JP2011123515A - Zoom lens and imaging apparatus - Google Patents

Zoom lens and imaging apparatus Download PDF

Info

Publication number
JP2011123515A
JP2011123515A JP2011007728A JP2011007728A JP2011123515A JP 2011123515 A JP2011123515 A JP 2011123515A JP 2011007728 A JP2011007728 A JP 2011007728A JP 2011007728 A JP2011007728 A JP 2011007728A JP 2011123515 A JP2011123515 A JP 2011123515A
Authority
JP
Japan
Prior art keywords
group
lens
object side
refractive power
image side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007728A
Other languages
Japanese (ja)
Other versions
JP4891440B2 (en
Inventor
Tsutomu Uzawa
勉 鵜澤
Yuko Kobayashi
祐子 小林
Shinichi Mihara
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011007728A priority Critical patent/JP4891440B2/en
Publication of JP2011123515A publication Critical patent/JP2011123515A/en
Application granted granted Critical
Publication of JP4891440B2 publication Critical patent/JP4891440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens having a wide angle and a high variable power ratio, which is bright such that an F value at a wide angle end is about 2.0 to 2.8. <P>SOLUTION: The zoom lens includes, in order from an object side, a first group movable along an optical axis when varying power and having positive refractive power, a second group moving to an image side along the optical axis when varying power from the wide angle end to a telephoto end and having negative refractive power, and a rear group succeeding to the second group and having at least two intervals variable when varying power. The first group moves while drawing a reciprocating locus projecting to the image side. The zoom lens satisfies a condition of -1.0<Δz1/Δz2<0.5 (Δz2>0) concerning a moving amount Δz1 from the wide angle end to the telephoto end of the first group when focused on an infinity object point and a moving amount Δz2 from the wide angle end to the telephoto end of the second group when focused on the infinity object point. Provided that movement to the image side is positive. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ズームレンズ及び撮像装置に関し、特に、カメラ特にビデオカメラやデジタルカメラに適した広角域を含んだ大口径比で高変倍率なズームレンズとそれを用いた撮像装置に関するものである。   The present invention relates to a zoom lens and an imaging apparatus, and more particularly, to a zoom lens having a large aperture ratio and a high zoom ratio including a wide-angle range suitable for cameras, particularly video cameras and digital cameras, and an imaging apparatus using the same.

近年、銀塩135mmフィルム(通称ライカ版)カメラに代わる次世代カメラとしてデジタルカメラ(電子カメラ)が注目されてきている。その中で、一般ユーザー向けのデジタルカメラでは、対角画角60°程度の単焦点レンズあるいはこれを広角端とした3倍程度のズームレンズが主流になっている。一方、ハイクラスユーザーを対象とするとなると、さらに広角側あるいは望遠側へ拡張しなくてはならないし、TTL光学ファインダー対応でなくてはならない。当然、結像性能も高いものが要求される。広角端の対角画角75°程度の7乃至10倍クラスのTTL光学ファインダー対応のズームレンズについては、前記銀塩135mmフィルムカメラ用のものがいくつか市販されている。しかし、これより数分の一以下のサイズの撮像フォーマット用に相応しい、しかも広角端でのF値が2.0乃至2.8程度と明るい広角高倍ズームレンズは、テレビカメラ等、業務用途以外ではほとんど知られていない。   In recent years, digital cameras (electronic cameras) have attracted attention as next-generation cameras that replace silver salt 135 mm film (commonly known as Leica version) cameras. Among them, in a digital camera for general users, a single-focus lens having a diagonal field angle of about 60 ° or a zoom lens having about 3 times the wide-angle end is the mainstream. On the other hand, when targeting high-class users, it must be further extended to the wide-angle side or the telephoto side, and must be compatible with the TTL optical viewfinder. Of course, a high imaging performance is required. Several zoom lenses for the silver salt 135 mm film camera are commercially available as 7 to 10 times class TTL optical viewfinder zoom lenses having a diagonal angle of view of about 75 ° at the wide-angle end. However, a wide-angle high-magnification zoom lens that is suitable for an imaging format that is a fraction of a size smaller than this and that has a bright F-number of about 2.0 to 2.8 at the wide-angle end is used for non-business purposes such as a TV camera. Little is known.

本発明では従来技術のこのような現状に鑑みてなされたものであり、その目的は、広角高変倍比のズームレンズで、しかも広角端でのF値が2.0乃至2.8程度と明るいズームレンズとそれを用いた撮像装置を提供することである。   The present invention has been made in view of such a current state of the art, and its purpose is a zoom lens with a wide angle high zoom ratio, and an F value at the wide angle end of about 2.0 to 2.8. To provide a bright zoom lens and an imaging apparatus using the same.

上記目的を達成するために、本発明のズームレンズは、
物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とよりなるズームレンズ、
若しくは、
物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなるズームレンズ、
を基本構成としている。
In order to achieve the above object, the zoom lens of the present invention includes:
In order from the object side, a first lens unit having a positive refractive power that is movable along the optical axis at the time of zooming, and negative refraction that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A zoom lens comprising a second group having power and a rear group having at least two movable subgroups;
Or
In order from the object side, a first lens unit having a positive refractive power that is movable along the optical axis at the time of zooming, and negative refraction that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A zoom lens comprising: a second group having power; and a rear group having a variable interval at the time of at least two subsequent magnifications;
Is the basic configuration.

このような構成は、諸収差を抑えつつ高変倍化を達成するのに有利な構成である。これらの構成を基本とする本発明の特徴部を以下に示す。   Such a configuration is advantageous in achieving high zooming while suppressing various aberrations. Features of the present invention based on these configurations will be described below.

本発明の第1のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含み、特に第1群の焦点距離f1 が以下の条件を満たすことを特徴とするズームレンズである。 The first zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. A second group having a negative refractive power that moves toward the image side along with the rear group having a variable interval at the time of zooming, and in particular, the focal length f 1 of the first group satisfies the following condition The zoom lens is characterized by that.

(1) 6<f1 /L<20
ただし、Lは結像面近傍に配設される有効撮像面の対角長である。
(1) 6 <f 1 / L <20
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

上記条件(1)の下限値の6を越えると、望遠側での球面収差が補正不足になる。上限値の20を越えると、変倍時可動の群の移動量が増大し、レンズ全系が大型化しやすい。   If the lower limit 6 of the condition (1) is exceeded, the spherical aberration on the telephoto side will be undercorrected. If the upper limit of 20 is exceeded, the amount of movement of the movable group at the time of zooming increases, and the entire lens system tends to be large.

なお、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(1') 6.5<f1 /L<16
さらに、次のようにするとなお好ましい。
(1 ′) 6.5 <f 1 / L <16
Furthermore, the following is more preferable.

(1") 7<f1 /L<12
本発明の第2のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、第1群の焦点距離f1 と第1群の少なくとも1つの正レンズの媒質の異常分散性ΔθgFが以下の条件を満たすことを特徴とするズームレンズである。
(1 ") 7 <f 1 / L <12
The second zoom lens according to the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis at the time of zooming from the wide angle end to the telephoto end. A zoom lens of the type including a second group having a negative refractive power moving along the image side along with a rear group having at least two movable subgroups, or an optical axis at the time of zooming in order from the object side A first group having a positive refractive power that is movable along the optical axis, a second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end, and at least 2 In any zoom lens including a rear group having a variable interval at the time of zooming, the focal length f 1 of the first group and the anomalous dispersion Δθ gF of the medium of at least one positive lens of the first group are The zoom lens is characterized by satisfying the following conditions.

(1) 6<f1 /L<20
(2) 0.015<ΔθgF<0.1
ただし、Lは結像面近傍に配設される有効撮像面の対角長である。
(1) 6 <f 1 / L <20
(2) 0.015 <Δθ gF <0.1
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

なお、各媒質(硝材)の異常分散性ΔθgFの定義は、
θgF=AgF+BgF・νd +ΔθgF
一方、
θgF=(ng −nF )/(nF −nC
νd =(nd −1)/(nF −nC
d 、nF 、nC 、ng はそれぞれd線、F線、C線、g線に対する屈折率
、AgF、BgFは、ガラスコード511605(株式会社オハラでの商品名NSL7
θgF=0.5436 νd =60.49 )とガラスコード 620363 (株式会社オハラ
での商品名PBM2 θgF=0.5828 νd =36.26 )の2硝種で決まる直線
の係数であり、具体的には、AgFは0.641462485、BgFは−0.
001617829、
である。
In addition, the definition of the anomalous dispersion Δθ gF of each medium (glass material) is
θ gF = A gF + B gF · ν d + Δθ gF
on the other hand,
θ gF = (n g −n F ) / (n F −n C )
ν d = (n d −1) / (n F −n C )
n d , n F , n C , and ng are refractive indexes for d line, F line, C line, and g line, A gF , and B gF are glass cord 511605 (trade name NSL7 at OHARA INC.)
is a coefficient of a straight line determined by two glass type of θ gF = 0.5436 ν d = 60.49 ) and the glass cord 620363 (trade name PBM2 θ gF = 0.5828 ν d = 36.26 at Ohara Inc.), specifically, A gF is 0.641462485, B gF is -0.
001617829,
It is.

上記条件(2)の下限値の0.015を越えると、望遠端における短波長軸上色収差が補正し切れず、輝度差の大きな被写体の縁に色にじみが発生しやすい。上限値の0.1を越えると、安価な媒質がほとんど存在しないし、逆の色収差が発生することになる。   If the lower limit of 0.015 of the above condition (2) is exceeded, the short wavelength axial chromatic aberration at the telephoto end cannot be corrected and color blurring tends to occur at the edge of a subject having a large luminance difference. When the upper limit of 0.1 is exceeded, there is almost no inexpensive medium, and reverse chromatic aberration occurs.

なお、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(1') 6.5<f1 /L<16
(2') 0.020<ΔθgF<0.08
さらに、次のようにするとなお好ましい。
(1 ′) 6.5 <f 1 / L <16
(2 ′) 0.020 <Δθ gF <0.08
Furthermore, the following is more preferable.

(1") 7<f1 /L<12
(2") 0.025<ΔθgF<0.06
本発明の第3のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負
の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズである。
(1 ") 7 <f 1 / L <12
(2 ") 0.025 <Δθ gF <0.06
The third zoom lens of the present invention includes, in order from the object side, a first group having positive refractive power that is movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is aspherical, and at least two movable sub lenses A zoom lens of a type including a rear group having a total of 6 or more and 11 or less lenses, or a positive refractive power movable along the optical axis at the time of zooming in order from the object side The first group and the second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. In any type of zoom lens and a rear lens group having a variable spacing when at least two zooming, movement amount Delta] z 1 from the wide-angle end of the first group of the focal point at infinity to the telephoto end, The zoom lens is characterized in that the following condition is satisfied with respect to the movement amount Δz 2 from the wide-angle end to the telephoto end of the second group at the time of focusing on an object point at infinity.

(3) 3<(Δz2 −Δz1 )/L<9
ただし、像側への移動を正とする。Lは結像面近傍に配設される有効撮像面の対角長。
(3) 3 <(Δz 2 −Δz 1 ) / L <9
However, the movement toward the image side is positive. L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

先述のように、広角端から望遠端にズーミングする際、第2群は第1群から相対的に遠ざかる動きをする。特に高変倍ズームレンズでは、その移動量が大きいため、移動スペースを多く必要とする。それは広画角である程問題で、第1群の径が大きくなりすぎることがある。上記条件(3)の上限値の9を越えると、第1群の径が大きくなりすぎレンズ系が大型化する。下限値の3を越えると、後群の変倍負担が増大し、変倍時の球面収差の変動が大きくなりやすい。   As described above, when zooming from the wide-angle end to the telephoto end, the second group moves relatively away from the first group. In particular, a high zoom zoom lens requires a large movement space because of its large movement amount. The problem is that the wider the angle of view, the diameter of the first group may become too large. If the upper limit of 9 in the condition (3) is exceeded, the diameter of the first group becomes too large and the lens system becomes large. If the lower limit of 3 is exceeded, the zooming burden on the rear group increases, and the variation in spherical aberration during zooming tends to increase.

なお、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(3') 3.2<(Δz2 −Δz1 )/L<8
さらに、次のようにするとなお好ましい。
(3 ′) 3.2 <(Δz 2 −Δz 1 ) / L <8
Furthermore, the following is more preferable.

(3") 3.4<(Δz2 −Δz1 )/L<7
また、広角であることと高変倍率であることにより、最も負担が大きくなる群は第2群である。さらに、第2群のパワーや移動量や構成によって第1群の径の大きさまで決まってしまう。第1群の径という観点からは、第2群の主点はできるだけ物体側に位置する方が有利である。したがって、第2群は負の屈折力の前群と正の屈折力の後群で構成することが好ましい。この場合、広角でかつ高変倍率であるために樽型の歪曲収差が発生しやすいことや、非点収差がズーム全域にて補正し難い点については、第2群の負レンズを少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを有する構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成とし、第2群中の何れかの面を非球面とすることで、大幅に解消できる。
(3 ") 3.4 <(Δz 2 -Δz 1 ) / L <7
In addition, the group with the largest burden due to the wide angle and the high zoom ratio is the second group. Furthermore, the size of the diameter of the first group is determined by the power, movement amount, and configuration of the second group. From the viewpoint of the diameter of the first group, it is advantageous that the principal point of the second group is located on the object side as much as possible. Therefore, the second group is preferably composed of a front group having a negative refractive power and a rear group having a positive refractive power. In this case, at least three negative lenses in the second group are used for the fact that barrel-shaped distortion is likely to occur due to the wide angle and high magnification, and that astigmatism is difficult to correct in the entire zoom range. Including a negative lens, the most image side is a positive lens structure, or the three most object side lenses are negative lenses and the image side has a positive lens, or includes a negative lens and the most image side 2 This can be largely eliminated by using a positive lens configuration and making any surface in the second group an aspherical surface.

また、後群のレンズ枚数が6枚より少ないと、色収差や球面収差の補正が厳しくなり、一方、11枚を越えると、後群全体が厚くなり、ズームスぺースを十分確保することが難しくなる。   If the number of lenses in the rear group is less than 6, the correction of chromatic aberration and spherical aberration becomes severe. On the other hand, if the number exceeds 11, the entire rear group becomes thick and it is difficult to secure a sufficient zoom space. .

また、後群は複数の群を有しているが、少なくとも2つの正屈折力の副群を備え、その中最も物体側の正屈折力の副群及び最も像側の正屈折力の副群それぞれを3枚以上のレンズで構成することが、色収差、球面収差、コマ収差、大口径化のためにより好ましい。   The rear group has a plurality of groups, and includes at least two sub-groups having positive refractive power, and among them, the most object-side positive refractive power sub-group and the most image-side positive refractive power sub-group. It is more preferable that each lens is composed of three or more lenses for increasing chromatic aberration, spherical aberration, coma aberration, and large aperture.

本発明の第4のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを
含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズである。
The fourth zoom lens according to the present invention includes, in order from the object side, a first group having a positive refractive power that is movable along the optical axis at the time of zooming, and an optical axis at the time of zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is an aspherical surface, and at least two movable sub lenses A zoom lens of a type including a rear group having 6 to 11 lenses as a whole, or having a positive refractive power movable along the optical axis at the time of zooming in order from the object side The first group and the second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. In any type of zoom lens and a rear lens group having a variable spacing when at least two zooming, movement amount Delta] z 1 from the wide-angle end of the first group of the focal point at infinity to the telephoto end, The zoom lens is characterized in that the following condition is satisfied with respect to the movement amount Δz 2 from the wide-angle end to the telephoto end of the second group at the time of focusing on an object point at infinity.

(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive.

これは、広角端から望遠端にズーミングする場合、第1・2群合成系による像点の軌跡を適正にするための条件である。その軌跡は、後群の倍率変化領域と焦点距離をある程度決めてしまう。上記条件(4)の上限値の0.5を越えると、後群の倍率がより小さい側になったり、あるいは焦点距離が長い側になり、Lの値の割に全体的に大きなレンズ系になりがちである。下限値の−1.0を越えると、その逆でLの割に全体的に小さなレンズ系になるが、Lが小さくF値の明るい場合、球面収差、コマ収差の補正が困難である。   This is a condition for making the trajectory of the image point by the first and second group combining system appropriate when zooming from the wide-angle end to the telephoto end. The trajectory determines to some extent the magnification change region and focal length of the rear group. If the upper limit of 0.5 of the above condition (4) is exceeded, the magnification of the rear group becomes smaller or the focal length becomes longer, and the lens system becomes large as a whole for the value of L. It tends to be. If the lower limit of −1.0 is exceeded, the lens system becomes smaller as a whole for L, but if L is small and the F value is bright, it is difficult to correct spherical aberration and coma.

なお、これに条件(3)を加えてもよい。   Note that condition (3) may be added thereto.

また、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(4') −0.9<Δz1 /Δz2 <0.4 (Δz2 >0)
さらに、次のようにするとなお好ましい。
(4 ′) −0.9 <Δz 1 / Δz 2 <0.4 (Δz 2 > 0)
Furthermore, the following is more preferable.

(4") −0.8<Δz1 /Δz2 <0.3 (Δz2 >0)
本発明の第5のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から中間焦点距離fM (=√(fW ・fT ))までの移動量Δz1WM が正であることを特徴とするズームレンズである。ただし、像側への移動を正とする。なお、fW は広角端無限物点合焦時の、fT は望遠端無限物点合焦時の全系合成焦点距離。fM はfW とfT の相乗平均である。なお、広角端から望遠端にズーミングする際、第2群は第1群から相対的に遠ざかる動きをし、後群はその主点位置が像面に対して遠ざかる動きをする。なお、像面位置は一定である。
(4 ") -0.8 <Δz 1 / Δz 2 <0.3 (Δz 2 > 0)
The fifth zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. A zoom lens of the type including a second group having a negative refractive power moving along the image side along with a rear group having at least two movable subgroups, or an optical axis at the time of zooming in order from the object side A second group having a positive refractive power that is movable along the optical axis, a second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end, and at least 2 In any of the zoom lenses including a rear group having a variable interval at the time of zooming, the first group moves while drawing a convex reciprocating locus toward the image side, and the first group at the time of focusing on an object point at infinity. It is characterized in that the movement amount Δz 1WM from the wide angle end of the group to the middle focal length f M (= √ (f W · f T)) is positive A zoom lens. However, the movement toward the image side is positive. Note that f W is the total focal length when the infinite object point is in focus at the wide angle end, and f T is the total focal length of the entire system at the infinite object point at the telephoto end. f M is the geometric mean of f W and f T. When zooming from the wide-angle end to the telephoto end, the second lens group moves away from the first lens group, and the rear lens group moves away from the image plane. Note that the image plane position is constant.

Lの値が小さい電子撮像素子や視野枠を使用すると、第1群の焦点距離が全系に対しその比が非常に大きくなるため、後群の倍率が特に小さく、望遠端でも等倍程度の値である。同時に、後群の焦点距離は第2群より長いので、広角端から望遠端にズーミングするときの第1・2群合成系による像点の軌跡は、広角端近傍で像側にかなり急な変化を必要とし、望遠端にてかなり緩やかになるようにする必要がある。したがって、第1群は前述のような軌跡を描くようにするのがよい。   When an electronic image sensor or a field frame with a small value of L is used, the ratio of the focal length of the first group to the entire system becomes very large, so the magnification of the rear group is particularly small, and is about the same at the telephoto end. Value. At the same time, since the focal length of the rear group is longer than that of the second group, the locus of the image point by the first and second group synthesis system when zooming from the wide-angle end to the telephoto end changes abruptly toward the image side near the wide-angle end. It is necessary to make it fairly gentle at the telephoto end. Therefore, the first group should draw a locus as described above.

本発明の第6のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負
の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、第1群は像側に凸の往復軌跡を描きつつ移動し、上記した条件(4)のみ、又は、条件(3)、(4)の両方を満たすことを特徴とするズームレンズである。
The sixth zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. A zoom lens of the type including a second group having a negative refractive power moving along the image side along with a rear group having at least two movable subgroups, or an optical axis at the time of zooming in order from the object side A second group having a positive refractive power that is movable along the optical axis, a second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end, and at least 2 In any zoom lens including a rear group having a variable interval at the time of zooming, the first group moves while drawing a convex reciprocating locus on the image side, and only the above condition (4), or It is a zoom lens characterized by satisfying both conditions (3) and (4).

これにより、第4、第5のズームレンズに関して記載した効果が得られる。   Thereby, the effect described regarding the 4th and 5th zoom lens is acquired.

本発明の第7のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかのズームレンズである。   The seventh zoom lens of the present invention includes, in order from the object side, a first group having positive refractive power that is movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is aspherical, and at least two movable sub lenses A zoom lens of a type including a rear group having a total of 6 or more and 11 or less lenses, or a positive refractive power movable along the optical axis at the time of zooming in order from the object side The first group and the second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Is any of the zoom lens of the type of zoom lens and a rear lens group having a variable spacing when at least two zooming.

広角であることと高変倍率であることにより、最も負担が大きくなる群は第2群である。さらに、第2群のパワーや移動量や構成によって第1群の径の大きさまで決まってしまう。第1群の径という観点からは、第2群の主点はできるだけ物体側に位置する方が有利である。したがって、最も像側に正レンズを配するのがよい。次に、広角でかつ高変倍率であるために樽型の歪曲収差が発生しやすいことや、非点収差がズーム全域にて補正し難い点については、第2群の負レンズを3枚以上にして構成し、その中少なくとも1面を非球面にて構成することで大幅に解消できる。特に、この非球面を周辺に行くに従って軸上の曲率に比べて発散性が弱まるか、収斂性が強まる方向の形状とすることが望ましい。また、先の説明と同様に、第2群を最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成としても同様の効果が得られる。   The group with the greatest burden due to the wide angle and the high zoom ratio is the second group. Furthermore, the size of the diameter of the first group is determined by the power, movement amount, and configuration of the second group. From the viewpoint of the diameter of the first group, it is advantageous that the principal point of the second group is located on the object side as much as possible. Therefore, it is preferable to arrange a positive lens on the most image side. Next, in terms of the fact that barrel-shaped distortion is likely to occur due to the wide angle and high magnification, and that astigmatism is difficult to correct over the entire zoom range, there are three or more negative lenses in the second group. This can be largely eliminated by configuring at least one of them as an aspherical surface. In particular, it is desirable that the aspherical surface has a shape in which the divergence becomes weaker or the convergence becomes stronger as compared with the curvature on the axis as it goes to the periphery. Similarly to the above description, the second lens unit is configured so that three lenses closest to the object side are negative lenses and the image side includes positive lenses, or includes a negative lens and two lenses closest to the image side are positive. Similar effects can be obtained with the lens configuration.

さらに、無限遠物点合焦時の第2群の広角端時倍率β2Wと望遠端時倍率β2Tの比Δβ2 (=β2T/β2W)と第2群の焦点距離f2 に関し、以下の条件を満たすズームレンズとするのがよい。 Further, regarding the ratio Δβ 2 (= β 2T / β 2W ) of the second group wide angle end magnification β 2W and the telephoto end magnification β 2T when focusing on an object point at infinity and the focal length f 2 of the second group, A zoom lens that satisfies the following conditions is preferable.

(5) 0.3<log(Δβ2 )/log(γ)<0.8
(6) 5<γ<15
ただし、γは全系の広角端から望遠端までのズーム比である。
(5) 0.3 <log (Δβ 2 ) / log (γ) <0.8
(6) 5 <γ <15
However, γ is a zoom ratio from the wide angle end to the telephoto end of the entire system.

先にも述べたように、広角であることと高変倍率であることにより、最も負担が大きくなる群は第2群である。さらに、第2群のパワーや移動量や構成によって第1群の径の大きさまで決まってしまう。そこで、できるだけ変倍機能を後群にも分散する。条件(5)は、ズーム全域における第2群の変倍比の割合を規定したものである。その上限値の0.8を越えると、第2群の変倍機能の負担が大きすぎ、上記軸外諸収差補正や第1群の径の小型化に支障をきたす。下限値の0.3を越えると、逆に後群の負担が大きくなり、ズーム全域で球面収差やコマ収差等が安定しなくなり、大口径化がし難い。条件(6)は、条件(5)が効果を示すズーム比の範囲である。その範囲外では、条件(5)の範囲が適正でなくなる。つまり、条件(6)の上限の15を越えた場合は、条件(5)の範囲を越え
て第2群の変倍負担率をさらに減らす方がよく、一方、下限の5を越える場合は、条件(5)の範囲を越えて第2群の変倍負担率をさらに高くしても、収差の影響は少なくなるが、一方十分な変倍比ではなくなる。
As described above, the group with the largest burden due to the wide angle and the high zoom ratio is the second group. Furthermore, the size of the diameter of the first group is determined by the power, movement amount, and configuration of the second group. Therefore, the zooming function is distributed to the rear group as much as possible. Condition (5) defines the ratio of the zoom ratio of the second group over the entire zoom range. When the upper limit of 0.8 is exceeded, the burden of the zooming function of the second group is too great, which hinders the correction of various off-axis aberrations and the reduction of the diameter of the first group. If the lower limit of 0.3 is exceeded, the burden on the rear group increases, and spherical aberration, coma and the like are not stable over the entire zoom range, making it difficult to increase the diameter. Condition (6) is a zoom ratio range in which condition (5) is effective. Outside the range, the range of condition (5) is not appropriate. That is, when the upper limit of 15 of the condition (6) is exceeded, it is better to further reduce the zooming ratio of the second group beyond the range of the condition (5), while when the lower limit of 5 is exceeded, Even if the zoom ratio of the second lens group is further increased beyond the range of the condition (5), the influence of aberration is reduced, but on the other hand, the zoom ratio is not sufficient.

なお、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(5') 0.35<log(Δβ2 )/log(γ)<0.65
(6') 9<γ<15
又は、
(5") 0.5<log(Δβ2 )/log(γ)<0.8
(6") 5<γ<9
本発明の第8のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、広角端無限物点合焦時の後群の合成倍率βrWに関し以下の条件を満たすことを特徴とするズームレンズである。
(5 ′) 0.35 <log (Δβ 2 ) / log (γ) <0.65
(6 ') 9 <γ <15
Or
(5 ") 0.5 <log (Δβ 2 ) / log (γ) <0.8
(6 ") 5 <γ <9
The eighth zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is an aspherical surface, and at least two movable sub lenses A zoom lens of a type including a rear group having 6 to 11 lenses as a whole, or having a positive refractive power movable along the optical axis at the time of zooming in order from the object side The first group and the second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. In any type of zoom lens and a rear lens group having a variable spacing when at least two zooming, the following condition is satisfied From the group of synthetic magnification beta rW after upon focusing the wide-angle end infinite object point The zoom lens is characterized.

(7) −0.6<βrW<−0.1
先述のように、Lの値(有効撮像面対角長)が小さい撮像素子やフィルムの視野枠を使用すると、第1群の焦点距離が全系に対しその比が非常に大きくなる。それは、例えば135mmフォーマットやAPSフォーマット用光学系を単純に比例係数倍すると、機械的構成やレンズ加工が物理的に不可能なためである。そのため、各群の焦点距離、特に第1・2群の焦点距離を短くできない。したがって、後群の倍率は上記大きなフォーマット向け光学系より小さくしなくてはならない。条件(7)の下限値の−0.6を越えると、第1・2群合成系の焦点距離を短くする方向となるため、レンズの縁肉厚・中心肉厚・エアスペースが極端に小さくなりやすく、これを確保しようとすると、ペッツバール和が負となると同時に、歪曲・非点・コマ等、各軸外収差をズーム全域で確保するのが困難となる。上限値の−0.1を越えると、レンズ系が巨大化しやすい。
(7) −0.6 <β rW <−0.1
As described above, when an image sensor with a small value of L (effective imaging surface diagonal length) or a field frame of film is used, the ratio of the focal length of the first group to the entire system becomes very large. This is because, for example, when a 135 mm format or APS format optical system is simply multiplied by a proportional coefficient, mechanical configuration and lens processing are physically impossible. Therefore, the focal length of each group, especially the first and second groups cannot be shortened. Accordingly, the magnification of the rear group must be smaller than that of the large format optical system. If the lower limit of -0.6 in condition (7) is exceeded, the focal length of the first and second lens groups will be shortened, so the lens edge thickness, center thickness, and air space will be extremely small. If this is to be ensured, the Petzval sum becomes negative, and at the same time, it is difficult to secure each off-axis aberration such as distortion, astigmatism, and coma throughout the entire zoom range. If the upper limit of −0.1 is exceeded, the lens system tends to be huge.

なお、前記後群は、それぞれの光軸上相対距離が可変の3つ以上の副群から構成し、さらには、その3つの群として、物体側から順に、正の屈折力、負の屈折力、正の屈折力の順で含むように構成するとよい。   The rear group is composed of three or more subgroups whose relative distances on the optical axis are variable, and further, as the three groups, positive refractive power and negative refractive power in order from the object side. It is good to comprise so that it may contain in order of positive refractive power.

また、後群をそれぞれの光軸上相対距離が可変の複数の副群から構成し、かつ、後群中の可動の全ての副群には、それぞれ接合レンズ成分を少なくとも1つ有するように構成するのもよい。あるいは、後群をそれぞれの光軸上相対距離が可変の3つ以上の副群から構成し、かつ、後群中の可動の全ての副群には、それぞれ接合レンズ成分を少なくとも1つ有するように構成するのもよい。   The rear group is composed of a plurality of subgroups whose relative distances on the optical axis are variable, and all movable subgroups in the rear group have at least one cemented lens component. It is good to do. Alternatively, the rear group is composed of three or more subgroups each having a variable relative distance on the optical axis, and all the movable subgroups in the rear group each have at least one cemented lens component. It may be configured as follows.

なお、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(6') 9<γ<15
のとき、
(7') −0.5<βrW<−0.1
又は、
(6") 5<γ<9
のとき、
(7") −0.6<βrW<−0.2
本発明の第9のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、前記後群の中、負の倍率を有する副群の中で最も物体側にある正の副群よりも像側の何れかの副群にてフォーカスを行ない、最も像側の正の副群の広角端無限物点合焦時倍率βRRW に関し、以下の条件を満たすことを特徴とするズームレンズである。
(6 ') 9 <γ <15
When,
(7 ′) −0.5 <β rW <−0.1
Or
(6 ") 5 <γ <9
When,
(7 ") -0.6 <β rW <-0.2
The ninth zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is aspherical, and at least two movable sub lenses A zoom lens of a type including a rear group having a total of 6 or more and 11 or less lenses, or a positive refractive power movable along the optical axis at the time of zooming in order from the object side The first group and the second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. In any one of the zoom lenses including a rear group having a variable interval at the time of zooming, among the rear group, a positive sub that is closest to the object among sub groups having a negative magnification is used. The zoom is characterized by focusing on any subgroup on the image side of the lens group and satisfying the following condition with respect to the magnification β RRW at the wide-angle end infinite object point of the most positive subgroup on the image side It is a lens.

(8) −0.4<βRRW <0.9
本発明においては、フォーカスを後群の一部の群を光軸上を移動させて行なう方式を採用している。変倍については、第2群と後群が司るが、後群を構成する複数の副群の中、実際に変倍に寄与するのは、正の屈折力を有しかつ負の倍率を有する最も物体側の副群のみとし、その他の副群は倍率を−1倍から遠い値をとるようにし、それらの何れかの副群又はそれらの中の複数の副群でフォーカスをするようにする。特に、最も像側の正の副群でフォーカスするのがフォーカシングによる収差変動が少なくてよい。条件(8)は、最も像側の正の副群の倍率βRRW に関して規定しているが、下限値の−0.4を越えると、フォーカスによる近軸量・諸収差量の変動が大きくなり好ましくない。上限値の0.9を越えると、フォーカス群の繰出し量が大きくなりすぎ、無限遠物点から至近距離物点まで合焦できないうちに隣りの副群に干渉しやすくなり好ましくない。
(8) −0.4 <β RRW <0.9
In the present invention, a system is employed in which focusing is performed by moving a part of the rear group on the optical axis. Regarding zooming, the second group and the rear group are in charge, but among the plurality of subgroups constituting the rear group, the actual contribution to zooming has a positive refractive power and a negative magnification. Only the most object-side subgroup is set, and the other subgroups are set to a value far from −1, and the focus is set to any one of those subgroups or a plurality of subgroups thereof. . In particular, focusing with the positive subgroup closest to the image side requires less aberration fluctuation due to focusing. Condition (8) stipulates the magnification β RRW of the most image-side positive subgroup, but if the lower limit of −0.4 is exceeded, the variation in the amount of paraxial aberration and various aberrations due to focusing increases. It is not preferable. Exceeding the upper limit of 0.9 is not preferable because the amount of extension of the focus group becomes too large, and it becomes easy to interfere with the adjacent subgroup before focusing from an object point at infinity to an object point at close range.

フォーカス群は、後群中の最も像側の正の副群か、その物体側の負の副群か、その両方で行うようにすると、フォーカス時の諸収差の変動が少なくかつピント感度も適切となり、好ましい。   If the focus group is the positive subgroup on the most image side in the rear group, or the negative subgroup on the object side, or both, the variation in various aberrations during focusing is small and the focus sensitivity is appropriate. It is preferable.

なお、上記条件は次のようにするとより好ましい。   The above conditions are more preferably as follows.

(8') −0.3<βRRW <0.8
さらに、次のようにするとなお好ましい。
(8 ') -0.3 <β RRW <0.8
Furthermore, the following is more preferable.

(8") −0.2<βRRW <0.7
本発明の第10のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、無限遠物点合焦時の最も像側の正の副
群の広角端から望遠端までの移動量ΔzRRと無限遠物点合焦時の最も物体側の正の副群の広角端から望遠端までの移動量ΔzRFに関し、以下の条件を満たすことを特徴とするズームレンズである。
(8 ") -0.2 <β RRW <0.7
The tenth zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power that is movable along the optical axis at the time of zooming, and an optical axis at the time of zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is aspherical, and at least two movable sub lenses A zoom lens of a type including a rear group having a total of 6 or more and 11 or less lenses, or a positive refractive power movable along the optical axis at the time of zooming in order from the object side A second lens unit having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end; And a zoom lens of a type including at least two rear groups having a variable interval at the time of zooming, from the wide-angle end to the telephoto end of the positive subgroup closest to the image side when focusing on an object point at infinity The zoom lens is characterized by satisfying the following condition with respect to the amount of movement Δz RR of the lens and the amount of movement Δz RF from the wide-angle end to the telephoto end of the most object-side positive subgroup when focusing on an object point at infinity .

(9) −0.4<ΔzRR/ΔzRF<0.8
(10) 0.3<|ΔzRF|/L<4.0
ただし、Lは結像面近傍に配設される有効撮像面の対角長である。
(9) −0.4 <Δz RR / Δz RF <0.8
(10) 0.3 <| Δz RF | / L <4.0
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

後群を構成する複数の副群の中、実際に変倍に寄与するのは最も物体側の正の副群であり、したがって、この群は広角端から望遠端にかけて物体側に単調に移動する。その他の副群は倍率−1倍から遠い値をとり、実質的には変倍によるフォーカス位置のズレや収差補正のために移動又は存在している。一方、最も像側に近い正の副群が必要以上に物体側に移動すると、射出瞳位置が像面に近づき、電子撮像素子を用いた際はシェーディングを発生しやすくなる。条件(9)の上限値の0.8を越えると、望遠側にて射出瞳が像面に近づき、画面周辺部への光線入射角が大きくなりすぎる。下限値の−0.4を越えると、後群の総厚が増大し光学系全体が大きくなる。条件(10)の上限値の4.0を越えると、光学系全長が大きくなるか変倍による収差変動が大きくなりやすい。下限値の0.3を越えると、第1群径が大きくなりやすい。なお、前記2つの正の副群の中間に、少なくとも1つ以上の副群を有しても同様である。特に、それが負の副群である場合には、無限遠物点合焦時のその負の副群の広角端から望遠端までの移動量をΔzRNとすると、
(11) −2<ΔzRN/L<1
を満たすことが望ましい。この条件の下限値−2を越えると、後群の総厚が増大し光学系全体が大きくなる。上限値の1を越えると、後群の何れかの副群でリアフォーカスを実施する際、望遠端における近距離フォーカス時に副群同士の干渉が起きやすくなる。また、前記2つの正の副群よりも物体側でかつ第2群よりも像側に負の副群を配置しても同様である。
Among the multiple subgroups constituting the rear group, it is the positive subgroup on the most object side that actually contributes to zooming. Therefore, this group moves monotonically from the wide angle end to the telephoto end toward the object side. . The other subgroups take values far from the magnification minus −1, and are substantially moved or existed for the shift of the focus position and the correction of the aberration due to the magnification change. On the other hand, if the positive subgroup closest to the image side moves to the object side more than necessary, the exit pupil position approaches the image plane, and shading is likely to occur when the electronic image sensor is used. If the upper limit of 0.8 of condition (9) is exceeded, the exit pupil approaches the image plane on the telephoto side, and the light incident angle on the periphery of the screen becomes too large. When the lower limit of −0.4 is exceeded, the total thickness of the rear group increases and the entire optical system becomes larger. If the upper limit of 4.0 of the condition (10) is exceeded, the total length of the optical system is increased or aberration fluctuations due to zooming are likely to increase. When the lower limit of 0.3 is exceeded, the first group diameter tends to increase. The same is true if at least one or more subgroups are provided between the two positive subgroups. In particular, if it is a negative subgroup, when the amount of movement from the wide-angle end to the telephoto end of the negative subgroup when focusing on an object point at infinity is Δz RN ,
(11) -2 <Δz RN / L <1
It is desirable to satisfy. If the lower limit value −2 of this condition is exceeded, the total thickness of the rear group increases and the entire optical system becomes larger. When the upper limit of 1 is exceeded, when rear focus is performed in any of the subgroups in the rear group, interference between the subgroups is likely to occur during short-distance focusing at the telephoto end. The same is true even if a negative subgroup is arranged closer to the object side than the two positive subgroups and closer to the image side than the second group.

上記条件は各々個別に若しくは一体で次のようにするとより好ましい。   It is more preferable that the above conditions are individually or integrally as follows.

(9') −0.3<ΔzRR/ΔzRF<0.7
(10' ) 0.5<|ΔzRF|/L<3.5
(11' ) −1.5<ΔzRN/L<0.7
さらに、各々個別に若しくは一体で次のようにするとなお好ましい。
(9 ′) −0.3 <Δz RR / Δz RF <0.7
(10 ′) 0.5 <| Δz RF | / L <3.5
(11 ′) −1.5 <Δz RN /L<0.7
Further, it is more preferable that the following is performed individually or integrally as follows.

(9") −0.2<ΔzRR/ΔzRF<0.6
(10" ) 0.7<|ΔzRF|/L<3.0
(11" ) −1<ΔzRN/L<0.5
また、最も物体側の正の副群は、負の倍率であることが変倍の寄与の点でより好ましい。
(9 ") -0.2 <Δz RR / Δz RF <0.6
(10 ") 0.7 <| Δz RF | / L <3.0
(11 ") -1 <Δz RN /L<0.5
The positive subgroup closest to the object side is more preferably a negative magnification in terms of the contribution of zooming.

本発明の第11のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とを含み、前記後群には、正の屈折力を有しかつ負の倍率を有する副群と最も像側の正の副群とを有し、変倍時にそれぞれの相対位置が変化するタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、複数
の副群を有する後群とを含み、前記後群には、正の屈折力を有しかつ負の倍率を有する副群と最も像側の正の副群と、その2つの正の副群の間に負の副群とを有し、変倍時にそれぞれの相対位置が変化するタイプのズームレンズの何れかにおいて、前記2つの正の副群は接合レンズ成分、非球面を含み、ν>80(ν:アッベ数)の硝材を用いたレンズを少なくともそれぞれ1つ含むことを特徴とするズームレンズである。それにより、各群の色収差と球面収差、コマ収差をとることができ、広角端から望遠端まで良好な画像を得ることができる。なお、前記2つの正の副群の中間にある負の副群は、接合レンズを含んでいることがより好ましい。
The eleventh zoom lens according to the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide-angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two closest to the image side being a configuration of a positive lens, and a second group in which any surface in the group is an aspherical surface, and at least two movable sub lenses And a rear group having a total of 6 to 11 lenses, and the rear group includes a sub-group having a positive refractive power and a negative magnification, and a positive group closest to the image side. A zoom lens that has a subgroup and whose relative position changes at the time of zooming, or in order from the object side, light at zooming A second group having a positive refractive power that is movable along the optical axis, a second group having a negative refractive power that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end, A rear group having a subgroup, the rear group having a positive refractive power and a negative magnification, a positive subgroup on the most image side, and two positive subgroups In any of the zoom lenses having a negative subgroup between them and the relative positions of which change upon zooming, the two positive subgroups include a cemented lens component and an aspheric surface, and ν> 80 The zoom lens includes at least one lens using a glass material of (ν: Abbe number). Thereby, the chromatic aberration, spherical aberration, and coma aberration of each group can be taken, and a good image can be obtained from the wide-angle end to the telephoto end. In addition, it is more preferable that the negative subgroup in the middle of the two positive subgroups includes a cemented lens.

本発明の第12のズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な正の副群を有し全体で7枚以上11枚以下のレンズを有する後群とを含むタイプのズームレンズか、又は、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも3つの変倍時に可変な間隔を有する後群とを含むタイプのズームレンズの何れかにおいて、後群の最も物体側の副群は負の屈折力を有するズームレンズである。   The twelfth zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and an optical axis when zooming from the wide angle end to the telephoto end. And has at least three negative lenses, the most image side is a positive lens configuration, or the three most object side lenses are negative lenses, and the image side is positive. A configuration including a lens, or including a negative lens, the two lenses closest to the image side being a positive lens configuration, and a second group in which any surface in the group is an aspheric surface, and at least two movable positive lenses Zoom lens of the type including a rear group having a total of 7 to 11 lenses, or a positive refractive power movable along the optical axis at the time of zooming in order from the object side And a negative refractive power that moves to the image side along the optical axis when zooming from the wide-angle end to the telephoto end And two groups, a zoom lens having a negative refractive power in, the most object side of the rear group subgroups is any type of zoom lens and a rear lens group having a variable spacing when at least three zooming.

本発明のズームレンズにて、後群の最も像側の副群と撮像面との間にファインダー用光路分割部材を挿入する場合は、長いバックフォーカスを必要とする。したがって、無理にバックフォーカスを確保しようとすると、ペッツバール和が負になりやすい傾向にある。したがって、後群の最も物体側には負レンズ系の副群を配置するのが好ましい。なお、後群の最も物体側にある負の副群は1つのレンズ成分にて構成してもよい。また、絞り近傍に固定してもよい。ここで、レンズ成分とは、物体側と像側の空気接触面の間に空気間隔を有しないレンズで、単体の単レンズか接合レンズを意味する。   In the zoom lens according to the present invention, when the optical path dividing member for the finder is inserted between the image side sub-group of the rear group and the imaging surface, a long back focus is required. Therefore, the Petzval sum tends to be negative when trying to forcibly secure the back focus. Accordingly, it is preferable to dispose the sub group of the negative lens system on the most object side of the rear group. Note that the negative subgroup closest to the object side in the rear group may be composed of one lens component. Further, it may be fixed near the diaphragm. Here, the lens component is a lens having no air space between the air contact surface on the object side and the image side, and means a single lens or a cemented lens.

なお、前記2つの正の副群よりも物体側で、かつ、第2群よりも像側に負の副群と開口絞りとを配し、その間隔はその負の副群自身の光軸上の厚みの3倍以内であるのが好ましい。   A negative subgroup and an aperture stop are arranged on the object side of the two positive subgroups and on the image side of the second group, and the distance between them is on the optical axis of the negative subgroup itself. It is preferable that it is within 3 times the thickness.

また、後群の最物体側を負の屈折力の群とする場合、後群全体で7枚以上のレンズを用いることが好ましい。   Further, in the case where the most object side of the rear group is a negative refractive power group, it is preferable to use seven or more lenses in the entire rear group.

本発明の上記ズームレンズは、物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、光軸に沿って可動の負の屈折力を有する第2群と、それに続く屈折力が可変の後群とよりなり、以下の3つの条件の中の少なくとも1つ満足することが望ましい。   The zoom lens according to the present invention includes, in order from the object side, a first group having a positive refractive power movable along the optical axis at the time of zooming, and a second group having a negative refractive power movable along the optical axis. In addition, it is desirable that the subsequent refractive power is made up of a variable rear group, and at least one of the following three conditions is satisfied.

(12) 2.0<FBW/fW <5.0
(13) 1.4<FW <3.5
(14) 2<ENP/L<5
ただし、FBWは広角端無限物点合焦時のバックフォーカス(空気換算長)、FW は広角端無限物点合焦時の最小F値、ENPは広角端における入射瞳位置である。
(12) 2.0 <F BW / f W <5.0
(13) 1.4 <F W <3.5
(14) 2 <ENP / L <5
Where F BW is the back focus (air conversion length) when focusing on the infinite object point at the wide angle end, F W is the minimum F value when focusing on the infinite object point at the wide angle end, and ENP is the entrance pupil position at the wide angle end.

これらの3つの条件のうち1つ以上満たすレンズ系について、本発明は有効な発明である。特に、本発明は、電子撮像素子を用いた撮像装置に好適である。特に、画素間隔aが、
1.0×10-4 ×L<a<6.0×10-4×L(mm)
なる高画素の撮像素子を有する撮影装置(カメラ、ビデオムービー等)の結像光学系として使用すると、その高画素の画質を有効に利用した撮像装置が達成できる。
The present invention is an effective invention for a lens system that satisfies one or more of these three conditions. In particular, the present invention is suitable for an image pickup apparatus using an electronic image pickup element. In particular, the pixel interval a is
1.0 × 10 −4 × L <a <6.0 × 10 −4 × L (mm)
When used as an imaging optical system of a photographing apparatus (camera, video movie, etc.) having a high-pixel imaging device, an imaging apparatus that effectively uses the image quality of the high pixels can be achieved.

上記発明やズームレンズ、仕様条件の中、2つ以上の同時に満足するズームレンズであってもよい。これらの発明の2つ以上を同時に満足するとよりよい。満足する数が多ければ多いほどよい。   Among the above inventions, zoom lenses, and specification conditions, two or more zoom lenses satisfying at the same time may be used. It is better to satisfy two or more of these inventions simultaneously. The more satisfied, the better.

なお、何れのズームレンズタイプの場合でも、第2群は少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面とするのがよい。また、後群は、少なくとも2つの変倍時に可変な間隔を有する場合は、後群全体で7枚以上11枚以下の構成とするのがよい。特に、後群全体で7枚以上9枚以下とし、さらに、非球面を2面使用した構成とすれば、高い結像性能を維持しつつ、サイズ的に有利な構成にできる。   In any zoom lens type, the second group includes at least three negative lenses, and the most image side is a positive lens structure, or the most object side three lenses are negative lenses, and the image side is positive. It is preferable that a lens is included or a negative lens is included, and two lenses closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface. Further, if the rear group has a variable interval at the time of at least two magnifications, the rear group as a whole should have a configuration of 7 to 11 sheets. In particular, if the total number of rear groups is 7 or more and 9 or less and two aspheric surfaces are used, a configuration advantageous in size can be achieved while maintaining high imaging performance.

また、上述の構成を複数組み合わせることにより、より効果が増すものである。   Moreover, the effect is further increased by combining a plurality of the above-described configurations.

以上の説明から明らかなように、本発明によると、デジタルカメラのように有効撮像面のサイズが小さいカメラ用で、広角端の対角画角70°以上の7倍乃至10倍程度のTTL光学ファインダー対応の、しかも広角端でのF値が2.0乃至2.8程度と明るい広角高倍ズームレンズが実現できる。   As is apparent from the above description, according to the present invention, the TTL optical system is used for a camera having a small effective image pickup surface size such as a digital camera and having a diagonal field angle of 70 ° or more at the wide angle end of about 7 to 10 times. A bright wide-angle high-magnification zoom lens compatible with the finder and having an F value of about 2.0 to 2.8 at the wide-angle end can be realized.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端でのレンズ断面図である。1 is a lens cross-sectional view at a wide-angle end when focusing on an object point at infinity according to Embodiment 1 of a zoom lens of the present invention. FIG. 実施例2のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of a zoom lens according to Embodiment 2. 実施例3のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of a zoom lens according to Embodiment 3. 実施例4のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a fourth exemplary embodiment. 実施例5のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a fifth exemplary embodiment. 実施例6のズームレンズの図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 6; 実施例7のズームレンズの図1と同様のレンズ断面図である。FIG. 10 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a seventh embodiment. 実施例8のズームレンズの図1と同様のレンズ断面図である。FIG. 10 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to an eighth embodiment. 実施例9のズームレンズの図1と同様のレンズ断面図である。FIG. 10 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 9; 実施例10のズームレンズの図1と同様のレンズ断面図である。FIG. 12 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 10; 実施例11のズームレンズの図1と同様のレンズ断面図である。FIG. 12 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 11; 実施例12のズームレンズの図1と同様のレンズ断面図である。FIG. 12 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to a twelfth embodiment. 実施例13のズームレンズの図1と同様のレンズ断面図である。FIG. 14 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 13; 実施例14のズームレンズの図1と同様のレンズ断面図である。FIG. 16 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 14; 実施例15のズームレンズの図1と同様のレンズ断面図である。FIG. 16 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 15; 実施例16のズームレンズの図1と同様のレンズ断面図である。FIG. 16 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 16; 実施例17のズームレンズの図1と同様のレンズ断面図である。FIG. 14 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 17; 実施例18のズームレンズの図1と同様のレンズ断面図である。14 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 18; FIG. 実施例19のズームレンズの図1と同様のレンズ断面図である。14 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 19; FIG. 実施例20のズームレンズの図1と同様のレンズ断面図である。FIG. 22 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 20; 実施例21のズームレンズの図1と同様のレンズ断面図である。FIG. 22 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 21; 実施例22のズームレンズの図1と同様のレンズ断面図である。FIG. 22 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 22; 実施例23のズームレンズの図1と同様のレンズ断面図である。FIG. 22 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 23. 実施例24のズームレンズの図1と同様のレンズ断面図である。FIG. 22 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 24; 実施例25のズームレンズの図1と同様のレンズ断面図である。FIG. 25 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom lens according to Example 25. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 実施例8の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 8 upon focusing on an object point at infinity. 実施例9の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 9 upon focusing on an object point at infinity. 実施例10の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 10 upon focusing on an object point at infinity. 実施例11の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 11 upon focusing on an object point at infinity. 実施例12の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 12 upon focusing on an object point at infinity. 実施例13の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 13 upon focusing on an object point at infinity. 実施例14の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 14 upon focusing on an object point at infinity. 実施例15の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 15 upon focusing on an object point at infinity. 実施例16の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 16 upon focusing on an object point at infinity. 実施例17の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 17 upon focusing on an object point at infinity. 実施例18の無限遠物点合焦時の収差図である。FIG. 20 is an aberration diagram for Example 18 upon focusing on an object point at infinity. 実施例19の無限遠物点合焦時の収差図である。FIG. 27 is an aberration diagram for Example 19 upon focusing on an object point at infinity. 実施例20の無限遠物点合焦時の収差図である。FIG. 20 is an aberration diagram for Example 20 upon focusing on an object point at infinity. 実施例21の無限遠物点合焦時の収差図である。FIG. 25 is an aberration diagram for Example 21 upon focusing on an object point at infinity. 実施例22の無限遠物点合焦時の収差図である。FIG. 26 is an aberration diagram for Example 22 upon focusing on an object point at infinity. 実施例23の無限遠物点合焦時の収差図である。FIG. 27 is an aberration diagram for Example 23 upon focusing on an object point at infinity. 実施例24の無限遠物点合焦時の収差図である。FIG. 26 is an aberration diagram for Example 24 upon focusing on an object point at infinity. 実施例25の無限遠物点合焦時の収差図である。FIG. 26 is an aberration diagram for Example 25 upon focusing on an object point at infinity. 本発明によるズームレンズを組み込んだデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera incorporating the zoom lens by this invention. 図51のデジタルカメラの後方斜視図である。FIG. 52 is a rear perspective view of the digital camera of FIG. 51. 図51のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 本発明によるズームレンズが対物光学系として組み込れたパソコンのカバーを開いた前方斜視図である。It is the front perspective view which opened the cover of the personal computer in which the zoom lens by this invention was integrated as an objective optical system. パソコンの撮影光学系の断面図である。It is sectional drawing of the imaging optical system of a personal computer. 図54の状態の側面図である。It is a side view of the state of FIG. 本発明によるズームレンズが対物光学系として組み込れた携帯電話の正面図、側面図、その撮影光学系の断面図である。1 is a front view, a side view, and a sectional view of a photographing optical system of a mobile phone in which a zoom lens according to the present invention is incorporated as an objective optical system.

以下、本発明のズームレンズの実施例1〜25について説明する。これらの実施例の無限遠物点合焦時の広角端でのレンズ断面図をそれぞれ図1〜図25に示す。各図中、第1群はG1、第2群はG2、第3群はG3、第4群はG4、第5群はG5、第6群はG6、ファインダー用光路分割プリズム(平行平板)、近赤外カットコートが設けられている光学的ローパスフィルター、電子撮像素子のCCDのカバーガラスからなる平行平板群はP、像面はIで示してあり、平行平板群Pは最終群と像面Iの間に固定配置されている。図1〜図25中、各群の広角端から望遠端にかけての移動軌跡は矢印で模式的に示してある。なお、各実施例の数値データは後記する。   Examples 1 to 25 of the zoom lens according to the present invention will be described below. Lens cross-sectional views at the wide-angle end when focusing on an object point at infinity according to these embodiments are shown in FIGS. In each figure, the first group is G1, the second group is G2, the third group is G3, the fourth group is G4, the fifth group is G5, the sixth group is G6, a viewfinder optical path dividing prism (parallel plate), An optical low-pass filter provided with a near-infrared cut coat, a parallel plate group consisting of a CCD cover glass of an electronic image pickup device is indicated by P, an image plane is indicated by I, and the parallel plate group P is defined as a final group and an image plane. It is fixedly arranged between I. 1 to 25, the movement trajectory of each group from the wide-angle end to the telephoto end is schematically shown by arrows. The numerical data of each example will be described later.

実施例1のズームレンズは、図1に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1
群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は像側に移動し、第6群G6は第5群G5との間隔を縮小しつつ物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干像側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、例えば広角端において物体距離無限遠から0.3mにフォーカスするには、第5群G5と第6群G6の間隔が8.26323mmから8.10753mmになるように第6群G6を物体側に繰り出し、望遠端において物体距離無限遠から1.284m(倍率1/20)にフォーカスするには、第5群G5と第6群G6の間隔が5.08574mmから1.45116mmになるよう第6群G6を物体側に繰り出す。
As shown in FIG. 1, the zoom lens of Example 1 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. , The fifth group G5 having a negative refractive power and the sixth group G6 having a positive refractive power. When zooming from the wide angle end to the telephoto end when focusing on an object point at infinity,
The group G1 moves while drawing a convex reciprocating locus toward the image side, moves from the wide-angle end to the object side at the telephoto end, the second group G2 moves toward the image side, and the third group G3 opens toward the image side. The fourth group G4 moves to the object side, the fifth group G5 moves to the image side, and the sixth group G6 reduces the distance from the fifth group G5 to the object side. It moves with a convex reciprocating locus on the side, and is slightly closer to the image side at the telephoto end than at the wide-angle end. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, for example, in order to focus from infinity to 0.3 m at the wide-angle end, the sixth group G6 is adjusted so that the distance between the fifth group G5 and the sixth group G6 is changed from 8.26323 mm to 8.10753 mm. In order to extend to the object side and focus from the object distance infinity to 1.284 m (magnification 1/20) at the telephoto end, the distance between the fifth group G5 and the sixth group G6 is changed from 5.08574 mm to 1.45116 mm. The sixth group G6 is extended to the object side.

実施例1の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、両凹レンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 1 includes a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 includes a biconcave lens, A biconcave lens formed by providing a thin resin layer on the object side and aspherical, a negative meniscus lens having a convex surface facing the image side, and a cemented lens having a positive meniscus lens having a convex surface facing the image side, The fourth group G4 includes a biconvex lens, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of the biconvex lens. The fifth group G4 includes a negative meniscus lens having a convex surface facing the image side and a stop. G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side, and a sixth group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. Become. The aspheric surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例2のズームレンズは、図2に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より像側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.7998mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を2.2730mmとしている。   As shown in FIG. 2, the zoom lens according to the second embodiment includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves while drawing a convex reciprocating locus toward the object side, and is closer to the image side at the telephoto end than the wide-angle end, and the sixth group G6 is The distance between the fifth lens group G5 and the fifth lens group G5 moves while drawing a convex reciprocating locus toward the object side so as to be slightly enlarged and then slightly enlarged, and at the telephoto end is slightly closer to the object side than the wide-angle end position. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 7.7998 mm when focusing at a short distance at the wide angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is set to 2.2730 mm.

実施例2の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、両凹レンズと、薄い樹脂層を像側に設け非球面化した両凹レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 2 includes a negative meniscus lens having a convex surface facing the object side and two positive meniscus lenses having a convex surface facing the object side. The second group G2 includes a biconcave lens and a thin resin. The third lens group G3 is composed of a biconcave lens having an aspheric surface provided with a layer, a negative meniscus lens having a convex surface facing the image side, and a cemented lens having a positive meniscus lens having a convex surface facing the image side. The fourth group G4 is composed of a biconvex lens, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of the biconvex lens, and the fifth group G5 The sixth lens unit G6 includes a biconvex lens, a positive meniscus lens having a convex surface facing the image side, and a negative meniscus having a convex surface facing the image side. Lens cemented lens Consisting of. The aspherical surfaces are used for the three surfaces of the image side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例3のズームレンズは、図3に示すように、正屈折力の第1群G1、負屈折力の第
2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より若干物体側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.6726mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を3.1112mmとしている。
As shown in FIG. 3, the zoom lens according to the third embodiment includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves while drawing a convex reciprocating locus toward the object side, and is slightly closer to the object side at the telephoto end than at the wide angle end. Moves along a convex reciprocating locus on the object side so that the distance from the fifth group G5 is once reduced and then slightly increased, and at the telephoto end slightly closer to the object side than the wide-angle end position. That. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 7.6726 mm when focusing at a short distance at the wide-angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 3.1112 mm.

実施例3の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、薄い樹脂層を像側に設け非球面化した物体側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた正メニスカスレンズとからなり、第3群G3は、物体側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の物体側に凸面を向けた正メニスカスレンズの樹脂層の像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの像側の面の3面に用いられている。   The first group G1 of Example 3 includes a negative meniscus lens having a convex surface facing the object side and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has a convex surface facing the object side. A negative meniscus lens, a biconcave lens, a positive meniscus lens having a convex surface facing the object side which is aspherical by providing a thin resin layer on the image side, and a positive meniscus lens having a convex surface facing the image side. The group G3 includes a negative meniscus lens having a convex surface facing the object side and a stop, and the fourth group G4 includes a biconvex lens, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. The sixth group G6 includes a biconvex lens, a biconvex lens and a negative meniscus lens having a convex surface facing the image side. Like a cemented lens It made. The aspheric surfaces are the image side surface of the resin layer of the positive meniscus lens having the convex surface facing the object side of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the image of the biconvex lens of the sixth group G6. It is used on three sides.

実施例4のズームレンズは、図4に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、負屈折力の第4群G4、正屈折力の第5群G5からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より若干物体側になり、第5群G5は第4群G4との間隔を一旦拡大しその後若干縮小するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第5群G5を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第4群G4と第5群G5の間隔を3.0843mm、望遠端における近距離合焦時は第4群G4と第5群G5の間隔を2.2572mmとしている。   As shown in FIG. 4, the zoom lens of Example 4 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a negative refractive power. The fourth group G4 and the fifth group G5 having positive refractive power, and when zooming from the wide angle end to the telephoto end when focusing on an object point at infinity, the first group G1 draws a reciprocating locus convex toward the image side. The second group G2 moves toward the image side, the third group G3 moves toward the object side, and the fourth group G4 protrudes toward the object side at the telephoto end. A reciprocating locus convex toward the object side so as to move while drawing a locus, slightly closer to the object side at the telephoto end than at the wide-angle end, and then the fifth group G5 to temporarily enlarge the distance from the fourth group G4 and then to slightly reduce it. The telephoto end is slightly closer to the object side than the wide-angle end. Then, the fifth group G5 is extended to the object side to focus on a subject at a short distance. Specifically, the distance between the fourth group G4 and the fifth group G5 is 3.0843 mm at the time of close focus at the wide angle end, and the distance between the fourth group G4 and the fifth group G5 at the close distance focus at the telephoto end. Is set to 2.2572 mm.

実施例4の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、像側に凸面を向けた正メニスカスレンズと両凹レンズの接合レンズと、両凸レンズとからなり、固定の絞りを挟んで、第3群G3は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4群G4は、像側に凸面を向けた正メニスカスレンズと両凹レンズの接合レンズからなり、第5群G5は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の接合レンズの物体側の面、第3群G3の両凸レンズの物体側の面、第5群G5の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 4 includes a negative meniscus lens having a convex surface facing the object side and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has a convex surface facing the object side. A negative meniscus lens, a biconcave lens, a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and a biconvex lens. The fourth group G4 includes a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and a fifth group G5. Consists of a biconvex lens and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspheric surfaces are used on the object side surface of the cemented lens of the second group G2, the object side surface of the biconvex lens of the third group G3, and the object side surface of the biconvex lens of the fifth group G5. .

実施例5のズームレンズは、図5に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、負屈折力の第4群G4、正屈折力の第5群G5からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1
は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より若干物体側になり、第5群G5は第4群G4との間隔を一旦拡大しその後若干縮小するように物体側に移動する。そして、第5群G5を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第4群G4と第5群G5の間隔を4.2063mm、望遠端における近距離合焦時は第4群G4と第5群G5の間隔を2.006mmとしている。
As shown in FIG. 5, the zoom lens of Example 5 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a negative refractive power. 4th group G4 and 5th group G5 having positive refractive power, and when zooming from the wide angle end to the telephoto end when focusing on an object point at infinity, the first group G1
Moves while drawing a convex reciprocating locus toward the image side, and at the telephoto end, is moved closer to the object side than the wide-angle end position, the second group G2 is moved to the image side, the third group G3 is moved to the object side, The fourth group G4 moves while drawing a convex reciprocating locus toward the object side, and is slightly closer to the object side at the telephoto end than the wide-angle end position. Move to the object side. Then, the fifth group G5 is extended to the object side to focus on a subject at a short distance. Specifically, the distance between the fourth lens group G4 and the fifth lens group G5 is 4.2063 mm when focusing at a short distance at the wide angle end, and the distance between the fourth lens group G4 and the fifth lens group G5 when focusing at a short distance at the telephoto end. Is 2.006 mm.

実施例5の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、像側に凸面を向けた正メニスカスレンズと両凹レンズの接合レンズと、両凸レンズとからなり、固定の絞りを挟んで、第3群G3は、両凸レンズと、像側に凸面を向けた負メニスカスレンズとからなり、第4群G4は、像側に凸面を向けた正メニスカスレンズと両凹レンズの接合レンズからなり、第5群G5は、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズの接合レンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなる。非球面は、第2群G2の接合レンズの物体側の面、第3群G3の両凸レンズの物体側の面、第5群G5の両凸レンズの像側の面の3面に用いられている。   The first group G1 of Example 5 includes a negative meniscus lens having a convex surface facing the object side and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has a convex surface facing the object side. A negative meniscus lens, a biconcave lens, a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and a biconvex lens. The fourth group G4 includes a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and the fifth group G5 has a convex surface facing the object side. A negative meniscus lens facing the lens, a cemented lens having a positive meniscus lens with the convex surface facing the object side, a biconvex lens, and a positive meniscus lens facing the convex surface toward the object side. The aspherical surfaces are used on the object side surface of the cemented lens of the second group G2, the object side surface of the biconvex lens of the third group G3, and the image side surface of the biconvex lens of the fifth group G5. .

実施例6のズームレンズは、図6に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて第2群G2との間隔を縮小しながら像側に移動し、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より像側になり、第6群G6は第5群G5との間隔を縮小しながら物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.9681mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を1.7655mmとしている。   As shown in FIG. 6, the zoom lens of Example 6 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating trajectory. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side. The fourth group G4 moves to the object side while reducing the distance from the second group G2, the fourth group G4 moves to the object side, and the fifth group G5 moves while drawing a convex reciprocating locus on the object side. The sixth group G6 moves along a convex reciprocating locus toward the object side while reducing the distance from the fifth group G5, and is slightly more at the telephoto end than at the wide-angle end. Made on the side. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 7.9681 mm at the time of close focus at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 at the close distance focus at the telephoto end. Is 1.7655 mm.

実施例6の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、両凹レンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 6 includes a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 includes a biconcave lens, A biconcave lens formed by providing a thin resin layer on the object side and aspherical, a negative meniscus lens having a convex surface facing the image side, and a cemented lens having a positive meniscus lens having a convex surface facing the image side, The fourth group G4 includes a biconvex lens, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of the biconvex lens. The fifth group G4 includes a negative meniscus lens having a convex surface facing the image side and a stop. G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side, and a sixth group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. Become. The aspheric surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例7のズームレンズは、図7に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて第2群
G2との間隔を縮小しながら像側に移動し、第4群G4は物体側に移動し、第5群G5と第6群G6は一体で物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.4249mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を3.9201mmとしている。
As shown in FIG. 7, the zoom lens of Example 7 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating trajectory. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side. Moving to the image side while reducing the distance from the second group G2, the fourth group G4 moves to the object side, and the fifth group G5 and the sixth group G6 move together while drawing a convex reciprocating locus on the object side. At the telephoto end, it is slightly closer to the object side than the wide-angle end position. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 7.4249 mm when focusing at a short distance at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 when focusing at a short distance at the telephoto end. Is 3.9201 mm.

実施例7の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、両凹レンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 7 includes a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 has a convex surface facing the object side. A negative meniscus lens with a thin resin layer on the object side and aspherical, a negative meniscus lens with a convex surface on the image side, and a cemented lens with a positive meniscus lens with a convex surface on the image side The third group G3 is composed of a negative meniscus lens having a convex surface facing the image side and a stop, and the fourth group G4 is composed of a biconvex lens, a biconcave lens and a cemented lens of the biconvex lens, and the fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. The sixth group G6 has a biconvex lens, a positive meniscus lens having a convex surface facing the image side, and a convex surface facing the image side. Negative meniscus lens And a cemented lens. The aspheric surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例8のズームレンズは、図8に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は固定であり、第6群G6は物体側に移動する。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を8.5198mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を1.3741mmとしている。   As shown in FIG. 8, the zoom lens of Example 8 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus, and at the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 is moved to the image side, and the third group G3 is integrally fixed with an aperture stop on the object side. The fourth group G4 moves to the object side, the fifth group G5 is fixed, and the sixth group G6 moves to the object side. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 8.5198 mm when focusing at a short distance at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 when focusing at a short distance at the telephoto end. Is 1.3741 mm.

実施例8の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、両凹レンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、両凹レンズと両凸レンズの接合レンズとからなり、第3群G3は、絞りと、像側に凸面を向けた負メニスカスレンズとからなり、第4群G4は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 8 includes a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 includes a biconcave lens, It consists of a biconcave lens with a thin resin layer on the object side and aspherical surface, and a cemented lens made up of a biconcave lens and a biconvex lens. The third group G3 consists of a diaphragm and a negative meniscus lens with a convex surface facing the image side. The fourth group G4 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of a biconvex lens. The fifth group G5 includes a biconcave lens and the object side. The sixth group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspheric surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例9のズームレンズは、図9に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、正屈折力の第4群G4からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は第3群G3との間隔を拡大しながら物体側に移動する。そして、第4群G4を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第3群G3と第4群G4の間隔を1.3397mm、望遠端における近距離合焦時は第3群G3と第4群G4の間隔を15.0854mmとしている。   As shown in FIG. 9, the zoom lens of Example 9 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a positive refractive power. 4th lens group G4, and at the time of focusing on an object point at infinity, when zooming from the wide-angle end to the telephoto end, the first group G1 moves while drawing a convex reciprocating locus toward the image side, and at the telephoto end the wide-angle end The second group G2 moves to the image side, the third group G3 moves to the object side, and the fourth group G4 moves to the object side while increasing the distance from the third group G3. To do. The fourth group G4 is extended to the object side to focus on a subject at a short distance. Specifically, the distance between the third lens group G3 and the fourth lens group G4 is 1.3397 mm when focusing at a short distance at the wide-angle end, and the distance between the third lens group G3 and the fourth lens group G4 when focusing at a short distance at the telephoto end. Is 15.0854 mm.

実施例9の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、薄い樹脂層を像側に設け非球面化した両凹レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、固定の絞りを挟んで、第3群G3は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第4群G4は、両凸レンズと両凹レンズの接合レンズと、像側に凸面を向けた正メニスカスレンズと、両凸レンズと両凹レンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の像側の面、第3群G3の正メニスカスレンズの物体側の面、第4群G4の正メニスカスレンズの物体側の面の3面に用いられている。   The first group G1 of Example 9 includes a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 has a convex surface facing the object side. A negative meniscus lens facing the lens, a biconcave lens with a thin resin layer on the image side that is aspherical, and a cemented lens of a negative meniscus lens with a convex surface facing the object and a biconvex lens, with a fixed stop The third group G3 includes a positive meniscus lens having a convex surface facing the object side, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fourth group G4 includes a biconvex lens and a biconcave lens. A cemented lens, a positive meniscus lens having a convex surface facing the image side, and a cemented lens of a biconvex lens and a biconcave lens. The aspherical surfaces are three surfaces: the image side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the positive meniscus lens of the third group G3, and the object side surface of the positive meniscus lens of the fourth group G4. It is used for.

実施例10のズームレンズは、図10に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より像側になり、第6群G6は第5群G5との間隔を縮小しながら物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干像側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を8.1246mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を2.3175mmとしている。   As shown in FIG. 10, the zoom lens of Example 10 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves while drawing a convex reciprocating locus toward the object side, and is closer to the image side at the telephoto end than the wide-angle end, and the sixth group G6 is While moving away from the fifth lens group G5 while drawing a convex reciprocating locus toward the object side, the telephoto end is slightly closer to the image side than the wide-angle end. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 8.1246 mm when focusing at a short distance at the wide angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 2.3175 mm.

実施例10の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、薄い樹脂層を像側に設け非球面化した両凹レンズと、両凹レンズと、像側に凸面を向けた負メニスカスレンズと、両凸レンズ2枚とからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 10 includes a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 includes a thin resin layer. An aspheric birefringent lens provided on the image side, a biconcave lens, a negative meniscus lens having a convex surface facing the image side, and two biconvex lenses. The third group G3 has a negative surface with the convex surface facing the image side. The fourth group G4 includes a biconvex lens, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of the biconvex lens. The fifth group G5 includes a biconcave lens and an object side. The sixth group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspherical surfaces are used for the three surfaces of the image side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例11のズームレンズは、図11に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を6.6911mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を3.0700mmとしている。   As shown in FIG. 11, the zoom lens of Example 11 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth lens group G4 moves to the object side, the fifth lens group G5 moves while drawing a convex reciprocating locus toward the object side, the telephoto end is closer to the object side than the wide-angle end position, and the sixth lens group G6 is It moves with a convex reciprocating locus on the object side so that the distance from the fifth group G5 is once reduced and then slightly enlarged, and at the telephoto end, it is slightly closer to the object side than the wide-angle end position. That. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 6.6911 mm at the time of close focus at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 at the close distance focus at the telephoto end. Is set to 3.0700 mm.

実施例11の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸
面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズ2枚と、両凸レンズとからなり、第3群G3は、物体側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凸レンズの像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの像側の面の3面に用いられている。
The first group G1 of Example 11 includes a negative meniscus lens having a convex surface facing the object side, and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has the convex surface facing the object side. A negative meniscus lens, two biconcave lenses, and a biconvex lens. The third group G3 is composed of a negative meniscus lens having a convex surface facing the object side and an aperture, and the fourth group G4 is a biconvex lens. The fifth group G5 is composed of a negative meniscus lens having a convex surface facing the object side and a cemented lens of a biconvex lens. The fifth group G5 is composed of a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. Consists of a biconvex lens, and a cemented lens of a bi-convex lens and a negative meniscus lens having a convex surface facing the image side. The aspherical surfaces are used for the three surfaces of the image side surface of the biconvex lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the image side surface of the biconvex lens of the sixth group G6. .

実施例12のズームレンズは、図12に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を6.0167mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を2.1156mmとしている。   As shown in FIG. 12, the zoom lens of Example 12 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth lens group G4 moves to the object side, the fifth lens group G5 moves while drawing a convex reciprocating locus toward the object side, the telephoto end is closer to the object side than the wide-angle end position, and the sixth lens group G6 is It moves with a convex reciprocating locus on the object side so that the distance from the fifth group G5 is once reduced and then slightly enlarged, and at the telephoto end, it is slightly closer to the object side than the wide-angle end position. That. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 6.0167 mm when focusing at a short distance at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 when focusing at a short distance at the telephoto end. Is 2.1156 mm.

実施例12の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズ2枚と、両凸レンズとからなり、第3群G3は、両凹レンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の2番目の両凹レンズの物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの像側の面の3面に用いられている。   The first group G1 of Example 12 includes a negative meniscus lens having a convex surface facing the object side, and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has the convex surface facing the object side. A negative meniscus lens, two biconcave lenses, and a biconvex lens. The third group G3 is composed of a biconcave lens and an aperture. The fourth group G4 has a biconvex lens and a convex surface facing the object side. The fifth group G5 includes a cemented lens of a negative meniscus lens and a positive meniscus lens having a convex surface facing the object side. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface directed toward the object side. Consists of a biconvex lens and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspherical surface is used for the three surfaces of the object side surface of the second biconcave lens in the second group G2, the object side surface of the biconvex lens in the fourth group G4, and the image side surface of the biconvex lens in the sixth group G6. It has been.

実施例13のズームレンズは、図13に示すように、正屈折力の第1群G1、負屈折力の第2群G2、正屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第6群G6は第5群G5との間隔を縮小しつつ物体側に移動する。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.3354mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を1.7386mmとしている。   As shown in FIG. 13, the zoom lens of Example 13 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a positive refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus, and at the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 is moved to the image side, and the third group G3 is integrally fixed with an aperture stop on the object side. The fourth lens group G4 moves to the object side, the fifth lens group G5 moves while drawing a convex reciprocating locus toward the object side, the telephoto end is closer to the object side than the wide-angle end position, and the sixth lens group G6 is It moves to the object side while reducing the interval with the fifth group G5. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 7.3354 mm when focusing at a short distance at the wide angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is set to 1.7386 mm.

実施例13の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、両凸レンズとからなり、第3群G3は、絞りと、両凸レンズとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズ
とからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。
The first group G1 of Example 13 includes a negative meniscus lens having a convex surface directed toward the object side and two positive meniscus lenses having a convex surface directed toward the object side. The second group G2 has a convex surface directed toward the object side. A negative meniscus lens, a biconcave lens, a biconcave lens having a thin resin layer provided on the object side and made aspherical, and a biconvex lens. The third group G3 includes a diaphragm and a biconvex lens. G4 includes a biconvex lens, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. The sixth group G6 includes a biconvex lens, and a cemented lens of a positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side. The aspheric surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例14のズームレンズは、図14に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、負屈折力の第4群G4、正屈折力の第5群G5からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は物体側に移動し、第5群G5は第4群G4との間隔を縮小しつつ物体側に移動する。そして、第5群G5を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第4群G4と第5群G5の間隔を7.5416mm、望遠端における近距離合焦時は第4群G4と第5群G5の間隔を0.5503mmとしている。   As shown in FIG. 14, the zoom lens of Example 14 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a negative refractive power. The fourth group G4 and the fifth group G5 having positive refractive power, and when zooming from the wide angle end to the telephoto end when focusing on an object point at infinity, the first group G1 draws a reciprocating locus convex toward the image side. The second lens group G2 moves to the image side, the third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, The fifth group G5 moves to the object side while reducing the distance from the fourth group G4. Then, the fifth group G5 is extended to the object side to focus on a subject at a short distance. Specifically, the distance between the fourth lens group G4 and the fifth lens group G5 is 7.5416 mm when focusing at a short distance at the wide angle end, and the distance between the fourth lens group G4 and the fifth lens group G5 when focusing at a short distance at the telephoto end. Is 0.5503 mm.

実施例14の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、両凹レンズと物体側に凸面を向けた負メニスカスレンズの接合レンズと、両凸レンズとからなり、固定の絞りを挟んで、第3群G3は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第4群G4は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第5群G5は、両凸レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の接合レンズの物体側の面、第3群G3の両凸レンズの物体側の面、第5群G5の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 14 includes a negative meniscus lens having a convex surface directed toward the object side and two positive meniscus lenses having a convex surface directed toward the object side. The second group G2 has a convex surface directed toward the object side. A negative meniscus lens, a biconcave lens, a cemented lens of a biconcave lens and a negative meniscus lens having a convex surface facing the object side, and a biconvex lens. The fourth group G4 includes a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fourth group G4 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface directed to the object side. Consists of a biconvex lens, a cemented lens of a positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side. The aspheric surfaces are used on the object side surface of the cemented lens of the second group G2, the object side surface of the biconvex lens of the third group G3, and the object side surface of the biconvex lens of the fifth group G5. .

実施例15のズームレンズは、図15に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、負屈折力の第4群G4、正屈折力の第5群G5からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は物体側に移動し、第5群G5は第4群G4との間隔を縮小しつつ物体側に移動する。そして、第5群G5を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第4群G4と第5群G5の間隔を7.8923mm、望遠端における近距離合焦時は第4群G4と第5群G5の間隔を2.3128mmとしている。   As shown in FIG. 15, the zoom lens of Example 15 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a negative refractive power. The fourth group G4 and the fifth group G5 having positive refractive power, and when zooming from the wide angle end to the telephoto end when focusing on an object point at infinity, the first group G1 draws a reciprocating locus convex toward the image side. The second lens group G2 moves to the image side, the third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, The fifth group G5 moves to the object side while reducing the distance from the fourth group G4. Then, the fifth group G5 is extended to the object side to focus on a subject at a short distance. Specifically, the distance between the fourth lens group G4 and the fifth lens group G5 is 7.8923 mm when focusing at a short distance at the wide angle end, and the distance between the fourth lens group G4 and the fifth lens group G5 when focusing at a short distance at the telephoto end. Is set to 2.3128 mm.

実施例15の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、両凸レンズとからなり、固定の絞りを挟んで、第3群G3は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第4群G4は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第5群G5は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第3群G3の両凸レンズの物体側の面、第5群G5の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 15 includes a negative meniscus lens having a convex surface facing the object side and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has the convex surface facing the object side. A negative meniscus lens, a biconcave lens, a biconcave lens with a thin resin layer provided on the object side and made aspherical, and a biconvex lens. The third lens unit G3 includes a biconvex lens, The fourth group G4 is composed of a biconcave lens and a cemented lens of a positive meniscus lens having a convex surface toward the object side, and the fifth group G5 is composed of a negative meniscus lens having a convex surface facing the side and a biconvex lens. It consists of a biconvex lens, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of the biconvex lens. The aspherical surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the third group G3, and the object side surface of the biconvex lens of the fifth group G5. It has been.

実施例16のズームレンズは、図16に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.6961mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を3.0968mmとしている。   As shown in FIG. 16, the zoom lens of Example 16 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth lens group G4 moves to the object side, the fifth lens group G5 moves while drawing a convex reciprocating locus toward the object side, the telephoto end is closer to the object side than the wide-angle end position, and the sixth lens group G6 is It moves with a convex reciprocating locus on the object side so that the distance from the fifth group G5 is once reduced and then slightly enlarged, and at the telephoto end, it is slightly closer to the object side than the wide-angle end position. That. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 7.6961 mm when focusing at a short distance at the wide-angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 3.0968 mm.

実施例16の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、両凸レンズと、像側に凸面を向けた負メニスカスレンズとからなり、第3群G3は、両凹レンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの像側の面の3面に用いられている。   The first group G1 of Example 16 includes a negative meniscus lens having a convex surface directed toward the object side, and two positive meniscus lenses having a convex surface directed toward the object side. The second group G2 has a convex surface directed toward the object side. A negative meniscus lens, a biconcave lens, a biconvex lens, and a negative meniscus lens having a convex surface facing the image side. The third group G3 includes a biconcave lens and an aperture. The fourth group G4 includes both The fifth lens unit G5 is composed of a cemented lens composed of a convex lens, a negative meniscus lens having a convex surface directed toward the object side, and a biconvex lens, and a cemented lens composed of a biconcave lens and a positive meniscus lens having a convex surface directed toward the object side. The group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspherical surfaces are used on the object side surface of the biconcave lens in the second group G2, the object side surface of the biconvex lens in the fourth group G4, and the image side surface of the biconvex lens in the sixth group G6. .

実施例17のズームレンズは、図17に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を6.0079mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を2.6039mmとしている。   As shown in FIG. 17, the zoom lens of Example 17 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth lens group G4 moves to the object side, the fifth lens group G5 moves while drawing a convex reciprocating locus toward the object side, the telephoto end is closer to the object side than the wide-angle end position, and the sixth lens group G6 is It moves with a convex reciprocating locus on the object side so that the distance from the fifth group G5 is once reduced and then slightly enlarged, and at the telephoto end, it is slightly closer to the object side than the wide-angle end position. That. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 6.0079 mm at the time of close focus at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 at the close distance focus at the telephoto end. Is 2.6039 mm.

実施例17の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズ2枚と、両凸レンズとからなり、第3群G3は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の2番目両凹レンズの物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの像側の面の3面に用いられている。   The first group G1 of Example 17 includes a negative meniscus lens having a convex surface facing the object side and two positive meniscus lenses having a convex surface facing the object side. The second group G2 has the convex surface facing the object side. A negative meniscus lens, two biconcave lenses, and a biconvex lens. The third group G3 includes a biconcave lens, a cemented lens of a positive meniscus lens having a convex surface facing the object side, and a stop. G4 includes a biconvex lens, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The fifth group G5 has a convex surface facing the biconcave lens and the object side. The sixth lens unit G6 is composed of a biconvex lens, a biconvex lens, and a negative meniscus lens cemented lens with the convex surface facing the image side. The aspherical surface is used for three surfaces, that is, the object side surface of the second biconcave lens in the second group G2, the object side surface of the biconvex lens in the fourth group G4, and the image side surface of the biconvex lens in the sixth group G6. ing.

実施例18のズームレンズは、図18に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、
正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は物体側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第6群G6は第5群G5との間隔を一旦縮小しその後若干拡大するように物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を6.0177mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を2.2983mmとしている。
As shown in FIG. 18, the zoom lens of Example 18 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. , Negative refractive power fifth group G5,
The sixth lens unit G6 having positive refractive power, and when zooming from the wide-angle end to the telephoto end at the time of focusing on an object point at infinity, the first lens unit G1 moves while drawing a convex reciprocating locus toward the image side. , The second lens group G2 moves to the image side from the position at the wide-angle end, the third lens group G3 has an aperture stop integrally on the image side and is fixed, and the fourth lens group G4 is on the object side. The fifth group G5 moves while drawing a convex reciprocating locus toward the object side, and moves closer to the object side at the telephoto end than at the wide-angle end. The sixth group G6 temporarily reduces the distance from the fifth group G5. After that, it moves with a convex reciprocating locus on the object side so as to enlarge slightly, and at the telephoto end is slightly closer to the object side than the wide-angle end position. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 6.0177 mm when focusing at a short distance at the wide angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 2.2983 mm.

実施例18の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズ2枚と、両凸レンズとからなり、第3群G3は、平凹レンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の2番目の両凹レンズの物体側の面、第3群G3の平凹レンズの像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの像側の面の4面に用いられている。   The first group G1 in Example 18 includes a negative meniscus lens having a convex surface directed toward the object side, and two positive meniscus lenses having a convex surface directed toward the object side. The second group G2 has the convex surface directed toward the object side. A negative meniscus lens, two biconcave lenses, and a biconvex lens. The third group G3 includes a plano-concave lens and a diaphragm. The fourth group G4 has a biconvex lens and a convex surface facing the object side. The fifth group G5 includes a cemented lens of a negative meniscus lens and a positive meniscus lens having a convex surface facing the object side. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface directed toward the object side. Consists of a biconvex lens and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspheric surfaces are the object side surface of the second biconcave lens in the second group G2, the image side surface of the plano-concave lens in the third group G3, the object side surface of the biconvex lens in the fourth group G4, and the sixth group G6. Are used for four surfaces on the image side of the biconvex lens.

実施例19のズームレンズは、図19に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、正屈折力の第4群G4からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より像側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は第3群G3との間隔を拡大しながら物体側に移動する。そして、第4群G4を物体側に繰り出して近距離の被写体にフォーカスするようになっている。   As shown in FIG. 19, the zoom lens of Example 19 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a positive refractive power. 4th lens group G4, and at the time of focusing on an object point at infinity, when zooming from the wide-angle end to the telephoto end, the first group G1 moves while drawing a convex reciprocating locus toward the image side, and at the telephoto end the wide-angle end The second group G2 moves to the image side, the third group G3 moves to the object side, and the fourth group G4 moves to the object side while increasing the distance from the third group G3. To do. The fourth group G4 is extended to the object side to focus on a subject at a short distance.

実施例19の第1群G1は、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、両凸レンズ2枚とからなり、固定の絞りを挟んで、第3群G3は、両凸レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4群G4は、物体側に凸面を向けた正メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの像側の面、第3群G3の両凸レンズの物体側の面、第4群G4の最も像側の面の3面に用いられている。 実施例20のズームレンズは、図20に示すように、正屈折力の第1群G1、負屈折力の第2群G2、固定の開口絞り、正屈折力の第3群G3、負屈折力の第4群G4、正屈折力の第5群G5からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は物体側に移動し、第4群G4は第3群G4との間隔を拡大しながら物体側に移動し、第5群G5は第4群G4との間隔を一旦縮小しその後若干拡大するように物体側に移動する。そして、第5群G5を物体側に繰り出して近距離の被写体にフォーカスするようになっている。   The first group G1 of Example 19 includes a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 includes an object side The third group G3 includes a biconvex lens, a positive meniscus lens having a convex surface facing the object side, and a fixed diaphragm. The fourth group G4 includes a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side and a biconvex lens. It consists of a lens. The aspherical surfaces are used for the image side surface of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the third group G3, and the most image side surface of the fourth group G4. As shown in FIG. 20, the zoom lens of Example 20 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a fixed aperture stop, a third group G3 having a positive refractive power, and a negative refractive power. The fourth group G4 and the fifth group G5 having positive refractive power, and when zooming from the wide angle end to the telephoto end when focusing on an object point at infinity, the first group G1 draws a reciprocating locus convex toward the image side. The second lens group G2 moves to the image side, the third lens group G3 moves to the object side, and the fourth lens group G4 moves to the third lens group G4. The fifth group G5 moves to the object side so as to temporarily reduce the distance from the fourth group G4 and then slightly increase the distance. Then, the fifth group G5 is extended to the object side to focus on a subject at a short distance.

実施例20の第1群G1は、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、物体側に凸面を向けた負メニ
スカスレンズと両凸レンズの接合レンズとからなり、固定の絞りを挟んで、第3群G3は、両凸レンズと、両凸レンズと両凹レンズの接合レンズとからなり、第4群G4は、像側に凸面を向けた正メニスカスレンズと両凹レンズの接合レンズからなり、第5群G5は、両凹レンズと両凸レンズの接合レンズと、両凸レンズとからなる。非球面は、第2群G2の負メニスカスレンズの像側の面、第3群G3の接合レンズの最も物体側の面、第5群G5の接合レンズの最も像側の面の3面に用いられている。
The first group G1 of Example 20 includes a cemented lens of a negative meniscus lens having a convex surface directed toward the object side and a biconvex lens, and a positive meniscus lens having a convex surface directed toward the object side. The second group G2 includes an object side A negative meniscus lens having a convex surface facing the lens, a biconcave lens, a negative meniscus lens having a convex surface facing the object side, and a cemented lens of the biconvex lens. The fourth group G4 is composed of a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and the fifth group G5 is composed of a biconcave lens and a biconvex lens. It consists of a cemented lens and a biconvex lens. The aspherical surface is used for the three surfaces of the image side surface of the negative meniscus lens of the second group G2, the most object side surface of the cemented lens of the third group G3, and the most image side surface of the cemented lens of the fifth group G5. It has been.

実施例21のズームレンズは、図21に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より像側になり、第2群G2は像側に移動し、第3群G3は物体側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は第4群G4との間隔を拡大するように物体側に移動し、第6群G6は第5群G5との間隔を一旦若干拡大しその後若干縮小するように物体側に移動する。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。   As shown in FIG. 21, the zoom lens of Example 21 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the image side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the object side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves toward the object side so as to increase the distance from the fourth group G4, and the sixth group G6 increases the distance from the fifth group G5. It moves to the object side to enlarge slightly and then reduce slightly. The sixth group G6 is extended toward the object side to focus on a subject at a short distance.

実施例21の第1群G1は、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズ2枚と、両凸レンズとからなり、第3群G3は、絞りと、像側に凸面を向けた負メニスカスレンズとからなり、第4群G4は、物体側に凸面を向けた正メニスカスレンズと、両凸レンズと両凹レンズの接合レンズとからなり、第5群G5は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、像側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなる。非球面は、第2群G2の負メニスカスレンズの像側の面、第4群G4の接合レンズの最も物体側の面、第6群G6の両凸レンズの像側の面の3面に用いられている。   The first group G1 of Example 21 is composed of a negative meniscus lens having a convex surface facing the object side and a cemented lens of a biconvex lens, and a positive meniscus lens having a convex surface facing the object side. The second group G2 is composed of the object side A negative meniscus lens having a convex surface facing the lens, two biconcave lenses, and a biconvex lens. The third group G3 includes a stop and a negative meniscus lens having a convex surface facing the image side. And a positive meniscus lens having a convex surface facing the object side, and a cemented lens of a biconvex lens and a biconcave lens. The fifth group G5 has a positive meniscus lens having a convex surface facing the object side and a negative meniscus having the convex surface facing the object side. The sixth group G6 includes a biconvex lens, a negative meniscus lens having a convex surface facing the image side, and a biconvex lens cemented lens. The aspherical surface is used for three surfaces: the image side surface of the negative meniscus lens of the second group G2, the most object side surface of the cemented lens of the fourth group G4, and the image side surface of the biconvex lens of the sixth group G6. ing.

実施例22のズームレンズは、図22に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は像側に移動し、第6群G6は第5群G5との間隔を縮小しつつ物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を10.6679mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を1.0776mmとしている。   As shown in FIG. 22, the zoom lens of Example 22 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves toward the image side, and the sixth group G6 draws a reciprocating locus convex toward the object side while reducing the distance from the fifth group G5. At the telephoto end, it is slightly closer to the object side than the wide-angle end. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 10.6679 mm when focusing at a short distance at the wide-angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 1.0776 mm.

実施例22の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、薄い樹脂層を物体側に設け非球面化した両凹レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の両凹レンズの樹脂層の物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両
凸レンズの物体側の面の3面に用いられている。
The first group G1 of Example 22 includes a negative meniscus lens having a convex surface directed toward the object side, a biconvex lens, and a positive meniscus lens having a convex surface directed toward the object side. The second group G2 includes a convex surface facing the object side. A negative meniscus lens with a thin resin layer on the object side and aspherical, a negative meniscus lens with a convex surface on the image side, and a cemented lens with a positive meniscus lens with a convex surface on the image side The third group G3 includes a negative meniscus lens having a convex surface facing the image side and a stop. The fourth group G4 includes a biconvex lens, and a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fifth group G5 is composed of a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side, and the sixth group G6 has a biconvex lens, a biconvex lens and a convex surface facing the image side Negative meniscus Consisting of a's of the cemented lens. The aspheric surfaces are used for the three surfaces of the object side surface of the resin layer of the biconcave lens of the second group G2, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. It has been.

実施例23のズームレンズは、図23に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は像側に移動し、第6群G6は第5群G5との間隔を縮小しつつ物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を9.3998mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を0.9516mmとしている。   As shown in FIG. 23, the zoom lens of Example 23 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves toward the image side, and the sixth group G6 draws a reciprocating locus convex toward the object side while reducing the distance from the fifth group G5. At the telephoto end, it is slightly closer to the object side than the wide-angle end. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth group G5 and the sixth group G6 is 9.3998 mm when focusing at a short distance at the wide angle end, and the distance between the fifth group G5 and the sixth group G6 when focusing at a short distance at the telephoto end. Is set to 0.9516 mm.

実施例23の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズ2枚とからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、像側に凸面を向けた負メニスカスレンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の像側に凸面を向けた負メニスカスレンズの物体側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 23 includes a negative meniscus lens having a convex surface directed toward the object side, and two positive meniscus lenses having a convex surface directed toward the object side. The second group G2 has the convex surface directed toward the object side. A negative meniscus lens having a convex surface facing the image side, a negative meniscus lens having a convex surface facing the image side, and a cemented lens having a positive meniscus lens having a convex surface facing the image side. Is composed of a negative meniscus lens having a convex surface facing the image side and a stop, and the fourth group G4 is composed of a biconvex lens, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. The sixth group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface directed to the image side. And It made. The aspherical surface is an object side surface of a negative meniscus lens having a convex surface facing the image side of the second group G2, an object side surface of the biconvex lens of the fourth group G4, and an object side surface of the biconvex lens of the sixth group G6. Are used on the three sides.

実施例24のズームレンズは、図24に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は像側に移動し、第6群G6は第5群G5との間隔を縮小しつつ物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干物体側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を9.73471mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を0.8531mmとしている。   As shown in FIG. 24, the zoom lens of Example 24 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves toward the image side, and the sixth group G6 draws a reciprocating locus convex toward the object side while reducing the distance from the fifth group G5. At the telephoto end, it is slightly closer to the object side than the wide-angle end. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 9.7471 mm when focusing at a short distance at the wide angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 0.8531 mm.

実施例24の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、像側に凸面を向けた負メニスカスレンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の像側に凸面を向けた負メニスカスレンズの像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 24 includes a negative meniscus lens having a convex surface directed toward the object side, a biconvex lens, and a positive meniscus lens having a convex surface directed toward the object side. The second group G2 includes a convex surface facing the object side. A negative meniscus lens having a convex surface facing the image side, a negative meniscus lens having a convex surface facing the image side, and a cemented lens of a positive meniscus lens having a convex surface facing the image side. The group G3 includes a negative meniscus lens having a convex surface facing the image side and a stop, and the fourth group G4 includes a biconvex lens, and a cemented lens of the negative meniscus lens having a convex surface facing the object side and the biconvex lens. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side, and the sixth group G6 includes a biconvex lens, a biconvex lens and a negative meniscus lens having a convex surface facing the image side. Joining Consisting of a lens. The aspherical surface is an image side surface of a negative meniscus lens having a convex surface facing the image side of the second group G2, an object side surface of the biconvex lens of the fourth group G4, and an object side surface of the biconvex lens of the sixth group G6. Are used on the three sides.

実施例25のズームレンズは、図25に示すように、正屈折力の第1群G1、負屈折力の第2群G2、負屈折力の第3群G3、正屈折力の第4群G4、負屈折力の第5群G5、正屈折力の第6群G6からなり、無限遠物点合焦時に広角端から望遠端に変倍する際は、第1群G1は像側に凸の往復軌跡を描きつつ移動し、望遠端では広角端の位置より物体側になり、第2群G2は像側に移動し、第3群G3は像側に開口絞りを一体に有していて固定であり、第4群G4は物体側に移動し、第5群G5は像側に移動し、第6群G6は第5群G5との間隔を縮小しつつ物体側に凸の往復軌跡を描いて移動し、望遠端では広角端の位置より若干像側になる。そして、第6群G6を物体側に繰り出して近距離の被写体にフォーカスするようになっている。具体的には、広角端における近距離合焦時は第5群G5と第6群G6の間隔を7.9914mm、望遠端における近距離合焦時は第5群G5と第6群G6の間隔を1.4726mmとしている。   As shown in FIG. 25, the zoom lens of Example 25 includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, a third group G3 having a negative refractive power, and a fourth group G4 having a positive refractive power. The first group G1 has a negative refractive power fifth group G5 and a positive refractive power sixth group G6. When zooming from the wide-angle end to the telephoto end when focusing on an object point at infinity, the first group G1 is convex toward the image side. It moves while drawing a reciprocating locus. At the telephoto end, it is closer to the object side than the wide-angle end position, the second group G2 moves to the image side, and the third group G3 has an aperture stop integrally on the image side and is fixed. The fourth group G4 moves toward the object side, the fifth group G5 moves toward the image side, and the sixth group G6 draws a reciprocating locus convex toward the object side while reducing the distance from the fifth group G5. And at the telephoto end is slightly closer to the image side than the wide-angle end. The sixth group G6 is extended toward the object side to focus on a subject at a short distance. Specifically, the distance between the fifth lens group G5 and the sixth lens group G6 is 7.9914 mm when focusing at a short distance at the wide angle end, and the distance between the fifth lens group G5 and the sixth lens group G6 when focusing at a short distance at the telephoto end. Is 1.4726 mm.

実施例25の第1群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2群G2は、物体側に凸面を向けた負メニスカスレンズと、両凹レンズと、両凹レンズと両凸レンズの接合レンズとからなり、第3群G3は、像側に凸面を向けた負メニスカスレンズと、絞りとからなり、第4群G4は、両凸レンズと、物体側に凸面を向けた負メニスカスレンズと両凸レンズの接合レンズとからなり、第5群G5は、両凹レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第6群G6は、両凸レンズと、両凸レンズと像側に凸面を向けた負メニスカスレンズの接合レンズとからなる。非球面は、第2群G2の接合レンズの最も像側の面、第4群G4の両凸レンズの物体側の面、第6群G6の両凸レンズの物体側の面の3面に用いられている。   The first group G1 of Example 25 includes a negative meniscus lens having a convex surface directed toward the object side, a biconvex lens, and a positive meniscus lens having a convex surface directed toward the object side. The second group G2 includes a convex surface facing the object side. A negative meniscus lens having a convex surface, a biconcave lens, and a cemented lens of a biconcave lens and a biconvex lens. The third group G3 includes a negative meniscus lens having a convex surface directed to the image side, and a diaphragm. G4 includes a biconvex lens, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The fifth group G5 includes a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. Thus, the sixth group G6 includes a biconvex lens, and a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side. The aspherical surfaces are used for the three surfaces of the cemented lens of the second group G2, the most image side surface, the object side surface of the biconvex lens of the fourth group G4, and the object side surface of the biconvex lens of the sixth group G6. Yes.

以上の実施例において、合焦時の繰り出し量を具体例より大きくしてより近距離に合焦できるようにしてもよい。   In the above embodiment, the amount of feeding at the time of focusing may be made larger than that of the specific example so that focusing can be performed at a closer distance.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、ωは半画角、FNOはFナンバー、Wは広角端、WSは広角端と標準状態の中間状態(広角端と標準状態の相乗平均)、Sは標準状態、STは標準状態と望遠端の中間状態(標準状態と望遠端の相乗平均)、Tは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 The numerical data of each of the above embodiments are shown below. Symbols are the above, f is the total focal length, ω is the half field angle, FNO is the F number, W is the wide angle end, and WS is the wide angle end. Intermediate state (geometric mean of wide angle end and standard state), S is standard state, ST is intermediate state between standard state and telephoto end (geometric mean of standard state and telephoto end), T is telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2, are the refractive indices of the d-line of each lens, ν d1 , ν d2 . Abbe number. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A44 +A66 +A88 + A1010
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、A8、A10 はそれぞれ4次、6次、8次、10次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10
Here, r is a paraxial radius of curvature, K is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.

(実施例1)
1 = 144.6796 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 82.7855 d2 = 0.2000
3 = 86.4734 d3 = 6.6250 nd2 =1.49700 νd2 =81.54
4 = -587.8788 d4 = 0.2000
5 = 67.2317 d5 = 4.9655 nd3 =1.69680 νd3 =55.53
6 = 245.5595 d6 = (可変)
7 = -2.080×104 7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 17.9014 d8 = 8.5657
9 = -66.4539(非球面) d9 = 0.2000 nd5 =1.53508 νd5 =40.94
10= -145.6382 d10= 1.3000 nd6 =1.77250 νd6 =49.60
11= 275.5575 d11= 4.1902
12= -23.6269 d12= 1.1790 nd7 =1.48749 νd7 =70.23
13= -120.2094 d13= 4.4826 nd8 =1.84666 νd8 =23.78
14= -36.0216 d14= (可変)
15= -13.3441 d15= 1.3000 nd9 =1.77250 νd9 =49.60
16= -14.7782 d16= 1.0476
17= ∞(絞り) d17= (可変)
18= 22.2411(非球面) d18= 5.1519 nd10=1.49700 νd10=81.54
19= -44.3261 d19= 0.1026
20= 66.0894 d20= 1.1010 nd11=1.80610 νd11=40.92
21= 17.8460 d21= 5.1279 nd12=1.49700 νd12=81.54
22= -87.9421 d22= (可変)
23= -55.9458 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 13.4125 d24= 3.2354 nd14=1.84666 νd14=23.78
25= 19.3681 d25= (可変)
26= 26.8826(非球面) d26= 4.2125 nd15=1.49700 νd15=81.54
27= -27.8744 d27= 0.1500
28= 279.7814 d28= 4.1538 nd16=1.61800 νd16=63.33
29= -15.8089 d29= 1.0000 nd17=1.84666 νd17=23.78
30= -57.4983 d30= (可変)
31= ∞ d31= 16.0000 nd18=1.51633 νd18=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd19=1.54771 νd19=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd20=1.51633 νd20=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第9面
K = 0
A4 = 2.1263 ×10-5
A6 = 1.5727 ×10-8
A8 = 3.9610 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-1.9875 ×10-5
A6 =-1.3029 ×10-8
A8 = 5.1888 ×10-11
A10= 0.0000
第26面
K = 0
A4 =-1.7061 ×10-5
A6 =-8.7539 ×10-9
A8 = 1.1345 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.26000 12.99999 23.29997 41.72984 74.74939
NO 2.8000 3.3795 3.5000 3.5000 3.5000
ω (°) 38.45 . 13.04 . 4.12
6 1.68869 10.56701 29.85764 47.13961 57.82811
14 44.76569 23.28314 12.25974 6.30842 2.57394
17 19.00232 11.35026 8.66100 6.27017 0.99971
22 1.50000 7.83915 11.97947 16.04050 22.86634
25 8.26323 8.96815 6.46694 5.08222 5.08574
30 4.69246 5.30046 6.35060 6.06512 4.50622
Example 1
r 1 = 144.6796 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 82.7855 d 2 = 0.2000
r 3 = 86.4734 d 3 = 6.6250 n d2 = 1.49700 ν d2 = 81.54
r 4 = -587.8788 d 4 = 0.2000
r 5 = 67.2317 d 5 = 4.9655 n d3 = 1.69680 ν d3 = 55.53
r 6 = 245.5595 d 6 = (variable)
r 7 = -2.080 × 10 4 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 17.9014 d 8 = 8.5657
r 9 = -66.4539 (aspherical surface) d 9 = 0.2000 n d5 = 1.53508 ν d5 = 40.94
r 10 = -145.6382 d 10 = 1.3000 n d6 = 1.77250 ν d6 = 49.60
r 11 = 275.5575 d 11 = 4.1902
r 12 = -23.6269 d 12 = 1.1790 n d7 = 1.48749 ν d7 = 70.23
r 13 = -120.2094 d 13 = 4.4826 n d8 = 1.84666 ν d8 = 23.78
r 14 = -36.0216 d 14 = (variable)
r 15 = -13.3441 d 15 = 1.3000 n d9 = 1.77250 ν d9 = 49.60
r 16 = -14.7782 d 16 = 1.0476
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 22.2411 (aspherical surface) d 18 = 5.1519 n d10 = 1.49700 ν d10 = 81.54
r 19 = -44.3261 d 19 = 0.1026
r 20 = 66.0894 d 20 = 1.1010 n d11 = 1.80610 ν d11 = 40.92
r 21 = 17.8460 d 21 = 5.1279 n d12 = 1.49700 ν d12 = 81.54
r 22 = -87.9421 d 22 = (variable)
r 23 = -55.9458 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 13.4125 d 24 = 3.2354 n d14 = 1.84666 ν d14 = 23.78
r 25 = 19.3681 d 25 = (variable)
r 26 = 26.8826 (aspherical surface) d 26 = 4.2125 n d15 = 1.49700 ν d15 = 81.54
r 27 = -27.8744 d 27 = 0.1500
r 28 = 279.7814 d 28 = 4.1538 n d16 = 1.61800 ν d16 = 63.33
r 29 = -15.8089 d 29 = 1.0000 n d17 = 1.84666 ν d17 = 23.78
r 30 = -57.4983 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 2.1263 × 10 -5
A 6 = 1.5727 × 10 -8
A 8 = 3.9610 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -1.9875 × 10 -5
A 6 = -1.3029 × 10 -8
A 8 = 5.1888 × 10 -11
A 10 = 0.0000
26th face K = 0
A 4 = -1.7061 × 10 -5
A 6 = -8.7539 × 10 -9
A 8 = 1.1345 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.26000 12.99999 23.29997 41.72984 74.74939
F NO 2.8000 3.3795 3.5000 3.5000 3.5000
ω (°) 38.45. 13.04. 4.12
d 6 1.68869 10.56701 29.85764 47.13961 57.82811
d 14 44.76569 23.28314 12.25974 6.30842 2.57394
d 17 19.00232 11.35026 8.66100 6.27017 0.99971
d 22 1.50000 7.83915 11.97947 16.04050 22.86634
d 25 8.26323 8.96815 6.46694 5.08222 5.08574
d 30 4.69246 5.30046 6.35060 6.06512 4.50622
.

(実施例2)
1 = 82.4483 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 57.4502 d2 = 0.1000
3 = 57.9164 d3 = 7.1329 nd2 =1.49700 νd2 =81.54
4 = 284.4315 d4 = 0.2000
5 = 69.2991 d5 = 5.3163 nd3 =1.60311 νd3 =60.64
6 = 400.4019 d6 = (可変)
7 = -1559.7350 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 18.3563 d8 = 8.8487
9 = -51.0656 d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 89.9326 d10= 0.2000 nd6 =1.53508 νd6 =40.94
11= 56.6440(非球面) d11= 2.9409
12= -70.2481 d12= 1.1135 nd7 =1.48749 νd7 =70.23
13= -351.6349 d13= 3.8722 nd8 =1.84666 νd8 =23.78
14= -41.4750 d14= (可変)
15= -21.7766 d15= 1.0673 nd9 =1.69680 νd9 =55.53
16= -24.1145 d16= 1.4225
17= ∞(絞り) d17= (可変)
18= 21.1358(非球面) d18= 5.4704 nd10=1.49700 νd10=81.54
19= -79.1895 d19= 0.1774
20= 47.1634 d20= 1.1410 nd11=1.80440 νd11=39.59
21= 15.0512 d21= 3.4835 nd12=1.61800 νd12=63.33
22= -184.9380 d22= (可変)
23= -74.7571 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 11.7718 d24= 1.9155 nd14=1.84666 νd14=23.78
25= 17.1123 d25= (可変)
26= 37.8693(非球面) d26= 3.4588 nd15=1.49700 νd15=81.54
27= -21.7737 d27= 0.1500
28= -131.6293 d28= 3.7575 nd16=1.61800 νd16=63.33
29= -12.5491 d29= 1.0000 nd17=1.84666 νd17=23.78
30= -38.2936 d30= (可変)
31= ∞ d31= 16.0000 nd18=1.51633 νd18=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd19=1.54771 νd19=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd20=1.51633 νd20=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第11面
K = 0
A4 =-2.3956 ×10-5
A6 = 1.1363 ×10-8
A8 =-2.9304 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-1.9310 ×10-5
A6 =-5.6603 ×10-9
A8 =-5.6829 ×10-11
A10= 0.0000
第26面
K = 0
A4 =-1.9084 ×10-5
A6 = 8.1108 ×10-9
A8 = 2.2527 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.2599 12.99998 23.29994 41.72977 74.74923
NO 2.8000 3.0773 3.4040 3.5000 3.5000
ω (°) 38.47 . 13.05 . 4.09
6 2.04129 12.03456 30.35700 47.31707 58.11117
14 52.08359 23.80135 12.15120 5.17137 2.10989
17 15.96754 11.83766 8.87742 6.74717 1.12789
22 1.50000 4.35576 7.49811 10.64193 17.10388
25 7.96197 7.07284 5.58079 4.44519 5.93947
30 4.69339 6.85663 8.16658 8.28861 5.95167
(Example 2)
r 1 = 82.4483 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 57.4502 d 2 = 0.1000
r 3 = 57.9164 d 3 = 7.1329 n d2 = 1.49700 ν d2 = 81.54
r 4 = 284.4315 d 4 = 0.2000
r 5 = 69.2991 d 5 = 5.3163 n d3 = 1.60311 ν d3 = 60.64
r 6 = 400.4019 d 6 = (variable)
r 7 = -1559.7350 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 18.3563 d 8 = 8.8487
r 9 = -51.0656 d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 89.9326 d 10 = 0.2000 n d6 = 1.53508 ν d6 = 40.94
r 11 = 56.6440 (aspherical surface) d 11 = 2.9409
r 12 = -70.2481 d 12 = 1.1135 n d7 = 1.48749 ν d7 = 70.23
r 13 = -351.6349 d 13 = 3.8722 n d8 = 1.84666 ν d8 = 23.78
r 14 = -41.4750 d 14 = (variable)
r 15 = -21.7766 d 15 = 1.0673 n d9 = 1.69680 ν d9 = 55.53
r 16 = -24.1145 d 16 = 1.4225
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 21.1358 (aspherical surface) d 18 = 5.4704 n d10 = 1.49700 ν d10 = 81.54
r 19 = -79.1895 d 19 = 0.1774
r 20 = 47.1634 d 20 = 1.1410 n d11 = 1.80440 ν d11 = 39.59
r 21 = 15.0512 d 21 = 3.4835 n d12 = 1.61800 ν d12 = 63.33
r 22 = -184.9380 d 22 = (variable)
r 23 = -74.7571 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 11.7718 d 24 = 1.9155 n d14 = 1.84666 ν d14 = 23.78
r 25 = 17.1123 d 25 = (variable)
r 26 = 37.8693 (aspherical surface) d 26 = 3.4588 n d15 = 1.49700 ν d15 = 81.54
r 27 = -21.7737 d 27 = 0.1500
r 28 = -131.6293 d 28 = 3.7575 n d16 = 1.61800 ν d16 = 63.33
r 29 = -12.5491 d 29 = 1.0000 n d17 = 1.84666 ν d17 = 23.78
r 30 = -38.2936 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = -2.3956 × 10 -5
A 6 = 1.1363 × 10 -8
A 8 = -2.9304 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -1.9310 × 10 -5
A 6 = -5.6603 × 10 -9
A 8 = -5.6829 × 10 -11
A 10 = 0.0000
26th face K = 0
A 4 = -1.9084 × 10 -5
A 6 = 8.1108 × 10 -9
A 8 = 2.2527 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.2599 12.99998 23.29994 41.72977 74.74923
F NO 2.8000 3.0773 3.4040 3.5000 3.5000
ω (°) 38.47. 13.05. 4.09
d 6 2.04129 12.03456 30.35700 47.31707 58.11117
d 14 52.08359 23.80135 12.15120 5.17137 2.10989
d 17 15.96754 11.83766 8.87742 6.74717 1.12789
d 22 1.50000 4.35576 7.49811 10.64193 17.10388
d 25 7.96197 7.07284 5.58079 4.44519 5.93947
d 30 4.69339 6.85663 8.16658 8.28861 5.95167
.

(実施例3)
1 = 79.8928 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 56.5419 d2 = 0.0932
3 = 56.8568 d3 = 7.2921 nd2 =1.49700 νd2 =81.54
4 = 279.2946 d4 = 0.2000
5 = 71.4740 d5 = 5.1087 nd3 =1.60311 νd3 =60.64
6 = 368.5676 d6 = (可変)
7 = 297.1098 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 16.7226 d8 = 8.2214
9 = -58.5814 d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 42.9833 d10= 2.8172
11= 44.9540 d11= 2.4853 nd6 =1.68893 νd6 =31.07
12= 67.5910 d12= 0.5000 nd7 =1.53508 νd7 =40.94
13= 60.4446(非球面) d13= 2.4132
14= -152.6589 d14= 2.7489 nd8 =1.84666 νd8 =23.78
15= -43.1824 d15= (可変)
16= 1521.7545 d16= 1.2383 nd9 =1.69680 νd9 =55.53
17= 103.2631 d17= 1.3581
18= ∞(絞り) d18= (可変)
19= 19.8319(非球面) d19= 6.0797 nd10=1.49700 νd10=81.54
20= -98.1431 d20= 0.1774
21= 41.2385 d21= 1.1410 nd11=1.80440 νd11=39.59
22= 13.6120 d22= 5.6638 nd12=1.60311 νd12=60.64
23= -105.3016 d23= (可変)
24= -60.3378 d24= 0.9000 nd13=1.51633 νd13=64.14
25= 11.2684 d25= 2.0556 nd14=1.84666 νd14=23.78
26= 16.0592 d26= (可変)
27= 57.5023 d27= 3.0046 nd15=1.49700 νd15=81.54
28= -29.3958(非球面) d28= 0.1500
29= 60.6802 d29= 4.8459 nd16=1.60311 νd16=60.64
30= -12.9748 d30= 1.0000 nd17=1.84666 νd17=23.78
31= -47.6191 d31= (可変)
32= ∞ d32= 16.0000 nd18=1.51633 νd18=64.14
33= ∞ d33= 1.0000
34= ∞ d34= 2.6000 nd19=1.54771 νd19=62.84
35= ∞ d35= 1.0000
36= ∞ d36= 0.7500 nd20=1.51633 νd20=64.14
37= ∞ d37= 1.2400
38= ∞
非球面係数
第13面
K = 0
A4 =-1.4437 ×10-5
A6 = 2.9795 ×10-9
A8 =-9.7997 ×10-12
A10= 0.0000
第19面
K = 0
A4 =-1.9829 ×10-5
A6 =-1.2490 ×10-8
A8 = 9.5912 ×10-12
A10= 0.0000
第28面
K = 0
A4 =-8.0968 ×10-6
A6 =-1.4115 ×10-8
A8 =-3.7788 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.26002 13.00003 23.30008 41.73033 74.75116
NO 2.8003 3.0838 3.4742 3.5003 3.5007
ω (°) 38.42 . 13.05 . 4.11
6 1.36006 12.49834 30.21824 47.74332 58.25431
15 54.96399 24.89992 12.03611 4.74729 1.70314
18 17.14336 12.83290 9.24821 6.81249 1.02608
23 1.50000 3.50570 6.35732 8.92130 16.08346
26 7.83356 7.52870 6.60733 5.98190 6.80232
31 5.02576 7.63538 9.28981 9.78699 7.59082
(Example 3)
r 1 = 79.8928 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 56.5419 d 2 = 0.0932
r 3 = 56.8568 d 3 = 7.2921 n d2 = 1.49700 ν d2 = 81.54
r 4 = 279.2946 d 4 = 0.2000
r 5 = 71.4740 d 5 = 5.1087 n d3 = 1.60311 ν d3 = 60.64
r 6 = 368.5676 d 6 = (variable)
r 7 = 297.1098 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 16.7226 d 8 = 8.2214
r 9 = -58.5814 d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 42.9833 d 10 = 2.8172
r 11 = 44.9540 d 11 = 2.4853 n d6 = 1.68893 ν d6 = 31.07
r 12 = 67.5910 d 12 = 0.5000 n d7 = 1.53508 ν d7 = 40.94
r 13 = 60.4446 (aspherical surface) d 13 = 2.4132
r 14 = -152.6589 d 14 = 2.7489 n d8 = 1.84666 ν d8 = 23.78
r 15 = -43.1824 d 15 = (variable)
r 16 = 1521.7545 d 16 = 1.2383 n d9 = 1.69680 ν d9 = 55.53
r 17 = 103.2631 d 17 = 1.3581
r 18 = ∞ (aperture) d 18 = (variable)
r 19 = 19.8319 (aspherical surface) d 19 = 6.0797 n d10 = 1.49700 ν d10 = 81.54
r 20 = -98.1431 d 20 = 0.1774
r 21 = 41.2385 d 21 = 1.1410 n d11 = 1.80440 ν d11 = 39.59
r 22 = 13.6120 d 22 = 5.6638 n d12 = 1.60311 ν d12 = 60.64
r 23 = -105.3016 d 23 = (variable)
r 24 = -60.3378 d 24 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 25 = 11.2684 d 25 = 2.0556 n d14 = 1.84666 ν d14 = 23.78
r 26 = 16.0592 d 26 = (variable)
r 27 = 57.5023 d 27 = 3.0046 n d15 = 1.49700 ν d15 = 81.54
r 28 = -29.3958 (aspherical surface) d 28 = 0.1500
r 29 = 60.6802 d 29 = 4.8459 n d16 = 1.60311 ν d16 = 60.64
r 30 = -12.9748 d 30 = 1.0000 n d17 = 1.84666 ν d17 = 23.78
r 31 = -47.6191 d 31 = (variable)
r 32 = ∞ d 32 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 35 = ∞ d 35 = 1.0000
r 36 = ∞ d 36 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 37 = ∞ d 37 = 1.2400
r 38 = ∞
Aspheric coefficient 13th surface K = 0
A 4 = -1.4437 × 10 -5
A 6 = 2.9795 × 10 -9
A 8 = -9.7997 × 10 -12
A 10 = 0.0000
19th face K = 0
A 4 = -1.9829 × 10 -5
A 6 = -1.2490 × 10 -8
A 8 = 9.5912 × 10 -12
A 10 = 0.0000
Surface 28 K = 0
A 4 = -8.0968 × 10 -6
A 6 = -1.4115 × 10 -8
A 8 = -3.7788 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.26002 13.00003 23.30008 41.73033 74.75116
F NO 2.8003 3.0838 3.4742 3.5003 3.5007
ω (°) 38.42 .13.05 .4.11
d 6 1.36006 12.49834 30.21824 47.74332 58.25431
d 15 54.96399 24.89992 12.03611 4.74729 1.70314
d 18 17.14336 12.83290 9.24821 6.81249 1.02608
d 23 1.50000 3.50570 6.35732 8.92130 16.08346
d 26 7.83356 7.52870 6.60733 5.98190 6.80232
d 31 5.02576 7.63538 9.28981 9.78699 7.59082
.

(実施例4)
1 = 81.6544 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 54.5219 d2 = 0.0918
3 = 55.1373 d3 = 6.6789 nd2 =1.60311 νd2 =60.64
4 = 170.0871 d4 = 0.2000
5 = 63.9518 d5 = 5.5295 nd3 =1.60311 νd3 =60.64
6 = 261.7938 d6 = (可変)
7 = 135.9397 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 18.6691 d8 = 7.1069
9 = -77.9436 d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 29.3916 d10= 3.6128
11= -136.6311(非球面) d11= 2.6052 nd6 =1.68893 νd6 =31.07
12= -93.2719 d12= 1.2000 nd7 =1.77250 νd7 =49.60
13= 48.4132 d13= 0.1500
14= 40.2538 d14= 5.6753 nd8 =1.68893 νd8 =31.07
15= -41.2699 d15= (可変)
16= ∞(絞り) d16= (可変)
17= 20.5800(非球面) d17= 3.1262 nd9 =1.49700 νd9 =81.54
18= -89.3640 d18= 0.1500
19= 221.1623 d19= 3.2743 nd10=1.48749 νd10=70.23
20= -22.6962 d20= 1.0743 nd11=1.69895 νd11=30.13
21= -65.3546 d21= (可変)
22= -44.1685 d22= 2.2362 nd12=1.84666 νd12=23.78
23= -17.9114 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 19.1017 d24= (可変)
25= 26.6661(非球面) d25= 3.6847 nd14=1.49700 νd14=81.54
26= -34.1574 d26= 0.1500
27= 52.2108 d27= 4.2853 nd15=1.49700 νd15=81.54
28= -14.7656 d28= 1.2000 nd16=1.80518 νd16=25.42
29= -55.0799 d29= (可変)
30= ∞ d30= 16.0000 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.0000
32= ∞ d32= 2.6000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.0000
34= ∞ d34= 0.7500 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.2400
36= ∞
非球面係数
第11面
K = 0
A4 = 1.0139 ×10-5
A6 = 3.2872 ×10-9
A8 =-1.1023 ×10-11
A10= 0.0000
第17面
K = 0
A4 =-1.7036 ×10-5
A6 =-1.7437 ×10-8
A8 = 4.5946 ×10-11
A10= 0.0000
第25面
K = 0
A4 = 3.4248 ×10-6
A6 = 1.4711 ×10-8
A8 = 4.5298 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.25999 . 23.29992 . 74.74889
NO 2.8000 . 3.5801 . 3.5000
ω (°) 38.54 . 13.22 . 4.14
6 1.00000 14.89793 31.05521 47.12742 59.32091
15 52.30556 29.13766 15.90712 7.48462 2.50000
16 20.23714 12.06038 7.38350 5.16625 1.27216
21 3.72767 5.35270 8.32036 10.89531 15.89787
24 3.24286 7.15116 6.72019 5.06310 5.57919
29 4.69211 7.33554 9.47573 10.77513 9.15056
Example 4
r 1 = 81.6544 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 54.5219 d 2 = 0.0918
r 3 = 55.1373 d 3 = 6.6789 n d2 = 1.60311 ν d2 = 60.64
r 4 = 170.0871 d 4 = 0.2000
r 5 = 63.9518 d 5 = 5.5295 n d3 = 1.60311 ν d3 = 60.64
r 6 = 261.7938 d 6 = (variable)
r 7 = 135.9397 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 18.6691 d 8 = 7.1069
r 9 = -77.9436 d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 29.3916 d 10 = 3.6128
r 11 = -136.6311 (aspherical surface) d 11 = 2.6052 n d6 = 1.68893 ν d6 = 31.07
r 12 = -93.2719 d 12 = 1.2000 n d7 = 1.77250 ν d7 = 49.60
r 13 = 48.4132 d 13 = 0.1500
r 14 = 40.2538 d 14 = 5.6753 n d8 = 1.68893 ν d8 = 31.07
r 15 = -41.2699 d 15 = (variable)
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 20.5800 (aspherical surface) d 17 = 3.1262 n d9 = 1.49700 ν d9 = 81.54
r 18 = -89.3640 d 18 = 0.1500
r 19 = 221.1623 d 19 = 3.2743 n d10 = 1.48749 ν d10 = 70.23
r 20 = -22.6962 d 20 = 1.0743 n d11 = 1.69895 ν d11 = 30.13
r 21 = -65.3546 d 21 = (variable)
r 22 = -44.1685 d 22 = 2.2362 n d12 = 1.84666 ν d12 = 23.78
r 23 = -17.9114 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 19.1017 d 24 = (variable)
r 25 = 26.6661 (aspherical surface) d 25 = 3.6847 n d14 = 1.49700 ν d14 = 81.54
r 26 = -34.1574 d 26 = 0.1500
r 27 = 52.2108 d 27 = 4.2853 n d15 = 1.49700 ν d15 = 81.54
r 28 = -14.7656 d 28 = 1.2000 n d16 = 1.80518 ν d16 = 25.42
r 29 = -55.0799 d 29 = (variable)
r 30 = ∞ d 30 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.0000
r 32 = ∞ d 32 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.2400
r 36 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 1.0139 × 10 -5
A 6 = 3.2872 × 10 -9
A 8 = -1.1023 × 10 -11
A 10 = 0.0000
Surface 17 K = 0
A 4 = -1.7036 × 10 -5
A 6 = -1.7437 × 10 -8
A 8 = 4.5946 × 10 -11
A 10 = 0.0000
25th face K = 0
A 4 = 3.4248 × 10 -6
A 6 = 1.4711 × 10 -8
A 8 = 4.5298 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.25999. 23.29992. 74.74889
F NO 2.8000. 3.5801. 3.5000
ω (°) 38.54. 13.22. 4.14
d 6 1.00000 14.89793 31.05521 47.12742 59.32091
d 15 52.30556 29.13766 15.90712 7.48462 2.50000
d 16 20.23714 12.06038 7.38350 5.16625 1.27216
d 21 3.72767 5.35270 8.32036 10.89531 15.89787
d 24 3.24286 7.15116 6.72019 5.06310 5.57919
d 29 4.69211 7.33554 9.47573 10.77513 9.15056
.

(実施例5)
1 = 78.1210 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 52.5351 d2 = 0.0776
3 = 53.2073 d3 = 6.8025 nd2 =1.60311 νd2 =60.64
4 = 159.3705 d4 = 0.2000
5 = 65.8776 d5 = 5.5331 nd3 =1.60311 νd3 =60.64
6 = 303.8063 d6 = (可変)
7 = 163.0022 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 17.9806 d8 = 6.9388
9 = -95.4021 d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 31.9739 d10= 3.3248
11= -83.4161(非球面) d11= 2.2162 nd6 =1.68893 νd6 =31.07
12= -51.8821 d12= 1.2000 nd7 =1.77250 νd7 =49.60
13= 110.2656 d13= 0.1500
14= 52.7805 d14= 4.8751 nd8 =1.68893 νd8 =31.07
15= -44.3555 d15= (可変)
16= ∞(絞り) d16= (可変)
17= 20.3453(非球面) d17= 4.8644 nd9 =1.49700 νd9 =81.54
18= -18.1397 d18= 0.1995
19= -17.0247 d19= 0.9865 nd10=1.58144 νd10=40.75
20= -41.9737 d20= (可変)
21= -34.7870 d21= 1.6000 nd11=1.84666 νd11=23.78
22= -15.2340 d22= 0.9000 nd12=1.51633 νd12=64.14
23= 20.7010 d23= (可変)
24= 21.6523 d24= 1.2000 nd13=1.80518 νd13=25.42
25= 11.8448 d25= 5.1050 nd14=1.49700 νd14=81.54
26= 282.0413 d26= 0.1500
27= 18.6629 d27= 5.4207 nd15=1.49700 νd15=81.54
28= -35.6003(非球面) d28= 0.1500
29= 45.1746 d29= 1.0526 nd16=1.80518 νd16=25.42
30= 26.6635 d30= (可変)
31= ∞ d31= 16.0000 nd17=1.51633 νd17=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd18=1.54771 νd18=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd19=1.51633 νd19=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第11面
K = 0
A4 = 7.1125 ×10-6
A6 = 2.0512 ×10-8
A8 =-5.1595 ×10-11
A10= 0.0000
第17面
K = 0
A4 =-1.5184 ×10-5
A6 =-2.3566 ×10-8
A8 = 3.4360 ×10-10
A10= 0.0000
第28面
K = 0
A4 = 3.1780 ×10-5
A6 =-9.9597 ×10-8
A8 =-5.2192 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.25999 . 23.29997 . 74.75182
NO 2.8000 . 3.5778 . 3.5000
ω (°) 38.52 . 13.19 . 4.13
6 1.04546 15.02846 31.09889 46.16763 59.30495
15 52.08237 29.21796 16.44547 7.46848 2.50000
16 19.83770 12.09302 7.11800 4.38285 1.23876
20 2.85510 5.90624 9.13593 11.32215 15.45881
23 4.36441 7.15116 6.72019 5.06310 5.57919
30 5.49442 7.40121 9.57751 11.78353 10.27488
(Example 5)
r 1 = 78.1210 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 52.5351 d 2 = 0.0776
r 3 = 53.2073 d 3 = 6.8025 n d2 = 1.60311 ν d2 = 60.64
r 4 = 159.3705 d 4 = 0.2000
r 5 = 65.8776 d 5 = 5.5331 n d3 = 1.60311 ν d3 = 60.64
r 6 = 303.8063 d 6 = (variable)
r 7 = 163.0022 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 17.9806 d 8 = 6.9388
r 9 = -95.4021 d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 31.9739 d 10 = 3.3248
r 11 = -83.4161 (aspherical surface) d 11 = 2.2162 n d6 = 1.68893 ν d6 = 31.07
r 12 = -51.8821 d 12 = 1.2000 n d7 = 1.77250 ν d7 = 49.60
r 13 = 110.2656 d 13 = 0.1500
r 14 = 52.7805 d 14 = 4.8751 n d8 = 1.68893 ν d8 = 31.07
r 15 = -44.3555 d 15 = (variable)
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 20.3453 (aspherical surface) d 17 = 4.8644 n d9 = 1.49700 ν d9 = 81.54
r 18 = -18.1397 d 18 = 0.1995
r 19 = -17.0247 d 19 = 0.9865 n d10 = 1.58144 ν d10 = 40.75
r 20 = -41.9737 d 20 = (variable)
r 21 = -34.7870 d 21 = 1.6000 n d11 = 1.84666 ν d11 = 23.78
r 22 = -15.2340 d 22 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 23 = 20.7010 d 23 = (variable)
r 24 = 21.6523 d 24 = 1.2000 n d13 = 1.80518 ν d13 = 25.42
r 25 = 11.8448 d 25 = 5.1050 n d14 = 1.49700 ν d14 = 81.54
r 26 = 282.0413 d 26 = 0.1500
r 27 = 18.6629 d 27 = 5.4207 n d15 = 1.49700 ν d15 = 81.54
r 28 = -35.6003 (aspherical surface) d 28 = 0.1500
r 29 = 45.1746 d 29 = 1.0526 n d16 = 1.80518 ν d16 = 25.42
r 30 = 26.6635 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 7.1125 × 10 -6
A 6 = 2.0512 × 10 -8
A 8 = -5.1595 × 10 -11
A 10 = 0.0000
Surface 17 K = 0
A 4 = -1.5184 × 10 -5
A 6 = -2.3566 × 10 -8
A 8 = 3.4360 × 10 -10
A 10 = 0.0000
Surface 28 K = 0
A 4 = 3.1780 × 10 -5
A 6 = -9.9597 × 10 -8
A 8 = -5.2192 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.25999. 23.29997. 74.75182
F NO 2.8000. 3.5778. 3.5000
ω (°) 38.52. 13.19. 4.13
d 6 1.04546 15.02846 31.09889 46.16763 59.30495
d 15 52.08237 29.21796 16.44547 7.46848 2.50000
d 16 19.83770 12.09302 7.11800 4.38285 1.23876
d 20 2.85510 5.90624 9.13593 11.32215 15.45881
d 23 4.36441 7.15116 6.72019 5.06310 5.57919
d 30 5.49442 7.40121 9.57751 11.78353 10.27488
.

(実施例6)
1 = 141.6786 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 82.2770 d2 = 0.2054
3 = 86.0098 d3 = 6.6214 nd2 =1.49700 νd2 =81.54
4 = -623.7275 d4 = 0.2000
5 = 66.9330 d5 = 4.9709 nd3 =1.69680 νd3 =55.53
6 = 242.1492 d6 = (可変)
7 = -1681.4393 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 17.8527 d8 = 8.5980
9 = -59.5314(非球面) d9 = 0.2000 nd5 =1.53508 νd5 =40.94
10= -119.6362 d10= 1.3000 nd6 =1.77250 νd6 =49.60
11= 342.3608 d11= 4.1895
12= -24.2842 d12= 1.1790 nd7 =1.48749 νd7 =70.23
13= -101.8680 d13= 4.5574 nd8 =1.84666 νd8 =23.78
14= -33.5232 d14= (可変)
15= -17.5269 d15= 1.3000 nd9 =1.77250 νd9 =49.60
16= -20.0488 d16= 1.0127
17= ∞(絞り) d17= (可変)
18= 21.3027(非球面) d18= 5.1829 nd10=1.49700 νd10=81.54
19= -71.1108 d19= 0.0740
20= 64.9416 d20= 1.1010 nd11=1.80610 νd11=40.92
21= 16.9316 d21= 5.1171 nd12=1.49700 νd12=81.54
22= -53.3840 d22= (可変)
23= -52.6066 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 13.9038 d24= 3.2142 nd14=1.84666 νd14=23.78
25= 21.1652 d25= (可変)
26= 30.4474(非球面) d26= 5.0612 nd15=1.49700 νd15=81.54
27= -27.3044 d27= 0.1500
28= 172.6100 d28= 4.5076 nd16=1.61800 νd16=63.33
29= -16.2580 d29= 1.0000 nd17=1.84666 νd17=23.78
30= -61.9158 d30= (可変)
31= ∞ d31= 16.0000 nd18=1.51633 νd18=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd19=1.54771 νd19=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd20=1.51633 νd20=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第9面
K = 0
A4 = 2.2129 ×10-5
A6 = 6.5725 ×10-10
A8 = 7.2804 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-1.8979 ×10-5
A6 = 8.7960 ×10-9
A8 =-1.5301 ×10-10
A10= 0.0000
第26面
K = 0
A4 =-1.7277 ×10-5
A6 = 3.9898 ×10-9
A8 =-5.5382 ×10-11
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.26002 13.00003 23.30013 41.73069 74.75304
NO 2.8000 3.4061 3.5000 3.5000 3.5000
ω (°) 38.45 . 13.03 . 4.12
6 1.69990 10.56611 29.95684 47.14010 57.75352
14 38.83846 18.70163 9.09372 4.72000 2.59257
17 25.00055 15.77754 11.57455 7.61504 1.02237
22 1.49193 7.85215 11.95770 16.03342 23.12571
25 8.12406 8.99710 6.58794 5.19826 5.37687
30 4.61121 5.36097 6.51641 6.38966 4.90755
(Example 6)
r 1 = 141.6786 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 82.2770 d 2 = 0.2054
r 3 = 86.0098 d 3 = 6.6214 n d2 = 1.49700 ν d2 = 81.54
r 4 = -623.7275 d 4 = 0.2000
r 5 = 66.9330 d 5 = 4.9709 n d3 = 1.69680 ν d3 = 55.53
r 6 = 242.1492 d 6 = (variable)
r 7 = -1681.4393 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 17.8527 d 8 = 8.5980
r 9 = -59.5314 (aspherical surface) d 9 = 0.2000 n d5 = 1.53508 ν d5 = 40.94
r 10 = -119.6362 d 10 = 1.3000 n d6 = 1.77250 ν d6 = 49.60
r 11 = 342.3608 d 11 = 4.1895
r 12 = -24.2842 d 12 = 1.1790 n d7 = 1.48749 ν d7 = 70.23
r 13 = -101.8680 d 13 = 4.5574 n d8 = 1.84666 ν d8 = 23.78
r 14 = -33.5232 d 14 = (variable)
r 15 = -17.5269 d 15 = 1.3000 n d9 = 1.77250 ν d9 = 49.60
r 16 = -20.0488 d 16 = 1.0127
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 21.3027 (aspherical surface) d 18 = 5.1829 n d10 = 1.49700 ν d10 = 81.54
r 19 = -71.1108 d 19 = 0.0740
r 20 = 64.9416 d 20 = 1.1010 n d11 = 1.80610 ν d11 = 40.92
r 21 = 16.9316 d 21 = 5.1171 n d12 = 1.49700 ν d12 = 81.54
r 22 = -53.3840 d 22 = (variable)
r 23 = -52.6066 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 13.9038 d 24 = 3.2142 n d14 = 1.84666 ν d14 = 23.78
r 25 = 21.1652 d 25 = (variable)
r 26 = 30.4474 (aspherical surface) d 26 = 5.0612 n d15 = 1.49700 ν d15 = 81.54
r 27 = -27.3044 d 27 = 0.1500
r 28 = 172.6100 d 28 = 4.5076 n d16 = 1.61800 ν d16 = 63.33
r 29 = -16.2580 d 29 = 1.0000 n d17 = 1.84666 ν d17 = 23.78
r 30 = -61.9158 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 2.2129 × 10 -5
A 6 = 6.5725 × 10 -10
A 8 = 7.2804 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -1.8979 × 10 -5
A 6 = 8.7960 × 10 -9
A 8 = -1.5301 × 10 -10
A 10 = 0.0000
26th face K = 0
A 4 = -1.7277 × 10 -5
A 6 = 3.9898 × 10 -9
A 8 = -5.5382 × 10 -11
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.26002 13.00003 23.30013 41.73069 74.75304
F NO 2.8000 3.4061 3.5000 3.5000 3.5000
ω (°) 38.45. 13.03. 4.12
d 6 1.69990 10.56611 29.95684 47.14010 57.75352
d 14 38.83846 18.70163 9.09372 4.72000 2.59257
d 17 25.00055 15.77754 11.57455 7.61504 1.02237
d 22 1.49193 7.85215 11.95770 16.03342 23.12571
d 25 8.12406 8.99710 6.58794 5.19826 5.37687
d 30 4.61121 5.36097 6.51641 6.38966 4.90755
.

(実施例7)
1 = 133.2906 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 79.7190 d2 = 0.4683
3 = 88.0849 d3 = 6.7955 nd2 =1.49700 νd2 =81.54
4 = -928.2450 d4 = 0.2000
5 = 61.1424 d5 = 5.7149 nd3 =1.60311 νd3 =60.64
6 = 290.9980 d6 = (可変)
7 = 858.6153 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 17.2556 d8 = 8.7043
9 = -65.5194(非球面) d9 = 0.2000 nd5 =1.53508 νd5 =40.94
10= -103.0065 d10= 1.3000 nd6 =1.77250 νd6 =49.60
11= 207.4789 d11= 3.9972
12= -29.5057 d12= 1.2706 nd7 =1.60311 νd7 =60.64
13= -3.472×104 13= 4.4191 nd8 =1.84666 νd8 =23.78
14= -39.4285 d14= (可変)
15= -14.2222 d15= 1.3000 nd9 =1.77250 νd9 =49.60
16= -15.6911 d16= 0.9994
17= ∞(絞り) d17= (可変)
18= 29.1466(非球面) d18= 5.3713 nd10=1.49700 νd10=81.54
19= -55.2100 d19= 0.1000
20= -2878.6841 d20= 1.0357 nd11=1.69895 νd11=30.13
21= 26.7931 d21= 5.3045 nd12=1.61800 νd12=63.33
22= -52.9610 d22= (可変)
23= -72.6679 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 14.0385 d24= 3.1899 nd14=1.84666 νd14=23.78
25= 23.1764 d25= (可変)
26= 34.1187(非球面) d26= 4.0924 nd15=1.49700 νd15=81.54
27= -27.1159 d27= 0.1500
28= -179.2221 d28= 4.5403 nd16=1.61800 νd16=63.33
29= -13.8901 d29= 1.0000 nd17=1.84666 νd17=23.78
30= -48.2993 d30= (可変)
31= ∞ d31= 16.0000 nd18=1.51633 νd18=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd19=1.54771 νd19=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd20=1.51633 νd20=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第9面
K = 0
A4 = 2.2685 ×10-5
A6 =-9.9328 ×10-9
A8 = 6.5515 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-1.5955 ×10-5
A6 = 1.0315 ×10-8
A8 =-9.0638 ×10-11
A10= 0.0000
第26面
K = 0
A4 =-1.7668 ×10-5
A6 =-1.6378 ×10-9
A8 = 5.8919 ×10-11
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.25994 12.99979 23.29960 41.72935 74.74958
NO 2.8000 3.2736 3.5000 3.5000 3.5000
ω (°) 38.48 . 13.03 . 4.10
6 1.57613 10.58693 29.66082 47.22031 57.38048
14 35.33624 14.67575 7.05728 3.95447 2.57253
17 27.90225 18.46229 13.50552 9.05177 1.02205
22 2.01227 6.50604 11.64080 16.22329 23.37367
25 7.59111 7.59111 7.59111 7.59111 7.59111
30 4.35060 6.30937 6.83154 6.23847 5.63660
(Example 7)
r 1 = 133.2906 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 79.7190 d 2 = 0.4683
r 3 = 88.0849 d 3 = 6.7955 n d2 = 1.49700 ν d2 = 81.54
r 4 = -928.2450 d 4 = 0.2000
r 5 = 61.1424 d 5 = 5.7149 n d3 = 1.60311 ν d3 = 60.64
r 6 = 290.9980 d 6 = (variable)
r 7 = 858.6153 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 17.2556 d 8 = 8.7043
r 9 = -65.5194 (aspherical surface) d 9 = 0.2000 n d5 = 1.53508 ν d5 = 40.94
r 10 = -103.0065 d 10 = 1.3000 n d6 = 1.77250 ν d6 = 49.60
r 11 = 207.4789 d 11 = 3.9972
r 12 = -29.5057 d 12 = 1.2706 n d7 = 1.60311 ν d7 = 60.64
r 13 = -3.472 × 10 4 d 13 = 4.4191 n d8 = 1.84666 ν d8 = 23.78
r 14 = -39.4285 d 14 = (variable)
r 15 = -14.2222 d 15 = 1.3000 n d9 = 1.77250 ν d9 = 49.60
r 16 = -15.6911 d 16 = 0.9994
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 29.1466 (aspherical surface) d 18 = 5.3713 n d10 = 1.49700 ν d10 = 81.54
r 19 = -55.2100 d 19 = 0.1000
r 20 = -2878.6841 d 20 = 1.0357 n d11 = 1.69895 ν d11 = 30.13
r 21 = 26.7931 d 21 = 5.3045 n d12 = 1.61800 ν d12 = 63.33
r 22 = -52.9610 d 22 = (variable)
r 23 = -72.6679 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 14.0385 d 24 = 3.1899 n d14 = 1.84666 ν d14 = 23.78
r 25 = 23.1764 d 25 = (variable)
r 26 = 34.1187 (aspherical surface) d 26 = 4.0924 n d15 = 1.49700 ν d15 = 81.54
r 27 = -27.1159 d 27 = 0.1500
r 28 = -179.2221 d 28 = 4.5403 n d16 = 1.61800 ν d16 = 63.33
r 29 = -13.8901 d 29 = 1.0000 n d17 = 1.84666 ν d17 = 23.78
r 30 = -48.2993 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 2.2685 × 10 -5
A 6 = -9.9328 × 10 -9
A 8 = 6.5515 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -1.5955 × 10 -5
A 6 = 1.0315 × 10 -8
A 8 = -9.0638 × 10 -11
A 10 = 0.0000
26th face K = 0
A 4 = -1.7668 × 10 -5
A 6 = -1.6378 × 10 -9
A 8 = 5.8919 × 10 -11
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.25994 12.99979 23.29960 41.72935 74.74958
F NO 2.8000 3.2736 3.5000 3.5000 3.5000
ω (°) 38.48. 13.03. 4.10
d 6 1.57613 10.58693 29.66082 47.22031 57.38048
d 14 35.33624 14.67575 7.05728 3.95447 2.57253
d 17 27.90225 18.46229 13.50552 9.05177 1.02205
d 22 2.01227 6.50604 11.64080 16.22329 23.37367
d 25 7.59111 7.59111 7.59111 7.59111 7.59111
d 30 4.35060 6.30937 6.83154 6.23847 5.63660
.

(実施例8)
1 = 154.0084 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 85.1308 d2 = 0.2000
3 = 89.0506 d3 = 6.8812 nd2 =1.49700 νd2 =81.54
4 = -500.6640 d4 = 0.2000
5 = 71.0865 d5 = 4.9871 nd3 =1.69680 νd3 =55.53
6 = 321.2628 d6 = (可変)
7 = -1661.3349 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 18.0950 d8 = 8.8337
9 = -62.2296(非球面) d9 = 0.2000 nd5 =1.53508 νd5 =40.94
10= -129.5877 d10= 1.3000 nd6 =1.77250 νd6 =49.60
11= 1178.5652 d11= 3.1344
12= -33.4282 d12= 1.1790 nd7 =1.48749 νd7 =70.23
13= 90.9167 d13= 4.3569 nd8 =1.84666 νd8 =23.78
14= -65.5020 d14= (可変)
15= ∞(絞り) d15= 2.6661
16= -14.4489 d16= 0.9955 nd9 =1.77250 νd9 =49.60
17= -16.4057 d17= (可変)
18= 29.3239(非球面) d18= 5.3050 nd10=1.80610 νd10=40.74
19= 422.7477 d19= 0.4857
20= 93.3084 d20= 1.0357 nd11=1.69895 νd11=30.13
21= 16.2156 d21= 5.2656 nd12=1.49700 νd12=81.54
22= -38.2018 d22= (可変)
23= -65.0932 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 13.7958 d24= 2.9478 nd14=1.84666 νd14=23.78
25= 19.9898 d25= (可変)
26= 26.7797(非球面) d26= 4.1503 nd15=1.49700 νd15=81.54
27= -33.3863 d27= 0.1500
28= 66.7328 d28= 4.3835 nd16=1.61800 νd16=63.33
29= -18.3728 d29= 1.0000 nd17=1.80518 νd17=25.42
30= -118.1096 d30= (可変)
31= ∞ d31= 16.0000 nd18=1.51633 νd18=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd19=1.54771 νd19=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd20=1.51633 νd20=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第9面
K = 0
A4 = 1.7476 ×10-5
A6 = 1.7656 ×10-8
A8 = 2.5483 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-7.2819 ×10-6
A6 = 1.5490 ×10-8
A8 =-1.0251 ×10-10
A10= 0.0000
第26面
K = 0
A4 =-1.2862 ×10-5
A6 =-1.1215 ×10-8
A8 = 2.6887 ×10-11
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.26000 13.00004 23.30000 41.73010 74.75000
NO 2.8000 3.2452 3.5000 3.5000 3.5000
ω (°) 38.43 . 13.04 . 4.11
6 1.51813 10.76717 29.84510 47.35892 58.73695
14 43.62221 20.67892 10.31138 5.77694 1.73681
17 19.34970 13.11504 9.54525 5.96595 0.99829
22 2.58148 8.81614 12.38593 15.96522 20.93289
25 8.67490 7.43440 5.56358 5.04338 5.18729
30 4.28215 5.52265 7.39346 7.91366 7.76975
(Example 8)
r 1 = 154.0084 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 85.1308 d 2 = 0.2000
r 3 = 89.0506 d 3 = 6.8812 n d2 = 1.49700 ν d2 = 81.54
r 4 = -500.6640 d 4 = 0.2000
r 5 = 71.0865 d 5 = 4.9871 n d3 = 1.69680 ν d3 = 55.53
r 6 = 321.2628 d 6 = (variable)
r 7 = -1661.3349 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 18.0950 d 8 = 8.8337
r 9 = -62.2296 (aspherical surface) d 9 = 0.2000 n d5 = 1.53508 ν d5 = 40.94
r 10 = -129.5877 d 10 = 1.3000 n d6 = 1.77250 ν d6 = 49.60
r 11 = 1178.5652 d 11 = 3.1344
r 12 = -33.4282 d 12 = 1.1790 n d7 = 1.48749 ν d7 = 70.23
r 13 = 90.9167 d 13 = 4.3569 n d8 = 1.84666 ν d8 = 23.78
r 14 = -65.5020 d 14 = (variable)
r 15 = ∞ (aperture) d 15 = 2.6661
r 16 = -14.4489 d 16 = 0.9955 n d9 = 1.77250 ν d9 = 49.60
r 17 = -16.4057 d 17 = (variable)
r 18 = 29.3239 (aspherical surface) d 18 = 5.3050 n d10 = 1.80610 ν d10 = 40.74
r 19 = 422.7477 d 19 = 0.4857
r 20 = 93.3084 d 20 = 1.0357 n d11 = 1.69895 ν d11 = 30.13
r 21 = 16.2156 d 21 = 5.2656 n d12 = 1.49700 ν d12 = 81.54
r 22 = -38.2018 d 22 = (variable)
r 23 = -65.0932 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 13.7958 d 24 = 2.9478 n d14 = 1.84666 ν d14 = 23.78
r 25 = 19.9898 d 25 = (variable)
r 26 = 26.7797 (aspherical surface) d 26 = 4.1503 n d15 = 1.49700 ν d15 = 81.54
r 27 = -33.3863 d 27 = 0.1500
r 28 = 66.7328 d 28 = 4.3835 n d16 = 1.61800 ν d16 = 63.33
r 29 = -18.3728 d 29 = 1.0000 n d17 = 1.80518 ν d17 = 25.42
r 30 = -118.1096 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 1.7476 × 10 -5
A 6 = 1.7656 × 10 -8
A 8 = 2.5483 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -7.2819 × 10 -6
A 6 = 1.5490 × 10 -8
A 8 = -1.0251 × 10 -10
A 10 = 0.0000
26th face K = 0
A 4 = -1.2862 × 10 -5
A 6 = -1.1215 × 10 -8
A 8 = 2.6887 × 10 -11
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.26000 13.00004 23.30000 41.73010 74.75000
F NO 2.8000 3.2452 3.5000 3.5000 3.5000
ω (°) 38.43. 13.04. 4.11
d 6 1.51813 10.76717 29.84510 47.35892 58.73695
d 14 43.62221 20.67892 10.31138 5.77694 1.73681
d 17 19.34970 13.11504 9.54525 5.96595 0.99829
d 22 2.58148 8.81614 12.38593 15.96522 20.93289
d 25 8.67490 7.43440 5.56358 5.04338 5.18729
d 30 4.28215 5.52265 7.39346 7.91366 7.76975
.

(実施例9)
1 = 125.4804 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 73.9280 d2 = 0.6131
3 = 82.0053 d3 = 7.1121 nd2 =1.49700 νd2 =81.54
4 = -2731.9228 d4 = 0.2000
5 = 73.7403 d5 = 6.0707 nd3 =1.69680 νd3 =55.53
6 = 689.0297 d6 = (可変)
7 = 327.5056 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 14.2610 d8 = 8.5253
9 = -89.4120 d9 = 1.3000 nd5 =1.77250 νd5 =49.60
10= 38.2328 d10= 0.2000 nd6 =1.53508 νd6 =40.94
11= 28.4986(非球面) d11= 2.5230
12= 47.5033 d12= 1.1790 nd7 =1.48749 νd7 =70.23
13= 34.1694 d13= 3.2934 nd8 =1.84666 νd8 =23.78
14= -324.6493 d14= (可変)
15= ∞(絞り) d15= (可変)
16= 16.9572(非球面) d16= 7.2692 nd9 =1.49700 νd9 =81.54
17= 452.6400 d17= 0.1000
18= 136.4678 d18= 1.1010 nd10=1.80610 νd10=40.92
19= 15.7221 d19= 5.6961 nd11=1.49700 νd11=81.54
20= -38.5697 d20= (可変)
21= 58.4853 d21= 3.0175 nd12=1.84666 νd12=23.78
22= -202.3168 d22= 1.4952 nd13=1.51633 νd13=64.14
23= 15.1757 d23= 8.9786
24= -49.4262(非球面) d24= 5.1311 nd14=1.49700 νd14=81.54
25= -19.2986 d25= 0.1500
26= 18.4543 d26= 5.9364 nd15=1.61800 νd15=63.33
27= -38.6487 d27= 1.0000 nd16=1.84666 νd16=23.78
28= 76.9096 d28= (可変)
29= ∞ d29= 16.0000 nd17=1.51633 νd17=64.14
30= ∞ d30= 1.0000
31= ∞ d31= 2.6000 nd18=1.54771 νd18=62.84
32= ∞ d32= 1.0000
33= ∞ d33= 0.7500 nd19=1.51633 νd19=64.14
34= ∞ d34= 1.2400
35= ∞
非球面係数
第11面
K = 0
A4 =-2.9080 ×10-5
A6 =-4.7003 ×10-8
A8 = 1.3039 ×10-11
A10= 0.0000
第16面
K = 0
A4 =-2.6940 ×10-5
A6 =-2.6991 ×10-8
A8 =-4.1850 ×10-11
A10= 0.0000
第24面
K = 0
A4 = 4.8837 ×10-6
A6 = 4.0251 ×10-8
A8 = 5.0375 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.26010 13.00010 23.30000 41.72939 74.74571
NO 2.8000 3.2311 3.5000 3.5000 3.5000
ω (°) 38.43 . 12.96 . 4.12
4 1.22382 10.57521 30.86112 47.17255 60.33060
14 44.41629 22.39761 12.10735 5.55000 2.52402
15 18.02944 9.25134 6.75230 3.90933 1.06282
20 1.56309 6.26309 10.18795 14.94609 18.74913
28 2.00000 5.88418 8.79568 11.11914 9.89434
Example 9
r 1 = 125.4804 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 73.9280 d 2 = 0.6131
r 3 = 82.0053 d 3 = 7.1121 n d2 = 1.49700 ν d2 = 81.54
r 4 = -2731.9228 d 4 = 0.2000
r 5 = 73.7403 d 5 = 6.0707 n d3 = 1.69680 ν d3 = 55.53
r 6 = 689.0297 d 6 = (variable)
r 7 = 327.5056 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 14.2610 d 8 = 8.5253
r 9 = -89.4120 d 9 = 1.3000 n d5 = 1.77250 ν d5 = 49.60
r 10 = 38.2328 d 10 = 0.2000 n d6 = 1.53508 ν d6 = 40.94
r 11 = 28.4986 (aspherical surface) d 11 = 2.5230
r 12 = 47.5033 d 12 = 1.1790 n d7 = 1.48749 ν d7 = 70.23
r 13 = 34.1694 d 13 = 3.2934 n d8 = 1.84666 ν d8 = 23.78
r 14 = -324.6493 d 14 = (variable)
r 15 = ∞ (aperture) d 15 = (variable)
r 16 = 16.9572 (aspherical surface) d 16 = 7.2692 n d9 = 1.49700 ν d9 = 81.54
r 17 = 452.6400 d 17 = 0.1000
r 18 = 136.4678 d 18 = 1.1010 n d10 = 1.80610 ν d10 = 40.92
r 19 = 15.7221 d 19 = 5.6961 n d11 = 1.49700 ν d11 = 81.54
r 20 = -38.5697 d 20 = (variable)
r 21 = 58.4853 d 21 = 3.0175 n d12 = 1.84666 ν d12 = 23.78
r 22 = -202.3168 d 22 = 1.4952 n d13 = 1.51633 ν d13 = 64.14
r 23 = 15.1757 d 23 = 8.9786
r 24 = -49.4262 (aspherical surface) d 24 = 5.1311 n d14 = 1.49700 ν d14 = 81.54
r 25 = -19.2986 d 25 = 0.1500
r 26 = 18.4543 d 26 = 5.9364 n d15 = 1.61800 ν d15 = 63.33
r 27 = -38.6487 d 27 = 1.0000 n d16 = 1.84666 ν d16 = 23.78
r 28 = 76.9096 d 28 = (variable)
r 29 = ∞ d 29 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 30 = ∞ d 30 = 1.0000
r 31 = ∞ d 31 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 34 = ∞ d 34 = 1.2400
r 35 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = -2.9080 × 10 -5
A 6 = -4.7003 × 10 -8
A 8 = 1.3039 × 10 -11
A 10 = 0.0000
16th surface K = 0
A 4 = -2.6940 × 10 -5
A 6 = -2.6991 × 10 -8
A 8 = -4.1850 × 10 -11
A 10 = 0.0000
24th face K = 0
A 4 = 4.8837 × 10 -6
A 6 = 4.0251 × 10 -8
A 8 = 5.0375 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.26010 13.00010 23.30000 41.72939 74.74571
F NO 2.8000 3.2311 3.5000 3.5000 3.5000
ω (°) 38.43. 12.96. 4.12
d 4 1.22382 10.57521 30.86112 47.17255 60.33060
d 14 44.41629 22.39761 12.10735 5.55000 2.52402
d 15 18.02944 9.25134 6.75230 3.90933 1.06282
d 20 1.56309 6.26309 10.18795 14.94609 18.74913
d 28 2.00000 5.88418 8.79568 11.11914 9.89434
.

(実施例10)
1 = 127.5747 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 76.5681 d2 = 0.6108
3 = 87.0503 d3 = 6.7061 nd2 =1.49700 νd2 =81.54
4 = -906.1216 d4 = 0.2000
5 = 65.5756 d5 = 5.1656 nd3 =1.69680 νd3 =55.53
6 = 257.9868 d6 = (可変)
7 = -841.7430 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 20.7672 d8 = 0.1181 nd5 =1.53508 νd5 =40.94
9 = 17.4318(非球面) d9 = 8.3674
10= -69.0347 d10= 1.3000 nd6 =1.77250 νd6 =49.60
11= 50.8067 d11= 3.5790
12= -34.9364 d12= 1.2000 nd7 =1.48749 νd7 =70.23
13= -206.9525 d13= 0.7359
14= 131.5379 d14= 2.9312 nd8 =1.68893 νd8 =31.07
15= -65.1273 d15= 0.2838
16= 446.1597 d16= 3.4504 nd9 =1.84666 νd9 =23.78
17= -111.5214 d17= (可変)
18= -89.0223 d18= 1.2751 nd10=1.73400 νd10=51.47
19= -5156.0079 d19= 1.0546
20= ∞(絞り) d20= (可変)
21= 20.4978(非球面) d21= 5.4824 nd11=1.49700 νd11=81.54
22= -55.0155 d22= 0.4103
23= 42.1503 d23= 1.1010 nd12=1.80610 νd12=40.92
24= 14.0853 d24= 5.1806 nd13=1.49700 νd13=81.54
25= -75.3872 d25= (可変)
26= -29.7893 d26= 0.9000 nd14=1.51633 νd14=64.14
27= 14.3985 d27= 3.2881 nd15=1.84666 νd15=23.78
28= 28.0747 d28= (可変)
29= 117.1492(非球面) d29= 4.3053 nd16=1.49700 νd16=81.54
30= -21.7875 d30= 0.1500
31= 78.2931 d31= 5.0168 nd17=1.61800 νd17=63.33
32= -14.1145 d32= 1.0000 nd18=1.84666 νd18=23.78
33= -50.2289 d33= (可変)
34= ∞ d34= 16.0000 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.0000
36= ∞ d36= 2.6000 nd20=1.54771 νd20=62.84
37= ∞ d37= 1.0000
38= ∞ d38= 0.7500 nd21=1.51633 νd21=64.14
39= ∞ d39= 1.2400
40= ∞
非球面係数
第9面
K = 0
A4 =-1.8060 ×10-5
A6 =-1.5653 ×10-8
A8 =-3.1402 ×10-10
A10= 0.0000
第21面
K = 0
A4 =-1.9350 ×10-5
A6 = 8.1535 ×10-9
A8 =-1.1537 ×10-10
A10= 0.0000
第29面
K = 0
A4 =-1.4723 ×10-5
A6 =-4.3194 ×10-9
A8 = 1.8719 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.26000 13.00000 23.30008 41.73059 74.75291
NO 2.8000 3.4512 3.5000 3.5000 3.5000
ω (°) 38.48 . 12.85 . 4.11
6 1.64787 10.58883 30.04822 47.11870 58.44456
17 44.72174 22.79418 11.48117 5.95085 3.03382
20 18.91464 11.56777 8.33111 5.33947 1.07479
25 1.84897 8.03143 11.95783 16.13820 22.70498
28 8.28264 8.78214 6.88040 5.85483 5.87377
33 4.71029 5.37520 6.58719 6.42403 4.10299
(Example 10)
r 1 = 127.5747 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 76.5681 d 2 = 0.6108
r 3 = 87.0503 d 3 = 6.7061 n d2 = 1.49700 ν d2 = 81.54
r 4 = -906.1216 d 4 = 0.2000
r 5 = 65.5756 d 5 = 5.1656 n d3 = 1.69680 ν d3 = 55.53
r 6 = 257.9868 d 6 = (variable)
r 7 = -841.7430 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 20.7672 d 8 = 0.1181 n d5 = 1.53508 ν d5 = 40.94
r 9 = 17.4318 (aspherical surface) d 9 = 8.3674
r 10 = -69.0347 d 10 = 1.3000 n d6 = 1.77250 ν d6 = 49.60
r 11 = 50.8067 d 11 = 3.5790
r 12 = -34.9364 d 12 = 1.2000 n d7 = 1.48749 ν d7 = 70.23
r 13 = -206.9525 d 13 = 0.7359
r 14 = 131.5379 d 14 = 2.9312 n d8 = 1.68893 ν d8 = 31.07
r 15 = -65.1273 d 15 = 0.2838
r 16 = 446.1597 d 16 = 3.4504 n d9 = 1.84666 ν d9 = 23.78
r 17 = -111.5214 d 17 = (variable)
r 18 = -89.0223 d 18 = 1.2751 n d10 = 1.73400 ν d10 = 51.47
r 19 = -5156.0079 d 19 = 1.0546
r 20 = ∞ (aperture) d 20 = (variable)
r 21 = 20.4978 (aspherical surface) d 21 = 5.4824 n d11 = 1.49700 ν d11 = 81.54
r 22 = -55.0155 d 22 = 0.4103
r 23 = 42.1503 d 23 = 1.1010 n d12 = 1.80610 ν d12 = 40.92
r 24 = 14.0853 d 24 = 5.1806 n d13 = 1.49700 ν d13 = 81.54
r 25 = -75.3872 d 25 = (variable)
r 26 = -29.7893 d 26 = 0.9000 n d14 = 1.51633 ν d14 = 64.14
r 27 = 14.3985 d 27 = 3.2881 n d15 = 1.84666 ν d15 = 23.78
r 28 = 28.0747 d 28 = (variable)
r 29 = 117.1492 (aspherical surface) d 29 = 4.3053 n d16 = 1.49700 ν d16 = 81.54
r 30 = -21.7875 d 30 = 0.1500
r 31 = 78.2931 d 31 = 5.0168 n d17 = 1.61800 ν d17 = 63.33
r 32 = -14.1145 d 32 = 1.0000 n d18 = 1.84666 ν d18 = 23.78
r 33 = -50.2289 d 33 = (variable)
r 34 = ∞ d 34 = 16.0000 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.0000
r 36 = ∞ d 36 = 2.6000 n d20 = 1.54771 ν d20 = 62.84
r 37 = ∞ d 37 = 1.0000
r 38 = ∞ d 38 = 0.7500 n d21 = 1.51633 ν d21 = 64.14
r 39 = ∞ d 39 = 1.2400
r 40 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = -1.8060 × 10 -5
A 6 = -1.5653 × 10 -8
A 8 = -3.1402 × 10 -10
A 10 = 0.0000
21st surface K = 0
A 4 = -1.9350 × 10 -5
A 6 = 8.1535 × 10 -9
A 8 = -1.1537 × 10 -10
A 10 = 0.0000
No. 29 K = 0
A 4 = -1.4723 × 10 -5
A 6 = -4.3194 × 10 -9
A 8 = 1.8719 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.26000 13.00000 23.30008 41.73059 74.75291
F NO 2.8000 3.4512 3.5000 3.5000 3.5000
ω (°) 38.48. 12.85. 4.11
d 6 1.64787 10.58883 30.04822 47.11870 58.44456
d 17 44.72174 22.79418 11.48117 5.95085 3.03382
d 20 18.91464 11.56777 8.33111 5.33947 1.07479
d 25 1.84897 8.03143 11.95783 16.13820 22.70498
d 28 8.28264 8.78214 6.88040 5.85483 5.87377
d 33 4.71029 5.37520 6.58719 6.42403 4.10299
.

(実施例11)
1 = 89.8312 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 63.9685 d2 = 0.0006
3 = 64.1053 d3 = 9.1675 nd2 =1.49700 νd2 =81.54
4 = 479.8472 d4 = 0.2000
5 = 75.2405 d5 = 6.4325 nd3 =1.60311 νd3 =60.64
6 = 342.9922 d6 = (可変)
7 = 959.9708 d7 = 1.8000 nd4 =1.81600 νd4 =46.62
8 = 18.8418 d8 = 5.3800
9 = -472.5238 d9 = 1.1000 nd5 =1.73400 νd5 =51.47
10= 28.9390 d10= 5.9081
11= -29.2098 d11= 1.2000 nd6 =1.71300 νd6 =53.87
12= 100.5460 d12= 0.1500
13= 49.3222 d13= 7.5695 nd7 =1.63980 νd7 =34.46
14= -24.6810(非球面) d14= (可変)
15= 1133.4292 d15= 1.2000 nd8 =1.78472 νd8 =25.68
16= 106.5968 d16= 0.2500
17= ∞(絞り) d17= (可変)
18= 20.1552(非球面) d18= 5.1000 nd9 =1.49700 νd9 =81.54
19= -94.7419 d19= 0.1774
20= 36.0051 d20= 1.1410 nd10=1.80440 νd10=39.59
21= 13.5064 d21= 5.5328 nd11=1.60311 νd11=60.64
22= -1129.4923 d22= (可変)
23= -72.5596 d23= 0.9000 nd12=1.51633 νd12=64.14
24= 11.8049 d24= 2.9338 nd13=1.84666 νd13=23.78
25= 16.8009 d25= (可変)
26= 91.9126 d26= 2.9663 nd14=1.49700 νd14=81.54
27= -29.0231(非球面) d27= 0.1500
28= 48.8627 d28= 5.1022 nd15=1.60311 νd15=60.64
29= -13.3197 d29= 0.8500 nd16=1.84666 νd16=23.78
30= -48.0006 d30= (可変)
31= ∞ d31= 16.0000 nd17=1.51633 νd17=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd18=1.54771 νd18=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd19=1.51633 νd19=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第14面
K = 0
A4 =-8.9550 ×10-9
A6 = 8.4748 ×10-9
A8 = 1.6761 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-1.7592 ×10-5
A6 = 4.4455 ×10-9
A8 =-1.3451 ×10-10
A10= 0.0000
第27面
K = 0
A4 =-1.4716 ×10-6
A6 = 1.5442 ×10-9
A8 =-2.3629 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.33845 13.10321 23.28940 38.89145 74.68837
NO 2.8000 3.1859 3.5000 3.5000 3.5000
ω (°) 38.12 . 13.01 . 4.08
6 1.36006 12.64030 31.07482 48.17964 61.33273
14 54.26370 25.04693 11.10499 5.19824 1.70314
17 17.41698 12.14210 8.86214 6.81538 1.02608
22 1.50000 4.14980 6.85803 9.34039 16.90092
25 6.85640 7.47895 6.17972 5.74352 6.81559
30 4.46020 7.59229 8.38310 9.82468 5.35600
(Example 11)
r 1 = 89.8312 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 63.9685 d 2 = 0.0006
r 3 = 64.1053 d 3 = 9.1675 n d2 = 1.49700 ν d2 = 81.54
r 4 = 479.8472 d 4 = 0.2000
r 5 = 75.2405 d 5 = 6.4325 n d3 = 1.60311 ν d3 = 60.64
r 6 = 342.9922 d 6 = (variable)
r 7 = 959.9708 d 7 = 1.8000 n d4 = 1.81600 ν d4 = 46.62
r 8 = 18.8418 d 8 = 5.3800
r 9 = -472.5238 d 9 = 1.1000 n d5 = 1.73400 ν d5 = 51.47
r 10 = 28.9390 d 10 = 5.9081
r 11 = -29.2098 d 11 = 1.2000 n d6 = 1.71300 ν d6 = 53.87
r 12 = 100.5460 d 12 = 0.1500
r 13 = 49.3222 d 13 = 7.5695 n d7 = 1.63980 ν d7 = 34.46
r 14 = -24.6810 (aspherical surface) d 14 = (variable)
r 15 = 1133.4292 d 15 = 1.2000 n d8 = 1.78472 ν d8 = 25.68
r 16 = 106.5968 d 16 = 0.2500
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 20.1552 (aspherical surface) d 18 = 5.1000 n d9 = 1.49700 ν d9 = 81.54
r 19 = -94.7419 d 19 = 0.1774
r 20 = 36.0051 d 20 = 1.1410 n d10 = 1.80440 ν d10 = 39.59
r 21 = 13.5064 d 21 = 5.5328 n d11 = 1.60311 ν d11 = 60.64
r 22 = -1129.4923 d 22 = (variable)
r 23 = -72.5596 d 23 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 24 = 11.8049 d 24 = 2.9338 n d13 = 1.84666 ν d13 = 23.78
r 25 = 16.8009 d 25 = (variable)
r 26 = 91.9126 d 26 = 2.9663 n d14 = 1.49700 ν d14 = 81.54
r 27 = -29.0231 (aspherical surface) d 27 = 0.1500
r 28 = 48.8627 d 28 = 5.1022 n d15 = 1.60311 ν d15 = 60.64
r 29 = -13.3197 d 29 = 0.8500 n d16 = 1.84666 ν d16 = 23.78
r 30 = -48.0006 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 14th surface K = 0
A 4 = -8.9550 × 10 -9
A 6 = 8.4748 × 10 -9
A 8 = 1.6761 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -1.7592 × 10 -5
A 6 = 4.4455 × 10 -9
A 8 = -1.3451 × 10 -10
A 10 = 0.0000
Surface 27 K = 0
A 4 = -1.4716 × 10 -6
A 6 = 1.5442 × 10 -9
A 8 = -2.3629 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.33845 13.10321 23.28940 38.89145 74.68837
F NO 2.8000 3.1859 3.5000 3.5000 3.5000
ω (°) 38.12. 13.01. 4.08
d 6 1.36006 12.64030 31.07482 48.17964 61.33273
d 14 54.26370 25.04693 11.10499 5.19824 1.70314
d 17 17.41698 12.14210 8.86214 6.81538 1.02608
d 22 1.50000 4.14980 6.85803 9.34039 16.90092
d 25 6.85640 7.47895 6.17972 5.74352 6.81559
d 30 4.46020 7.59229 8.38310 9.82468 5.35600
.

(実施例12)
1 = 82.2399 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 60.0259 d2 = 0.1000
3 = 60.6829 d3 = 7.7500 nd2 =1.49700 νd2 =81.54
4 = 307.4605 d4 = 0.2000
5 = 72.7643 d5 = 5.8500 nd3 =1.60311 νd3 =60.64
6 = 328.6935 d6 = (可変)
7 = 266.6699 d7 = 1.8000 nd4 =1.81600 νd4 =46.62
8 = 18.3068 d8 = 6.0269
9 = -91.9091 d9 = 1.1000 nd5 =1.73400 νd5 =51.47
10= 31.9296 d10= 5.1735
11= -33.4696(非球面) d11= 1.2000 nd6 =1.71300 νd6 =53.87
12= 1.387×104 12= 0.1500
13= 76.1645 d13= 6.2143 nd7 =1.69895 νd7 =30.13
14= -29.0944 d14= (可変)
15= -256.8086 d15= 1.0000 nd8 =1.78472 νd8 =25.68
16= 217.7610 d16= 0.2030
17= ∞(絞り) d17= (可変)
18= 19.3410(非球面) d18= 5.5508 nd9 =1.49700 νd9 =81.54
19= -61.9647 d19= 0.1774
20= 28.8671 d20= 1.1410 nd10=1.80440 νd10=39.59
21= 13.5945 d21= 5.8000 nd11=1.49700 νd11=81.54
22= 5392.6719 d22= (可変)
23= -154.6780 d23= 0.9000 nd12=1.51633 νd12=64.14
24= 11.7076 d24= 3.6031 nd13=1.84666 νd13=23.78
25= 15.0847 d25= (可変)
26= 50.4757 d26= 3.2775 nd14=1.49700 νd14=81.54
27= -50.8313(非球面) d27= 0.1500
28= 45.8348 d28= 5.5505 nd15=1.60311 νd15=60.64
29= -13.2011 d29= 0.8500 nd16=1.84666 νd16=23.78
30= -38.4178 d30= (可変)
31= ∞ d31= 16.0000 nd17=1.51633 νd17=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd18=1.54771 νd18=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd19=1.51633 νd19=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第11面
K = 0
A4 = 2.1955 ×10-6
A6 = 7.9776 ×10-10
A8 = 4.2465 ×10-12
A10= 0.0000
第18面
K = 0
A4 =-2.2173 ×10-5
A6 =-5.2442 ×10-10
A8 =-1.3172 ×10-10
A10= 0.0000
第27面
K = 0
A4 =-4.3385 ×10-6
A6 =-5.8507 ×10-9
A8 =-3.8312 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.35253 13.14155 23.30044 40.58970 74.68803
NO 2.8000 3.1943 3.5000 3.5000 3.5000
ω (°) 38.09 . 13.06 . 4.10
6 1.36006 12.88245 31.00495 49.05687 59.99418
14 52.40573 25.29926 11.47801 5.29211 1.70314
17 17.47445 12.09215 9.07829 6.89688 1.02608
22 1.50000 3.82243 6.29079 8.72220 16.22424
25 6.18879 6.98900 5.58223 5.34260 5.88322
30 1.19155 7.72421 5.35600 9.52720 3.22100
(Example 12)
r 1 = 82.2399 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 60.0259 d 2 = 0.1000
r 3 = 60.6829 d 3 = 7.7500 n d2 = 1.49700 ν d2 = 81.54
r 4 = 307.4605 d 4 = 0.2000
r 5 = 72.7643 d 5 = 5.8500 n d3 = 1.60311 ν d3 = 60.64
r 6 = 328.6935 d 6 = (variable)
r 7 = 266.6699 d 7 = 1.8000 n d4 = 1.81600 ν d4 = 46.62
r 8 = 18.3068 d 8 = 6.0269
r 9 = -91.9091 d 9 = 1.1000 n d5 = 1.73400 ν d5 = 51.47
r 10 = 31.9296 d 10 = 5.1735
r 11 = -33.4696 (aspherical surface) d 11 = 1.2000 n d6 = 1.71300 ν d6 = 53.87
r 12 = 1.387 × 10 4 d 12 = 0.1500
r 13 = 76.1645 d 13 = 6.2143 n d7 = 1.69895 ν d7 = 30.13
r 14 = -29.0944 d 14 = (variable)
r 15 = -256.8086 d 15 = 1.0000 n d8 = 1.78472 ν d8 = 25.68
r 16 = 217.7610 d 16 = 0.2030
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 19.3410 (aspherical surface) d 18 = 5.5508 n d9 = 1.49700 ν d9 = 81.54
r 19 = -61.9647 d 19 = 0.1774
r 20 = 28.8671 d 20 = 1.1410 n d10 = 1.80440 ν d10 = 39.59
r 21 = 13.5945 d 21 = 5.8000 n d11 = 1.49700 ν d11 = 81.54
r 22 = 5392.6719 d 22 = (variable)
r 23 = -154.6780 d 23 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 24 = 11.7076 d 24 = 3.6031 n d13 = 1.84666 ν d13 = 23.78
r 25 = 15.0847 d 25 = (variable)
r 26 = 50.4757 d 26 = 3.2775 n d14 = 1.49700 ν d14 = 81.54
r 27 = -50.8313 (aspherical surface) d 27 = 0.1500
r 28 = 45.8348 d 28 = 5.5505 n d15 = 1.60311 ν d15 = 60.64
r 29 = -13.2011 d 29 = 0.8500 n d16 = 1.84666 ν d16 = 23.78
r 30 = -38.4178 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 2.1955 × 10 -6
A 6 = 7.9776 × 10 -10
A 8 = 4.2465 × 10 -12
A 10 = 0.0000
18th face K = 0
A 4 = -2.2173 × 10 -5
A 6 = -5.2442 × 10 -10
A 8 = -1.3172 × 10 -10
A 10 = 0.0000
Surface 27 K = 0
A 4 = -4.3385 × 10 -6
A 6 = -5.8507 × 10 -9
A 8 = -3.8312 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.35253 13.14155 23.30044 40.58970 74.68803
F NO 2.8000 3.1943 3.5000 3.5000 3.5000
ω (°) 38.09. 13.06. 4.10
d 6 1.36006 12.88245 31.00495 49.05687 59.99418
d 14 52.40573 25.29926 11.47801 5.29211 1.70314
d 17 17.47445 12.09215 9.07829 6.89688 1.02608
d 22 1.50000 3.82243 6.29079 8.72220 16.22424
d 25 6.18879 6.98900 5.58223 5.34260 5.88322
d 30 1.19155 7.72421 5.35600 9.52720 3.22100
.

(実施例13)
1 = 128.1845 d1 2.6000 nd1 =1.84666 νd1 =23.78
2 = 77.8836 d2 0.1422
3 = 79.5351 d3 8.7726 nd2 =1.60311 νd2 =60.64
4 = 1.760×105 4 0.2000
5 = 60.5207 d5 7.8199 nd3 =1.49700 νd3 =81.54
6 = 225.3888 d6 = (可変)
7 = 87.0813 d7 1.5000 nd4 =1.77250 νd4 =49.60
8 = 15.7852 d8 8.9335
9 = -28.4093 d9 1.3643 nd5 =1.77250 νd5 =49.60
10= 61.5066 d10 2.4804
11= -48.6469(非球面) d11 0.2000 nd6 =1.53508 νd6 =40.94
12= -200.0000 d12 1.2000 nd7 =1.69350 νd7 =53.20
13= 96.2114 d13 0.2000
14= 68.6685 d14 6.7199 nd8 =1.68893 νd8 =31.07
15= -32.7420 d15= (可変)
16= ∞(絞り) d16 0.4000
17= 312.4731 d17 0.9972 nd9 =1.60342 νd9 =38.03
18= -144.3938 d18= (可変)
19= 18.9253(非球面) d19 3.6985 nd10=1.49700 νd10=81.54
20= -1.054×107 20 0.1774
21= 58.8544 d21 1.1208 nd11=1.77250 νd11=49.60
22= 15.9897 d22 4.9136 nd12=1.49700 νd12=81.54
23= -68.6413 d23= (可変)
24= -73.7867 d24 0.9000 nd13=1.51633 νd13=64.14
25= 17.0943 d25 1.8262 nd14=1.84666 νd14=23.78
26= 22.4714 d26= (可変)
27= 37.0884(非球面) d27 4.8733 nd15=1.49700 νd15=81.54
28= -23.1086 d28 0.1500
29= -909.2556 d29 3.3951 nd16=1.49700 νd16=81.54
30= -18.5310 d30 1.0265 nd17=1.84666 νd17=23.78
31= -50.0749 d31= (可変)
32= ∞ d32 16.0000 nd18=1.51633 νd18=64.14
33= ∞ d33 1.0000
34= ∞ d34 2.6000 nd19=1.54771 νd19=62.84
35= ∞ d35 1.0000
36= ∞ d36 0.7500 nd20=1.51633 νd20=64.14
37= ∞ d37 1.2400
38= ∞
非球面係数
第11面
K = 0
A4 = 9.2934 ×10-6
A6 =-4.3005 ×10-9
A8 =-6.0577 ×10-11
A10= 0.0000
第19面
K = 0
A4 =-1.5515 ×10-5
A6 =-1.5901 ×10-9
A8 =-1.9683 ×10-10
A10= 0.0000
第27面
K = 0
A4 =-1.7557 ×10-5
A6 =-2.2661 ×10-9
A8 = 1.2023 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.27699 13.13483 23.30156 41.85838 74.69868
NO 2.8000 3.0096 3.5000 3.5000 3.5000
ω (°) 38.47 . 13.07 . 4.13
6 1.00000 12.32463 29.12057 47.14255 58.02772
15 6.72043 27.00532 13.69308 7.48255 2.50000
18 20.38443 13.68554 10.29674 7.22603 1.55935
23 0.86734 3.00362 6.20380 8.91257 14.79711
26 7.49819 8.31394 5.77953 5.09499 5.49059
31 5.53190 9.13816 11.98670 8.63592 12.42630
(Example 13)
r 1 = 128.1845 d 1 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 77.8836 d 2 0.1422
r 3 = 79.5351 d 3 8.7726 n d2 = 1.60311 ν d2 = 60.64
r 4 = 1.760 × 10 5 d 4 0.2000
r 5 = 60.5207 d 5 7.8199 n d3 = 1.49700 ν d3 = 81.54
r 6 = 225.3888 d 6 = (variable)
r 7 = 87.0813 d 7 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 15.7852 d 8 8.9335
r 9 = -28.4093 d 9 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 61.5066 d 10 2.4804
r 11 = -48.6469 (aspherical surface) d 11 0.2000 n d6 = 1.53508 ν d6 = 40.94
r 12 = -200.0000 d 12 1.2000 n d7 = 1.69350 ν d7 = 53.20
r 13 = 96.2114 d 13 0.2000
r 14 = 68.6685 d 14 6.7199 n d8 = 1.68893 ν d8 = 31.07
r 15 = -32.7420 d 15 = (variable)
r 16 = ∞ (aperture) d 16 0.4000
r 17 = 312.4731 d 17 0.9972 n d9 = 1.60342 ν d9 = 38.03
r 18 = -144.3938 d 18 = (variable)
r 19 = 18.9253 (aspherical surface) d 19 3.6985 n d10 = 1.49700 ν d10 = 81.54
r 20 = -1.054 × 10 7 d 20 0.1774
r 21 = 58.8544 d 21 1.1208 n d11 = 1.77250 ν d11 = 49.60
r 22 = 15.9897 d 22 4.9136 n d12 = 1.49700 ν d12 = 81.54
r 23 = -68.6413 d 23 = (variable)
r 24 = -73.7867 d 24 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 25 = 17.0943 d 25 1.8262 n d14 = 1.84666 ν d14 = 23.78
r 26 = 22.4714 d 26 = (variable)
r 27 = 37.0884 (aspherical surface) d 27 4.8733 n d15 = 1.49700 ν d15 = 81.54
r 28 = -23.1086 d 28 0.1500
r 29 = -909.2556 d 29 3.3951 n d16 = 1.49700 ν d16 = 81.54
r 30 = -18.5310 d 30 1.0265 n d17 = 1.84666 ν d17 = 23.78
r 31 = -50.0749 d 31 = (variable)
r 32 = ∞ d 32 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 33 = ∞ d 33 1.0000
r 34 = ∞ d 34 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 35 = ∞ d 35 1.0000
r 36 = ∞ d 36 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 37 = ∞ d 37 1.2400
r 38 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 9.2934 × 10 -6
A 6 = -4.3005 × 10 -9
A 8 = -6.0577 × 10 -11
A 10 = 0.0000
19th face K = 0
A 4 = -1.5515 × 10 -5
A 6 = -1.5901 × 10 -9
A 8 = -1.9683 × 10 -10
A 10 = 0.0000
Surface 27 K = 0
A 4 = -1.7557 × 10 -5
A 6 = -2.2661 × 10 -9
A 8 = 1.2023 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.27699 13.13483 23.30156 41.85838 74.69868
F NO 2.8000 3.0096 3.5000 3.5000 3.5000
ω (°) 38.47. 13.07. 4.13
d 6 1.00000 12.32463 29.12057 47.14255 58.02772
d 15 6.72043 27.00532 13.69308 7.48255 2.50000
d 18 20.38443 13.68554 10.29674 7.22603 1.55935
d 23 0.86734 3.00362 6.20380 8.91257 14.79711
d 26 7.49819 8.31394 5.77953 5.09499 5.49059
d 31 5.53190 9.13816 11.98670 8.63592 12.42630
.

(実施例14)
1 = 117.1093 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 78.9815 d2 = 0.2900
3 = 83.6308 d3 = 7.1360 nd2 =1.49700 νd2 =81.54
4 = 8.136×104 4 = 0.2000
5 = 64.0026 d5 = 7.2854 nd3 =1.49700 νd3 =81.54
6 = 406.9074 d6 = (可変)
7 = 173.0596 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 14.7807 d8 = 8.6963
9 = -33.4479 d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 82.7642 d10= 1.5769
11= -78.1187(非球面) d11= 0.4088 nd6 =1.66680 νd6 =33.05
12= 518.9177 d12= 1.2000 nd7 =1.69350 νd7 =53.20
13= 55.8817 d13= 0.0065
14= 43.1420 d14= 5.9081 nd8 =1.68893 νd8 =31.07
15= -31.8050 d15= (可変)
16= ∞(絞り) d16= (可変)
17= 21.9025(非球面) d17= 3.3063 nd9 =1.49700 νd9 =81.54
18= -1.082×106 18= 0.2991
19= 30.2359 d19= 1.1208 nd10=1.77250 νd10=49.60
20= 14.9061 d20= 5.0481 nd11=1.49700 νd11=81.54
21= -81.9434 d21= (可変)
22= -101.2030 d22= 0.9000 nd12=1.51633 νd12=64.14
23= 15.4168 d23= 1.8234 nd13=1.84666 νd13=23.78
24= 20.2251 d24= (可変)
25= 42.9650(非球面) d25= 4.1635 nd14=1.49700 νd14=81.54
26= -21.2353 d26= 0.1500
27= -231.8094 d27= 2.6973 nd15=1.49700 νd15=81.54
28= -16.2244 d28= 1.2276 nd16=1.84666 νd16=23.78
29= -47.0800 d29= (可変)
30= ∞ d30= 16.0000 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.0000
32= ∞ d32= 2.6000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.0000
34= ∞ d34= 0.7500 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.2400
36= ∞
非球面係数
第11面
K = 0
A4 = 8.8203 ×10-6
A6 = 9.5199 ×10-9
A8 =-4.6923 ×10-11
A10= 0.0000
第17面
K = 0
A4 =-1.2806 ×10-5
A6 =-2.1296 ×10-9
A8 =-2.5132 ×10-11
A10= 0.0000
第25面
K = 0
A4 =-1.7844 ×10-5
A6 = 8.4598 ×10-10
A8 = 1.3070 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.33668 13.24737 23.30078 42.13815 74.69414
NO 2.8000 3.0902 3.5000 3.5000 3.5000
ω (°) 38.27 . 13.00 . 4.12
6 1.00000 11.42124 30.94061 48.29039 59.30210
15 55.59662 25.85692 13.75365 6.56339 2.50000
16 20.18772 14.53075 11.35844 7.51283 1.55935
21 2.76426 4.80624 7.15711 10.16404 16.30729
24 7.71856 7.83389 6.04720 4.97905 4.27440
29 4.70560 8.31100 10.79320 8.56974 13.14420
(Example 14)
r 1 = 117.1093 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 78.9815 d 2 = 0.2900
r 3 = 83.6308 d 3 = 7.1360 n d2 = 1.49700 ν d2 = 81.54
r 4 = 8.136 × 10 4 d 4 = 0.2000
r 5 = 64.0026 d 5 = 7.2854 n d3 = 1.49700 ν d3 = 81.54
r 6 = 406.9074 d 6 = (variable)
r 7 = 173.0596 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 14.7807 d 8 = 8.6963
r 9 = -33.4479 d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 82.7642 d 10 = 1.5769
r 11 = -78.1187 (aspherical surface) d 11 = 0.4088 n d6 = 1.66680 ν d6 = 33.05
r 12 = 518.9177 d 12 = 1.2000 n d7 = 1.69350 ν d7 = 53.20
r 13 = 55.8817 d 13 = 0.0065
r 14 = 43.1420 d 14 = 5.9081 n d8 = 1.68893 ν d8 = 31.07
r 15 = -31.8050 d 15 = (variable)
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 21.9025 (aspherical surface) d 17 = 3.3063 n d9 = 1.49700 ν d9 = 81.54
r 18 = -1.082 × 10 6 d 18 = 0.2991
r 19 = 30.2359 d 19 = 1.1208 n d10 = 1.77250 ν d10 = 49.60
r 20 = 14.9061 d 20 = 5.0481 n d11 = 1.49700 ν d11 = 81.54
r 21 = -81.9434 d 21 = (variable)
r 22 = -101.2030 d 22 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 23 = 15.4168 d 23 = 1.8234 n d13 = 1.84666 ν d13 = 23.78
r 24 = 20.2251 d 24 = (variable)
r 25 = 42.9650 (aspherical surface) d 25 = 4.1635 n d14 = 1.49700 ν d14 = 81.54
r 26 = -21.2353 d 26 = 0.1500
r 27 = -231.8094 d 27 = 2.6973 n d15 = 1.49700 ν d15 = 81.54
r 28 = -16.2244 d 28 = 1.2276 n d16 = 1.84666 ν d16 = 23.78
r 29 = -47.0800 d 29 = (variable)
r 30 = ∞ d 30 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.0000
r 32 = ∞ d 32 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.2400
r 36 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 8.8203 × 10 -6
A 6 = 9.5199 × 10 -9
A 8 = -4.6923 × 10 -11
A 10 = 0.0000
Surface 17 K = 0
A 4 = -1.2806 × 10 -5
A 6 = -2.1296 × 10 -9
A 8 = -2.5132 × 10 -11
A 10 = 0.0000
25th face K = 0
A 4 = -1.7844 × 10 -5
A 6 = 8.4598 × 10 -10
A 8 = 1.3070 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.33668 13.24737 23.30078 42.13815 74.69414
F NO 2.8000 3.0902 3.5000 3.5000 3.5000
ω (°) 38.27 .13.00 .4.12
d 6 1.00000 11.42124 30.94061 48.29039 59.30210
d 15 55.59662 25.85692 13.75365 6.56339 2.50000
d 16 20.18772 14.53075 11.35844 7.51283 1.55935
d 21 2.76426 4.80624 7.15711 10.16404 16.30729
d 24 7.71856 7.83389 6.04720 4.97905 4.27440
d 29 4.70560 8.31100 10.79320 8.56974 13.14420
.

(実施例15)
1 = 132.6548 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 79.4364 d2 = 0.4361
3 = 85.8501 d3 = 6.6634 nd2 =1.60311 νd2 =60.64
4 = 4.060×104 4 = 0.2000
5 = 59.6705 d5 = 6.1756 nd3 =1.49700 νd3 =81.54
6 = 294.2591 d6 = (可変)
7 = 98.7402 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 14.8930 d8 = 9.4296
9 = -32.3971 d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 70.8620 d10= 2.0091
11= -72.3210(非球面) d11= 0.2000 nd6 =1.53508 νd6 =40.94
12= -200.0000 d12= 1.2000 nd7 =1.69350 νd7 =53.20
13= 67.0853 d13= 0.2000
14= 44.8428 d14= 6.9613 nd8 =1.68893 νd8 =31.07
15= -35.6841 d15= (可変)
16= ∞(絞り) d16= (可変)
17= 21.0081(非球面) d17= 2.9255 nd9 =1.49700 νd9 =81.54
18= -9.840×105 18= 0.1774
19= 34.1654 d19= 1.1208 nd10=1.77250 νd10=49.60
20= 14.0687 d20= 4.9352 nd11=1.49700 νd11=81.54
21= -74.9646 d21= (可変)
22= -61.8007 d22= 0.9000 nd12=1.51633 νd12=64.14
23= 16.0108 d23= 1.8375 nd13=1.84666 νd13=23.78
24= 22.5570 d24= (可変)
25= 32.5943(非球面) d25= 4.3313 nd14=1.49700 νd14=81.54
26= -33.8655 d26= 0.1500
27= 53.1963 d27= 1.1524 nd15=1.84666 νd15=23.78
28= 18.3125 d28= 3.6734 nd16=1.49700 νd16=81.54
29= -121.7913 d29= (可変)
30= ∞ d30= 16.0000 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.0000
32= ∞ d32= 2.6000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.0000
34= ∞ d34= 0.7500 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.2400
36= ∞
非球面係数
第11面
K = 0
A4 = 5.6253 ×10-6
A6 = 8.1204 ×10-9
A8 =-1.5465 ×10-10
A10= 0.0000
第17面
K = 0
A4 =-1.0911 ×10-5
A6 =-8.6347 ×10-10
A8 =-3.2657 ×10-11
A10= 0.0000
第25面
K = 0
A4 =-1.8333 ×10-5
A6 =-3.1998 ×10-9
A8 = 1.0415 ×10-10
A10= 0.0000
ズームデータ(∞)
W WS S ST T
f (mm) 7.28638 13.09183 23.29942 41.55110 74.69787
NO 2.8000 3.0933 3.5000 3.5000 3.5000
ω (°) 38.41 . 13.04 . 4.13
6 1.00000 12.01687 29.52891 47.09799 58.40761
15 56.60227 27.25102 13.50469 7.09969 2.50000
16 20.20946 14.09927 10.84298 7.36903 1.55935
21 2.22975 4.07145 6.73846 9.29928 14.66227
24 8.05739 8.70338 6.54360 6.01591 6.08811
29 6.19420 9.22330 12.55330 8.60639 14.38620
(Example 15)
r 1 = 132.6548 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 79.4364 d 2 = 0.4361
r 3 = 85.8501 d 3 = 6.6634 n d2 = 1.60311 ν d2 = 60.64
r 4 = 4.060 × 10 4 d 4 = 0.2000
r 5 = 59.6705 d 5 = 6.1756 n d3 = 1.49700 ν d3 = 81.54
r 6 = 294.2591 d 6 = (variable)
r 7 = 98.7402 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 14.8930 d 8 = 9.4296
r 9 = -32.3971 d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 70.8620 d 10 = 2.0091
r 11 = -72.3210 (aspherical surface) d 11 = 0.2000 n d6 = 1.53508 ν d6 = 40.94
r 12 = -200.0000 d 12 = 1.2000 n d7 = 1.69350 ν d7 = 53.20
r 13 = 67.0853 d 13 = 0.2000
r 14 = 44.8428 d 14 = 6.9613 n d8 = 1.68893 ν d8 = 31.07
r 15 = -35.6841 d 15 = (variable)
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 21.0081 (aspherical surface) d 17 = 2.9255 n d9 = 1.49700 ν d9 = 81.54
r 18 = -9.840 × 10 5 d 18 = 0.1774
r 19 = 34.1654 d 19 = 1.1208 n d10 = 1.77250 ν d10 = 49.60
r 20 = 14.0687 d 20 = 4.9352 n d11 = 1.49700 ν d11 = 81.54
r 21 = -74.9646 d 21 = (variable)
r 22 = -61.8007 d 22 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 23 = 16.0108 d 23 = 1.8375 n d13 = 1.84666 ν d13 = 23.78
r 24 = 22.5570 d 24 = (variable)
r 25 = 32.5943 (aspherical surface) d 25 = 4.3313 n d14 = 1.49700 ν d14 = 81.54
r 26 = -33.8655 d 26 = 0.1500
r 27 = 53.1963 d 27 = 1.1524 n d15 = 1.84666 ν d15 = 23.78
r 28 = 18.3125 d 28 = 3.6734 n d16 = 1.49700 ν d16 = 81.54
r 29 = -121.7913 d 29 = (variable)
r 30 = ∞ d 30 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.0000
r 32 = ∞ d 32 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.2400
r 36 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 5.6253 × 10 -6
A 6 = 8.1204 × 10 -9
A 8 = -1.5465 × 10 -10
A 10 = 0.0000
Surface 17 K = 0
A 4 = -1.0911 × 10 -5
A 6 = -8.6347 × 10 -10
A 8 = -3.2657 × 10 -11
A 10 = 0.0000
25th face K = 0
A 4 = -1.8333 × 10 -5
A 6 = -3.1998 × 10 -9
A 8 = 1.0415 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W WS S ST T
f (mm) 7.28638 13.09183 23.29942 41.55110 74.69787
F NO 2.8000 3.0933 3.5000 3.5000 3.5000
ω (°) 38.41. 13.04. 4.13
d 6 1.00000 12.01687 29.52891 47.09799 58.40761
d 15 56.60227 27.25102 13.50469 7.09969 2.50000
d 16 20.20946 14.09927 10.84298 7.36903 1.55935
d 21 2.22975 4.07145 6.73846 9.29928 14.66227
d 24 8.05739 8.70338 6.54360 6.01591 6.08811
d 29 6.19420 9.22330 12.55330 8.60639 14.38620
.

(実施例16)
1 = 80.0460 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 57.3690 d2 = 0.0798
3 = 56.8758 d3 = 6.9751 nd2 =1.49700 νd2 =81.54
4 = 362.0517 d4 = 0.2000
5 = 73.3775 d5 = 4.4654 nd3 =1.60311 νd3 =60.64
6 = 289.7112 d6 = (可変)
7 = 177.0825 d7 = 1.5000 nd4 =1.77250 νd4 =49.60
8 = 16.8427 d8 = 7.9000
9 = -29.2679(非球面) d9 = 1.3643 nd5 =1.77250 νd5 =49.60
10= 67.6142 d10= 3.5642
11= 117.8157 d11= 4.8943 nd6 =1.72825 νd6 =28.46
12= -31.3298 d12= 0.5000
13= -63.4774 d13= 1.0000 nd7 =1.74400 νd7 =44.78
14= -239.8825 d14= (可変)
15= -435.4231 d15= 1.2680 nd8 =1.72825 νd8 =28.46
16= 514.6994 d16= 1.3139
17= ∞(絞り) d17= (可変)
18= 20.0387(非球面) d18= 5.6776 nd9 =1.49700 νd9 =81.54
19= -73.1240 d19= 0.1774
20= 46.3298 d20= 1.1410 nd10=1.80440 νd10=39.59
21= 13.8759 d21= 5.4223 nd11=1.60311 νd11=60.64
22= -120.0020 d22= (可変)
23= -55.7471 d23= 0.9000 nd12=1.51633 νd12=64.14
24= 11.2108 d24= 1.8651 nd13=1.84666 νd13=23.78
25= 15.9872 d25= (可変)
26= 55.1052 d26= 2.9459 nd14=1.49700 νd14=81.54
27= -28.6459(非球面) d27= 0.1500
28= 69.1964 d28= 4.5501 nd15=1.60311 νd15=60.64
29= -13.8791 d29= 1.0000 nd16=1.84666 νd16=23.78
30= -46.4615 d30= (可変)
31= ∞ d31= 16.0000 nd17=1.51633 νd17=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd18=1.54771 νd18=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd19=1.51633 νd19=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第9面
K = 0
A4 = 8.8395 ×10-6
A6 = 5.0711 ×10-9
A8 =-1.9545 ×10-11
A10= 0.0000
第18面
K = 0
A4 =-2.0678 ×10-5
A6 =-6.4243 ×10-9
A8 = 2.3028 ×10-11
A10= 0.0000
第27面
K = 0
A4 =-3.0971 ×10-6
A6 =-9.4407 ×10-9
A8 = 1.9644 ×10-11
A10= 0.0000
ズームデータ(∞)
W S T
f (mm) 7.27185 23.29749 74.69992
NO 2.8000 3.5000 3.5000
ω (°) 40.17 13.97 4.40
6 1.36006 30.12912 58.31748
14 54.70456 12.24625 1.70314
17 17.26301 9.52391 1.02608
22 1.50000 6.53585 16.09191
25 7.85799 6.35824 6.81641
30 4.64000 8.84600 7.32400
(Example 16)
r 1 = 80.0460 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 57.3690 d 2 = 0.0798
r 3 = 56.8758 d 3 = 6.9751 n d2 = 1.49700 ν d2 = 81.54
r 4 = 362.0517 d 4 = 0.2000
r 5 = 73.3775 d 5 = 4.4654 n d3 = 1.60311 ν d3 = 60.64
r 6 = 289.7112 d 6 = (variable)
r 7 = 177.0825 d 7 = 1.5000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 16.8427 d 8 = 7.9000
r 9 = -29.2679 (aspherical surface) d 9 = 1.3643 n d5 = 1.77250 ν d5 = 49.60
r 10 = 67.6142 d 10 = 3.5642
r 11 = 117.8157 d 11 = 4.8943 n d6 = 1.72825 ν d6 = 28.46
r 12 = -31.3298 d 12 = 0.5000
r 13 = -63.4774 d 13 = 1.0000 n d7 = 1.74400 ν d7 = 44.78
r 14 = -239.8825 d 14 = (variable)
r 15 = -435.4231 d 15 = 1.2680 n d8 = 1.72825 ν d8 = 28.46
r 16 = 514.6994 d 16 = 1.3139
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 20.0387 (aspherical surface) d 18 = 5.6776 n d9 = 1.49700 ν d9 = 81.54
r 19 = -73.1240 d 19 = 0.1774
r 20 = 46.3298 d 20 = 1.1410 n d10 = 1.80440 ν d10 = 39.59
r 21 = 13.8759 d 21 = 5.4223 n d11 = 1.60311 ν d11 = 60.64
r 22 = -120.0020 d 22 = (variable)
r 23 = -55.7471 d 23 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 24 = 11.2108 d 24 = 1.8651 n d13 = 1.84666 ν d13 = 23.78
r 25 = 15.9872 d 25 = (variable)
r 26 = 55.1052 d 26 = 2.9459 n d14 = 1.49700 ν d14 = 81.54
r 27 = -28.6459 (aspherical surface) d 27 = 0.1500
r 28 = 69.1964 d 28 = 4.5501 n d15 = 1.60311 ν d15 = 60.64
r 29 = -13.8791 d 29 = 1.0000 n d16 = 1.84666 ν d16 = 23.78
r 30 = -46.4615 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 8.8395 × 10 -6
A 6 = 5.0711 × 10 -9
A 8 = -1.9545 × 10 -11
A 10 = 0.0000
18th face K = 0
A 4 = -2.0678 × 10 -5
A 6 = -6.4243 × 10 -9
A 8 = 2.3028 × 10 -11
A 10 = 0.0000
Surface 27 K = 0
A 4 = -3.0971 × 10 -6
A 6 = -9.4407 × 10 -9
A 8 = 1.9644 × 10 -11
A 10 = 0.0000
Zoom data (∞)
W S T
f (mm) 7.27185 23.29749 74.69992
F NO 2.8000 3.5000 3.5000
ω (°) 40.17 13.97 4.40
d 6 1.36006 30.12912 58.31748
d 14 54.70456 12.24625 1.70314
d 17 17.26301 9.52391 1.02608
d 22 1.50000 6.53585 16.09191
d 25 7.85799 6.35824 6.81641
d 30 4.64000 8.84600 7.32400
.

(実施例17)
1 = 84.5614 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 60.9235 d2 = 0.1000
3 = 60.9993 d3 = 7.7500 nd2 =1.49700 νd2 =81.54
4 = 411.3180 d4 = 0.2000
5 = 69.8137 d5 = 5.8500 nd3 =1.60311 νd3 =60.64
6 = 273.9185 d6 = (可変)
7 = 326.8029 d7 = 1.8000 nd4 =1.81600 νd4 =46.62
8 = 18.4614 d8 = 5.8823
9 = -86.8945 d9 = 1.1000 nd5 =1.73400 νd5 =51.47
10= 32.9914 d10= 5.2210
11= -30.1936(非球面) d11= 1.2000 nd6 =1.71300 νd6 =53.87
12= 3.111×104 12= 0.1500
13= 94.9186 d13= 6.1767 nd7 =1.69895 νd7 =30.13
14= -27.0373 d14= (可変)
15= -754.3167 d15= 0.8000 nd8 =1.78472 νd8 =25.68
16= 50.7584 d16= 2.0000 nd9 =1.68893 νd9 =31.07
17= 699.9122 d17= 0.7000
18= ∞(絞り) d18= (可変)
19= 19.3389(非球面) d19= 5.5976 nd10=1.49700 νd10=81.54
20= -64.3089 d20= 0.1774
21= 36.8090 d21= 1.1410 nd11=1.80440 νd11=39.59
22= 15.7560 d22= 4.3000 nd12=1.49700 νd12=81.54
23= 6909.3107 d23= (可変)
24= -213.9678 d24= 0.9000 nd13=1.51633 νd13=64.14
25= 11.9504 d25= 3.6757 nd14=1.84666 νd14=23.78
26= 15.7330 d26= (可変)
27= 56.9085 d27= 3.2663 nd15=1.49700 νd15=81.54
28= -49.9335(非球面) d28= 0.1500
29= 48.3454 d29= 5.3103 nd16=1.60311 νd16=60.64
30= -12.9112 d30= 0.8500 nd17=1.84666 νd17=23.78
31= -36.0617 d31= (可変)
32= ∞ d32= 16.0000 nd18=1.51633 νd18=64.14
33= ∞ d33= 1.0000
34= ∞ d34= 2.6000 nd19=1.54771 νd19=62.84
35= ∞ d35= 1.0000
36= ∞ d36= 0.7500 nd20=1.51633 νd20=64.14
37= ∞ d37= 1.2400
38= ∞
非球面係数
第11面
K = 0
A4 = 3.5442 ×10-6
A6 =-1.0145 ×10-8
A8 = 4.1292 ×10-11
A10= 0.0000
第19面
K = 0
A4 =-2.3122 ×10-5
A6 =-1.0925 ×10-9
A8 =-1.2640 ×10-10
A10= 0.0000
第28面
K = 0
A4 =-2.8818 ×10-6
A6 =-5.4227 ×10-9
A8 =-2.8339 ×10-10
A10= 0.0000
ズームデータ(∞)
W S T
f (mm) 7.27212 23.29915 74.69940
NO 2.8000 3.5000 3.5000
ω (°) 38.44 13.06 4.09
6 1.36006 31.23645 59.54246
14 52.32231 11.30384 1.70314
18 17.20275 8.82296 1.02608
23 1.50000 6.61710 16.48589
26 6.17485 5.37142 6.39230
31 2.40000 6.46400 3.36900
(Example 17)
r 1 = 84.5614 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 60.9235 d 2 = 0.1000
r 3 = 60.9993 d 3 = 7.7500 n d2 = 1.49700 ν d2 = 81.54
r 4 = 411.3180 d 4 = 0.2000
r 5 = 69.8137 d 5 = 5.8500 n d3 = 1.60311 ν d3 = 60.64
r 6 = 273.9185 d 6 = (variable)
r 7 = 326.8029 d 7 = 1.8000 n d4 = 1.81600 ν d4 = 46.62
r 8 = 18.4614 d 8 = 5.8823
r 9 = -86.8945 d 9 = 1.1000 n d5 = 1.73400 ν d5 = 51.47
r 10 = 32.9914 d 10 = 5.2210
r 11 = -30.1936 (aspherical surface) d 11 = 1.2000 n d6 = 1.71300 ν d6 = 53.87
r 12 = 3.111 × 10 4 d 12 = 0.1500
r 13 = 94.9186 d 13 = 6.1767 n d7 = 1.69895 ν d7 = 30.13
r 14 = -27.0373 d 14 = (variable)
r 15 = -754.3167 d 15 = 0.8000 n d8 = 1.78472 ν d8 = 25.68
r 16 = 50.7584 d 16 = 2.0000 n d9 = 1.68893 ν d9 = 31.07
r 17 = 699.9122 d 17 = 0.7000
r 18 = ∞ (aperture) d 18 = (variable)
r 19 = 19.3389 (aspherical surface) d 19 = 5.5976 n d10 = 1.49700 ν d10 = 81.54
r 20 = -64.3089 d 20 = 0.1774
r 21 = 36.8090 d 21 = 1.1410 n d11 = 1.80440 ν d11 = 39.59
r 22 = 15.7560 d 22 = 4.3000 n d12 = 1.49700 ν d12 = 81.54
r 23 = 6909.3107 d 23 = (variable)
r 24 = -213.9678 d 24 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 25 = 11.9504 d 25 = 3.6757 n d14 = 1.84666 ν d14 = 23.78
r 26 = 15.7330 d 26 = (variable)
r 27 = 56.9085 d 27 = 3.2663 n d15 = 1.49700 ν d15 = 81.54
r 28 = -49.9335 (aspherical surface) d 28 = 0.1500
r 29 = 48.3454 d 29 = 5.3103 n d16 = 1.60311 ν d16 = 60.64
r 30 = -12.9112 d 30 = 0.8500 n d17 = 1.84666 ν d17 = 23.78
r 31 = -36.0617 d 31 = (variable)
r 32 = ∞ d 32 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 35 = ∞ d 35 = 1.0000
r 36 = ∞ d 36 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 37 = ∞ d 37 = 1.2400
r 38 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 3.5442 × 10 -6
A 6 = -1.0145 × 10 -8
A 8 = 4.1292 × 10 -11
A 10 = 0.0000
19th face K = 0
A 4 = -2.3122 × 10 -5
A 6 = -1.0925 × 10 -9
A 8 = -1.2640 × 10 -10
A 10 = 0.0000
Surface 28 K = 0
A 4 = -2.8818 × 10 -6
A 6 = -5.4227 × 10 -9
A 8 = -2.8339 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W S T
f (mm) 7.27212 23.29915 74.69940
F NO 2.8000 3.5000 3.5000
ω (°) 38.44 13.06 4.09
d 6 1.36006 31.23645 59.54246
d 14 52.32231 11.30384 1.70314
d 18 17.20275 8.82296 1.02608
d 23 1.50000 6.61710 16.48589
d 26 6.17485 5.37142 6.39230
d 31 2.40000 6.46400 3.36900
.

(実施例18)
1 = 85.6717 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 61.4682 d2 = 0.1000
3 = 61.7093 d3 = 7.7500 nd2 =1.49700 νd2 =81.54
4 = 391.3879 d4 = 0.2000
5 = 71.8120 d5 = 5.8500 nd3 =1.60311 νd3 =60.64
6 = 318.2499 d6 = (可変)
7 = 360.3572 d7 = 1.8000 nd4 =1.81600 νd4 =46.62
8 = 18.8770 d8 = 5.9565
9 = -91.8447 d9 = 1.1000 nd5 =1.73400 νd5 =51.47
10= 33.5783 d10= 5.2551
11= -31.3548(非球面) d11= 1.2000 nd6 =1.71300 νd6 =53.87
12= 4.805×104 12= 0.1500
13= 97.5840 d13= 6.2516 nd7 =1.69895 νd7 =30.13
14= -27.8035 d14= (可変)
15= ∞ d15= 1.8000 nd8 =1.78472 νd8 =25.68
16= 268.7641(非球面) d16= 1.0000
17= ∞(絞り) d17= (可変)
18= 18.6304(非球面) d18= 5.6253 nd9 =1.49700 νd9 =81.54
19= -57.6238 d19= 0.1774
20= 34.9774 d20= 1.1410 nd10=1.80440 νd10=39.59
21= 14.9385 d21= 4.3000 nd11=1.49700 νd11=81.54
22= 4295.3319 d22= (可変)
23= -226.3830 d23= 0.9000 nd12=1.51633 νd12=64.14
24= 11.9132 d24= 3.6481 nd13=1.84666 νd13=23.78
25= 15.2759 d25= (可変)
26= 54.3162 d26= 3.3130 nd14=1.49700 νd14=81.54
27= -51.5747(非球面) d27= 0.1500
28= 49.4131 d28= 5.2625 nd15=1.60311 νd15=60.64
29= -13.1129 d29= 0.8500 nd16=1.84666 νd16=23.78
30= -36.5139 d30= (可変)
31= ∞ d31= 16.0000 nd17=1.51633 νd17=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd18=1.54771 νd18=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd19=1.51633 νd19=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第11面
K = 0
A4 = 3.5400 ×10-6
A6 =-7.6377 ×10-9
A8 = 4.0209 ×10-11
A10= 0.0000
第16面
K = 0
A4 =-4.0343 ×10-7
A6 = 2.7672 ×10-8
A8 =-2.5380 ×10-10
A10= 0.0000
第18面
K = 0
A4 =-2.6388 ×10-5
A6 =-1.7329 ×10-9
A8 =-1.6305 ×10-10
A10= 0.0000
第27面
K = 0
A4 =-3.4938 ×10-6
A6 =-5.9935 ×10-9
A8 =-2.8356 ×10-10
A10= 0.0000
ズームデータ(∞)
W S T
f (mm) 7.27244 23.30032 74.70039
NO 2.8000 3.5000 3.5000
ω (°) 38.45 13.05 4.09
6 1.36006 31.15403 59.61613
14 52.28998 11.32834 1.70314
17 17.27794 8.92919 1.02608
22 1.50000 6.44912 16.47111
25 6.18489 5.46432 6.07561
30 2.39700 6.50900 3.82700
(Example 18)
r 1 = 85.6717 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 61.4682 d 2 = 0.1000
r 3 = 61.7093 d 3 = 7.7500 n d2 = 1.49700 ν d2 = 81.54
r 4 = 391.3879 d 4 = 0.2000
r 5 = 71.8120 d 5 = 5.8500 n d3 = 1.60311 ν d3 = 60.64
r 6 = 318.2499 d 6 = (variable)
r 7 = 360.3572 d 7 = 1.8000 n d4 = 1.81600 ν d4 = 46.62
r 8 = 18.8770 d 8 = 5.9565
r 9 = -91.8447 d 9 = 1.1000 n d5 = 1.73400 ν d5 = 51.47
r 10 = 33.5783 d 10 = 5.2551
r 11 = -31.3548 (aspherical surface) d 11 = 1.2000 n d6 = 1.71300 ν d6 = 53.87
r 12 = 4.805 × 10 4 d 12 = 0.1500
r 13 = 97.5840 d 13 = 6.2516 n d7 = 1.69895 ν d7 = 30.13
r 14 = -27.8035 d 14 = (variable)
r 15 = ∞ d 15 = 1.8000 n d8 = 1.78472 ν d8 = 25.68
r 16 = 268.7641 (aspherical surface) d 16 = 1.0000
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 18.6304 (aspherical surface) d 18 = 5.6253 n d9 = 1.49700 ν d9 = 81.54
r 19 = -57.6238 d 19 = 0.1774
r 20 = 34.9774 d 20 = 1.1410 n d10 = 1.80440 ν d10 = 39.59
r 21 = 14.9385 d 21 = 4.3000 n d11 = 1.49700 ν d11 = 81.54
r 22 = 4295.3319 d 22 = (variable)
r 23 = -226.3830 d 23 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 24 = 11.9132 d 24 = 3.6481 n d13 = 1.84666 ν d13 = 23.78
r 25 = 15.2759 d 25 = (variable)
r 26 = 54.3162 d 26 = 3.3130 n d14 = 1.49700 ν d14 = 81.54
r 27 = -51.5747 (aspherical surface) d 27 = 0.1500
r 28 = 49.4131 d 28 = 5.2625 n d15 = 1.60311 ν d15 = 60.64
r 29 = -13.1129 d 29 = 0.8500 n d16 = 1.84666 ν d16 = 23.78
r 30 = -36.5139 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 11th surface K = 0
A 4 = 3.5400 × 10 -6
A 6 = -7.6377 × 10 -9
A 8 = 4.0209 × 10 -11
A 10 = 0.0000
16th surface K = 0
A 4 = -4.0343 × 10 -7
A 6 = 2.7672 × 10 -8
A 8 = -2.5380 × 10 -10
A 10 = 0.0000
18th face K = 0
A 4 = -2.6388 × 10 -5
A 6 = -1.7329 × 10 -9
A 8 = -1.6305 × 10 -10
A 10 = 0.0000
Surface 27 K = 0
A 4 = -3.4938 × 10 -6
A 6 = -5.9935 × 10 -9
A 8 = -2.8356 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W S T
f (mm) 7.27244 23.30032 74.70039
F NO 2.8000 3.5000 3.5000
ω (°) 38.45 13.05 4.09
d 6 1.36006 31.15403 59.61613
d 14 52.28998 11.32834 1.70314
d 17 17.27794 8.92919 1.02608
d 22 1.50000 6.44912 16.47111
d 25 6.18489 5.46432 6.07561
d 30 2.39700 6.50900 3.82700
.

(実施例19)
1 = 102.8951 d1 = 2.2000 nd1 =1.84666 νd1 =23.78
2 = 61.5389 d2 = 11.0000 nd2 =1.49700 νd2 =81.54
3 = -641.2805 d3 = 0.2750
4 = 51.4180 d4 = 6.1875 nd3 =1.69680 νd3 =55.53
5 = 146.6226 d5 = (可変)
6 = 148.7220 d6 = 1.9010 nd4 =1.83400 νd4 =37.16
7 = 15.1960 d7 = 8.2500
8 = -17.1556 d8 = 1.6500 nd5 =1.80610 νd5 =40.92
9 = 15.0399(非球面) d9 = 2.0625
10= 58.8129 d10= 3.4375 nd6 =1.68893 νd6 =31.07
11= -74.3150 d11= 0.2062
12= 241.0544 d12= 4.8125 nd7 =1.68893 νd7 =31.07
13= -21.3830 d13= (可変)
14= ∞(絞り) d14= (可変)
15= 37.4279(非球面) d15= 3.4375 nd8 =1.49700 νd8 =81.54
16= -462.8778 d16= 0.2062
17= 15.8702 d17= 5.5000 nd9 =1.59551 νd9 =39.24
18= 79.4628 d18= 1.3750 nd10=1.80610 νd10=40.92
19= 14.4884 d19= (可変)
20= 26.6553 d20= 4.1250 nd11=1.83400 νd11=37.16
21= 147.2888 d21= 0.4125
22= 142.7176 d22= 1.3750 nd12=1.84666 νd12=23.78
23= 17.8989 d23= 6.1875 nd13=1.49700 νd13=81.54
24= -22.9886(非球面) d24= (可変)
25= ∞ d25= 23.3750 nd14=1.51633 νd14=64.14
26= ∞ d26= 1.3750
27= ∞ d27= 2.2000 nd15=1.54771 νd15=62.84
28= ∞ d28= 1.3750
29= ∞ d29= 1.0313 nd16=1.52300 νd16=55.00
30= ∞ d30= 3.2468
31= ∞
非球面係数
第9面
K = 0
A4 =-1.4335 ×10-4
A6 = 3.6008 ×10-7
A8 =-1.5707 ×10-9
A10= 0.0000
第15面
K = 0
A4 =-8.3514 ×10-6
A6 =-6.4776 ×10-10
A8 =-1.3217 ×10-11
A10= 0.0000
第24面
K = 0
A4 = 2.1082 ×10-5
A6 = 9.2526 ×10-8
A8 =-1.4509 ×10-9
A10= 6.8600 ×10-12
ズームデータ(∞)
W S T
f (mm) 7.15436 18.83672 50.05002
NO 2.0482 2.3536 2.5012
ω (°) 38.38 15.78 6.16
5 1.37500 23.10024 44.56543
13 53.62605 19.09389 6.13762
14 23.19509 10.31787 3.56923
19 7.00580 12.70882 18.49477
24 1.19821 7.55450 9.33878
(Example 19)
r 1 = 102.8951 d 1 = 2.2000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 61.5389 d 2 = 11.0000 n d2 = 1.49700 ν d2 = 81.54
r 3 = -641.2805 d 3 = 0.2750
r 4 = 51.4180 d 4 = 6.1875 n d3 = 1.69680 ν d3 = 55.53
r 5 = 146.6226 d 5 = (variable)
r 6 = 148.7220 d 6 = 1.9010 n d4 = 1.83400 ν d4 = 37.16
r 7 = 15.1960 d 7 = 8.2500
r 8 = -17.1556 d 8 = 1.6500 n d5 = 1.80610 ν d5 = 40.92
r 9 = 15.0399 (aspherical surface) d 9 = 2.0625
r 10 = 58.8129 d 10 = 3.4375 n d6 = 1.68893 ν d6 = 31.07
r 11 = -74.3150 d 11 = 0.2062
r 12 = 241.0544 d 12 = 4.8125 n d7 = 1.68893 ν d7 = 31.07
r 13 = -21.3830 d 13 = (variable)
r 14 = ∞ (aperture) d 14 = (variable)
r 15 = 37.4279 (aspherical surface) d 15 = 3.4375 n d8 = 1.49700 ν d8 = 81.54
r 16 = -462.8778 d 16 = 0.2062
r 17 = 15.8702 d 17 = 5.5000 n d9 = 1.59551 ν d9 = 39.24
r 18 = 79.4628 d 18 = 1.3750 n d10 = 1.80610 ν d10 = 40.92
r 19 = 14.4884 d 19 = (variable)
r 20 = 26.6553 d 20 = 4.1250 n d11 = 1.83400 ν d11 = 37.16
r 21 = 147.2888 d 21 = 0.4125
r 22 = 142.7176 d 22 = 1.3750 n d12 = 1.84666 ν d12 = 23.78
r 23 = 17.8989 d 23 = 6.1875 n d13 = 1.49700 ν d13 = 81.54
r 24 = -22.9886 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 23.3750 n d14 = 1.51633 ν d14 = 64.14
r 26 = ∞ d 26 = 1.3750
r 27 = ∞ d 27 = 2.2000 n d15 = 1.54771 ν d15 = 62.84
r 28 = ∞ d 28 = 1.3750
r 29 = ∞ d 29 = 1.0313 n d16 = 1.52300 ν d16 = 55.00
r 30 = ∞ d 30 = 3.2468
r 31 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = -1.4335 × 10 -4
A 6 = 3.6008 × 10 -7
A 8 = -1.5707 × 10 -9
A 10 = 0.0000
15th surface K = 0
A 4 = -8.3514 × 10 -6
A 6 = -6.4776 × 10 -10
A 8 = -1.3217 × 10 -11
A 10 = 0.0000
24th face K = 0
A 4 = 2.1082 × 10 -5
A 6 = 9.2526 × 10 -8
A 8 = -1.4509 × 10 -9
A 10 = 6.8600 × 10 -12
Zoom data (∞)
W S T
f (mm) 7.15436 18.83672 50.05002
F NO 2.0482 2.3536 2.5012
ω (°) 38.38 15.78 6.16
d 5 1.37500 23.10024 44.56543
d 13 53.62605 19.09389 6.13762
d 14 23.19509 10.31787 3.56923
d 19 7.00580 12.70882 18.49477
d 24 1.19821 7.55450 9.33878
.

(実施例20)
1 = 155.9824 d1 = 1.7875 nd1 =1.84666 νd1 =23.78
2 = 61.8424 d2 = 11.0000 nd2 =1.61800 νd2 =63.33
3 = -600.9530 d3 = 0.2750
4 = 47.5178 d4 = 6.1875 nd3 =1.69680 νd3 =55.53
5 = 121.5999 d5 = (可変)
6 = 119.2914 d6 = 1.3750 nd4 =1.80610 νd4 =40.92
7 = 13.2227(非球面) d7 = 8.2500
8 = -32.4710 d8 = 1.6500 nd5 =1.83400 νd5 =37.16
9 = 39.0123 d9 = 1.3750
10= 165.6443 d10= 1.3750 nd6 =1.57501 νd6 =41.50
11= 20.0406 d11= 7.1500 nd7 =1.75520 νd7 =27.51
12= -48.8507 d12= (可変)
13= ∞(絞り) d13= (可変)
14= 30.8548 d14= 3.4375 nd8 =1.80518 νd8 =25.42
15= -89.0085 d15= 0.2062
16= 38.9337(非球面) d16= 4.4000 nd9 =1.80610 νd9 =40.92
17= -94.3851 d17= 1.3750 nd10=1.84666 νd10=23.78
18= 32.5308 d18= (可変)
19= -57.6645 d19= 2.7500 nd11=1.77250 νd11=49.60
20= -47.1601 d20= 1.3750 nd12=1.60342 νd12=38.03
21= 30.6668 d21= (可変)
22= -228.3337 d22= 1.3750 nd13=1.84666 νd13=23.78
23= 19.0716 d23= 6.1875 nd14=1.49700 νd14=81.54
24= -31.2823(非球面) d24= 0.2062
25= 36.1622 d25= 6.1875 nd15=1.69350 νd15=53.21
26= -35.8359 d26= (可変)
27= ∞ d27= 23.3750 nd16=1.51633 νd16=64.14
28= ∞ d28= 1.3750
29= ∞ d29= 2.2000 nd17=1.54771 νd17=62.84
30= ∞ d30= 1.3750
31= ∞ d31= 1.0313 nd18=1.52300 νd18=55.00
32= ∞ d32= 3.2377
33= ∞
非球面係数
第7面
K = 0
A4 =-2.0811 ×10-5
A6 =-9.3584 ×10-10
A8 =-9.2039 ×10-10
A10= 0.0000
第16面
K = 0
A4 =-9.0277 ×10-6
A6 = 2.1013 ×10-8
A8 =-5.4554 ×10-10
A10= 2.6012 ×10-12
第24面
K = 0
A4 =-1.8657 ×10-6
A6 = 2.3003 ×10-8
A8 =-5.0119 ×10-10
A10= 0.0000
ズームデータ(∞)
W S T
f (mm) 7.16206 18.83631 50.04733
NO 2.0290 2.3673 2.8226
ω (°) 38.34 15.98 6.16
5 1.37500 20.39279 42.36136
12 49.98780 14.95968 7.89768
13 20.74150 12.47266 4.81483
18 2.75692 5.61404 10.58915
21 7.73772 5.38351 6.87877
26 2.75000 9.90480 11.70852
(Example 20)
r 1 = 155.9824 d 1 = 1.7875 n d1 = 1.84666 ν d1 = 23.78
r 2 = 61.8424 d 2 = 11.0000 n d2 = 1.61800 ν d2 = 63.33
r 3 = -600.9530 d 3 = 0.2750
r 4 = 47.5178 d 4 = 6.1875 n d3 = 1.69680 ν d3 = 55.53
r 5 = 121.5999 d 5 = (variable)
r 6 = 119.2914 d 6 = 1.3750 n d4 = 1.80610 ν d4 = 40.92
r 7 = 13.2227 (aspherical surface) d 7 = 8.2500
r 8 = -32.4710 d 8 = 1.6500 n d5 = 1.83400 ν d5 = 37.16
r 9 = 39.0123 d 9 = 1.3750
r 10 = 165.6443 d 10 = 1.3750 n d6 = 1.57501 ν d6 = 41.50
r 11 = 20.0406 d 11 = 7.1500 n d7 = 1.75520 ν d7 = 27.51
r 12 = -48.8507 d 12 = (variable)
r 13 = ∞ (aperture) d 13 = (variable)
r 14 = 30.8548 d 14 = 3.4375 n d8 = 1.80518 ν d8 = 25.42
r 15 = -89.0085 d 15 = 0.2062
r 16 = 38.9337 (aspherical surface) d 16 = 4.4000 n d9 = 1.80610 ν d9 = 40.92
r 17 = -94.3851 d 17 = 1.3750 n d10 = 1.84666 ν d10 = 23.78
r 18 = 32.5308 d 18 = (variable)
r 19 = -57.6645 d 19 = 2.7500 n d11 = 1.77250 ν d11 = 49.60
r 20 = -47.1601 d 20 = 1.3750 n d12 = 1.60342 ν d12 = 38.03
r 21 = 30.6668 d 21 = (variable)
r 22 = -228.3337 d 22 = 1.3750 n d13 = 1.84666 ν d13 = 23.78
r 23 = 19.0716 d 23 = 6.1875 n d14 = 1.49700 ν d14 = 81.54
r 24 = -31.2823 (aspherical surface) d 24 = 0.2062
r 25 = 36.1622 d 25 = 6.1875 n d15 = 1.69350 ν d15 = 53.21
r 26 = -35.8359 d 26 = (variable)
r 27 = ∞ d 27 = 23.3750 n d16 = 1.51633 ν d16 = 64.14
r 28 = ∞ d 28 = 1.3750
r 29 = ∞ d 29 = 2.2000 n d17 = 1.54771 ν d17 = 62.84
r 30 = ∞ d 30 = 1.3750
r 31 = ∞ d 31 = 1.0313 n d18 = 1.52300 ν d18 = 55.00
r 32 = ∞ d 32 = 3.2377
r 33 = ∞
Aspheric coefficient 7th surface K = 0
A 4 = -2.0811 × 10 -5
A 6 = -9.3584 × 10 -10
A 8 = -9.2039 × 10 -10
A 10 = 0.0000
16th surface K = 0
A 4 = -9.0277 × 10 -6
A 6 = 2.1013 × 10 -8
A 8 = -5.4554 × 10 -10
A 10 = 2.6012 × 10 -12
24th face K = 0
A 4 = -1.8657 × 10 -6
A 6 = 2.3003 × 10 -8
A 8 = -5.0119 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W S T
f (mm) 7.16206 18.83631 50.04733
F NO 2.0290 2.3673 2.8226
ω (°) 38.34 15.98 6.16
d 5 1.37500 20.39279 42.36136
d 12 49.98780 14.95968 7.89768
d 13 20.74150 12.47266 4.81483
d 18 2.75692 5.61404 10.58915
d 21 7.73772 5.38351 6.87877
d 26 2.75000 9.90480 11.70852
.

(実施例21)
1 = 104.3405 d1 = 2.2000 nd1 =1.84666 νd1 =23.78
2 = 59.5725 d2 = 11.0000 nd2 =1.49700 νd2 =81.54
3 = -1321.3547 d3 = 0.2750
4 = 47.5960 d4 = 6.1875 nd3 =1.69680 νd3 =55.53
5 = 136.8909 d5 = (可変)
6 = 140.6680 d6 = 1.9010 nd4 =1.80610 νd4 =40.92
7 = 13.7491(非球面) d7 = 6.1875
8 = -60.0958 d8 = 1.6500 nd5 =1.83400 νd5 =37.16
9 = 61.9207 d9 = 4.1250
10= -21.5206 d10= 1.3750 nd6 =1.63930 νd6 =44.87
11= 56.5075 d11= 3.4375
12= 96.6074 d12= 5.5000 nd7 =1.80100 νd7 =34.97
13= -25.9673 d13= (可変)
14= ∞(絞り) d14= 2.7500
15= -40.0734 d15= 1.2375 nd8 =1.60311 νd8 =60.64
16= -78.4453 d16= (可変)
17= 34.7554 d17= 4.8125 nd9 =1.80809 νd9 =22.76
18= 1028.4306 d18= 0.2062
19= 60.9355(非球面) d19= 4.4000 nd10=1.80610 νd10=40.92
20= -29.1117 d20= 1.3750 nd11=1.84666 νd11=23.78
21= 127.3373 d21= (可変)
22= 32.2756 d22= 2.7500 nd12=1.60342 νd12=38.03
23= 145.1897 d23= 1.3750 nd13=1.77250 νd13=49.60
24= 16.7202 d24= (可変)
25= 33.5170 d25= 7.5625 nd14=1.49700 νd14=81.54
26= -27.9038(非球面) d26= 0.2062
27= 69.1174 d27= 1.3750 nd15=1.84666 νd15=23.78
28= 19.6221 d28= 6.1875 nd16=1.49700 νd16=81.54
29= -57.6668 d29= (可変)
30= ∞ d30= 23.3750 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.3750
32= ∞ d32= 2.2000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.3750
34= ∞ d34= 1.0313 nd19=1.52300 νd19=55.00
35= ∞ d35= 3.2477
36= ∞
非球面係数
第7面
K = 0
A4 =-9.7269 ×10-6
A6 =-1.1309 ×10-7
A8 = 6.4969 ×10-10
A10= 0.0000
第19面
K = 0
A4 =-7.1713 ×10-6
A6 =-1.9289 ×10-9
A8 =-3.9414 ×10-11
A10= 2.4197 ×10-13
第26面
K = 0
A4 =-5.4190 ×10-7
A6 =-2.7019 ×10-8
A8 =-3.8924 ×10-11
A10= 0.0000
ズームデータ(∞)
W S T
f (mm) 7.14571 18.85522 50.04974
NO 2.0047 2.3661 2.8509
ω (°) 38.44 15.98 6.16
5 1.37500 21.94583 42.47373
13 50.65754 14.25486 5.45806
16 21.33520 12.38223 5.88901
21 2.74731 5.18781 10.57000
24 7.02907 7.05019 6.86418
29 2.75000 9.01050 10.53508
(Example 21)
r 1 = 104.3405 d 1 = 2.2000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 59.5725 d 2 = 11.0000 n d2 = 1.49700 ν d2 = 81.54
r 3 = -1321.3547 d 3 = 0.2750
r 4 = 47.5960 d 4 = 6.1875 n d3 = 1.69680 ν d3 = 55.53
r 5 = 136.8909 d 5 = (variable)
r 6 = 140.6680 d 6 = 1.9010 n d4 = 1.80610 ν d4 = 40.92
r 7 = 13.7491 (aspherical surface) d 7 = 6.1875
r 8 = -60.0958 d 8 = 1.6500 n d5 = 1.83400 ν d5 = 37.16
r 9 = 61.9207 d 9 = 4.1250
r 10 = -21.5206 d 10 = 1.3750 n d6 = 1.63930 ν d6 = 44.87
r 11 = 56.5075 d 11 = 3.4375
r 12 = 96.6074 d 12 = 5.5000 n d7 = 1.80100 ν d7 = 34.97
r 13 = -25.9673 d 13 = (variable)
r 14 = ∞ (aperture) d 14 = 2.7500
r 15 = -40.0734 d 15 = 1.2375 n d8 = 1.60311 ν d8 = 60.64
r 16 = -78.4453 d 16 = (variable)
r 17 = 34.7554 d 17 = 4.8125 n d9 = 1.80809 ν d9 = 22.76
r 18 = 1028.4306 d 18 = 0.2062
r 19 = 60.9355 (aspheric surface) d 19 = 4.4000 n d10 = 1.80610 ν d10 = 40.92
r 20 = -29.1117 d 20 = 1.3750 n d11 = 1.84666 ν d11 = 23.78
r 21 = 127.3373 d 21 = (variable)
r 22 = 32.2756 d 22 = 2.7500 n d12 = 1.60342 ν d12 = 38.03
r 23 = 145.1897 d 23 = 1.3750 n d13 = 1.77250 ν d13 = 49.60
r 24 = 16.7202 d 24 = (variable)
r 25 = 33.5170 d 25 = 7.5625 n d14 = 1.49700 ν d14 = 81.54
r 26 = -27.9038 (aspherical surface) d 26 = 0.2062
r 27 = 69.1174 d 27 = 1.3750 n d15 = 1.84666 ν d15 = 23.78
r 28 = 19.6221 d 28 = 6.1875 n d16 = 1.49700 ν d16 = 81.54
r 29 = -57.6668 d 29 = (variable)
r 30 = ∞ d 30 = 23.3750 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.3750
r 32 = ∞ d 32 = 2.2000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.3750
r 34 = ∞ d 34 = 1.0313 n d19 = 1.52300 ν d19 = 55.00
r 35 = ∞ d 35 = 3.2477
r 36 = ∞
Aspheric coefficient 7th surface K = 0
A 4 = -9.7269 × 10 -6
A 6 = -1.1309 × 10 -7
A 8 = 6.4969 × 10 -10
A 10 = 0.0000
19th face K = 0
A 4 = -7.1713 × 10 -6
A 6 = -1.9289 × 10 -9
A 8 = -3.9414 × 10 -11
A 10 = 2.4197 × 10 -13
26th face K = 0
A 4 = -5.4190 × 10 -7
A 6 = -2.7019 × 10 -8
A 8 = -3.8924 × 10 -11
A 10 = 0.0000
Zoom data (∞)
W S T
f (mm) 7.14571 18.85522 50.04974
F NO 2.0047 2.3661 2.8509
ω (°) 38.44 15.98 6.16
d 5 1.37500 21.94583 42.47373
d 13 50.65754 14.25486 5.45806
d 16 21.33520 12.38223 5.88901
d 21 2.74731 5.18781 10.57000
d 24 7.02907 7.05019 6.86418
d 29 2.75000 9.01050 10.53508
.

(実施例22)
1 = 131.8770 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 77.6142 d2 = 0.2000
3 = 80.8510 d3 = 6.3796 nd2 =1.49700 νd2 =81.54
4 = -2977.8302 d4 = 0.2000
5 = 67.0321 d5 = 5.0727 nd3 =1.69680 νd3 =55.53
6 = 266.3144 d6 = (可変)
7 = 1181.5043 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 17.1175 d8 = 8.6482
9 = -77.8867(非球面) d9 = 0.2000 nd5 =1.53508 νd5 =40.94
10= -246.1158 d10= 1.3000 nd6 =1.77250 νd6 =49.60
11= 430.0786 d11= 4.1745
12= -24.0715 d12= 1.1790 nd7 =1.48749 νd7 =70.23
13= -346.5320 d13= 4.4844 nd8 =1.84666 νd8 =23.78
14= -42.2965 d14= (可変)
15= -13.2198 d15= 1.3000 nd9 =1.77250 νd9 =49.60
16= -14.9920 d16= 1.0969
17= ∞(絞り) d17= (可変)
18= 23.9865(非球面) d18= 5.3859 nd10=1.49700 νd10=81.54
19= -62.7302 d19= 0.4217
20= 65.9532 d20= 1.1010 nd11=1.80610 νd11=40.92
21= 18.5852 d21= 5.1465 nd12=1.49700 νd12=81.54
22= -44.8828 d22= (可変)
23= -97.1974 d23= 0.9000 nd13=1.51633 νd13=64.14
24= 13.4425 d24= 3.0840 nd14=1.84666 νd14=23.78
25= 18.2242 d25= (可変)
26= 22.8739(非球面) d26= 4.4524 nd15=1.49700 νd15=81.54
27= -32.9476 d27= 0.1500
28= 111.9927 d28= 3.9237 nd16=1.61800 νd16=63.33
29= -19.6931 d29= 1.0000 nd17=1.84666 νd17=23.78
30= -150.1546 d30= (可変)
31= ∞ d31= 16.0000 nd18=1.51633 νd18=64.14
32= ∞ d32= 1.0000
33= ∞ d33= 2.6000 nd19=1.54771 νd19=62.84
34= ∞ d34= 1.0000
35= ∞ d35= 0.7500 nd20=1.51633 νd20=64.14
36= ∞ d36= 1.2400
37= ∞
非球面係数
第9面
K = 0
A4 = 2.1755 ×10-5
A6 = 7.8908 ×10-8
A8 =-3.9978 ×10-10
A10= 1.3455 ×10-12
第18面
K = 0
A4 =-1.6485 ×10-5
A6 = 1.0262 ×10-8
A8 =-3.9805 ×10-10
A10= 3.5368 ×10-12
第26面
K = 0
A4 =-1.4825 ×10-5
A6 =-5.9281 ×10-8
A8 = 7.7542 ×10-10
A10=-4.4522 ×10-12
ズームデータ(∞)
W WS S ST T
f (mm) 7.25994 12.99981 23.29962 41.72909 74.74765
NO 2.8000 3.3689 3.5000 3.5000 3.5000
ω (°) 38.50 . 13.16 . 4.16
6 1.61417 10.64862 30.77400 47.23205 58.71613
14 44.70529 23.26327 13.31755 6.20175 2.00079
17 17.54504 10.44417 7.81832 5.52178 1.09606
22 1.50000 7.82981 12.51540 16.74044 22.56134
25 10.82401 10.71984 7.99123 5.55224 4.75986
30 4.54790 5.42312 6.09200 6.60249 5.99969
(Example 22)
r 1 = 131.8770 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 77.6142 d 2 = 0.2000
r 3 = 80.8510 d 3 = 6.3796 n d2 = 1.49700 ν d2 = 81.54
r 4 = -2977.8302 d 4 = 0.2000
r 5 = 67.0321 d 5 = 5.0727 n d3 = 1.69680 ν d3 = 55.53
r 6 = 266.3144 d 6 = (variable)
r 7 = 1181.5043 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 17.1175 d 8 = 8.6482
r 9 = -77.8867 (aspherical surface) d 9 = 0.2000 n d5 = 1.53508 ν d5 = 40.94
r 10 = -246.1158 d 10 = 1.3000 n d6 = 1.77250 ν d6 = 49.60
r 11 = 430.0786 d 11 = 4.1745
r 12 = -24.0715 d 12 = 1.1790 n d7 = 1.48749 ν d7 = 70.23
r 13 = -346.5320 d 13 = 4.4844 n d8 = 1.84666 ν d8 = 23.78
r 14 = -42.2965 d 14 = (variable)
r 15 = -13.2198 d 15 = 1.3000 n d9 = 1.77250 ν d9 = 49.60
r 16 = -14.9920 d 16 = 1.0969
r 17 = ∞ (aperture) d 17 = (variable)
r 18 = 23.9865 (aspherical surface) d 18 = 5.3859 n d10 = 1.49700 ν d10 = 81.54
r 19 = -62.7302 d 19 = 0.4217
r 20 = 65.9532 d 20 = 1.1010 n d11 = 1.80610 ν d11 = 40.92
r 21 = 18.5852 d 21 = 5.1465 n d12 = 1.49700 ν d12 = 81.54
r 22 = -44.8828 d 22 = (variable)
r 23 = -97.1974 d 23 = 0.9000 n d13 = 1.51633 ν d13 = 64.14
r 24 = 13.4425 d 24 = 3.0840 n d14 = 1.84666 ν d14 = 23.78
r 25 = 18.2242 d 25 = (variable)
r 26 = 22.8739 (aspherical surface) d 26 = 4.4524 n d15 = 1.49700 ν d15 = 81.54
r 27 = -32.9476 d 27 = 0.1500
r 28 = 111.9927 d 28 = 3.9237 n d16 = 1.61800 ν d16 = 63.33
r 29 = -19.6931 d 29 = 1.0000 n d17 = 1.84666 ν d17 = 23.78
r 30 = -150.1546 d 30 = (variable)
r 31 = ∞ d 31 = 16.0000 n d18 = 1.51633 ν d18 = 64.14
r 32 = ∞ d 32 = 1.0000
r 33 = ∞ d 33 = 2.6000 n d19 = 1.54771 ν d19 = 62.84
r 34 = ∞ d 34 = 1.0000
r 35 = ∞ d 35 = 0.7500 n d20 = 1.51633 ν d20 = 64.14
r 36 = ∞ d 36 = 1.2400
r 37 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 2.1755 × 10 -5
A 6 = 7.8908 × 10 -8
A 8 = -3.9978 × 10 -10
A 10 = 1.3455 × 10 -12
18th face K = 0
A 4 = -1.6485 × 10 -5
A 6 = 1.0262 × 10 -8
A 8 = -3.9805 × 10 -10
A 10 = 3.5368 × 10 -12
26th face K = 0
A 4 = -1.4825 × 10 -5
A 6 = -5.9281 × 10 -8
A 8 = 7.7542 × 10 -10
A 10 = -4.4522 × 10 -12
Zoom data (∞)
W WS S ST T
f (mm) 7.25994 12.99981 23.29962 41.72909 74.74765
F NO 2.8000 3.3689 3.5000 3.5000 3.5000
ω (°) 38.50. 13.16. 4.16
d 6 1.61417 10.64862 30.77400 47.23205 58.71613
d 14 44.70529 23.26327 13.31755 6.20175 2.00079
d 17 17.54504 10.44417 7.81832 5.52178 1.09606
d 22 1.50000 7.82981 12.51540 16.74044 22.56134
d 25 10.82401 10.71984 7.99123 5.55224 4.75986
d 30 4.54790 5.42312 6.09200 6.60249 5.99969
.

(実施例23)
1 = 120.4727 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 73.3708 d2 = 0.2000
3 = 76.1454 d3 = 6.5370 nd2 =1.49700 νd2 =81.54
4 = 2489.4366 d4 = 0.2000
5 = 67.2263 d5 = 5.1710 nd3 =1.69680 νd3 =55.53
6 = 274.6988 d6 = (可変)
7 = 714.7087 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 16.1327 d8 = 8.7770
9 = -81.5087(非球面) d9 = 1.5000 nd5 =1.69350 νd5 =53.20
10= -1305.7058 d10= 4.0368
11= -20.2734 d11= 1.1790 nd6 =1.48749 νd6 =70.23
12= -62.9405 d12= 4.8993 nd7 =1.84666 νd7 =23.78
13= -30.8273 d13= (可変)
14= -15.4268 d14= 1.3000 nd8 =1.77250 νd8 =49.60
15= -18.4448 d15= 1.1025
16= ∞(絞り) d16= (可変)
17= 25.1535(非球面) d17= 5.5136 nd9 =1.49700 νd9 =81.54
18= -55.2846 d18= 1.5487
19= 64.5304 d19= 1.1010 nd10=1.80610 νd10=40.92
20= 18.9507 d20= 5.1163 nd11=1.49700 νd11=81.54
21= -43.1776 d21= (可変)
22= -77.9341 d22= 0.9000 nd12=1.51633 νd12=64.14
23= 13.4277 d23= 3.4850 nd13=1.84666 νd13=23.78
24= 17.9962 d24= (可変)
25= 21.5792(非球面) d25= 4.5936 nd14=1.49700 νd14=81.54
26= -34.1855 d26= 0.1500
27= 300.7621 d27= 4.4791 nd15=1.61800 νd15=63.33
28= -17.4341 d28= 1.0000 nd16=1.84666 νd16=23.78
29= -75.6852 d29= (可変)
30= ∞ d30= 16.0000 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.0000
32= ∞ d32= 2.6000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.0000
34= ∞ d34= 0.7500 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.2400
36= ∞
非球面係数
第9面
K = 0
A4 = 1.8629 ×10-5
A6 = 6.9168 ×10-8
A8 =-2.7327 ×10-10
A10= 1.2121 ×10-12
第17面
K = 0
A4 =-1.6089 ×10-5
A6 =-2.0073 ×10-8
A8 = 3.8142 ×10-10
A10=-2.1082 ×10-12
第25面
K = 0
A4 =-1.5463 ×10-5
A6 =-2.6231 ×10-8
A8 = 2.4043 ×10-10
A10=-9.6547 ×10-13
ズームデータ(∞)
W S T
f (mm) 7.25982 23.29910 74.74396
NO 2.8000 3.5000 3.5000
ω (°) 40.41 14.08 4.46
6 1.59627 31.97645 59.22440
13 44.75692 12.18599 2.03777
16 17.39564 8.62546 1.04694
21 1.58062 11.29335 21.65579
24 9.55837 6.83300 4.68713
29 4.66609 6.44892 5.81086
(Example 23)
r 1 = 120.4727 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 73.3708 d 2 = 0.2000
r 3 = 76.1454 d 3 = 6.5370 n d2 = 1.49700 ν d2 = 81.54
r 4 = 2489.4366 d 4 = 0.2000
r 5 = 67.2263 d 5 = 5.1710 n d3 = 1.69680 ν d3 = 55.53
r 6 = 274.6988 d 6 = (variable)
r 7 = 714.7087 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 16.1327 d 8 = 8.7770
r 9 = -81.5087 (aspherical surface) d 9 = 1.5000 n d5 = 1.69350 ν d5 = 53.20
r 10 = -1305.7058 d 10 = 4.0368
r 11 = -20.2734 d 11 = 1.1790 n d6 = 1.48749 ν d6 = 70.23
r 12 = -62.9405 d 12 = 4.8993 n d7 = 1.84666 ν d7 = 23.78
r 13 = -30.8273 d 13 = (variable)
r 14 = -15.4268 d 14 = 1.3000 n d8 = 1.77250 ν d8 = 49.60
r 15 = -18.4448 d 15 = 1.1025
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 25.1535 (aspherical surface) d 17 = 5.5136 n d9 = 1.49700 ν d9 = 81.54
r 18 = -55.2846 d 18 = 1.5487
r 19 = 64.5304 d 19 = 1.1010 n d10 = 1.80610 ν d10 = 40.92
r 20 = 18.9507 d 20 = 5.1163 n d11 = 1.49700 ν d11 = 81.54
r 21 = -43.1776 d 21 = (variable)
r 22 = -77.9341 d 22 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 23 = 13.4277 d 23 = 3.4850 n d13 = 1.84666 ν d13 = 23.78
r 24 = 17.9962 d 24 = (variable)
r 25 = 21.5792 (aspherical surface) d 25 = 4.5936 n d14 = 1.49700 ν d14 = 81.54
r 26 = -34.1855 d 26 = 0.1500
r 27 = 300.7621 d 27 = 4.4791 n d15 = 1.61800 ν d15 = 63.33
r 28 = -17.4341 d 28 = 1.0000 n d16 = 1.84666 ν d16 = 23.78
r 29 = -75.6852 d 29 = (variable)
r 30 = ∞ d 30 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.0000
r 32 = ∞ d 32 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.2400
r 36 = ∞
Aspheric coefficient 9th surface K = 0
A 4 = 1.8629 × 10 -5
A 6 = 6.9168 × 10 -8
A 8 = -2.7327 × 10 -10
A 10 = 1.2121 × 10 -12
Surface 17 K = 0
A 4 = -1.6089 × 10 -5
A 6 = -2.0073 × 10 -8
A 8 = 3.8142 × 10 -10
A 10 = -2.1082 × 10 -12
25th face K = 0
A 4 = -1.5463 × 10 -5
A 6 = -2.6231 × 10 -8
A 8 = 2.4043 × 10 -10
A 10 = -9.6547 × 10 -13
Zoom data (∞)
W S T
f (mm) 7.25982 23.29910 74.74396
F NO 2.8000 3.5000 3.5000
ω (°) 40.41 14.08 4.46
d 6 1.59627 31.97645 59.22440
d 13 44.75692 12.18599 2.03777
d 16 17.39564 8.62546 1.04694
d 21 1.58062 11.29335 21.65579
d 24 9.55837 6.83300 4.68713
d 29 4.66609 6.44892 5.81086
.

(実施例24)
1 = 128.7222 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 76.5762 d2 = 0.1990
3 = 79.6940 d3 = 6.4626 nd2 =1.49700 νd2 =81.54
4 = -2955.9452 d4 = 0.2000
5 = 67.1272 d5 = 5.0669 nd3 =1.69680 νd3 =55.53
6 = 263.8928 d6 = (可変)
7 = 380.2582 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 15.9616 d8 = 8.7181
9 = -59.9828 d9 = 1.5000 nd5 =1.69350 νd5 =53.20
10= -301.9443(非球面) d10= 3.8167
11= -20.5627 d11= 1.1790 nd6 =1.48749 νd6 =70.23
12= -59.0207 d12= 5.1126 nd7 =1.84666 νd7 =23.78
13= -30.2745 d13= (可変)
14= -15.4364 d14= 1.3000 nd8 =1.77250 νd8 =49.60
15= -18.6107 d15= 1.1009
16= ∞(絞り) d16= (可変)
17= 25.8357(非球面) d17= 5.4824 nd9 =1.49700 νd9 =81.54
18= -58.3524 d18= 1.9683
19= 67.3450 d19= 1.1010 nd10=1.80610 νd10=40.92
20= 19.5738 d20= 5.1220 nd11=1.49700 νd11=81.54
21= -40.5031 d21= (可変)
22= -94.9007 d22= 0.9000 nd12=1.51633 νd12=64.14
23= 13.4666 d23= 3.4715 nd13=1.84666 νd13=23.78
24= 17.9806 d24= (可変)
25= 20.7610(非球面) d25= 4.5646 nd14=1.49700 νd14=81.54
26= -34.2142 d26= 0.1500
27= 513.7109 d27= 4.4703 nd15=1.61800 νd15=63.33
28= -17.8110 d28= 1.0000 nd16=1.84666 νd16=23.78
29= -83.6823 d29= (可変)
30= ∞ d30= 16.0000 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.0000
32= ∞ d32= 2.6000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.0000
34= ∞ d34= 0.7500 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.2400
36= ∞
非球面係数
第10面
K = 0
A4 =-1.7426 ×10-5
A6 =-6.5228 ×10-8
A8 = 2.7392 ×10-10
A10=-7.9412 ×10-13
第17面
K = 0
A4 =-1.6148 ×10-5
A6 = 6.2346 ×10-9
A8 =-1.2987 ×10-10
A10= 1.1435 ×10-12
第25面
K = 0
A4 =-1.7043 ×10-5
A6 =-3.2560 ×10-8
A8 = 2.8184 ×10-10
A10=-1.6473 ×10-12
ズームデータ(∞)
W S T
f (mm) 7.25999 23.30005 74.75174
NO 2.8000 3.5000 3.5000
ω (°) 38.46 13.17 4.17
6 1.60767 32.04855 59.57895
13 44.71134 12.27559 2.02865
16 17.18153 8.38526 1.03922
21 1.50000 11.41739 21.29066
24 9.89355 6.80745 4.59258
29 4.61028 6.57526 6.26289
(Example 24)
r 1 = 128.7222 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 76.5762 d 2 = 0.1990
r 3 = 79.6940 d 3 = 6.4626 n d2 = 1.49700 ν d2 = 81.54
r 4 = -2955.9452 d 4 = 0.2000
r 5 = 67.1272 d 5 = 5.0669 n d3 = 1.69680 ν d3 = 55.53
r 6 = 263.8928 d 6 = (variable)
r 7 = 380.2582 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 15.9616 d 8 = 8.7181
r 9 = -59.9828 d 9 = 1.5000 n d5 = 1.69350 ν d5 = 53.20
r 10 = -301.9443 (aspherical surface) d 10 = 3.8167
r 11 = -20.5627 d 11 = 1.1790 n d6 = 1.48749 ν d6 = 70.23
r 12 = -59.0207 d 12 = 5.1126 n d7 = 1.84666 ν d7 = 23.78
r 13 = -30.2745 d 13 = (variable)
r 14 = -15.4364 d 14 = 1.3000 n d8 = 1.77250 ν d8 = 49.60
r 15 = -18.6107 d 15 = 1.1009
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 25.8357 (aspherical surface) d 17 = 5.4824 n d9 = 1.49700 ν d9 = 81.54
r 18 = -58.3524 d 18 = 1.9683
r 19 = 67.3450 d 19 = 1.1010 n d10 = 1.80610 ν d10 = 40.92
r 20 = 19.5738 d 20 = 5.1220 n d11 = 1.49700 ν d11 = 81.54
r 21 = -40.5031 d 21 = (variable)
r 22 = -94.9007 d 22 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 23 = 13.4666 d 23 = 3.4715 n d13 = 1.84666 ν d13 = 23.78
r 24 = 17.9806 d 24 = (variable)
r 25 = 20.7610 (aspherical surface) d 25 = 4.5646 n d14 = 1.49700 ν d14 = 81.54
r 26 = -34.2142 d 26 = 0.1500
r 27 = 513.7109 d 27 = 4.4703 n d15 = 1.61800 ν d15 = 63.33
r 28 = -17.8110 d 28 = 1.0000 n d16 = 1.84666 ν d16 = 23.78
r 29 = -83.6823 d 29 = (variable)
r 30 = ∞ d 30 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.0000
r 32 = ∞ d 32 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.2400
r 36 = ∞
Aspheric coefficient 10th surface K = 0
A 4 = -1.7426 × 10 -5
A 6 = -6.5228 × 10 -8
A 8 = 2.7392 × 10 -10
A 10 = -7.9412 × 10 -13
Surface 17 K = 0
A 4 = -1.6148 × 10 -5
A 6 = 6.2346 × 10 -9
A 8 = -1.2987 × 10 -10
A 10 = 1.1435 × 10 -12
25th face K = 0
A 4 = -1.7043 × 10 -5
A 6 = -3.2560 × 10 -8
A 8 = 2.8184 × 10 -10
A 10 = -1.6473 × 10 -12
Zoom data (∞)
W S T
f (mm) 7.25999 23.30005 74.75174
F NO 2.8000 3.5000 3.5000
ω (°) 38.46 13.17 4.17
d 6 1.60767 32.04855 59.57895
d 13 44.71134 12.27559 2.02865
d 16 17.18153 8.38526 1.03922
d 21 1.50000 11.41739 21.29066
d 24 9.89355 6.80745 4.59258
d 29 4.61028 6.57526 6.26289
.

(実施例25)
1 = 125.0583 d1 = 2.6000 nd1 =1.84666 νd1 =23.78
2 = 75.8265 d2 = 0.2052
3 = 78.8734 d3 = 6.6854 nd2 =1.49700 νd2 =81.54
4 = -1567.5318 d4 = 0.2000
5 = 66.2728 d5 = 5.0118 nd3 =1.69680 νd3 =55.53
6 = 235.6712 d6 = (可変)
7 = 304.4445 d7 = 1.7000 nd4 =1.77250 νd4 =49.60
8 = 16.9298 d8 = 8.3012
9 = -67.4212 d9 = 1.5000 nd5 =1.77250 νd5 =49.60
10= 58.4741 d10= 4.0559
11= -33.1641 d11= 1.1790 nd6 =1.48749 νd6 =70.23
12= 123.4460 d12= 4.7343 nd7 =1.68893 νd7 =31.07
13= -32.8044(非球面) d13= (可変)
14= -13.3788 d14= 1.3000 nd8 =1.77250 νd8 =49.60
15= -14.1982 d15= 0.9997
16= ∞(絞り) d16= (可変)
17= 21.1913(非球面) d17= 5.3343 nd9 =1.49700 νd9 =81.54
18= -53.8005 d18= 0.3147
19= 53.6050 d19= 1.1010 nd10=1.80610 νd10=40.92
20= 16.0840 d20= 5.1135 nd11=1.49700 νd11=81.54
21= -142.9938 d21= (可変)
22= -42.8783 d22= 0.9000 nd12=1.51633 νd12=64.14
23= 13.9697 d23= 3.3288 nd13=1.84666 νd13=23.78
24= 21.2945 d24= (可変)
25= 31.1501(非球面) d25= 4.3266 nd14=1.49700 νd14=81.54
26= -23.5905 d26= 0.1500
27= 911.4978 d27= 4.2792 nd15=1.61800 νd15=63.33
28= -15.3539 d28= 1.0000 nd16=1.84666 νd16=23.78
29= -50.5690 d29= (可変)
30= ∞ d30= 16.0000 nd17=1.51633 νd17=64.14
31= ∞ d31= 1.0000
32= ∞ d32= 2.6000 nd18=1.54771 νd18=62.84
33= ∞ d33= 1.0000
34= ∞ d34= 0.7500 nd19=1.51633 νd19=64.14
35= ∞ d35= 1.2400
36= ∞
非球面係数
第13面
K = 0
A4 =-7.0043 ×10-6
A6 =-5.4249 ×10-9
A8 = 3.0262 ×10-12
A10= 0.0000
第17面
K = 0
A4 =-1.8414 ×10-5
A6 =-1.4788 ×10-8
A8 = 5.9114 ×10-11
A10= 0.0000
第25面
K = 0
A4 =-2.1192 ×10-5
A6 =-1.3690 ×10-8
A8 = 1.3573 ×10-10
A10= 0.0000
ズームデータ(∞)
W S T
f (mm) 2.8000 3.5000 3.5000
NO 7.26001 23.29997 74.74863
ω (°) 38.37 13.00 4.12
6 1.71542 30.14291 58.15917
13 44.90072 12.40034 2.55088
16 19.05859 8.36633 0.99888
21 1.50000 12.21200 22.72088
24 8.15011 6.36382 5.19171
29 4.65995 6.42650 4.45718
(Example 25)
r 1 = 125.0583 d 1 = 2.6000 n d1 = 1.84666 ν d1 = 23.78
r 2 = 75.8265 d 2 = 0.2052
r 3 = 78.8734 d 3 = 6.6854 n d2 = 1.49700 ν d2 = 81.54
r 4 = -1567.5318 d 4 = 0.2000
r 5 = 66.2728 d 5 = 5.0118 n d3 = 1.69680 ν d3 = 55.53
r 6 = 235.6712 d 6 = (variable)
r 7 = 304.4445 d 7 = 1.7000 n d4 = 1.77250 ν d4 = 49.60
r 8 = 16.9298 d 8 = 8.3012
r 9 = -67.4212 d 9 = 1.5000 n d5 = 1.77250 ν d5 = 49.60
r 10 = 58.4741 d 10 = 4.0559
r 11 = -33.1641 d 11 = 1.1790 n d6 = 1.48749 ν d6 = 70.23
r 12 = 123.4460 d 12 = 4.7343 n d7 = 1.68893 ν d7 = 31.07
r 13 = -32.8044 (aspherical surface) d 13 = (variable)
r 14 = -13.3788 d 14 = 1.3000 n d8 = 1.77250 ν d8 = 49.60
r 15 = -14.1982 d 15 = 0.9997
r 16 = ∞ (aperture) d 16 = (variable)
r 17 = 21.1913 (aspherical surface) d 17 = 5.3343 n d9 = 1.49700 ν d9 = 81.54
r 18 = -53.8005 d 18 = 0.3147
r 19 = 53.6050 d 19 = 1.1010 n d10 = 1.80610 ν d10 = 40.92
r 20 = 16.0840 d 20 = 5.1135 n d11 = 1.49700 ν d11 = 81.54
r 21 = -142.9938 d 21 = (variable)
r 22 = -42.8783 d 22 = 0.9000 n d12 = 1.51633 ν d12 = 64.14
r 23 = 13.9697 d 23 = 3.3288 n d13 = 1.84666 ν d13 = 23.78
r 24 = 21.2945 d 24 = (variable)
r 25 = 31.1501 (aspherical surface) d 25 = 4.3266 n d14 = 1.49700 ν d14 = 81.54
r 26 = -23.5905 d 26 = 0.1500
r 27 = 911.4978 d 27 = 4.2792 n d15 = 1.61800 ν d15 = 63.33
r 28 = -15.3539 d 28 = 1.0000 n d16 = 1.84666 ν d16 = 23.78
r 29 = -50.5690 d 29 = (variable)
r 30 = ∞ d 30 = 16.0000 n d17 = 1.51633 ν d17 = 64.14
r 31 = ∞ d 31 = 1.0000
r 32 = ∞ d 32 = 2.6000 n d18 = 1.54771 ν d18 = 62.84
r 33 = ∞ d 33 = 1.0000
r 34 = ∞ d 34 = 0.7500 n d19 = 1.51633 ν d19 = 64.14
r 35 = ∞ d 35 = 1.2400
r 36 = ∞
Aspheric coefficient 13th surface K = 0
A 4 = -7.0043 × 10 -6
A 6 = -5.4249 × 10 -9
A 8 = 3.0262 × 10 -12
A 10 = 0.0000
Surface 17 K = 0
A 4 = -1.8414 × 10 -5
A 6 = -1.4788 × 10 -8
A 8 = 5.9114 × 10 -11
A 10 = 0.0000
25th face K = 0
A 4 = -2.1192 × 10 -5
A 6 = -1.3690 × 10 -8
A 8 = 1.3573 × 10 -10
A 10 = 0.0000
Zoom data (∞)
W S T
f (mm) 2.8000 3.5000 3.5000
F NO 7.26001 23.29997 74.74863
ω (°) 38.37 13.00 4.12
d 6 1.71542 30.14291 58.15917
d 13 44.90072 12.40034 2.55088
d 16 19.05859 8.36633 0.99888
d 21 1.50000 12.21200 22.72088
d 24 8.15011 6.36382 5.19171
d 29 4.65995 6.42650 4.45718
.

以上の実施例1〜25の無限遠物点合焦時の収差図を図26〜図50に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差SA、非点収差AS、歪曲収差DT、倍率色収差CCを示す。ただし、図中、“FIY”は像高を表している。   FIGS. 26 to 50 show aberration diagrams of the above Examples 1 to 25 when focusing on an object point at infinity. In these aberration diagrams, (a) shows the wide-angle end, (b) the intermediate state, and (c) spherical aberration SA, astigmatism AS, distortion DT, and lateral chromatic aberration CC at the telephoto end. In the figure, “FIY” represents the image height.

次に、上記各実施例における条件式(1)〜(14)の値を以下に示す。
条件式 実施例1 実施例2 実施例3 実施例4 実施例5
(1) 9.303 9.549 9.718 9.690 9.615
(2) 0.0280 0.0280 0.0280 -0.0019 -0.0019
(3) 5.104 5.097 5.172 5.302 5.296
(4) -0.331 -0.122 -0.068 -0.171 -0.175
(5) 0.581 0.570 0.557 0.594 0.610
(6) 10.296 10.296 10.296 10.296 10.296
(7) -0.287 -0.288 -0.269 -0.285 -0.281
(8) 0.058 0.182 0.151 0.068 -0.039
(9) -0.010 0.085 0.159 0.235 0.257
(10) 1.637 1.349 1.465 1.724 1.691
(11) 0.306 0.069 -0.139 -0.618 -0.545
(12) 2.846 2.846 2.891 2.846 2.956
(13) 2.800 2.800 2.800 2.800 2.800
(14) 2.984 3.206 3.124 3.060 3.066
Next, the values of conditional expressions (1) to (14) in the above-described embodiments are shown below.
Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5
(1) 9.303 9.549 9.718 9.690 9.615
(2) 0.0280 0.0280 0.0280 -0.0019 -0.0019
(3) 5.104 5.097 5.172 5.302 5.296
(4) -0.331 -0.122 -0.068 -0.171 -0.175
(5) 0.581 0.570 0.557 0.594 0.610
(6) 10.296 10.296 10.296 10.296 10.296
(7) -0.287 -0.288 -0.269 -0.285 -0.281
(8) 0.058 0.182 0.151 0.068 -0.039
(9) -0.010 0.085 0.159 0.235 0.257
(10) 1.637 1.349 1.465 1.724 1.691
(11) 0.306 0.069 -0.139 -0.618 -0.545
(12) 2.846 2.846 2.891 2.846 2.956
(13) 2.800 2.800 2.800 2.800 2.800
(14) 2.984 3.206 3.124 3.060 3.066
.


条件式 実施例6 実施例7 実施例8 実施例9 実施例10
(1) 9.257 9.346 9.311 9.123 9.260
(2) 0.0280 0.0280 0.0280 0.0280 0.0280
(3) 5.096 5.073 5.202 5.373 5.163
(4) -0.366 -0.508 -0.366 -0.750 -0.362
(5) 0.592 0.566 0.610 0.643 0.610
(6) 10.297 10.296 10.296 10.295 10.297
(7) -0.274 -0.297 -0.275 -0.326 -0.257
(8) 0.075 0.264 0.034 0.524 0.143
(9) 0.015 0.057 0.190 0.315 -0.034
(10) 1.744 2.059 1.668 2.280 1.622
(11) 0.223 -0.117 0.000 ---- 0.274
(12) 2.834 2.798 2.789 2.475 2.848
(13) 2.800 2.800 2.800 2.800 2.800
(14) 2.940 2.982 3.003 2.839 3.014

Conditional Example Example 6 Example 7 Example 8 Example 9 Example 10
(1) 9.257 9.346 9.311 9.123 9.260
(2) 0.0280 0.0280 0.0280 0.0280 0.0280
(3) 5.096 5.073 5.202 5.373 5.163
(4) -0.366 -0.508 -0.366 -0.750 -0.362
(5) 0.592 0.566 0.610 0.643 0.610
(6) 10.297 10.296 10.296 10.295 10.297
(7) -0.274 -0.297 -0.275 -0.326 -0.257
(8) 0.075 0.264 0.034 0.524 0.143
(9) 0.015 0.057 0.190 0.315 -0.034
(10) 1.744 2.059 1.668 2.280 1.622
(11) 0.223 -0.117 0.000 ---- 0.274
(12) 2.834 2.798 2.789 2.475 2.848
(13) 2.800 2.800 2.800 2.800 2.800
(14) 2.940 2.982 3.003 2.839 3.014
.


条件式 実施例11 実施例12 実施例13 実施例14 実施例15
(1) 9.978 9.887 9.754 10.142 9.704
(2) 0.0280 0.0280 0.0280 0.0280 0.0280
(3) 5.452 5.330 5.184 5.300 5.219
(4) -0.138 -0.156 -0.052 -0.096 -0.061
(5) 0.591 0.576 0.547 0.502 0.539
(6) 10.178 10.158 10.265 10.191 10.252
(7) -0.255 -0.261 -0.334 -0.315 -0.306
(8) 0.177 0.253 0.187 0.302 0.187
(9) 0.055 0.123 0.366 0.455 0.439
(10) 1.478 1.495 1.711 1.685 1.696
(11) -0.078 -0.157 -0.444 -0.454 -0.566
(12) 2.784 2.334 2.954 2.818 3.041
(13) 2.800 2.800 2.800 2.800 2.800
(14) 3.225 3.122 3.289 3.030 2.986

Conditional Example 11 Example 12 Example 13 Example 14 Example 15
(1) 9.978 9.887 9.754 10.142 9.704
(2) 0.0280 0.0280 0.0280 0.0280 0.0280
(3) 5.452 5.330 5.184 5.300 5.219
(4) -0.138 -0.156 -0.052 -0.096 -0.061
(5) 0.591 0.576 0.547 0.502 0.539
(6) 10.178 10.158 10.265 10.191 10.252
(7) -0.255 -0.261 -0.334 -0.315 -0.306
(8) 0.177 0.253 0.187 0.302 0.187
(9) 0.055 0.123 0.366 0.455 0.439
(10) 1.478 1.495 1.711 1.685 1.696
(11) -0.078 -0.157 -0.444 -0.454 -0.566
(12) 2.784 2.334 2.954 2.818 3.041
(13) 2.800 2.800 2.800 2.800 2.800
(14) 3.225 3.122 3.289 3.030 2.986
.


条件式 実施例16 実施例17 実施例18 実施例19 実施例20
(1) 9.110 9.595 9.707 7.465 7.644
(2) 0.0280 0.0280 0.0280 0.0280 0.0051
(3) 4.827 5.289 5.296 3.927 3.727
(4) -0.075 -0.149 -0.153 0.090 0.026
(5) 0.542 0.603 0.589 0.704 0.584
(6) 10.273 10.272 10.272 6.996 6.988
(7) -0.286 -0.270 -0.264 -0.294 -0.346
(8) 0.149 0.235 0.238 0.045 0.606
(9) 0.165 0.060 0.088 0.415 0.562
(10) 1.376 1.470 1.481 1.784 1.448
(11) -0.139 -0.108 -0.120 ---- -0.736
(12) 2.834 2.525 2.525 3.454 3.665
(13) 2.800 2.800 2.800 2.048 2.029
(14) 2.817 3.103 3.122 3.078 2.989

Conditional Example Example 16 Example 17 Example 18 Example 19 Example 20
(1) 9.110 9.595 9.707 7.465 7.644
(2) 0.0280 0.0280 0.0280 0.0280 0.0051
(3) 4.827 5.289 5.296 3.927 3.727
(4) -0.075 -0.149 -0.153 0.090 0.026
(5) 0.542 0.603 0.589 0.704 0.584
(6) 10.273 10.272 10.272 6.996 6.988
(7) -0.286 -0.270 -0.264 -0.294 -0.346
(8) 0.149 0.235 0.238 0.045 0.606
(9) 0.165 0.060 0.088 0.415 0.562
(10) 1.376 1.470 1.481 1.784 1.448
(11) -0.139 -0.108 -0.120 ---- -0.736
(12) 2.834 2.525 2.525 3.454 3.665
(13) 2.800 2.800 2.800 2.048 2.029
(14) 2.817 3.103 3.122 3.078 2.989
.


条件式 実施例21 実施例22 実施例23 実施例24 実施例25
(1) 7.409 9.448 8.780 9.391 9.275
(2) 0.0280 0.0280 0.0280 0.0280 0.0280
(3) 3.736 5.191 4.884 5.270 5.131
(4) 0.091 -0.337 -0.349 -0.358 -0.333
(5) 0.656 0.578 0.596 0.605 0.585
(6) 7.004 10.296 10.296 10.296 10.296
(7) -0.490 -0.291 -0.281 -0.280 -0.301
(8) -0.102 0.077 0.045 0.056 0.054
(9) 0.504 0.088 0.070 0.102 -0.011
(10) 1.404 1.495 1.386 1.467 1.642
(11) -0.693 0.419 0.316 0.332 0.287
(12) 3.675 2.826 2.842 2.834 2.841
(13) 2.005 2.800 2.800 2.800 2.800
(14) 3.085 2.967 2.748 2.922 2.938

Conditional Example 21 Example 22 Example 23 Example 24 Example 25
(1) 7.409 9.448 8.780 9.391 9.275
(2) 0.0280 0.0280 0.0280 0.0280 0.0280
(3) 3.736 5.191 4.884 5.270 5.131
(4) 0.091 -0.337 -0.349 -0.358 -0.333
(5) 0.656 0.578 0.596 0.605 0.585
(6) 7.004 10.296 10.296 10.296 10.296
(7) -0.490 -0.291 -0.281 -0.280 -0.301
(8) -0.102 0.077 0.045 0.056 0.054
(9) 0.504 0.088 0.070 0.102 -0.011
(10) 1.404 1.495 1.386 1.467 1.642
(11) -0.693 0.419 0.316 0.332 0.287
(12) 3.675 2.826 2.842 2.834 2.841
(13) 2.005 2.800 2.800 2.800 2.800
(14) 3.085 2.967 2.748 2.922 2.938
.

さて、以上のような本発明の電子撮像装置は、ズームレンズで物体像を形成しその像をCCDや銀塩フィルムといった撮像素子に受光させて撮影を行う撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。   The electronic image pickup apparatus of the present invention as described above is an image pickup apparatus that forms an object image with a zoom lens and receives the image on an image pickup device such as a CCD or a silver salt film to take a picture, particularly a digital camera or video camera, The present invention can be used for personal computers and telephones, which are examples of information processing apparatuses, particularly mobile phones that are convenient to carry. The embodiment is illustrated below.

図51〜図53は、本発明によるのズームレンズをデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図51はデジタルカメラ40の外観を示す前方斜視図、図52は同後方斜視図、図53はデジタルカメラ40の構成を示す断面図である。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47等を含み、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して本発明のズームレンズ(図では略記)からなる撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、近赤外カットコートを設けた光学的ローパスフィルターを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   51 to 53 are conceptual diagrams of a configuration in which the zoom lens according to the present invention is incorporated in the photographing optical system 41 of the digital camera. 51 is a front perspective view showing the appearance of the digital camera 40, FIG. 52 is a rear perspective view thereof, and FIG. 53 is a cross-sectional view showing the configuration of the digital camera 40. In this example, the digital camera 40 includes a photographic optical system 41 having a photographic optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, and the like. When the shutter 45 disposed in the position is pressed, photographing is performed through the photographing optical system 41 including the zoom lens (abbreviated in the drawing) of the present invention, for example, the zoom lens of the first embodiment. An object image formed by the photographing optical system 41 is formed on the imaging surface of the CCD 49 through an optical low-pass filter provided with a near-infrared cut coat. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。このファインダー用対物光学系53によって形成された物体像は、像正立部材であるポロプリズム55の視野枠57上に形成される。このポリプリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、撮影光学系
41及びファインダー用対物光学系53の入射側、接眼光学系59の射出側にそれぞれカバー部材50が配置されている。
Further, a finder objective optical system 53 is disposed on the finder optical path 44. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. Behind this polyprism 55 is an eyepiece optical system 59 that guides the erect image to the observer eyeball E. Note that cover members 50 are disposed on the incident side of the photographing optical system 41 and the finder objective optical system 53 and on the exit side of the eyepiece optical system 59, respectively.

このように構成されたデジタルカメラ40は、撮影光学系41が広画角で高変倍比であり、収差が良好で、明るく、フィルター等が配置できるバックフォーカスの大きなズームレンズであるので、高性能・低コスト化が実現できる。   The digital camera 40 configured in this manner is a zoom lens with a large back focus, a photographing optical system 41 having a wide angle of view and a high zoom ratio, good aberration, bright, and a filter that can be arranged with a high back focus. Performance and cost reduction can be realized.

図53の例では、カバー部材50として平行平面板を配置しているが、パワーを持ったレンズを用いてもよい。   In the example of FIG. 53, a plane parallel plate is disposed as the cover member 50, but a lens having power may be used.

なお、図53の例では、撮影用光路42とファインダー用光路44とが並列に設けられたデジタルカメラの例であったが、撮影光学系41のズームレンズの撮像面との間にファインダー用光路分割プリズムを設けてTTLとする場合は、ファインダー用対物光学系53とポリプリズム55を省き、その代わりにペンタプリズムを配置して撮影光学系41を通して被写体像を観察者眼球Eに導くようにする。   In the example of FIG. 53, the example is a digital camera in which the photographing optical path 42 and the finder optical path 44 are provided in parallel. However, the finder optical path is between the imaging surface of the zoom lens of the photographing optical system 41. When a TTL is provided by providing a splitting prism, the finder objective optical system 53 and the polyprism 55 are omitted, and instead, a pentaprism is arranged to guide the subject image to the observer's eyeball E through the photographing optical system 41. .

次に、本発明のズームレンズが対物光学系として内蔵された情報処理装置の一例であるパソコンが図54〜図56に示される。図54はパソコン300のカバーを開いた前方斜視図、図55はパソコン300の撮影光学系303の断面図、図56は図54の状態の側面図である。図54〜図56に示されるように、パソコン300は、外部から繰作者が情報を入力するためのキーボード301と、図示を省略した情報処理手段や記録手段と、情報を操作者に表示するモニター302と、操作者自身や周辺の像を撮影するための撮影光学系303とを有している。ここで、モニター302は、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子や、CRTディスプレイ等であってよい。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Next, a personal computer which is an example of an information processing apparatus in which the zoom lens of the present invention is incorporated as an objective optical system is shown in FIGS. 54 is a front perspective view with the cover of the personal computer 300 opened, FIG. 55 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 56 is a side view of the state of FIG. As shown in FIGS. 54 to 56, a personal computer 300 includes a keyboard 301 for a writer to input information from outside, information processing means and recording means not shown, and a monitor for displaying information to the operator. 302 and a photographing optical system 303 for photographing the operator himself and surrounding images. Here, the monitor 302 may be a transmissive liquid crystal display element that is illuminated from the back by a backlight (not shown), a reflective liquid crystal display element that reflects and displays light from the front, a CRT display, or the like. Further, in the drawing, the photographing optical system 303 is built in the upper right of the monitor 302. However, the imaging optical system 303 is not limited to the place, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、本発明によるズームレンズ(図では略記)からなる対物レンズ112と、像を受光する撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographic optical system 303 includes an objective lens 112 including a zoom lens (abbreviated in the drawing) according to the present invention and an image sensor chip 162 that receives an image on a photographic optical path 304. These are built in the personal computer 300.

ここで、撮像素子チップ162上には光学的ローパスフィルターが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中のズームレンズの駆動機構は図示を省いてある。   Here, an optical low-pass filter is additionally affixed on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the centering of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simplified. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The zoom lens driving mechanism in the lens frame 113 is not shown.

撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力され、電子画像としてモニター302に表示される、図54には、その一例として、操作者の撮影された画像305が示されている。また、この画像305は、処理手段を介し、インターネットや電話を介して、遠隔地から通信相手のパソコンに表示されることも可能である。   The object image received by the image sensor chip 162 is input to the processing means of the personal computer 300 through the terminal 166 and displayed on the monitor 302 as an electronic image. FIG. A rendered image 305 is shown. The image 305 can also be displayed on the personal computer of the communication partner from a remote location via the processing means, the Internet, or the telephone.

次に、本発明のズームレンズが撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話が図57に示される。図57(a)は携帯電話400の正面図、図57(b)は側面図、図57(c)は撮影光学系405の断面図である。図57(a)〜(c)に示されるように、携帯電話400は、操作者の声を情報として入力するマイク部401と、通話相手の声を出力するスピーカ部402と、操作者が情報を
入力する入力ダイアル403と、操作者自身や通話相手等の撮影像と電話番号等の情報を表示するモニター404と、撮影光学系405と、通信電波の送信と受信を行うアンテナ406と、画像情報や通信情報、入力信号等の処理を行う処理手段(図示せず)とを有している。ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置は、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配置された本発明によるズームレンズ(図では略記)からなる対物レンズ112と、物体像を受光する撮像素子チップ162とを有している。これらは、携帯電話400に内蔵されている。
Next, FIG. 57 shows a telephone, which is an example of an information processing apparatus in which the zoom lens of the present invention is incorporated as a photographing optical system, particularly a portable telephone that is convenient to carry. 57A is a front view of the mobile phone 400, FIG. 57B is a side view, and FIG. 57C is a cross-sectional view of the photographing optical system 405. As shown in FIGS. 57A to 57C, the mobile phone 400 includes a microphone unit 401 that inputs an operator's voice as information, a speaker unit 402 that outputs a voice of a call partner, and an operator who receives information. An input dial 403 for inputting information, a monitor 404 for displaying information such as a photographed image and a telephone number of the operator and the other party, a photographing optical system 405, an antenna 406 for transmitting and receiving communication radio waves, and an image And processing means (not shown) for processing information, communication information, input signals, and the like. Here, the monitor 404 is a liquid crystal display element. In the drawing, the arrangement positions of the respective components are not particularly limited to these. The photographing optical system 405 includes an objective lens 112 including a zoom lens (abbreviated in the drawing) according to the present invention disposed on a photographing optical path 407, and an image sensor chip 162 that receives an object image. These are built in the mobile phone 400.

ここで、撮像素子チップ162上には光学的ローパスフィルターが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中のズームレンズの駆動機構は図示を省いてある。   Here, an optical low-pass filter is additionally affixed on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the centering of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simplified. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The zoom lens driving mechanism in the lens frame 113 is not shown.

撮影素子チップ162で受光された物体像は、端子166を介して、図示していない処理手段に入力され、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、通信相手に画像を送信する場合、撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する信号処理機能が処理手段には含まれている。   The object image received by the imaging element chip 162 is input to the processing means (not shown) via the terminal 166 and displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. . Further, when transmitting an image to a communication partner, the processing means includes a signal processing function for converting information of an object image received by the image sensor chip 162 into a signal that can be transmitted.

以上の本発明のズームレンズは例えば次のように構成することができる。   The above zoom lens of the present invention can be configured as follows, for example.

〔1〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とよりなり、第1群の焦点距離f1 と第1群の少なくとも1つの正レンズの媒質の異常分散性ΔθgFが以下の条件を満たすことを特徴とするズームレンズ。 [1] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. The second group having a negative refractive power and the rear group having at least two movable subgroups, the focal length f 1 of the first group and the anomalous dispersion of the medium of at least one positive lens of the first group A zoom lens characterized in that Δθ gF satisfies the following conditions.

(1) 6<f1 /L<20
(2) 0.015<ΔθgF<0.1
ただし、Lは結像面近傍に配設される有効撮像面の対角長。なお、各媒質(硝材)の異常分散性ΔθgFの定義は、
θgF=AgF+BgF・νd +ΔθgF
ただし、
θgF=(ng −nF )/(nF −nC
νd =(nd −1)/(nF −nC
d 、nF 、nC 、ng はそれぞれd線、F線、C線、g線に対する屈折率
、AgF、BgFは、ガラスコード511605(株式会社オハラでの商品名NSL7
θgF=0.5436 νd =60.49 )とガラスコード 620363 (株式会社オハラ
での商品名PBM2 θgF=0.5828 νd =36.26 )の2硝種で決まる直線
の係数であり、AgFは0.641462485、BgFは−0.001617
829、
である。
(1) 6 <f 1 / L <20
(2) 0.015 <Δθ gF <0.1
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface. In addition, the definition of the anomalous dispersion Δθ gF of each medium (glass material) is
θ gF = A gF + B gF · ν d + Δθ gF
However,
θ gF = (n g −n F ) / (n F −n C )
ν d = (n d −1) / (n F −n C )
n d , n F , n C , and ng are refractive indexes for d line, F line, C line, and g line, A gF , and B gF are glass cord 511605 (trade name NSL7 at OHARA INC.)
is a coefficient of a straight line determined by two glass type of θ gF = 0.5436 ν d = 60.49 ) and the glass cord 620363 (trade name PBM2 θ gF = 0.5828 ν d = 36.26 at OHARA INC), A gF is .641462485, B gF is -0.001617.
829,
It is.

〔2〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの
可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。
[2] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A rear group having at least 11 lenses but a movement amount Δz 1 from the wide-angle end to the telephoto end of the first group when focusing on an object point at infinity, and a second group when focusing on an object point at infinity A zoom lens characterized by satisfying the following condition with respect to the movement amount Δz 2 from the wide-angle end to the telephoto end of

(3) 3<(Δz2 −Δz1 )/L<9
ただし、像側への移動を正とする。Lは結像面近傍に配設される有効撮像面の対角長。
(3) 3 <(Δz 2 −Δz 1 ) / L <9
However, the movement toward the image side is positive. L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔3〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [3] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A rear group having at least 11 lenses but a movement amount Δz 1 from the wide-angle end to the telephoto end of the first group when focusing on an object point at infinity, and a second group when focusing on an object point at infinity A zoom lens characterized by satisfying the following condition with respect to the movement amount Δz 2 from the wide-angle end to the telephoto end of

(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive.

〔4〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から中間焦点距離fM (=√(fW ・fT ))までの移動量Δz1WM が正であることを特徴とするズームレンズ。ただし、像側への移動を正とする。なお、fW は広角端無限物点合焦時の、fT は望遠端無限物点合焦時の全系合成焦点距離。 [4] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having negative refractive power and a rear group having at least two movable subgroups. The first group moves while drawing a convex reciprocating locus toward the image side, and is focused at an object point at infinity. A zoom lens characterized in that the amount of movement Δz 1WM from the wide-angle end of the first group to the intermediate focal length f M (= √ (f W · f T )) is positive. However, the movement toward the image side is positive. Note that f W is the total focal length when the infinite object point is in focus at the wide angle end, and f T is the total focal length of the entire system at the infinite object point at the telephoto end.

〔5〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [5] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having negative refractive power and a rear group having at least two movable subgroups. The first group moves while drawing a convex reciprocating locus toward the image side, and is focused at an object point at infinity. the first group moving amount Delta] z 1 from the wide-angle end to the telephoto end, and wherein a satisfies the following with respect to the movement amount Delta] z 2 to the telephoto end from the wide-angle end of the second group at the time of infinite object point focusing of the Zoom lens to be used.

(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive.

〔6〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、少なくとも2つの可動な副群を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [6] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having negative refractive power and a rear group having at least two movable subgroups. The first group moves while drawing a convex reciprocating locus toward the image side, and is focused at an object point at infinity. the first group moving amount Delta] z 1 from the wide-angle end to the telephoto end, and wherein a satisfies the following with respect to the movement amount Delta] z 2 to the telephoto end from the wide-angle end of the second group at the time of infinite object point focusing of the Zoom lens to be used.

(3) 3<(Δz2 −Δz1 )/L<9
(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。Lは結像面近傍に配設される有効撮像面の対角長。
(3) 3 <(Δz 2 −Δz 1 ) / L <9
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive. L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔7〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、無限遠物点合焦時の第2群の広角端時倍率β2Wと望遠端時倍率β2Tの比Δβ2 (=β2T/β2W)と全系の広角端から望遠端までのズーム比γに関し、以下の条件を満たすことを特徴とするズームレンズ。 [7] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A rear group having at least 11 lenses but no more than 11 lenses, and a ratio Δβ 2 (= β 2T / β) of the magnification at the wide angle end β 2W and the magnification at the telephoto end β 2T of the second group when focusing on an object point at infinity 2W ) and a zoom lens satisfying the following conditions regarding the zoom ratio γ from the wide-angle end to the telephoto end of the entire system.

(5) 0.3<log(Δβ2 )/log(γ)<0.8
(6) 5<γ<15
〔8〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、広角端無限物点合焦時の後群の合成倍率βrWに関し以下の条件を満たすことを特徴とするズームレンズ。
(5) 0.3 <log (Δβ 2 ) / log (γ) <0.8
(6) 5 <γ <15
[8] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A zoom lens comprising a rear group having at least 11 and no more than 11 lenses, and satisfying the following conditions with respect to the composite magnification β rW of the rear group at the time of focusing on an infinite object point at the wide angle end.

(7) −0.6<βrW<−0.1
〔9〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、後群中の全ての可動の副群にはそれぞれ接合レンズ成分を少なくとも1つ有し、広角端無限物点合焦時の後群の合成倍率βrWに関し以下の条件を満たすことを特徴とするズームレンズ。
(7) −0.6 <β rW <−0.1
[9] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. Each of the movable sub-groups in the rear group has at least one cemented lens component, and the rear group at the time of focusing on an infinite object point at the wide angle end. A zoom lens characterized by satisfying the following condition with respect to the composite magnification β rW .

(7) −0.6<βrW<−0.1
〔10〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、前記後群の中、負の倍率を有する副群の中で最も物体側にある正の副群よりも像側の何れかの副群にてフォーカスを行ない、最も像側の正の副群の広角端無限物点合焦時倍率βRRW に関し、以下の条件を満たすことを特徴とするズームレンズ。
(7) −0.6 <β rW <−0.1
[10] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A rear group having no less than 11 lenses, and any subgroup on the image side of a positive subgroup closest to the object among the subgroups having a negative magnification in the rear group Focusing on the wide-angle end infinite object point in the positive subgroup closest to the image side, β RRW Zoom lens to be used.

(8) −0.4<βRRW <0.9
〔11〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み最も、像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、前記後群の副群の中、正の屈折力を有する最も物体側の副群の無限遠物点合焦時の広角端から望
遠端までの移動量ΔzRF、最も像側の正の副群の無限遠物点合焦時の広角端から望遠端までの移動量ΔzRRに関し、以下の条件を満たすことを特徴とするズームレンズ。
(8) −0.4 <β RRW <0.9
[11] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and a configuration including a positive lens on the image side, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A rear group having no less than 11 lenses, and among the subgroups of the rear group, from the wide-angle end to the telephoto end during focusing on an object point at infinity of the subgroup on the most object side having positive refractive power movement amount Delta] z RF up relates the movement amount Delta] z RR from the wide-angle end at the time of infinite object point focusing of the positive sub group of the most image side to the telephoto end, the following conditions Zoom lens and satisfies the.

(9) −0.4<ΔzRR/ΔzRF<0.8
(10) 0.3<|ΔzRF|/L<4.0
ただし、Lは結像面近傍に配設される有効撮像面の対角長。
(9) −0.4 <Δz RR / Δz RF <0.8
(10) 0.3 <| Δz RF | / L <4.0
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔12〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの可動な副群を有し全体で6枚以上11枚以下のレンズを有する後群とよりなり、前記後群には、正の屈折力を有しかつ負の倍率を有する副群と最も像側の正の副群とを有し、変倍時にそれぞれの相対位置が変化し、前記2つの正の副群は接合レンズ成分、非球面、ν>80(ν:アッベ数)以上の硝材を用いたレンズを少なくともそれぞれ1つ含むことを特徴とするズームレンズ。     [12] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or 2 lenses including the negative lens, the two closest to the image side are positive lenses, and any one of the surfaces in the group is an aspherical surface, and at least two movable subgroups. A rear group having at least 11 lenses but no more than 11 lenses, the rear group having a positive refractive power and negative magnification and a most image-side positive subgroup, The relative positions of each change at the time of zooming, and the two positive subgroups are a cemented lens component, an aspheric surface, and a glass material with ν> 80 (ν: Abbe number) or more. Zoom lens characterized by a lens using comprising one at least, respectively.

〔13〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの正の可動な副群を有し全体で7枚以上11枚以下のレンズを有する後群とよりなり、後群の最も物体側の副群は負の屈折力を有することを特徴とするズームレンズ。     [13] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or Including a negative lens, the most image-side two lenses having a positive lens configuration, and a second group in which any surface in the group is an aspherical surface, and at least two positive movable subgroups. And a rear group having 7 or more and 11 or less lenses, and a sub-group closest to the object side of the rear group has a negative refractive power.

〔14〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの正の可動な副群を有し全体で7枚以上11枚以下のレンズを有する後群とよりなり、後群の最も物体側の副群は1つの負レンズ成分からなることを特徴とするズームレンズ。     [14] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or Including a negative lens, the most image-side two lenses having a positive lens configuration, and a second group in which any surface in the group is an aspherical surface, and at least two positive movable subgroups. A zoom lens comprising: a rear group having 7 to 11 lenses, wherein the most object side sub-group of the rear group is composed of one negative lens component.

〔15〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有し、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、群中の何れかの面が非球面である第2群と、少なくとも2つの正の可動な副群を有し全体で7枚以上11枚以下のレンズを有する後群とよりなり、後群の最も物体側の副群は開口絞り近傍に常時固定であり、1つの負レンズ成分からなることを特徴とするズームレンズ。     [15] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Having negative refractive power and including at least three negative lenses, the most image side being a positive lens configuration, or the most object side three being a negative lens and the image side including a positive lens, or Including a negative lens, the most image-side two lenses having a positive lens configuration, and a second group in which any surface in the group is an aspherical surface, and at least two positive movable subgroups. A zoom lens comprising: a rear group having 7 to 11 lenses, wherein the sub-group closest to the object side of the rear group is always fixed in the vicinity of the aperture stop and is composed of one negative lens component. .

〔16〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第1群の焦点距離f1 が以下の条件を満たすことを特徴とするズームレンズ。 [16] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A zoom lens comprising a second group having negative refractive power and a rear group having a variable interval at the time of zooming, and the focal length f 1 of the first group satisfies the following condition: lens.

(1) 6<f1 /L<20
ただし、Lは結像面近傍に配設される有効撮像面の対角長。
(1) 6 <f 1 / L <20
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔17〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第1群の焦点距離f1 と第1群の少なくとも1つの正レンズの媒質の異常分散性ΔθgFが以下の条件を満たすことを特徴とするズームレンズ。 [17] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having a negative refractive power and a rear group having a variable interval at the time of zooming, and a medium of a focal length f 1 of the first group and at least one positive lens of the first group A zoom lens characterized in that the anomalous dispersion Δθ gF of the lens satisfies the following condition.

(1) 6<f1 /L<20
(2) 0.015<ΔθgF<0.1
ただし、Lは結像面近傍に配設される有効撮像面の対角長。なお、各媒質(硝材)の異常分散性ΔθgFの定義は、
θgF=AgF+BgF・νd +ΔθgF
ただし、
θgF=(ng −nF )/(nF −nC
νd =(nd −1)/(nF −nC
d 、nF 、nC 、ng はそれぞれd線、F線、C線、g線に対する屈折率
、AgF、BgFは、ガラスコード511605(株式会社オハラでの商品名NSL7
θgF=0.5436 νd =60.49 )とガラスコード 620363 (株式会社オハラ
での商品名PBM2 θgF=0.5828 νd =36.26 )の2硝種で決まる直線
の係数であり、AgFは0.641462485、BgFは−0.001617
829、
である。
(1) 6 <f 1 / L <20
(2) 0.015 <Δθ gF <0.1
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface. In addition, the definition of the anomalous dispersion Δθ gF of each medium (glass material) is
θ gF = A gF + B gF · ν d + Δθ gF
However,
θ gF = (n g −n F ) / (n F −n C )
ν d = (n d −1) / (n F −n C )
n d , n F , n C , and ng are refractive indexes for d line, F line, C line, and g line, A gF , and B gF are glass cord 511605 (trade name NSL7 at OHARA INC.)
is a coefficient of a straight line determined by two glass type of θ gF = 0.5436 ν d = 60.49 ) and the glass cord 620363 (trade name PBM2 θ gF = 0.5828 ν d = 36.26 at OHARA INC), A gF is .641462485, B gF is -0.001617.
829,
It is.

〔18〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [18] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having negative refractive power and a rear group having a variable interval at the time of at least two zooms, and moving from the wide-angle end to the telephoto end of the first group when focusing on an object point at infinity the amount Delta] z 1, zoom from the second group at the wide angle end of the focal point at infinity, wherein the following condition is satisfied with respect to the movement amount Delta] z 2 to the telephoto end lens.

(3) 3<(Δz2 −Δz1 )/L<9
ただし、像側への移動を正とする。Lは結像面近傍に配設される有効撮像面の対角長。
(3) 3 <(Δz 2 −Δz 1 ) / L <9
However, the movement toward the image side is positive. L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔19〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [19] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having negative refractive power and a rear group having a variable interval at the time of at least two zooms, and moving from the wide-angle end to the telephoto end of the first group when focusing on an object point at infinity the amount Delta] z 1, zoom from the second group at the wide angle end of the focal point at infinity, wherein the following condition is satisfied with respect to the movement amount Delta] z 2 to the telephoto end lens.

(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive.

〔20〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から中間焦点距離fM (=√(fW ・fT ))までの移動量Δz1WM が正であることを特徴とするズームレンズ。ただし、像側への移動を正とする。なお、fW は広角端無限物点合焦時の、fT は望遠端無限物点合焦時の全系合成焦点距離。 [20] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having negative refractive power and a rear group having a variable interval at the time of zooming, and the first group moves while drawing a convex reciprocating locus on the image side, and is an object at infinity. A zoom lens characterized in that the amount of movement Δz 1WM from the wide-angle end of the first lens group to the intermediate focal length f M (= √ (f W · f T )) during point focusing is positive. However, the movement toward the image side is positive. Note that f W is the total focal length when the infinite object point is in focus at the wide angle end, and f T is the total focal length of the entire system at the infinite object point at the telephoto end.

〔21〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [21] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having negative refractive power and a rear group having a variable interval at the time of zooming, and the first group moves while drawing a convex reciprocating locus on the image side, and is an object at infinity. The following condition is satisfied with respect to the movement amount Δz 1 from the wide-angle end to the telephoto end of the first group at the point focusing, and the movement amount Δz 2 from the wide-angle end to the telephoto end of the second group at the infinite object point focusing. A zoom lens characterized by that.

(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive.

〔22〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続き少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。 [22] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having a negative refractive power and a rear group having a variable interval at the time of zooming, and the first group moves while drawing a convex reciprocating locus on the image side, and is at infinity. The following condition is satisfied with respect to the movement amount Δz 1 from the wide-angle end to the telephoto end of the first group at the point focusing, and the movement amount Δz 2 from the wide-angle end to the telephoto end of the second group at the infinite object point focusing. A zoom lens characterized by that.

(3) 3<(Δz2 −Δz1 )/L<9
(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。Lは結像面近傍に配設される有効撮像面の対角長。
(3) 3 <(Δz 2 −Δz 1 ) / L <9
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive. L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔23〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第2群は、少なくとも3つの負レンズを含み、最も像側が正レンズの構成か、又は、最も物体側の3枚が負レンズであり、像側に正レンズを含む構成か、又は、負レンズを含み、最も像側の2枚が正レンズの構成であり、さらに、第2群中の何れかの面が非球面であり、無限遠物点合焦時の第2群の広角端時倍率β2Wと望遠端時倍率β2Tの比Δβ2 (=β2T/β2W)と全系の広角端から望遠端までのズーム比γに関し、以下の条件を満たすことを特徴とするズームレンズ。 [23] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. Consists of a second group having negative refractive power and a rear group having a variable interval at the time of zooming, and the second group includes at least three negative lenses, and the most image side is a positive lens. Or three lenses closest to the object side are negative lenses and a positive lens is included on the image side, or two lenses closest to the image side including a negative lens are positive lens configurations. Any surface in the second lens group is aspheric, and the ratio Δβ 2 (= β 2T / β 2W) of the second lens group wide-angle end magnification β 2W and telephoto end magnification β 2T when focusing on an object point at infinity ) And the zoom ratio γ from the wide-angle end to the telephoto end of the entire system, the following condition is satisfied:

(5) 0.3<log(Δβ2 )/log(γ)<0.8
(6) 5<γ<15
〔24〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、広角端無限物点合焦時の後群の合成倍率βrWに関し以下の条件を満たすことを特徴とするズームレンズ。
(5) 0.3 <log (Δβ 2 ) / log (γ) <0.8
(6) 5 <γ <15
[24] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having a negative refractive power and a rear group having a variable interval at the time of zooming, and the following conditions regarding the composite magnification β rW of the rear group when focusing on an infinite object point at the wide angle end A zoom lens characterized by satisfying

(7) −0.6<βrW<−0.1
〔25〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、後群中の全ての可動の副群にはそれぞれ接合レンズ成分を少なくとも1つ有し、広角端無限物点合焦時の後群の合成倍率βrWに関し以下の条件を満たすことを特徴とするズームレンズ。
(7) −0.6 <β rW <−0.1
[25] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. The second group having a negative refractive power and the subsequent rear group having a variable interval at the time of zooming, and each of the movable subgroups in the rear group has at least one cemented lens component. And a zoom lens characterized by satisfying the following condition with respect to the composite magnification β rW of the rear group at the time of focusing on an infinite object point at the wide angle end.

(7) −0.6<βrW<−0.1
〔26〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群
と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、前記後群の中、負の倍率を有する副群の中で最も物体側にある正の副群よりも像側の何れかの副群にてフォーカスを行ない、最も像側の正の副群の広角端無限物点合焦時倍率βRRW に関し、以下の条件を満たすことを特徴とするズームレンズ。
(7) −0.6 <β rW <−0.1
[26] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having a negative refractive power and a rear group having a variable interval at the time of at least two magnifications, and being the closest to the object side among subgroups having a negative magnification in the rear group. Focus on any subgroup on the image side of a certain positive subgroup, and satisfy the following condition with respect to the magnification β RRW at the wide-angle end infinite object point of the most positive subgroup on the image side. A featured zoom lens.

(8) −0.4<βRRW <0.9
〔27〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、複数の副群を有する後群とよりなり、前記後群の副群の中、、正の屈折力を有する最も物体側の副群の無限遠物点合焦時の広角端から望遠端までの移動量ΔzRF、最も像側の正の副群の無限遠物点合焦時の広角端から望遠端までの移動量ΔzRRに関し、以下の条件を満たし、前記2つの正の副群の間にそれらに対し変倍時に相対位置が変化する副群を有することを特徴とするズームレンズ。
(8) −0.4 <β RRW <0.9
[27] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. The second group having negative refractive power and the rear group having a plurality of subgroups, and among the subgroups of the rear group, the infinite object point of the subgroup on the most object side having the positive refractive power Regarding the amount of movement Δz RF from the wide-angle end to the telephoto end at the time of focusing, and the amount of movement Δz RR from the wide-angle end to the telephoto end at the time of focusing on an object point at infinity of the positive subgroup on the most image side, the following conditions are satisfied. A zoom lens comprising: a sub-group satisfying and having a sub-group whose relative position changes between the two positive sub-groups upon zooming.

(9) −0.4<ΔzRR/ΔzRF<0.8
(10) 0.3<|ΔzRF|/L<4.0
ただし、Lは結像面近傍に配設される有効撮像面の対角長。
(9) −0.4 <Δz RR / Δz RF <0.8
(10) 0.3 <| Δz RF | / L <4.0
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔28〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、複数の副群を有する後群とよりなり、前記後群には、正の屈折力を有しかつ負の倍率を有する副群と最も像側の正の副群と、その2つの正の副群の間に負の副群とを有し、変倍時にそれぞれの相対位置が変化し、前記2 つの正の副群には接合レンズ成分、非球面、ν>80(ν:アッベ数)以上の硝材を用いたレンズを少なくともそれぞれ1つ含むことを特徴とするズームレンズ。     [28] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. The second group has a negative refractive power and a rear group having a plurality of subgroups. The rear group includes a subgroup having a positive refractive power and a negative magnification and a positive group closest to the image side. And a negative subgroup between the two positive subgroups, and their relative positions change during zooming, and the two positive subgroups include a cemented lens component and an aspherical surface. A zoom lens comprising at least one lens using a glass material with ν> 80 (ν: Abbe number) or more.

〔29〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、複数の副群を有する後群とよりなり、前記後群の副群の中、正の屈折力を有しかつ負の倍率を有する最も物体側の副群の無限遠物点合焦時の広角端から望遠端までの移動量ΔzRF、最も像側の正の副群の無限遠物点合焦時の広角端から望遠端までの移動量ΔzRRに関し、以下の条件を満たし、前記2つの正の副群の間にそれらに対し変倍時に相対位置が変化する負の副群を有し、無限遠物点合焦時の前記負の副群の広角端から望遠端までの移動量ΔzRNに関し以下の条件を満たすことを特徴とするズームレンズ。 [29] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having a negative refractive power and a rear group having a plurality of subgroups, and the subgroup on the most object side having a positive refractive power and a negative magnification among the subgroups of the rear group. The amount of movement Δz RF from the wide-angle end to the telephoto end when focusing on an object point at infinity, and the amount of movement Δz RR from the wide-angle end to the telephoto end when focusing on an object point at infinity of the positive subgroup on the most image side The negative subgroup satisfying the following condition and having a negative subgroup whose relative position changes between the two positive subgroups upon zooming, and at the time of focusing on an object point at infinity A zoom lens characterized by satisfying the following condition with respect to the movement amount Δz RN from the wide-angle end to the telephoto end:

(9) −0.4<ΔzRR/ΔzRF<0.8
(10) 0.3<|ΔzRF|/L<4.0
(11) −2<ΔzRN/L<1
ただし、Lは結像面近傍に配設される有効撮像面の対角長。
(9) −0.4 <Δz RR / Δz RF <0.8
(10) 0.3 <| Δz RF | / L <4.0
(11) -2 <Δz RN / L <1
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔30〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも3つの変倍時に可変な間隔を有する後群とよりなり、後群の最も物体側の副群は負の屈折力を有することを特徴とするズームレンズ。     [30] Moving from the object side to the image side along the optical axis when zooming from the wide-angle end to the telephoto end, and the first lens group having a positive refractive power movable along the optical axis at the time of zooming A second group having a negative refractive power and a rear group having a variable interval at the time of at least three magnifications, and a subgroup on the most object side of the rear group has a negative refractive power. Zoom lens to be used.

〔31〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも3つの変倍時に可変な間隔を有する後群とよりなり、後群の最も物体側の副群は1つの負レンズ成分からなることを特徴とするズームレンズ。     [31] In order from the object side, the first lens group having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having a negative refractive power and a rear group having a variable interval at the time of at least three zooms, and a sub group closest to the object side of the rear group is composed of one negative lens component. Zoom lens.

〔32〕 物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも3つの変倍時に可変な間隔を有する後群とよりなり、後群の最も物体側の副群は開口絞り近傍に常時固定であり、1つの負レンズ成分からなることを特徴とするズームレンズ。     [32] In order from the object side, the first lens unit having a positive refractive power movable along the optical axis at the time of zooming, and moving toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. It consists of a second group having negative refractive power and a rear group having a variable interval at the time of at least three subsequent magnifications. The most object side subgroup of the rear group is always fixed in the vicinity of the aperture stop. A zoom lens comprising two negative lens components.

〔33〕 前記後群の最も物体側の正屈折力の副群は、負の倍率を有することを特徴とする上記〔1〕〜〔12〕あるいは〔16〕〜〔29〕の何れか1項記載のズームレンズ。     [33] Any one of [1] to [12] or [16] to [29] above, wherein the sub-group of positive refractive power closest to the object side in the rear group has a negative magnification. The described zoom lens.

〔34〕 変倍域に撮影可能画角2ω=70°を含むことを特徴とする上記〔1〕〜〔32〕の何れか1項記載のズームレンズ。     [34] The zoom lens according to any one of [1] to [32], wherein the zooming range includes a shootable field angle 2ω = 70 °.

〔35〕 広角端無限物点合焦時のバックフォーカス(空気換算長)FBWに関し以下の条件を満たすことを特徴とする上記〔1〕〜〔32〕の何れか1項記載のズームレンズ。 [35] The zoom lens according to any one of [1] to [32], wherein the following condition is satisfied with respect to the back focus (air conversion length) F BW when focusing on an infinite object point at the wide angle end.

(12) 2.0<FBW/fW <5.0
ただし、fW は広角端無限物点合焦時の全系合成焦点距離。
(12) 2.0 <F BW / f W <5.0
However, f W is the total focal length of the entire system when focusing on an infinite object point at the wide angle end.

〔36〕 広角端無限物点合焦時の最小F値FW に関し以下の条件を満たすことを特徴とする上記〔1〕〜〔32〕の何れか1項記載のズームレンズ。 [36] The zoom lens as described in any one of [1] to [32] above, wherein the following condition is satisfied with respect to the minimum F value F W when focusing on an infinite object point at the wide angle end.

(13) 1.4<FW <3.5
〔37〕 広角端における入射瞳位置ENPに関し以下の条件を満たすことを特徴とする上記〔1〕〜〔32〕の何れか1項記載のズームレンズ。
(13) 1.4 <F W <3.5
[37] The zoom lens according to any one of [1] to [32], wherein the following condition is satisfied with respect to the entrance pupil position ENP at the wide-angle end.

(14) 2<ENP/L<5
ただし、Lは結像面近傍に配設される有効撮像面の対角長。
(14) 2 <ENP / L <5
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔38〕 画素間隔aが、
1.0×10-4 ×L<a<6.0×10-4×L(mm)
なる撮像素子を有する撮影装置(カメラ、ビデオムービー等)の結像光学系として使用されることを特徴とする上記〔1〕〜〔32〕の何れか1項記載のズームレンズ。ただし、Lは結像面近傍に配設される有効撮像面の対角長。
[38] The pixel interval a is
1.0 × 10 −4 × L <a <6.0 × 10 −4 × L (mm)
The zoom lens according to any one of [1] to [32], wherein the zoom lens is used as an imaging optical system of a photographing apparatus (camera, video movie, or the like) having an image pickup device. However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.

〔39〕 上記〔1〕〜〔38〕の何れか2項以上を同時に満足することを特徴とするズームレンズ。     [39] A zoom lens that simultaneously satisfies any two or more of the above [1] to [38].

〔40〕 上記〔1〕〜〔39〕の何れか1項記載のズームレンズの結像面近傍に撮像素子を配したことを特徴とする撮像装置。     [40] An image pickup apparatus characterized in that an image pickup device is disposed in the vicinity of the image forming surface of the zoom lens according to any one of [1] to [39].

〔41〕 前記撮像素子を電子撮像素子とし、前記ズームレンズと前記電子撮像素子との間にローパスフィルターを配したことを特徴とする上記〔40〕記載の撮像装置。     [41] The image pickup apparatus according to [40], wherein the image pickup device is an electronic image pickup device, and a low-pass filter is disposed between the zoom lens and the electronic image pickup device.

〔42〕 前記ズームレンズと前記電子撮像素子との間に観察用の光路を分割する光学素子を配したことを特徴とする上記〔40〕又は〔41〕記載の撮像装置。     [42] The imaging apparatus according to [40] or [41], wherein an optical element that divides an optical path for observation is disposed between the zoom lens and the electronic imaging element.

以上の説明から明らかなように、本発明によると、デジタルカメラのように有効撮像面のサイズが小さいカメラ用で、広角端の対角画角70°以上の7倍乃至10倍程度のTTL光学ファインダー対応の、しかも広角端でのF値が2.0乃至2.8程度と明るい広角高倍ズームレンズが実現できる。   As is apparent from the above description, according to the present invention, the TTL optical system is used for a camera having a small effective image pickup surface size such as a digital camera and having a diagonal field angle of 70 ° or more at the wide angle end of about 7 to 10 times. A bright wide-angle high-magnification zoom lens compatible with the finder and having an F value of about 2.0 to 2.8 at the wide-angle end can be realized.

G1…第1群
G2…第2群
G3…第3群
G4…第4群
G5…第5群
G6…第6群
P…ファインダー用光路分割プリズム(平行平板)、近赤外カットコートが設けられている光学的ローパスフィルター、電子撮像素子のCCDのカバーガラス等の平行平板群
I…像面
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッター
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…ポロプリズム
57…視野枠
59…接眼光学系
112…対物レンズ
113…鏡枠
114…カバーガラス
160…撮像ユニット
162…撮像素子チップ
166…端子
300…パソコン
301…キーボード
302…モニター
303…撮影光学系
304…撮影光路
305…画像
400…携帯電話
401…マイク部
402…スピーカ部
403…入力ダイアル
404…モニター
405…撮影光学系
406…アンテナ
407…撮影光路
G1 ... 1st group G2 ... 2nd group G3 ... 3rd group G4 ... 4th group G5 ... 5th group G6 ... 6th group P ... Optical path dividing prism (parallel plate) for viewfinder, near infrared cut coat is provided. Parallel plate group I ... image plane E ... observer eyeball 40 ... digital camera 41 ... shooting optical system 42 ... shooting optical path 43 ... finder optical system 44 ... Optical path 45 for viewfinder ... Shutter 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Finder objective optical system 55 ... Porro prism 57 ... Field frame 59 ... Eyepiece optical system 112 ... Objective lens 113 ... Lens frame 114 ... Cover glass 160 ... Imaging unit 162 ... Image sensor chip 166 ... Terminal 300 ... Personal computer 301 ... Keyboard 302 ... Monitor 303 ... Shooting optical system 304 ... Shooting optical path 305 ... Image 400 ... Mobile phone 401 ... Microphone unit 402 ... Speaker unit 403 ... Input dial 404 ... Monitor 405 ... Shooting optics System 406 ... Antenna 407 ... Imaging optical path

Claims (11)

物体側から順に、変倍時に光軸に沿って可動の正の屈折力を有する第1群と、広角端から望遠端へ変倍する際に光軸に沿って像側へ移動する負の屈折力を有する第2群と、それに続く少なくとも2つの変倍時に可変な間隔を有する後群とよりなり、第1群は像側に凸の往復軌跡を描きつつ移動し、無限遠物点合焦時の第1群の広角端から望遠端までの移動量Δz1 、無限遠物点合焦時の第2群の広角端から望遠端までの移動量Δz2 に関して以下の条件を満たすことを特徴とするズームレンズ。
(4) −1.0<Δz1 /Δz2 <0.5 (Δz2 >0)
ただし、像側移動を正とする。
In order from the object side, a first lens unit having a positive refractive power that is movable along the optical axis at the time of zooming, and negative refraction that moves toward the image side along the optical axis when zooming from the wide-angle end to the telephoto end. A second group having a force and a rear group having a variable interval at the time of zooming, and the first group moves while drawing a convex reciprocating locus toward the image side, and focuses on an object point at infinity. The movement amount Δz 1 from the wide-angle end to the telephoto end of the first group at the time and the movement amount Δz 2 from the wide-angle end to the telephoto end of the second group at the time of focusing on an infinite object point satisfy the following conditions: Zoom lens.
(4) -1.0 <Δz 1 / Δz 2 <0.5 (Δz 2 > 0)
However, the image side movement is positive.
前記後群の最も物体側の正屈折力の副群は、負の倍率を有することを特徴とする請求項1記載のズームレンズ。 2. The zoom lens according to claim 1, wherein a sub-group of positive refractive power closest to the object side in the rear group has a negative magnification. 変倍域に撮影可能画角2ω=70°を含むことを特徴とする請求項1記載のズームレンズ。 The zoom lens according to claim 1, wherein the zoomable range includes a shootable angle of view of 2ω = 70 °. 広角端無限物点合焦時のバックフォーカス(空気換算長)FBWに関し以下の条件を満たすことを特徴とする請求項1記載のズームレンズ。
(12) 2.0<FBW/fW <5.0
ただし、fW は広角端無限物点合焦時の全系合成焦点距離。
2. The zoom lens according to claim 1, wherein the following condition is satisfied with respect to the back focus (air conversion length) F BW at the time of focusing on an infinite object point at the wide angle end.
(12) 2.0 <F BW / f W <5.0
However, f W is the total focal length of the entire system when focusing on an infinite object point at the wide angle end.
広角端無限物点合焦時の最小F値FW に関し以下の条件を満たすことを特徴とする請求項1記載のズームレンズ。
(13) 1.4<FW <3.5
The zoom lens according to claim 1, wherein the following condition is satisfied with respect to the minimum F value F W when focusing on an infinite object point at the wide angle end.
(13) 1.4 <F W <3.5
広角端における入射瞳位置ENPに関し以下の条件を満たすことを特徴とする請求項1記載のズームレンズ。
(14) 2<ENP/L<5
ただし、Lは結像面近傍に配設される有効撮像面の対角長。
The zoom lens according to claim 1, wherein the following condition is satisfied with respect to the entrance pupil position ENP at the wide angle end.
(14) 2 <ENP / L <5
However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.
画素間隔aが、
1.0×10-4 ×L<a<6.0×10-4×L(mm)
なる撮像素子を有する撮影装置の結像光学系として使用されることを特徴とする請求項1記載のズームレンズ。ただし、Lは結像面近傍に配設される有効撮像面の対角長。
The pixel interval a is
1.0 × 10 −4 × L <a <6.0 × 10 −4 × L (mm)
The zoom lens according to claim 1, wherein the zoom lens is used as an imaging optical system of an imaging apparatus having an imaging element. However, L is the diagonal length of the effective imaging surface disposed in the vicinity of the imaging surface.
請求項1〜7の何れか2項以上を同時に満足することを特徴とするズームレンズ。 A zoom lens that satisfies at least two of claims 1 to 7 at the same time. 請求項1〜8の何れか1項記載のズームレンズの結像面近傍に撮像素子を配したことを特徴とする撮像装置。 An image pickup apparatus comprising an image pickup device in the vicinity of an image plane of the zoom lens according to claim 1. 前記撮像素子を電子撮像素子とし、前記ズームレンズと前記電子撮像素子との間にローパスフィルターを配したことを特徴とする請求項9記載の撮像装置。 The imaging apparatus according to claim 9, wherein the imaging element is an electronic imaging element, and a low-pass filter is disposed between the zoom lens and the electronic imaging element. 前記ズームレンズと前記電子撮像素子との間に観察用の光路を分割する光学素子を配したことを特徴とする請求項9又は10記載の撮像装置。 The image pickup apparatus according to claim 9, wherein an optical element that divides an optical path for observation is disposed between the zoom lens and the electronic image pickup element.
JP2011007728A 2011-01-18 2011-01-18 Zoom lens and imaging apparatus Expired - Fee Related JP4891440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007728A JP4891440B2 (en) 2011-01-18 2011-01-18 Zoom lens and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007728A JP4891440B2 (en) 2011-01-18 2011-01-18 Zoom lens and imaging apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009008459A Division JP4790820B2 (en) 2009-01-19 2009-01-19 Zoom lens and imaging device

Publications (2)

Publication Number Publication Date
JP2011123515A true JP2011123515A (en) 2011-06-23
JP4891440B2 JP4891440B2 (en) 2012-03-07

Family

ID=44287383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007728A Expired - Fee Related JP4891440B2 (en) 2011-01-18 2011-01-18 Zoom lens and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4891440B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914855A (en) * 2011-08-04 2013-02-06 佳能株式会社 Zoom lens and image pickup apparatus equipped with zoom lens
JP2015026030A (en) * 2013-07-29 2015-02-05 株式会社ニコン Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2015015792A1 (en) * 2013-07-29 2015-02-05 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
EP2921897A4 (en) * 2012-11-14 2016-10-12 Nikon Corp Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP2018028687A (en) * 2017-10-24 2018-02-22 株式会社ニコン Variable power optical system, optical device, and manufacturing method for variable power optical system
CN114089511A (en) * 2021-11-26 2022-02-25 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004703A1 (en) 2013-07-12 2015-01-15 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device, and camera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850244A (en) * 1994-08-05 1996-02-20 Canon Inc Zoom lens having high variable power ratio
JP2001188170A (en) * 1999-12-28 2001-07-10 Canon Inc Zoom lens and photographic device using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850244A (en) * 1994-08-05 1996-02-20 Canon Inc Zoom lens having high variable power ratio
JP2001188170A (en) * 1999-12-28 2001-07-10 Canon Inc Zoom lens and photographic device using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914855A (en) * 2011-08-04 2013-02-06 佳能株式会社 Zoom lens and image pickup apparatus equipped with zoom lens
US8953251B2 (en) 2011-08-04 2015-02-10 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus equipped with zoom lens
CN102914855B (en) * 2011-08-04 2015-03-11 佳能株式会社 Zoom lens and image pickup apparatus equipped with zoom lens
EP2921897A4 (en) * 2012-11-14 2016-10-12 Nikon Corp Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP2015026030A (en) * 2013-07-29 2015-02-05 株式会社ニコン Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2015015792A1 (en) * 2013-07-29 2015-02-05 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US11635603B2 (en) 2013-07-29 2023-04-25 Nikon Corporation Variable power optical system, optical apparatus and manufacturing method for variable power optical system
JP2018028687A (en) * 2017-10-24 2018-02-22 株式会社ニコン Variable power optical system, optical device, and manufacturing method for variable power optical system
CN114089511A (en) * 2021-11-26 2022-02-25 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system
CN114089511B (en) * 2021-11-26 2024-01-16 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system

Also Published As

Publication number Publication date
JP4891440B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP2002062478A (en) Zoom lens
JP4936437B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
JP4766933B2 (en) Optical path folding zoom lens and image pickup apparatus having the same
JP2007248952A (en) Bending variable power optical system
JP4891440B2 (en) Zoom lens and imaging apparatus
JP2007156385A (en) Zoom optical system and image taking apparatus using the same
JP5484687B2 (en) Image pickup apparatus having a zoom lens
JP2000321499A (en) Zoom lens
JP4766929B2 (en) Image pickup apparatus having an optical path folding zoom lens
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JP4891441B2 (en) Zoom lens and imaging apparatus
JP4891439B2 (en) Zoom lens and imaging apparatus
JP2006119193A (en) Zoom lens and imaging apparatus equipped with the same
JP2011232620A (en) Imaging optical system and electronic imaging apparatus equipped with the same
JP4708734B2 (en) Zoom lens and imaging apparatus having the same
JP4790820B2 (en) Zoom lens and imaging device
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2002023053A (en) Zoom lens and image pickup device equipped with the same
JP2006350027A (en) Zoom lens and electronic imaging apparatus using the same
JP2003107356A (en) Optical path bending zoom optical system
JP2007286492A (en) Zoom lens and imaging apparatus having the same
JP4705770B2 (en) Optical system provided with cemented lens and imaging device using the same
JP2007004122A (en) Zoom optical system and electronic equipment equipped therewith
JP4027343B2 (en) Zoom lens and imaging apparatus using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees