JP2011124166A - Method for charging lithium-ion secondary battery - Google Patents

Method for charging lithium-ion secondary battery Download PDF

Info

Publication number
JP2011124166A
JP2011124166A JP2009282517A JP2009282517A JP2011124166A JP 2011124166 A JP2011124166 A JP 2011124166A JP 2009282517 A JP2009282517 A JP 2009282517A JP 2009282517 A JP2009282517 A JP 2009282517A JP 2011124166 A JP2011124166 A JP 2011124166A
Authority
JP
Japan
Prior art keywords
charging
constant current
voltage
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009282517A
Other languages
Japanese (ja)
Inventor
Dairin Wakabayashi
大倫 若林
Ryoichi Tanaka
亮一 田中
Seiya Nakai
晴也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009282517A priority Critical patent/JP2011124166A/en
Publication of JP2011124166A publication Critical patent/JP2011124166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for charging a lithium-ion secondary battery that realizes reduction in charging time and improves the service life characteristics of the charging and discharging cycle, at the same time. <P>SOLUTION: In the method for charging the lithium-ion secondary battery where electrode group composed by winding a positive electrode and a negative electrode in which a lithium compound oxide with a layered crystal structure is used as a positive-electrode active material via a separator, and a non-aqueous electrolyte are housed in a battery case, a constant-current charging is performed repeatedly as constant current and voltage charging, the constant-current sequentially is diminished at each charging from initial charging and upper-limit voltage is made sequentially larger starting from the initial charging. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池の充電時間の短縮と充放電サイクル寿命特性の向上を実現する充電方法に関する。   The present invention relates to a charging method that realizes shortening of charging time and improvement of charge / discharge cycle life characteristics of a lithium ion secondary battery.

従来から、ノートパソコン、携帯電話、およびAV機器などの電子機器の電源として、高電圧および高エネルギー密度を有するリチウムイオン二次電池が広く用いられている。リチウムイオン二次電池では、例えば、負極活物質としてリチウムを吸蔵・放出可能な炭素材料が用いられ、正極活物質として層状の結晶構造を有するリチウムとコバルトとの複合酸化物(LiCoO)が用いられている。 Conventionally, lithium ion secondary batteries having high voltage and high energy density have been widely used as power sources for electronic devices such as notebook computers, mobile phones, and AV devices. In a lithium ion secondary battery, for example, a carbon material capable of inserting and extracting lithium is used as a negative electrode active material, and a lithium-cobalt complex oxide (LiCoO 2 ) having a layered crystal structure is used as a positive electrode active material. It has been.

近年、電子機器の小型化および高性能化が進むにつれて、リチウムイオン二次電池の高容量化および長寿命化への要望が高まっていることに加え、ユビキタス社会の進展に伴う電子機器の使用頻度の増大の観点から、電池の充電時間短縮への要望も非常に大きい。   In recent years, as electronic devices have become smaller and higher in performance, there has been an increasing demand for higher capacity and longer life of lithium ion secondary batteries, and the frequency of use of electronic devices with the progress of the ubiquitous society. From the viewpoint of increasing the battery life, there is a great demand for shortening the battery charging time.

高容量化に対しては、例えば、充電電圧の上限値を従来の4.2Vよりも高くして活物質自体の利用率を増加させることが考えられる。   For increasing the capacity, for example, it is conceivable to increase the utilization rate of the active material itself by setting the upper limit value of the charging voltage higher than the conventional 4.2 V.

しかしながら、充電電圧の上限値を4.2Vよりも高くすると、従来の定電流・定電圧充電方式では定電流充電の時間が長時間化する結果となる。
充放電サイクル寿命特性を改善する方法としては、従来から充電電流を低減し、高密度化に伴う負極でのLi受け入れ性の低下によるサイクル寿命特性低下を抑制する方法が考えられている。また、充電電圧の上限値を従来の4.2Vよりも低くして電解液の分解反応に伴うサイクル寿命特性低下を抑制する方法がある。しかしながら、これらの方法では充電時間が長くなり、充電時間短縮とサイクル寿命特性向上とを両立することは非常に困難である。
However, when the upper limit value of the charging voltage is higher than 4.2 V, the constant current charging time becomes longer in the conventional constant current / constant voltage charging method.
As a method for improving the charge / discharge cycle life characteristics, conventionally, a method has been considered in which the charge current is reduced and the decrease in the cycle life characteristics due to the decrease in Li acceptability at the negative electrode due to the increase in density is considered. In addition, there is a method in which the upper limit value of the charging voltage is made lower than the conventional 4.2 V to suppress the cycle life characteristic deterioration associated with the decomposition reaction of the electrolytic solution. However, these methods increase the charging time, and it is very difficult to achieve both shortening the charging time and improving the cycle life characteristics.

上記以外にも、例えば、逐次減少する一組の定電流パルスにより充電する方法において、所定のカットオフ電圧に到達する毎に充電電流を低減する充電方法が提案されている(例えば、特許文献1参照)。   In addition to the above, for example, in a method of charging with a set of constant current pulses that gradually decrease, a charging method that reduces the charging current every time a predetermined cutoff voltage is reached has been proposed (for example, Patent Document 1). reference).

特開平10−145979号公報Japanese Patent Laid-Open No. 10-145579

しかしながら、上記特許文献1では、電流遮断時の電圧変化に基づいて内部抵抗を算出し、その内部抵抗に所定の充電電流を乗じた値をカットオフ電圧に加えた電圧を次のパルス充電のカットオフ電圧とする。このため、電流遮断時の電圧変化(内部抵抗)が大きいと、カットオフ電圧が高くなり過充電状態となる。その結果、サイクル寿命特性が低下する場合がある。   However, in Patent Document 1, the internal resistance is calculated based on the voltage change at the time of current interruption, and the voltage obtained by multiplying the internal resistance by a predetermined charging current is added to the cut-off voltage. Off voltage. For this reason, if the voltage change (internal resistance) at the time of interruption of current is large, the cut-off voltage becomes high and an overcharge state is established. As a result, cycle life characteristics may deteriorate.

ところで、コバルト酸リチウムよりも電位の低いニッケルおよびコバルトを含むリチウム含有複合酸化物やニッケル、コバルトおよびマンガンを含む複合酸化物(以下、ニッケル含有活物質)を正極活物質に用いたリチウムイオン二次電池では、コバルト酸リチウムを正極活物質に用いたリチウムイオン二次電池と比べて定電流充電の時間が長くなり、充
電全体の時間に対する定電流充電の時間の占める割合が大きくなる。
By the way, a lithium ion secondary material using a lithium-containing composite oxide containing nickel and cobalt having a lower potential than lithium cobaltate or a composite oxide containing nickel, cobalt and manganese (hereinafter referred to as nickel-containing active material) as a positive electrode active material. In the battery, the constant current charging time is longer than the lithium ion secondary battery using lithium cobalt oxide as the positive electrode active material, and the ratio of the constant current charging time to the entire charging time is increased.

また、高容量化を目的とした4.2V以上の充電電圧を特徴とする電池系においても、従来の充電電圧を4.2Vとする電池系に比べ定電流充電の時間の占める割合が大きくなる。   Further, even in a battery system characterized by a charging voltage of 4.2 V or more for the purpose of increasing the capacity, the proportion of the constant current charging time is larger than that of a battery system having a conventional charging voltage of 4.2 V. .

本発明は上記従来の課題を解決し、定電流・定電圧充電方式において特に定電流充電する時間の割合が大きな電池系に関して定電流充電する時間を低減し、効果的に充電時間短縮と充放電サイクル寿命特性向上とを同時に実現することが可能なリチウムイオン二次電池の充電方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and reduces the constant current charging time for a battery system having a large ratio of constant current charging in the constant current / constant voltage charging method, effectively shortening the charging time and charging / discharging. It is an object of the present invention to provide a method for charging a lithium ion secondary battery that can simultaneously improve cycle life characteristics.

上記目的を達成するために本発明は、層状の結晶構造を有するリチウム複合酸化物を正極活物質に用いたリチウム二次電池の充電方法において、定電流・定電圧充電として定電流充電を繰り返して行い、その各充電を定電流が初回から順次小さくするとともに上限電圧を初回から順次大きくして充電時に負極の電位がリチウム析出に到達しないようにして行うことを特徴とする。   In order to achieve the above object, the present invention provides a method for charging a lithium secondary battery using a lithium composite oxide having a layered crystal structure as a positive electrode active material, and repeating constant current charging as constant current / constant voltage charging. Each charge is performed by decreasing the constant current from the first time and increasing the upper limit voltage sequentially from the first time so that the potential of the negative electrode does not reach lithium deposition during charging.

本発明によれば、充電時間短縮と充放電サイクル寿命特性向上とを同時に実現することが可能なリチウムイオン二次電池の充電方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charging method of the lithium ion secondary battery which can implement | achieve shortening charging time and charging / discharging cycle life characteristic improvement simultaneously can be provided.

本発明の実施例に用いられるリチウムイオン二次電池の概略縦断面図Schematic longitudinal sectional view of a lithium ion secondary battery used in an embodiment of the present invention 本発明の充電方法を示したフローチャートThe flowchart which showed the charging method of this invention

本発明は、層状の結晶構造を有するリチウム含有複合酸化物を正極活物質に用いたリチウムイオン二次電池の定電流・定電圧充電による充電方法であり、以下に示す、定電流・定電圧充電として定電流充電を繰り返して行い、その各充電を定電流が初回から順次小さくするとともに上限電圧を初回から順次大きくして充電時に負極の電位がリチウム析出に到達しないようにして行うことを特徴とする。すなわち、図2に示す通り、電流Iで電圧Vに達するまでの定電流充電ステップ1と、前記定電流充電ステップ1の後、電流Iで電圧Vに達するまでの定電流充電ステップ2と、以降、電流Iで電圧Vに達するまでの定電流充電ステップNまで、I>I>…>I>…>I、かつV<V<…<V<…<V(1≦n≦N)となるよう多段階的に定電流充電を繰返し、前記定電流充電ステップNの後、前記電圧Vでの定電圧充電にて所定の電気量まで充電する。また、電池電圧VがVn−1<V<Vの範囲にあって充電を開始する場合は、定電流Iで充電する定電流充電ステップnより充電を開始し、以降、電流Iで電圧Vに達するまでの定電流充電ステップNまで前記方法にて定電流充電を繰返し、前記定電流充電ステップNの後、前記電圧Vでの定電圧充電で所定の電気量まで充電する。 The present invention is a charging method by constant current / constant voltage charging of a lithium ion secondary battery using a lithium-containing composite oxide having a layered crystal structure as a positive electrode active material. The constant current charging is repeatedly performed, and each charging is performed by gradually decreasing the constant current from the first time and increasing the upper limit voltage sequentially from the first time so that the potential of the negative electrode does not reach lithium deposition during charging. To do. That is, as shown in FIG. 2, a constant current charging step 1 until the voltage V 1 is reached with the current I 1 , and a constant current charging step until the voltage V 2 is reached with the current I 2 after the constant current charging step 1. 2, since the current I n up to a constant current charging step n to reach the voltage V n, I 1> I 2 >...> I n>...> I n, and V 1 <V 2 <... < V n <… <V N (1 ≦ n ≦ N) is repeated in constant current charging in multiple steps, and after the constant current charging step N, up to a predetermined amount of electricity by constant voltage charging at the voltage V N Charge. Also, if the battery voltage V begins to charge in the range of V n-1 <V <V n begins charging from the constant current charging step n to charge with a constant current I n, since the current I N The constant current charging is repeated by the above method until the constant current charging step N until the voltage V N is reached, and after the constant current charging step N, charging is performed to a predetermined amount of electricity by constant voltage charging at the voltage V N. .

LiCoO2よりも電位の低い、ニッケルおよびコバルトを含むリチウム含有複合酸化
物LiNiCo(1-x-y)(式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBのうちの少なくとも1つの元素であり、0.3≦x<1.0、0<y<0.4)を正極活物質に用いた電池では、正極活物質がLiCoOである電池よりも、充電電圧のプロファイルが低く、定電流充電時の上限電圧に達するまでの時間は長くなる。
Li-containing composite oxide containing nickel and cobalt and having a lower potential than LiCoO 2 LiNi x Co y M (1-xy) O 2 (wherein M is Na, Mg, Sc, Y, Mn, Fe , Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, and 0.3 ≦ x <1.0, 0 <y <0.4) The battery used in the above has a lower charging voltage profile than the battery in which the positive electrode active material is LiCoO 2 , and the time required to reach the upper limit voltage during constant current charging is longer.

4.2V以上の充電電圧を特徴とする電池系では、従来の充電電圧を4.2Vとする電
池系に比べ充電時間が長くなり、また定電流充電の時間の占める割合が大きくなる。
A battery system characterized by a charging voltage of 4.2 V or more has a longer charging time and a larger proportion of constant current charging time than a battery system having a conventional charging voltage of 4.2 V.

本発明によれば、定電流・定電圧充電方式において特に定電流充電する時間の割合が大きな電池系に関して定電流充電する時間を低減し、充電時間短縮と充放電サイクル寿命特性向上とを同時に実現することが可能なリチウムイオン二次電池の充電方法を提供することができる。   According to the present invention, in the constant current / constant voltage charging method, the constant current charging time is reduced particularly in a battery system having a large proportion of constant current charging time, and the shortening of the charging time and improvement of the charge / discharge cycle life characteristics are realized at the same time. It is possible to provide a method of charging a lithium ion secondary battery that can be performed.

前記の充電方法に関して、任意の定電流充電ステップnにおいて、電池電圧4.0V以下の充電状態では負極Li受入れ性が良好であり、この領域で充電時間を短縮するために、0.5It以上の電流値で、定電流が初回から順次小さくするとともに上限電圧を初回から順次大きくなるよう充電することが望ましい。   Regarding the above charging method, in any constant current charging step n, the negative electrode Li acceptability is good when the battery voltage is 4.0 V or less, and in order to shorten the charging time in this region, 0.5 It or more. It is desirable to charge the battery so that the constant current gradually decreases from the first time and the upper limit voltage gradually increases from the first time.

前記の充電方法に関して、任意の定電流充電ステップnにおいて、電池電圧4.0V以上では、負極Li受入れ性が低下しLiが析出しやすいため、0.7It以下での充電が望ましい。   Regarding the above charging method, in any constant current charging step n, when the battery voltage is 4.0 V or higher, the negative electrode Li acceptability is reduced and Li is liable to precipitate, so that charging at 0.7 It or lower is desirable.

上記の通り多段階的に定電流充電することで、寿命特性を向上し、かつ充電時間を低減することができる。   By performing constant current charging in multiple steps as described above, the life characteristics can be improved and the charging time can be reduced.

ここで、上記Itとは電流を表し、It(A)/X(h)=定格容量(Ah)/X(h)と定義される。ここで、Xは、定格容量分の電気をX時間で充電または放電する際の時間を表す。例えば、1Itとは、電流値が、定格容量(Ah)/1(h)であることを意味する。   Here, the above-mentioned It represents a current and is defined as It (A) / X (h) = Rated capacity (Ah) / X (h). Here, X represents the time for charging or discharging electricity for the rated capacity in X hours. For example, 1 It means that the current value is the rated capacity (Ah) / 1 (h).

本発明によって、定電流充電の時間を短縮し、満充電に要する時間を短縮することができ、また、充放電サイクルにおいて、優れたサイクル寿命特性が得られ、充電時間短縮およびサイクル寿命特性向上を同時に実現することが可能である。   According to the present invention, the constant current charging time can be shortened and the time required for full charging can be shortened, and excellent cycle life characteristics can be obtained in the charge / discharge cycle, thereby shortening the charge time and improving the cycle life characteristics. It can be realized at the same time.

以下、本発明の実施例を詳細に説明するが、本発明は実施例に限定されない。   Examples of the present invention will be described in detail below, but the present invention is not limited to the examples.

下記手順により本発明の充電方法に用いられる図1に示す円筒形リチウムイオン二次電池を作製した。   The cylindrical lithium ion secondary battery shown in FIG. 1 used in the charging method of the present invention was produced by the following procedure.

(電池の構成)
正極板5と負極板6と、両電極板を隔離するセパレータ7とを渦巻き状に捲回して電極群4を構成した。セパレータ7には、厚み16μmのポリプロピレン製の微多孔膜を用いた。この電極群4を有底円筒形の電池ケース1(径18mm、高さ65mm)内に挿入した。このとき、電極群4の上部および下部にそれぞれ絶縁リング8aおよび8bを配置した。上記で得られた非水電解液を電池ケース1内に注入した。負極板6より引き出された負極リード6aを電池ケース1の内底面に溶接し、正極板5より引き出された正極リード5aを電池蓋2の下面に溶接した。電池ケース1の開口端部を、ガスケット3を介して電池蓋2の周縁部にかしめつけ、電池ケース1の開口部を封口した。このようにして、18650サイズの円筒形リチウムイオン二次電池(径18mm、高さ65mm)を作製した。正極板5、負極板6、非水電解液の作製について下記に詳細を示す。
(Battery configuration)
The positive electrode plate 5, the negative electrode plate 6, and the separator 7 which isolate | separates both electrode plates were wound in the shape of a spiral, and the electrode group 4 was comprised. As the separator 7, a polypropylene microporous film having a thickness of 16 μm was used. This electrode group 4 was inserted into a bottomed cylindrical battery case 1 (diameter 18 mm, height 65 mm). At this time, insulating rings 8a and 8b were arranged above and below the electrode group 4, respectively. The nonaqueous electrolytic solution obtained above was injected into the battery case 1. The negative electrode lead 6 a drawn from the negative electrode plate 6 was welded to the inner bottom surface of the battery case 1, and the positive electrode lead 5 a drawn from the positive electrode plate 5 was welded to the lower surface of the battery lid 2. The opening end of the battery case 1 was caulked to the peripheral edge of the battery lid 2 via the gasket 3 to seal the opening of the battery case 1. In this way, a 18650 size cylindrical lithium ion secondary battery (diameter 18 mm, height 65 mm) was produced. Details of the production of the positive electrode plate 5, the negative electrode plate 6, and the non-aqueous electrolyte will be described below.

(1)正極板の作製
正極の作製方法は次に示す通りである。例えば、まず、正極活物質100重量部、結着剤ポリフッ化ビニリデンフルオライド1.7重量部、及び導電剤アセチレンブラック2.5重量部を液状成分に混合させて正極ペーストを調製する。正極ペーストを厚み15μm
のアルミニウム箔からなる正極集電体の両面に塗布、乾燥して、正極集電体の両面に正極活物質層を形成し、プレート状の正極板を得た。その後、この正極板を圧延、裁断して、帯状の正極板5(厚み0.128mm、幅57mm、長さ667mm)を得た。
(1) Production of positive electrode plate The production method of the positive electrode is as follows. For example, first, 100 parts by weight of the positive electrode active material, 1.7 parts by weight of the binder polyvinylidene fluoride fluoride, and 2.5 parts by weight of the conductive agent acetylene black are mixed with the liquid components to prepare a positive electrode paste. Positive electrode paste 15μm thick
The positive electrode current collector made of the aluminum foil was coated on both surfaces and dried to form a positive electrode active material layer on both surfaces of the positive electrode current collector to obtain a plate-shaped positive electrode plate. Thereafter, this positive electrode plate was rolled and cut to obtain a strip-like positive electrode plate 5 (thickness 0.128 mm, width 57 mm, length 667 mm).

前記正極活物質としては、例えばLiCoO、LiNiO、LiMnO、LiCoNiO、LiCoMO、LiNiMO、LiCoNiMO(但し、M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBのうちの少なくとも1つ)が挙げられる、又はこれら含リチウム化合物の一部元素が異種元素で置換されたものが挙げられる。 Examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCoNiO 2 , LiCoMO 2 , LiNiMO 2 , LiCoNiMO 2 (where M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu , Zn, Al, Cr, Pb, Sb and B), or a part of these lithium-containing compounds substituted with a different element.

NiSO水溶液に、所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製した。この飽和水溶液を攪拌しながら水酸化ナトリウム水溶液をゆっくりと滴下し、飽和水溶液を中和し、共沈法により水酸化物Ni0.8Co0.15Al0.05(OH)の沈殿を得た。得られた沈殿物をろ過し、水洗し、80℃で乾燥した。この水酸化物にNi、CoおよびAlのモル数の和とLiのモル数とが等量になるように水酸化リチウム1水和物を加え、乾燥空気中にて800℃で10時間熱処理した。このようにして、LiNi0.8Co0.15Al0.05(以下、NCAと表記)を得た。 A predetermined ratio of Co and Al sulfate was added to the NiSO 4 aqueous solution to prepare a saturated aqueous solution. While stirring this saturated aqueous solution, an aqueous sodium hydroxide solution is slowly added dropwise, the saturated aqueous solution is neutralized, and a precipitate of hydroxide Ni 0.8 Co 0.15 Al 0.05 (OH) 2 is precipitated by a coprecipitation method. Obtained. The resulting precipitate was filtered, washed with water and dried at 80 ° C. Lithium hydroxide monohydrate was added to this hydroxide so that the total number of moles of Ni, Co and Al and the number of moles of Li were equal, and heat treatment was performed in dry air at 800 ° C. for 10 hours. . In this manner, LiNi 0.8 Co 0.15 Al 0.05 O 2 (hereinafter referred to as NCA) was obtained.

前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)なども挙げられる。前記導電材としては、例えば、カーボンブラック、天然黒鉛、人工黒鉛なども挙げられる
(2)負極板の作製
負極活物質としてのグラファイト100重量部と、結着剤ポリフッ化ビニリデンフルオライド0.6重量部と、増粘剤カルボキシメチルセルロース1重量部と、適量の水とを、双腕式練合機にて攪拌し、負極ペーストを得た。この負極ペーストを厚み8μmの銅箔からなる負極集電体の両面に塗布、乾燥して、負極集電体の両面に負極活物質層を形成し、プレート状の負極板を得た。その後、この負極板を圧延、裁断して、帯状の負極板6(厚み0.155mm、幅58.5mm、長さ745mm)を得た。
Examples of the binder include polytetrafluoroethylene (PTFE). Examples of the conductive material include carbon black, natural graphite, and artificial graphite. (2) Production of Negative Electrode Plate 100 parts by weight of graphite as a negative electrode active material and 0.6 weight of binder polyvinylidene fluoride fluoride Part, 1 part by weight of the thickener carboxymethylcellulose, and an appropriate amount of water were stirred with a double-arm kneader to obtain a negative electrode paste. This negative electrode paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 8 μm and dried to form a negative electrode active material layer on both surfaces of the negative electrode current collector, thereby obtaining a plate-shaped negative electrode plate. Thereafter, this negative electrode plate was rolled and cut to obtain a strip-shaped negative electrode plate 6 (thickness 0.155 mm, width 58.5 mm, length 745 mm).

(3)非水電解液の調製
エチレンカーボネートと、メチルエチルカーボネートと、ジメチルカーボネートとを体積比1:1:8の割合で混合した非水溶媒に、LiPFを1mol/Lの濃度で溶解して非水電解液を調製した。
(3) Preparation of non-aqueous electrolyte solution LiPF 6 was dissolved at a concentration of 1 mol / L in a non-aqueous solvent in which ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 1: 1: 8. Thus, a non-aqueous electrolyte was prepared.

上記で作製した円筒形リチウムイオン二次電池を用いて、以下の充放電サイクル寿命試験を実施した。 上記で作製した円筒形リチウムイオン二次電池を、上限電圧が4.0Vに達するまで定電流0.5Itで充電し、その後、定電流0.3Itで上限電圧4.2Vまで充電した。定電流充電の後、上記電池を終止電流0.02Itになるまで4.2Vで充電した(定電圧充電)。   The following charge / discharge cycle life test was carried out using the cylindrical lithium ion secondary battery produced above. The cylindrical lithium ion secondary battery produced above was charged at a constant current of 0.5 It until the upper limit voltage reached 4.0 V, and then charged to an upper limit voltage of 4.2 V at a constant current of 0.3 It. After the constant current charge, the battery was charged at 4.2 V until the end current reached 0.02 It (constant voltage charge).

こうして充電した後、20分間休止した。その後、上記円筒形リチウムイオン二次電池を1.0Itで放電終止電圧2.5Vまで放電した。
上記の充放電を300回繰り返した。
After charging in this way, it was paused for 20 minutes. Thereafter, the cylindrical lithium ion secondary battery was discharged at 1.0 It to a discharge end voltage of 2.5V.
The above charging / discharging was repeated 300 times.

上限電圧が4.0Vに達するまで定電流0.7Itで充電する以外は、実施例1と同様な手順で実施とした。   The procedure was the same as in Example 1 except that charging was performed at a constant current of 0.7 It until the upper limit voltage reached 4.0 V.

上限電圧が3.8Vに達するまで定電流0.7Itで充電し、その後、上限電圧4.0Vに達するまで定電流0.5Itで充電する以外は、実施例1と同様な手順で実施した。   The procedure was the same as in Example 1 except that charging was performed at a constant current of 0.7 It until the upper limit voltage reached 3.8 V, and thereafter charging was performed at a constant current of 0.5 It until reaching the upper limit voltage of 4.0 V.

LiCOとCoとNiOとMnOとを焼成後Li0.94Ni0.35Mn0.35Co0.35(以下、NMCと表記)となるように混合し、900℃で10時間焼成し得た活物質を正極に用い、上限電圧が4.0Vに達するまで定電流1Itで充電し、その後、上限電圧4.2Vに達するまで定電流0.7Itで充電し、また放電終止電圧を3.0Vとした以外は、実施例1と同様な手順で実施した。 Li 2 CO 3 , Co 3 O 4 , NiO and MnO 2 are mixed so as to be Li 0.94 Ni 0.35 Mn 0.35 Co 0.35 O 2 (hereinafter referred to as NMC) after firing, The active material obtained by firing at 900 ° C. for 10 hours is used for the positive electrode, charged at a constant current of 1 It until the upper limit voltage reaches 4.0 V, and then charged at a constant current of 0.7 It until the upper limit voltage reaches 4.2 V. Further, the same procedure as in Example 1 was performed except that the discharge end voltage was set to 3.0V.

LiCOとCoを焼成後LiCoO(以下、Coと表記)となるように混合し、900℃で10時間焼成し得た活物質を正極に用い、上限電圧が4.0Vに達するまで定電流0.7Itで充電し、その後、上限電圧4.3Vに達するまで定電流0.5Itで充電し、また放電終止電圧を3.0Vとした以外は、実施例1と同様な手順で実施した。 Li 2 CO 3 and Co 3 O 4 are fired and mixed so as to be LiCoO 2 (hereinafter referred to as Co), and the active material obtained by firing at 900 ° C. for 10 hours is used for the positive electrode, and the upper limit voltage is 4.0 V. The battery is charged with a constant current of 0.7 It until reaching the upper limit voltage, then charged with a constant current of 0.5 It until reaching the upper limit voltage of 4.3 V, and the discharge end voltage is set to 3.0 V. The procedure was carried out.

(比較例1)
上限電圧4.2Vに達するまで定電流0.7Itで充電する以外は、実施例5と同様な手順で実施した。
(Comparative Example 1)
The same procedure as in Example 5 was performed, except that charging was performed at a constant current of 0.7 It until the upper limit voltage of 4.2 V was reached.

(比較例2)
上限電圧4.2Vに達するまで定電流0.3Itで充電する以外は、実施例1と同様な手順で実施した。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that charging was performed at a constant current of 0.3 It until the upper limit voltage of 4.2 V was reached.

(比較例3)
上限電圧4.2Vに達するまで定電流0.5Itで充電する以外は、実施例1と同様な手順で実施した。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that the battery was charged with a constant current of 0.5 It until the upper limit voltage of 4.2 V was reached.

(比較例4)
上限電圧4.2Vに達するまで定電流0.7Itで充電する以外は、実施例1と同様な手順で実施した。
(Comparative Example 4)
The same procedure as in Example 1 was performed, except that charging was performed at a constant current of 0.7 It until the upper limit voltage of 4.2 V was reached.

(比較例5)
上限電圧4.2Vに達するまで定電流0.7Itで充電する以外は、実施例4と同様な手順で実施した。
(Comparative Example 5)
The same procedure as in Example 4 was performed except that charging was performed at a constant current of 0.7 It until the upper limit voltage of 4.2 V was reached.

(比較例6)
上限電圧4.2Vに達するまで定電流1Itで充電する以外は、実施例4と同様な手順で実施した。
(Comparative Example 6)
The same procedure as in Example 4 was performed except that charging was performed at a constant current of 1 It until the upper limit voltage of 4.2 V was reached.

(比較例7)
上限電圧4.3Vに達するまで定電流0.5Itで充電する以外は、実施例5と同様な手順で実施した。
(Comparative Example 7)
The procedure was the same as in Example 5 except that charging was performed at a constant current of 0.5 It until the upper limit voltage reached 4.3 V.

(比較例8)
上限電圧4.3Vに達するまで定電流0.7Itで充電する以外は、実施例5と同様な手順で実施した。
(Comparative Example 8)
The same procedure as in Example 5 was performed except that charging was performed at a constant current of 0.7 It until the upper limit voltage reached 4.3 V.

Figure 2011124166
正極活物質にCoを用いた電池を定電流0.7Itで充電する一般的な仕様である比較例1と比べ、正極活物質にNCAを用い0.3Itの定電流で充電する比較例2は、容量
維持率が大幅に向上したが、充電時間は大幅に長くなった。正極活物質にNCAを用いた電池で、0.5Itの定電流で充電する比較例3は、比較例1と比べほぼ同じ充電時間であるが、容量維持率は若干低下した。さらに充電電流を大きくし0.7Itの定電流で充電する比較例4は、充電時間は短縮されているが、容量維持率が大幅に低下した。これら比較例からも分かるように、充電時間短縮するために充電電流を大きくすると、負極Li受入れ性が低下し容量維持率の低下に繋がる。
Figure 2011124166
Compared with Comparative Example 1, which is a general specification for charging a battery using Co as a positive electrode active material at a constant current of 0.7 It, Comparative Example 2 using NCA as a positive electrode active material and charging at a constant current of 0.3 It is The capacity maintenance rate has been greatly improved, but the charging time has become significantly longer. A battery using NCA as a positive electrode active material and charging in Comparative Example 3 with a constant current of 0.5 It had substantially the same charging time as Comparative Example 1, but the capacity retention rate was slightly reduced. In Comparative Example 4 in which the charging current was further increased and charging was performed at a constant current of 0.7 It, although the charging time was shortened, the capacity retention rate was significantly reduced. As can be seen from these comparative examples, when the charging current is increased in order to shorten the charging time, the negative electrode Li acceptability is lowered, leading to a decrease in the capacity retention rate.

実施例1では、負極のLi受入れ性が良好である4V以下で定電流0.5Itで充電し、負極のLi受入れ性が低下する4V以上では定電流0.3Itで4.2Vまで充電することで、ほとんど容量維持率を低下させることなく充電時間を短縮することができている。   In Example 1, charging is performed at a constant current of 0.5 It at 4 V or less where the Li acceptability of the negative electrode is good, and charging is performed at a constant current of 0.3 It to 4.2 V at 4 V or more where the Li acceptability of the negative electrode is reduced. Thus, the charging time can be shortened with almost no decrease in capacity maintenance rate.

しかし、さらなる充電時間短縮を狙い、4V以下で定電流0.7Itで充電し4V以上で定電流0.3Itで4.2Vまで充電した実施例2では、やはり容量維持率の低下が見られた。そこで実施例3では、3.8Vまで定電流0.7Itで充電し、その後4.0Vまで定電流0.5Itで充電し、その後4.2Vまで定電流0.3Itで充電した。このように順次電流値を減少させることにより、容量維持率を大きく低下させることなく充電時間をさらに短縮させることが可能である。   However, with the aim of further shortening the charging time, in Example 2 where charging was performed at a constant current of 0.7 It at 4 V or less and charging to 4.2 V at a constant current of 0.3 It was performed at 4 V or more, a decrease in capacity maintenance rate was also observed. . Therefore, in Example 3, the battery was charged up to 3.8 V with a constant current of 0.7 It, then charged up to 4.0 V with a constant current of 0.5 It, and then charged up to 4.2 V with a constant current of 0.3 It. By sequentially decreasing the current value in this way, it is possible to further shorten the charging time without greatly reducing the capacity maintenance rate.

正極にNMCを用いた場合、比較例5、6の結果から、従来の方法で充電時間を短縮すると容量維持率が低下することが分かる。実施例4では、比較例5より充電時間を短縮でき、ほぼ同等の容量維持率を得られている。   When NMC is used for the positive electrode, it can be seen from the results of Comparative Examples 5 and 6 that the capacity retention rate decreases when the charging time is shortened by the conventional method. In Example 4, the charging time can be shortened compared to Comparative Example 5, and a substantially equivalent capacity retention rate is obtained.

正極にCoを用い、4.2V以上の高電圧まで充電する場合においても、比較例7、8の結果から、従来の方法で充電時間を短縮すると容量維持率が低下することが分かる。実施例5では、比較例7より充電時間を短縮でき、ほぼ同等の容量維持率を得られている。   Even in the case where Co is used for the positive electrode and the battery is charged to a high voltage of 4.2 V or higher, the results of Comparative Examples 7 and 8 show that the capacity retention rate decreases when the charging time is shortened by the conventional method. In Example 5, the charging time can be shortened compared to Comparative Example 7, and a substantially equivalent capacity retention rate is obtained.

以上の結果より明らかなように、従来よりも長時間定電流充電がなされるNi含有系正極を用いた電池系や高電圧仕様の電池において、本発明の充電方法を用いて充電時間短縮とサイクル寿命特性向上とを同時に実現することができる。   As can be seen from the above results, in the battery system using the Ni-containing positive electrode that is charged with a constant current for a longer time than in the past and in the battery of the high voltage specification, the charging method of the present invention is used to shorten the charging time and cycle. Improvement of life characteristics can be realized at the same time.

本発明の充電方法を採用するリチウムイオン二次電池は、携帯機器および情報機器等の電子機器の電源として好適に用いられる。   A lithium ion secondary battery employing the charging method of the present invention is suitably used as a power source for electronic devices such as portable devices and information devices.

1 電池ケース
2 電池蓋
3 ガスケット
4 電極群
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a、8b 絶縁リング
DESCRIPTION OF SYMBOLS 1 Battery case 2 Battery cover 3 Gasket 4 Electrode group 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a, 8b Insulation ring

Claims (3)

層状の結晶構造を有するリチウム複合酸化物を正極活物質に用いたリチウムイオン二次電池の充電方法において、定電流定電圧充電として定電流充電を繰り返して行い、その各充電を定電流が初回から順次小さくするとともに上限電圧を初回から順次大きくして充電時に負極の電位がリチウム析出に到達しないようにして行うことを特徴とするリチウムイオン二次電池の充電方法。   In a charging method of a lithium ion secondary battery using a lithium composite oxide having a layered crystal structure as a positive electrode active material, constant current charging is repeatedly performed as constant current and constant voltage charging, and each charging is performed from the first constant current. A charging method for a lithium ion secondary battery, wherein the charging is performed by sequentially decreasing and increasing the upper limit voltage sequentially from the first time so that the potential of the negative electrode does not reach lithium deposition during charging. 前記リチウム含有複合酸化物として、一般式LiNiCo(1-x-y)(式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBのうちの少なくとも1つの元素であり、0.3≦x<1.0、0<y<0.4)で表されるものを用いた請求項1記載のリチウムイオン二次電池の充電方法。 As the lithium-containing complex oxide of the general formula LiNi x Co y M (1- x-y) O 2 ( wherein, M represents, Na, Mg, Sc, Y , Mn, Fe, Co, Ni, Cu, Zn 2. An element represented by at least one element selected from Al, Cr, Pb, Sb and B, wherein 0.3 ≦ x <1.0 and 0 <y <0.4). To charge the lithium ion secondary battery. 上限充電電圧が4.2V〜4.4Vである請求項1記載のリチウムイオン二次電池の充電方法。   The method of charging a lithium ion secondary battery according to claim 1, wherein the upper limit charging voltage is 4.2V to 4.4V.
JP2009282517A 2009-12-14 2009-12-14 Method for charging lithium-ion secondary battery Pending JP2011124166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282517A JP2011124166A (en) 2009-12-14 2009-12-14 Method for charging lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282517A JP2011124166A (en) 2009-12-14 2009-12-14 Method for charging lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011124166A true JP2011124166A (en) 2011-06-23

Family

ID=44287841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282517A Pending JP2011124166A (en) 2009-12-14 2009-12-14 Method for charging lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011124166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785148A (en) * 2017-03-15 2017-05-31 盐城工学院 A kind of chemical synthesizing method and lithium rechargeable battery
JP2018082613A (en) * 2016-11-01 2018-05-24 三星電子株式会社Samsung Electronics Co.,Ltd. Method and device for charging battery
WO2019065190A1 (en) * 2017-09-26 2019-04-04 日本碍子株式会社 Lithium-ion assembled battery
WO2023184390A1 (en) * 2022-03-31 2023-10-05 东莞新能安科技有限公司 Electrochemical device and charging method therefor, and electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082613A (en) * 2016-11-01 2018-05-24 三星電子株式会社Samsung Electronics Co.,Ltd. Method and device for charging battery
JP7076191B2 (en) 2016-11-01 2022-05-27 三星電子株式会社 Battery charging method and equipment
CN106785148A (en) * 2017-03-15 2017-05-31 盐城工学院 A kind of chemical synthesizing method and lithium rechargeable battery
CN106785148B (en) * 2017-03-15 2019-08-02 盐城工学院 A kind of chemical synthesizing method and lithium ion secondary battery
WO2019065190A1 (en) * 2017-09-26 2019-04-04 日本碍子株式会社 Lithium-ion assembled battery
JPWO2019065190A1 (en) * 2017-09-26 2020-10-15 日本碍子株式会社 Lithium-ion battery
JP6993419B2 (en) 2017-09-26 2022-01-13 日本碍子株式会社 Lithium-ion battery
US11431036B2 (en) 2017-09-26 2022-08-30 Ngk Insulators, Ltd. Lithium-ion assembled battery
WO2023184390A1 (en) * 2022-03-31 2023-10-05 东莞新能安科技有限公司 Electrochemical device and charging method therefor, and electronic device

Similar Documents

Publication Publication Date Title
WO2009150773A1 (en) Charging method and discharging method of lithium ion secondary battery
JP5089825B2 (en) Non-aqueous electrolyte secondary battery charging method and battery pack
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
EP2905831B1 (en) Cathode additive for high-capacity lithium secondary battery
JP5063948B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR100609789B1 (en) Non-Aqueous Electrolyte Secondary Battery
US7309546B2 (en) Positive active material for rechargeable lithium battery
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
KR20080031151A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2007273448A (en) Non-aqueous electrolyte secondary battery
CN103415947A (en) Nonaqueous electrolyte secondary battery
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
JP2021077657A (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode including the same
JP5103961B2 (en) Lithium ion secondary battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2002358961A (en) Non-aqueous electrolyte secondary battery
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
JP2011124166A (en) Method for charging lithium-ion secondary battery
KR101423818B1 (en) Pretreatment method and using method of lithium ion secondary battery
JP2012209245A (en) Nonaqueous electrolyte secondary battery
JP2013131426A (en) Method for charging nonaqueous electrolyte secondary battery, and battery pack
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery