ出力
103 第2増幅回路からの増幅信号
104 A/D変換機からのデジタルデータ
105 演算装置CPUからのデジタルデータ
106 D/A変換機からのアナログ信号
DESCRIPTION OF SYMBOLS 1 1st amplifier circuit 2 Subtraction circuit 3 2nd amplifier circuit 4 A / D converter 5 Arithmetic unit CPU
6 D / A converter 100 Analog output signal 101 from infrared sensor Analog amplified signal 102 from first amplifier Analog output 103 from subtractor circuit 103 Amplified signal 104 from second amplifier circuit Digital data 105 from A / D converter Digital data from device CPU 106 Analog signal from D / A converter

Claims (1)

温度制御されていない抵抗変化型赤外線センサからの出力データの環境温度変化等による温度ドリフトでの増幅回路の飽和を防ぐ増幅装置であって、第1の増幅回路と第2の増幅回路との間に減算回路を持ち、順次読み込んで行くセンサ出力の第nフレームを基準フレームとし、基準フレームの第2増幅回路の出力をA/D変換し、その値を基準データとして記憶、n+1フレーム読み込み時の第2増幅回路の出力値と比較演算をCPUで行い、環境温度の変化で差分が発生した場合、減算回路で減算する値をCPUで演算し、次のn+2フレームを読みこむ際、D/Aでアナログ信号に変換し、減算回路に入力しフレームnからフレームn+1の間に発生したドリフトを減算回路で減算、温度ドリフトで第2増幅回路が飽和しないようにし、第2増幅回路から得られた信号をA/D変換したデータに対してフレームnとフレームn+1の差分を加算処理してn+3フレームの増幅した赤外線センサ信号データとして出力することを特徴とする赤外線センサ信号の増幅装置。   An amplifying apparatus that prevents saturation of an amplifying circuit due to a temperature drift due to a change in environmental temperature of output data from a resistance change type infrared sensor that is not temperature-controlled, between a first amplifying circuit and a second amplifying circuit The nth frame of the sensor output sequentially read is used as a reference frame, the output of the second amplification circuit of the reference frame is A / D converted, and the value is stored as reference data. When the CPU performs a comparison operation with the output value of the second amplifier circuit and a difference occurs due to a change in environmental temperature, the CPU calculates the value to be subtracted by the subtractor circuit, and reads the next n + 2 frame. Is converted to an analog signal, input to the subtractor circuit, and the drift generated between frame n and frame n + 1 is subtracted by the subtractor circuit so that the second amplifier circuit is not saturated by temperature drift. An infrared sensor signal characterized in that the difference between frame n and frame n + 1 is added to the data obtained by A / D converting the signal obtained from the amplifier circuit and output as amplified infrared sensor signal data of n + 3 frames. Amplification equipment.
JP2009281603A 2009-12-11 2009-12-11 Resistive infrared sensor output amplifier Expired - Fee Related JP5507988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281603A JP5507988B2 (en) 2009-12-11 2009-12-11 Resistive infrared sensor output amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281603A JP5507988B2 (en) 2009-12-11 2009-12-11 Resistive infrared sensor output amplifier

Publications (2)

Publication Number Publication Date
JP2011124847A true JP2011124847A (en) 2011-06-23
JP5507988B2 JP5507988B2 (en) 2014-05-28

Family

ID=44288295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281603A Expired - Fee Related JP5507988B2 (en) 2009-12-11 2009-12-11 Resistive infrared sensor output amplifier

Country Status (1)

Country Link
JP (1) JP5507988B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260232A (en) * 1988-08-25 1990-02-28 Mitsubishi Electric Corp A/d conversion circuit
US5266952A (en) * 1992-03-30 1993-11-30 Hughes Aircraft Company Feed forward predictive analog-to-digital converter
JPH06131034A (en) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> Digital control circuit
JP2004500727A (en) * 1998-05-15 2004-01-08 リューイン・コンサルティング・インコーポレーテッド Recursive multi-bit analog-to-digital converter with predictor
JP2006135683A (en) * 2004-11-05 2006-05-25 Asahi Kasei Electronics Co Ltd Analog signal measuring apparatus and analog signal measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260232A (en) * 1988-08-25 1990-02-28 Mitsubishi Electric Corp A/d conversion circuit
US5266952A (en) * 1992-03-30 1993-11-30 Hughes Aircraft Company Feed forward predictive analog-to-digital converter
JPH06131034A (en) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> Digital control circuit
JP2004500727A (en) * 1998-05-15 2004-01-08 リューイン・コンサルティング・インコーポレーテッド Recursive multi-bit analog-to-digital converter with predictor
JP2006135683A (en) * 2004-11-05 2006-05-25 Asahi Kasei Electronics Co Ltd Analog signal measuring apparatus and analog signal measuring method

Also Published As

Publication number Publication date
JP5507988B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US10419702B2 (en) Imaging apparatus, imaging system, and method of driving an imaging system
JP5771737B2 (en) Minute signal detection method and system
US8520101B2 (en) Image sensor and black level calibration method thereof
JP2018056970A5 (en)
US10230912B2 (en) Fixed pattern noise mitigation for a thermal imaging system
JP2020171061A (en) Solid state imaging device, control method of the same, imaging system, and camera
JP2007132936A (en) Device and method for automatic correction of gain
CN110411582B (en) Uncooled infrared focal plane array reading circuit based on index model
JPWO2017183260A1 (en) Infrared imaging device and infrared camera
JP2011119398A (en) Signal processor of infrared sensor, and infrared sensor
JP5507988B2 (en) Resistive infrared sensor output amplifier
US8749670B1 (en) Digital camera and image sensor readout method with black level calibration
JP2018182458A5 (en)
Xhakoni et al. PTC-based sigma-delta ADCs for high-speed, low-noise imagers
JP2008245121A (en) Imaging apparatus and image sensor device
TWI487882B (en) Sensor apparatus with dark current compensation and control method thereof
CN104469193A (en) Sensing device with dark current compensation and control method thereof
Seo et al. An Analog Front-End IC Design for 320$\times $240 Microbolometer Array Applications
US7862232B2 (en) Temperature sensor, device and system including same, and method of operation
JP2008249582A (en) Function approximate temperature converter
TWI536835B (en) Image sensing method and image sensor utlizing the methods
TWI422224B (en) Black level compensation circuit, image sensor and associated method
TWI502989B (en) Image sensor and adjustment method thereof
JP2016176739A (en) Current measurement device
US20170093413A1 (en) Signal processing apparatus for measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5507988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees