JP2011123413A - 撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム - Google Patents

撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム Download PDF

Info

Publication number
JP2011123413A
JP2011123413A JP2009282826A JP2009282826A JP2011123413A JP 2011123413 A JP2011123413 A JP 2011123413A JP 2009282826 A JP2009282826 A JP 2009282826A JP 2009282826 A JP2009282826 A JP 2009282826A JP 2011123413 A JP2011123413 A JP 2011123413A
Authority
JP
Japan
Prior art keywords
correction data
optical
optical correction
transferred
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009282826A
Other languages
English (en)
Inventor
Ko Tajima
香 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009282826A priority Critical patent/JP2011123413A/ja
Publication of JP2011123413A publication Critical patent/JP2011123413A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

【課題】レンズ装置と撮像装置本体間の光学補正データの転送を効率良く行い、且つ精度良く光学補正を行う。
【解決手段】ある一つの光学条件に対応した光学補正データを複数回に分けて交換レンズ100からカメラ本体200に転送し、前記光学補正データの中でカメラ本体に転送されていないものがある場合に、カメラ本体に転送済みの光学補正データを補間して、光学補正処理に用いる光学補正データを生成する。
【選択図】図3

Description

本発明は、レンズ交換式のビデオカメラ等の撮像装置及びその制御方法、前記撮像装置に用いられるレンズ装置及びその制御方法、並びに前記制御方法を実現するためのプログラムに関する。
レンズ交換式のビデオカメラ等の撮像装置では、レンズ装置の光学特性に起因する、色収差や、周辺光量落ち、光学歪等の画質劣化を、撮像装置本体の信号処理で補正する際、レンズ装置の種類毎に光学補正データを用意する必要がある。また、撮像する対象が動画であるため、その補正にはリアルタイム性が求められる。
そこで、特許文献1では、単位映像期間(例えば1フィールド)に1回のタイミングでその都度レンズ装置内部の光学補正データを撮像装置本体に転送することにより、レンズに起因する画質劣化をリアルタイムに補正するようにしている。
特開2008−096907号公報
しかしながら、上記特許文献1の技術では、次のような問題点があった。
即ち、単位映像期間に1回のタイミングで、レンズ装置から撮像装置本体に光学補正データを転送する際、転送するデータ量が大きいと、単位映像期間内に転送しきれず適正な補正が行われないという問題があった。
本発明は上記従来の問題点に鑑み、次のような、撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラムを提供することを目的とする。即ち、レンズ装置と撮像装置本体間などにおける光学補正データの転送が効率良く行うことができ、且つ精度良く光学補正が行えるようにする。
上記目的を達成するために、本発明の撮像装置は、光学系と、前記光学系によって生成された被写体像を光電変換する撮像手段と、前記光学系の状態に応じた光学補正データを保持した第1の記憶手段と、前記第1の記憶手段と異なる第2の記憶手段と、前記光学補正データを前記第1の記憶手段から前記第2の記憶手段に転送する転送手段と、前記第2の記憶手段に保持された光学補正データを補間する補間手段と、前記補間手段にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正手段とを有し、前記転送手段は、前記光学系の所定の状態に対応した光学補正データを複数回に分けて前記第1の記憶手段から前記第2の記憶手段に転送し、前記補間手段は、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものがある場合に、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正手段で用いる光学補正データを生成し、前記補間手段が、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正手段で用いる光学補正データを生成した後に、前記転送手段が、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものを新たに前記第2の記憶手段に転送した場合には、前記補間手段は、前記第2の記憶手段に転送済みの光学補正データを再び補間して、前記光学補正手段で用いる光学補正データを生成することを特徴とする。
本発明によれば、撮像装置において、第1の記憶手段と第2の記憶手段の間の光学補正データの転送を効率良く行うことができ、且つ精度良く光学補正を行うことができる。これにより、第1の記憶手段から第2の記憶手段に転送するデータ量が大きい場合でも、リアルタイムで精度良く、光学系に起因する画質劣化を補正することが可能になる。
実施の形態における撮像装置の構成を示すブロック図である。 実施の形態における光学補正データベースの構成を示す模式図である。 第1の実施の形態における1V期間の処理を示すフローチャートである。 第1の実施の形態における複数V期間の動作例を示すタイミングチャートである。 光学状態Aに対応した光学補正データの特性を示す模式図である。 光学状態Bに対応した光学補正データの特性を示す模式図である。 第2の実施の形態における1V期間の処理を示すフローチャートである。 第2の実施の形態における補間済み光学補正データの特性を示す模式図である。 第2の実施の形態における複数V期間の動作例を示すタイミングチャートである。 第3の実施の形態における1V期間の処理を示すフローチャートである。 第3の実施の形態における複数V期間の動作例を示すタイミングチャートである。 第3の実施の形態における光学補正データの特性を示す模式図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。
[第1の実施の形態]
<撮像装置の構成>
図1は、本発明の第1の実施の形態に係る撮像装置の構成を示すブロック図である。
この撮像装置は、図1に示すように、カメラ本体200と、カメラ本体200に対して着脱可能なレンズ装置である交換レンズ100とで構成されている。そして、カメラ本体200内部のマイコン7と交換レンズ100内部のマイコン3が通信することにより、交換レンズ100の駆動、及びカメラ本体200で行われる光学特性に起因した画質劣化の補正処理が制御される。
交換レンズ100は、レンズ及び絞りを含む光学系1と、光学系1の光学特性に起因する画質劣化を補正するための光学補正データを含む光学補正データベース2(第1の記憶手段)と、マイコン3から構成されている。交換レンズ100内部のマイコン3は、交換レンズ100とカメラ本体200との通信制御のほかに、光学系1の駆動制御や光学補正データベース2のアクセス制御を行う。
カメラ本体200は、撮像素子4、AFE5、ズーム設定部8、絞り設定部9、フォーカス設定部10、補間部11、RAM12、光学補正部6、及びマイコン7から構成されている。 撮像素子4は、交換レンズ100で生成される被写体像を光電変換する。AFE5は、撮像素子4の出力信号に対してA/D変換、及びCDS等のアナログ信号処理を行う。ズーム設定部8、絞り設定部9、及びフォーカス設定部10は、ユーザによる操作又はマイコン7での制御に応じて、それぞれ、光学系1のズーム、絞り、フォーカスを設定する。
マイコン7は、カメラ本体200の動作全体を制御する。RAM12(第2の記憶手段)は、マイコン7のワークエリアとして機能するほか、交換レンズ100とカメラ本体200との通信や、カメラ本体200での信号処理において発生する中間信号を一時的に保持する。補間部11は、光学補正データに対して補間を行う。光学補正部6は、補間済み補正データを用いて、着目フレームの映像信号に対し、光学系の光学特性に起因した画質劣化を補正する。そして、光学補正後の映像信号は、映像出力端子13から出力されるようになっている。
<撮像装置における動作の概要>
次に、第1の実施の形態における撮像装置の動作の概要について説明する。
撮影が開始されると、ズーム設定部8、絞り設定部9、及びフォーカス設定部10の設定に基づき、カメラ本体200内部のマイコン7から、交換レンズ100内部のマイコン3に光学系の駆動制御信号が転送される。そして、交換レンズ100のマイコン3によって、光学系1の駆動制御が行われる。それと同時に、マイコン3は、ズーム、絞り、及びフォーカスの設定によって定まる、光学系の状態に対応した光学補正データを、光学補正データベース2の中から選択する。
光学補正データベース2には、周辺光量落ち、色収差、光学歪、色シェーディング等といった、光学系の光学特性に起因して発生する画質劣化要素毎に、光学補正データが保持されている。各画質劣化要素に対応した光学補正データは、例えば、後述する図2に示すように、光学条件毎に、像高に対して離散的に補正値を持っているものとする。また、光学条件は、ズーム、絞り、フォーカス等の光学パラメータの設定値によって規定されるものとする。
本実施の形態の撮像装置では、光学系のある一状態に対応した光学補正データをカメラ本体200に転送する際、交換レンズ100とカメラ本体200との通信容量内に収まるように、像高方向に光学補正データを複数回に分けて転送する。そして、カメラ本体200では、光学系のある一状態に対応した光学補正データを全て受信するまでは、内部のRAM12に転送済みの光学補正データを用いて、光学補正データの欠落を補間し、光学補正に適用する。このようにして、交換レンズ100からカメラ本体200に転送する光学補正データのデータ量を削減しつつ、精度の高い光学補正を行うことを目的としている。
<1V期間の処理>
次に、ある1V期間において、交換レンズ100からカメラ本体200へ光学補正データを転送し、カメラ本体200内で交換レンズ100の光学特性に起因した画質劣化を補正するまでの処理の流れについて、図2及び図3を参照しながら詳細に説明する。ここで、1V期間とは、例えば後述する図4のタイミングチャートにおいてVD信号の発信間隔など、1フレーム内の所定の単位映像期間(以下、単にV期間と記す)の1期間を意味する。
図2は、光学補正データベース2の構成を示す模式図である。また、図3は、第1の実施の形態における1V期間の処理を示すフローチャートであり、ある1V期間において光学補正データの転送から補間済み光学補正データ生成に至るまでの制御を表している。
図3に示すステップS100で、ある1V期間の撮影が開始されると、続くステップS101では、カメラ本体200内のマイコン7が次のような処理を行う。即ち、ズーム設定部8、絞り設定部9、及びフォーカス設定部10の出力を参照し、現在の撮影フレーム(以下、現フレームと表記)における光学系の状態を示す、“光学条件”を検出し、RAM12に記憶する。ここで、光学条件は、1V期間において、ズーム、絞り、フォーカス等の各光学パラメータの設定値をそれぞれ平均化した値によって定義されるものとする。
次のステップS102において、マイコン7は、現フレームの光学条件と、RAM12に記憶されている過去のフレームの光学条件とを比較し、光学条件が1V前から変化したか否かを判定する。光学条件が1V前から変化した場合には、ステップS104に進み、光学条件が1V前と同じとみなせる場合にはステップS103に進む。なお、本実施の形態の光学補正データベース2では、図2に示すように、光学補正データを光学条件L毎に離散的に保持している。そのため、現フレームの光学条件とRAM12に記憶されている過去フレームの光学条件との差がL以上である場合には、光学条件が変化したとみなす。
ステップS103では、カメラ本体200内のマイコン7が、交換レンズ100内のマイコン3に、現フレームの光学条件を通知する。マイコン3は、マイコン7からの通知を受けて、光学補正データベース2内の転送フラグを参照し、現フレームの光学条件に対応する光学補正データの中でカメラ本体200に未転送のものがあるかどうか、転送状況を判定する。現フレームの光学条件に対応する光学補正データの中で、カメラ本体200に未転送のものがある場合には、ステップS107に進み、現フレームの光学条件に対応する光学補正データが一条件分全てカメラ本体200に転送済みの場合にはステップS112に進む。
ここで、転送フラグとは、光学補正データベース2内の光学補正データと一対一で対応しており、ある光学条件である像高の光学補正データがカメラ本体200に転送済みであるか否かを示す情報である。光学補正データの中で、転送フラグが1に設定されているものは、1V前までに、カメラ本体200に転送済みであることを示し、転送フラグが0に設定されているものは、まだカメラ本体200に転送されていないデータであることを示す。転送フラグは、交換レンズ100もしくはカメラ本体200内の記憶領域に読み書き可能な形で保持しておけばよく、本実施の形態では、図2に示すように、データベース2内に記憶している。
図2において、光学条件Aに対応した光学補正データA0、A1、A2、・・・、A6、A7の転送フラグは、像高毎に、fg_A0、fg_A1、fg_A2、・・・、fg_A6、fg_A7である。光学条件Bに対応した光学補正データB0、B1、B2、・・・、B6、B7の転送フラグは、像高毎に、fg_B0、fg_B1、fg_B2、・・・、fg_B6、fg_B7である。また、光学条件Cに対応した光学補正データC0、C1、C2、・・・、C6、C7の転送フラグは、像高毎に、fg_C0、fg_C1、fg_C2、・・・、fg_C6、fg_C7である。
ステップS104では、ステップS101で求めた現フレームの光学条件をカメラ本体200内のRAM12に記憶し、続くステップS105では、転送フラグを全て0に初期化する。次のステップS106では、RAM12に保持されている光学補正データ、及び補間済み光学補正データを消去する(RAM12の初期化)。補間済み光学補正データについては、後述する。
前記ステップS105及び前記ステップS106において、転送フラグ、及びRAM12内に保持された光学補正データを初期化するのは、次のような理由からである。即ち、光学条件が1V前から変化したため、1V前までに転送された光学補正データの転送履歴を消去し、新たに、現フレームの光学条件に対応した光学補正データを転送し直す必要があるためである。
ステップS107では、交換レンズ100内のマイコン3が、現フレームの光学条件と、転送フラグの設定を参照し、光学補正データベース2の中から、当該V期間において転送対象となる一部分の光学補正データを選択する。そして、その選択した光学補正データをカメラ本体200内のRAM12に転送する。
ここで、転送対象となる一部分の光学補正データは、現フレームの光学条件に対応し、1V前までに、カメラ本体200に未転送の光学補正データの中から、いくつかの像高に対応したデータが抽出されたものである。現フレームの条件に対応した、未転送光学補正データの中から、一部分を選択して転送することにより、交換レンズ100とカメラ本体200間の通信容量を圧迫しないようにしている。
そして、ここで転送された光学補正データに対応する転送フラグを1(転送済み)に設定して光学補正データベース2に書き戻す。なお、本実施の形態では、転送対象の光学補正データを選択する際、像高の低い側のデータプロットを優先的に選択するものとする。
ステップS108では、マイコン3が、再度、転送フラグを参照し、ステップS107でのデータ転送後も、現フレームの光学条件に対応する未転送データ群が残存するかを判定する。現フレームの光学条件に対応する未転送データ(転送フラグが0)が、まだ存在する場合には、ステップS109に進む。また、ステップS107でのデータ転送をもって、現フレームの光学条件に対応する光学補正データが全てカメラ本体200に転送済みとなった場合には、ステップS112に進む。
ステップS109では、マイコン3が未転送データプロットで示される補正特性の傾きを求める。即ち、現フレームの光学条件に対応してステップS107でのデータ転送後もカメラ本体200に未転送となっている光学補正データ(転送フラグが0)を参照し、これらの未転送データプロットで示される補正特性の傾きを求める。補正特性の傾きは、例えば、未転送データプロットを通る直線の傾きとする。
ステップS110では、前記ステップS109で算出された、未転送データプロットによる補正特性の傾きが、交換レンズ100からカメラ本体200内のRAM12に転送される。次のステップS111では、補間部11において、RAM12に保持されている一部分の光学補正データと、未転送データプロットによる補正特性の傾きとを用いた補間を行い、全像高に適用可能な補間済み光学補正データを生成する。
例えば、現フレームの光学条件に対応する光学補正データが図5(a)のような特性であり、1V前までにA0からA7までの全ての補正データが未転送である場合には、次のようになる。即ち、低像高側のA0からA3までの補正データと、図5(b)に示す、A4からA7までの未転送データプロットから概算した補正特性の傾きKaが、カメラ本体200に転送され、RAM12に記憶される。
そして、転送された低像高側の補正データA0、A1、A2、A3と、未転送補正データによる補正特性の傾きKaを用いて、補間部11で補間を行うことにより、現フレームの全像高に適用可能な補間済み光学補正データが生成される。このとき、補間済み光学補正データの補正特性は、図5(c)の実線のようになる。
補間済み光学補正データの生成方法は、例えば図5(c)に示すように、A0、A1、A2、A3のプロット間を通る複数の直線と、A3を通り傾きがKaの直線を接続し、直線のつなぎ目を2次曲線で置き換えるという方法が挙げられる。また、これ以外の方法で補正特性を生成しても構わない。
ステップS112では、カメラ本体200内部のマイコン7が、RAM12から、現フレームの光学条件に対応した補間済み光学補正データを読み出し、光学補正部6に送出する。光学補正部6では、現フレームの光学条件に対応した補間済み光学補正データを用いて、AFE5から出力される現フレームの映像信号に対して、光学補正処理を行う。
以上で、1V期間における光学補正処理が終了する。本実施の形態では、撮影開始から撮影終了までの各V期間について、上記で説明した図3の処理を繰り返し行うことにより、光学系の状態に応じた光学補正処理をリアルタイムで行うことができる。
<複数V期間の動作例>
次に、複数V期間における、光学条件の変動の一例を示し、その際、各V期間において、どのような光学補正データが転送され、それによって、どのような補間済み光学補正データが出力されるかを、図4、図5及び図6を参照しながら説明する。
図4は、第1の実施の形態における複数V期間の動作例を示すタイミングチャートである。また、図5(a)〜(d)は、光学状態Aに対応した光学補正データの特性を示す模式図であり、図6(a)〜(d)は、光学状態Bに対応した光学補正データの特性を示す模式図である。
図4に示すT1で撮影を開始し、T1、T2の各V期間では、光学条件がAであり、T3、T4、T5の各V期間では、光学条件がBであるとする。なお、光学条件A、光学条件Bに対応した光学補正データは、それぞれ図5(a)、図6(a)のような特性のデータプロットとなっており、いずれも交換レンズ100内の光学補正データベース2に保持されている。また、本実施の形態において、1V期間中に、交換レンズ100からカメラ本体200に転送できるのは、一つの光学条件に対応した光学補正データの半量であるとする。
図4に示す期間T1は、撮影開始直後であるので、光学条件Aに対応する光学補正データの転送フラグが全て0(未転送)になっている。したがって、期間T1では、光学条件Aに対応した光学補正データの中の、低像高側のA0〜A3のデータプロットが、転送対象のデータとして選択される。光学条件Aに対応したA4〜A7のデータプロットは、転送対象外となるので、交換レンズ100内のマイコン3によって、A4〜A7を通る補正特性の傾きKaが計算される。そして、低像高側のデータプロットA0〜A3とともに、カメラ本体200内のRAM12に転送される。
期間T1において、補間部11では、交換レンズ100から転送されたデータプロットA0〜A3と、未転送データプロットによる補正特性の傾きKaとを用いた補間を行い、現フレームの全像高に適用可能な補間済み光学補正データDA1を生成する。補間済み光学補正データDA1の補正特性は、図5(c)の実線のようになる。
次の期間T2では、光学条件が1V前と同様のAとなっている。光学条件Aに対応した光学補正データのうち、A0〜A3は、期間T1に転送済みであるので、期間T2での転送対象はA4〜A7となる。また、期間T2での光学補正データの転送をもって、光学条件Aに対応する全ての光学補正データA0〜A7が転送済みとなるため、未転送データプロットによる補正特性の傾きの演算、及び転送は行われない。
期間T2において、補間部11では、データプロットA0〜A7を用いた補間を行い、補間済み光学補正データDA2を生成する。補間済み光学補正データDA2の補正特性は、図5(d)の実線ようになる。本実施の形態では、カメラ本体200内のRAM12に、現フレームの光学条件に対応した光学補正データが、一条件分全て転送済みとなっている場合、全データプロットを2次曲線で接続することにより補正特性を生成するが、別の方法で生成しても構わない。
次の期間T3では、光学条件が1V前からBに変化する。したがって、光学条件Aに対応した光学補正データの転送フラグは0にリセットされる。また、期間T3の開始時点で、光学条件Bに対応する光学補正データは、RAM12にまだ転送されていない。したがって、期間T3で転送対象となる光学補正データは、光学条件Bに対応する光学補正データの中の、低像高側のデータプロットB0〜B3となる。
期間T3において、光学条件Bに対応したデータプロットB4〜B7は、転送対象外となるので、交換レンズ100内のマイコン3によって、B4〜B7を通る補正特性の傾きKb(図6(b))が計算される。そして、低像高側のデータプロットB0〜B3とともに、カメラ本体200内のRAM12に転送される。
期間T3において、補間部11では、交換レンズ100から転送されたデータプロットB0〜B3と未転送補データプロットによる正特性の傾きKbを用いた補間を行い、現フレームの全像高に適用できる補間済み光学補正データDB1を生成する。補間済み光学補正データDB1の補正特性は、図6(c)の実線のようになる。
次の期間T4では、光学条件が1V前と同様のBとなっている。光学条件Bに対応した光学補正データのうち、B0〜B3は、1V前の期間T3に転送済みであるので、期間T4での転送対象は、B4〜B7のデータプロットとなる。また、期間T4での光学補正データの転送をもって、光学条件Bに対応した一条件分の光学補正データB0〜B7が全て転送済みとなるため、未転送データプロットによる補正特性の傾きの演算、及び転送は行われない。
期間T4において、補間部11では、交換レンズ100から転送されたデータプロットB0〜B7を用いた補間を行い、補間済み光学補正データDB2を生成する。補間済み光学補正データDB2の補正特性は、図6(d)の実線のようになる。
次の期間T5でも、光学条件は1V前と同様のBとなっている。期間T5の開始時点で、光学条件Bに対応する一条件分の光学補正データは、全て、カメラ本体200内のRAM12に転送済みとなっている。したがって、期間T5では、交換レンズ100からの光学補正データの転送、及び未転送データプロットによる補正特性の傾きの演算と転送は行われない。期間T5では、1V前に求められた補間済み光学補正特性DB2が、カメラ本体200内のRAM12から読み出され、光学補正部6での光学補正処理に用いられる。
<第1の実施の形態に係る利点>
以上のように、本実施の形態では、ある一つの光学条件に対応した光学補正データを交換レンズ100からカメラ本体200に転送する際、光学補正データの像高分解能を落として複数回に分けて転送し、カメラ本体200内で補間して補正処理に用いる。これにより、交換レンズ100−カメラ本体200間の通信容量を抑えながら、精度よく光学補正を行うことができる。即ち、光学系のある一状態に対応した光学補正データのデータ量が、交換レンズ100とカメラ本体200との通信容量を超える場合にも、リアルタイムで精度良く、光学系に起因する画質劣化を補正することができる。
また、光学条件が同一とみなせるV期間が連続する場合には、V期間の経過とともに、カメラ本体200内部のRAM12に、その光学条件に対応した光学補正データが取り揃うようなる。その結果、交換レンズ100−カメラ本体200間の通信容量を抑えながら、高像高側の複雑な特性を考慮した、より精度の高い補正データを適用できるようになる。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。
第2の実施の形態の構成と動作の概要は、第1の実施の形態と同様であるので説明を省略する。第2の実施の形態と第1の実施の形態との差異は、交換レンズ100からカメラ本体200へ転送する光学補正データの選び方と、補間部11での補間済み光学補正データの生成方法である。以下では第1の実施の形態との差異について説明する。
<1V期間の処理>
図7は、第2の実施の形態における1V期間の処理を示すフローチャートであり、本処理では、ある1V期間において光学補正データの転送から補間済み光学補正データ生成に至るまでの制御を表している。
図7において、図3と共通の処理には同一の符号を付し、その説明を省略する。即ち、ステップS100からステップS106までの処理とステップS112での処理は、図3に示した第1の実施の形態のフローチャートと同じであるので、説明を省略し、ステップS207とステップS211についてのみ説明する。
図7に示すステップS207では、交換レンズ100内のマイコン3が、現フレームの光学条件と転送フラグの設定を参照し、光学補正データベース2の中から、当該V期間において転送対象となる一部分の光学補正データを選択する。そしてカメラ本体200内のRAM12に転送する。
ここで、転送対象となる一部分の光学補正データは、現フレームの光学条件に対応し、1V前までに、カメラ本体200に未転送の光学補正データの中から、いくつかの像高に対応したデータが抽出されたものである。現フレームの条件に対応した未転送光学補正データの中から一部分を選択して転送することにより、交換レンズ100とカメラ本体200間の通信容量を圧迫しないようにしている。
そして、ここで転送された光学補正データに対応する転送フラグを1(転送済み)に設定して光学補正データベース2に書き戻す。なお、本実施の形態では、転送対象の光学補正データを選択する際、データプロットを1/nに間引いて転送する。例えば、現フレームの光学条件に対応する光学補正データが図5(a)のような特性であり、1V期間に転送できる通信容量が一条件分の補正データの半分である場合には、データプロットを1/2に間引き、A0、A2、A4、A6を選択して転送する。
ステップS211では、補間部11において、RAM12に保持されている一部分の光学補正データを用いた補間を行い、全像高に適用可能な補間済み光学補正データを生成する。補間部11で生成される補間済み光学補正データの補正特性は、次のようになる。即ち、例えば、現フレームの光学条件に対応する光学補正データが図5(a)のような特性であり、ステップS207で転送されたデータプロットがA0,A2,A4,A6である場合は、図8(a)の実線のようになる。このとき、補間部11での処理としては、例えば、図8(a)に示すように、像高と補正値で定義される2次元領域で、離散的なプロットのデータ間を複数の2次曲線で接続するという方法を採るが、これ以外の方法で補正特性を生成しても構わない。補間済み光学補正データは、現フレームの光学条件に対応した光学補正データとして、RAM12に記憶される。
本実施の形態においても、撮影開始から撮影終了までの各V期間について、上記で説明した図7の処理を繰り返し行うことにより、光学系の状態に応じた光学補正処理をリアルタイムで行うことができる。
<複数V期間の動作例>
次に、複数V期間における、光学条件の変動の一例を示し、その際、各V期間において、どのような光学補正データが転送され、それによって、どのような補間済み光学補正データが出力されるかを、図8及び図9等を参照しながら説明する。
図8(a)〜(d)は、第2の実施の形態における、補間済み光学補正データの特性を示す模式図である。同図(a),(b)は光学状態Aに対応した補間済み光学補正データの特性を示し、同図(c),(d)は光学状態Bに対応した補間済み光学補正データの特性を示している。また、図9は、第2の実施の形態における複数V期間の動作例を示すタイミングチャートである。
図9に示すT1で撮影を開始し、T1、T2のV期間では、光学条件がAであり、T3、T4、T5では光学条件がBであるとする。なお、光学条件A、光学条件Bに対応した光学補正データは、それぞれ、図5(a)、図6(a)のような特性のデータプロットとなっており、いずれも交換レンズ100内の光学補正データベース2に保持されている。また、本実施の形態において、1V期間中に、交換レンズ100からカメラ本体200に転送できるのは、一つの光学条件に対応した光学補正データの半量であるとする。
図9に示す期間T1は、撮影開始直後であるので、光学補正データベース2内の光学条件Aに対応する転送フラグが全て0(未転送)になっている。したがって、期間T1では、光学条件Aに対応した光学補正データから等間隔に1/2に間引かれた、A0、A2、A4、A6のデータプロットが、カメラ本体200内のRAM12に転送される。
期間T1において、補間部11では、RAM12に保持されているデータプロットA0、A2、A4、A6を用いて補間を行い、現フレームの画像全体に適用する補間済み光学補正データDA1を生成する。補間済み光学補正データDA1の補正特性は、図8(a)の実線のようになる。
次の期間T2では、光学条件が1V前と同様のAとなっている。光学条件Aに対応した光学補正データのうち、A0、A2、A4、A6は、1V前の期間T1に転送済みであるので、期間T2で転送対象となるのは、A1、A3、A5、A7のデータプロットとなる。カメラ本体200内のRAM12には、一光学状態分の光学補正データが保持できるので、RAM12には、期間T1で転送されたデータプロットA0、A2、A4、A6と、期間T2で転送されたデータプロットA1、A3、A5、A7が全て保持される。
期間T2において、補間部11では、カメラ本体200内のRAM12に保持されているデータプロットA0、A1、A2、A3、A4、A5、A6を用いて補間を行い、現フレームの画像全体に適用する補間済み光学補正データDA2を生成する。補間済み光学補正データDA2の補正特性は、図8(b)の実線のようになり、期間T1よりも精度良く光学状態Aに対応した補正を行うことができる。
次の期間T3では、光学条件が1V前から変化しBとなる。したがって、光学条件Aに対応する光学補正データの転送フラグは0にリセットされ、1V前までにRAM12に記憶されている光学補正データも消去される。期間T3では、光学条件B対応した光学補正データを、等間隔に1/2に間引いたデータプロットB0、B2、B4、B6が、カメラ本体200内のRAM12に転送される。
期間T3において、補間部11では、カメラ本体200内のRAM12に保持されているデータプロットB0、B2、B4、B6を用いて補間を行い、現フレームの画像全体に適用する補間済み光学補正データDB1を生成する。補間済み光学補正データDB1の補正特性は、図8(c)の実線のようになる。
次の期間T4では、光学条件が1V前と同様のBとなっている。光学条件Bに対応した光学補正データのうち、B0、B2、B4、B6は、1V前の期間T3に転送済みであるので、期間T4で転送対象となるのは、B1、B3、B5、B7のデータプロットとなる。RAM12には、一光学状態分の光学補正データを保持できるので、このとき、RAM12には、期間T3で転送されたデータプロットB0、B2、B4、B6に加えて、期間T4で転送されたデータプロットB1、B3、B5、B7が保持される。
期間T4において、補間部11では、カメラ本体200内のRAM12に保持されているデータプロットB0、B1、B2、B3、B4、B5、B6、B7を用いて補間を行い、現フレームの画像全体に適用する補間済み光学補正データDB2生成する。補間済み光学補正データDB2補正特性は、図8(d)の実線のようになり、期間T3よりも精度良く光学状態Bに対応した補正を行うことができる。
次の期間T5でも、光学条件は、1V前と同様のBとなっている。期間T5の開始時点で、光学条件Bに対応する一条件分の光学補正データは、全てカメラ本体200内のRAM12に転送済みとなっているので、期間T5において、光学補正データのカメラ本体200への転送、及び補間部11での補間処理は行わない。期間T5では、1V前に求められた補間済み光学補正特性DB2を、カメラ本体200内のRAM12から読み出し、光学補正部6での光学補正処理が行われる。
<第2の実施の形態に係る利点>
以上のように、本実施の形態においても、ある一つの光学条件に対応した光学補正データを交換レンズ100からカメラ本体200に転送する際、光学補正データの像高分解能を落として複数回に分けて転送し、カメラ本体200内で補間して補正処理に用いる。これにより、交換レンズ100−カメラ本体200間の通信容量を抑えながら、精度良く光学補正を行うことができる。
また、光学条件が同一とみなせるV期間が連続する場合には、V期間の経過とともに、カメラ本体200内部のRAM12に、その光学条件に対応した光学補正データが取り揃うようになる。これにより、交換レンズ100−カメラ本体200間の通信容量を抑えながら、高像高側の複雑な特性を考慮した、より精度の高い補正データを適用できるようになる。
なお、本実施の形態では、ある光学条件に対応した光学補正データを像高方向に間引いてカメラ本体200に転送したが、データビット方向に間引いてカメラ本体200に転送し、補間済み光学補正データを生成してもよい。
[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。
第3の実施の形態である撮像装置の構成と動作の概要は、第1、第2の実施の形態と同様であるので説明を省略する。第3の実施の形態と第1、第2の実施の形態との差異は、交換レンズ100からカメラ本体200へ転送する光学補正データの選び方と、補間部11での補間済み光学補正データの生成方法である。以下では第1、第2の実施の形態との差異についてのみ説明する。
<1V期間の処理>
図10は、第3の実施の形態における1V期間の処理を示すフローチャートであり、本処理では、ある1V期間において光学補正データの転送から補間済み光学補正データ生成に至るまでの制御を表している。
図10において、図3と共通の処理には同一の符号を付し、その説明を省略する。即ち、図10に示すステップS100からステップS104までの処理と、ステップS112での処理は、図3に示した第1の実施の形態のフローチャートと同じであるので、説明を省略する。以下では、ステップS305、ステップS307、及びステップS308の処理についてのみ説明する。
ステップS305では、カメラ本体200内のマイコン7が、現フレームの光学条件とRAM12を参照し、現フレームの光学条件に対応した光学補正データの中で、RAM12に、現時点で保持されていない光学補正データを探索する。そして、現時点で、RAM12に保持されていない、現フレームの光学条件に対応する光学補正データが、どの像高のものであるかを交換レンズ100内のマイコン3に通知する。
ステップS307では、マイコン3が、マイコン7からの通知を受けて、現フレームの光学条件に対応した光学補正データの中から、転送対象となる一部分の光学補正データを選択し、カメラ本体200に転送する。そして、転送した光学補正データの転送フラグを1(転送済み)に設定して光学補正データベース2に書き戻す。
ステップS307において、転送対象となる一部分の光学補正データの選び方は、次のようになる。即ち、RAM12に保持されている過去の光学条件に対応した光学補正データと、現フレームの光学条件に対応した光学補正データとを、ステップS306で通知された像高の範囲において比較し、最も補正値の差分が大きい像高を求める。そして、過去の光学条件にした光学補正データと、現フレームの光学条件に対応した光学補正データで、最も補正値の差分が大きい像高を起点として、所定の像高範囲に含まれるデータを今回の転送対象として選択する。これにより、現フレームの光学条件に対応した光学補正データの中で、交換レンズ100−カメラ本体200間の通信容量を超えないよう、一部分の光学補正データを選択して転送することができる。
ステップS308では、RAM12に保持されている一部分の光学補正データを用いて、補間部11で補間を行い、全像高に適用可能な補間済み光学補正データを生成する。補間済み光学補正データは、現フレームに対する光学補正データとして、RAM12に記憶される。
以上で、1V期間における光学補正処理が終了する。本実施の形態では、撮影開始から撮影終了までの各V期間について、上記で説明した図10の処理を繰り返し行うことにより、光学系の状態に応じた光学補正処理をリアルタイムで行うことができる。
<複数V期間の動作例>
次に、複数V期間における、光学条件の変動の一例を示し、その際、各V期間において、どのような光学補正データが転送され、それによって、どのような補間済み光学補正データが生成されるかを、図11及び図12等を参照しながら説明する。
図11は、第3の実施の形態における複数V期間の動作例を示すタイミングチャートである。また、図12(a)〜(e)は、第3の実施の形態における、光学補正データの特性を示す模式図であり、同図(a)は初期状態の光学補正データの特性を示し、同図(b)〜(e)は 補間済み光学補正データの特性を示している。
第3の実施の形態では、第1及び第2の実施の形態と異なり、光学条件が変動した場合でも、RAM12に保持されている光学補正データを消去せず、補正特性の変動が大きい像高領域の補正データのみを更新して補間済み光学補正データを生成する。
図11に示すT1で撮影を開始し、T1、T2の各V期間では、光学条件がAであり、T3、T4、T5の各V期間では、光学条件がBであるとする。なお、光学条件A、光学条件Bに対応した光学補正データは、それぞれ、図5(a)、図6(a)のような特性のデータプロットとなっており、いずれも交換レンズ100内の光学補正データベース2に保持されている。また、本実施の形態において、1V期間中に、交換レンズ100からカメラ本体200に転送できるのは、一つの光学条件に対応した光学補正データの半量であるとする。
図11に示す期間T1は、撮影開始直後であるので、光学条件Aに対応する転送フラグが全て0(未転送)になっている。また、現フレームの光学条件に遷移する前の光学条件(以下、直前の光学条件と表記)は、初期状態を示すZとなっている。直前の光学条件が初期状態Zである場合には、光学補正データベース2に保持されている初期状態用の光学補正データと、現フレームの光学条件に対応する光学補正データとを比較し、最も補正値の差分が大きい像高を求める。期間T1の場合は、図12(a)に示すような初期状態用の光学補正データと、光学条件Aに対応する光学補正データとを全像高について比較し、最も補正値の差分が大きい像高として、P7が選択される。
期間T1で、転送対象となる光学補正データは、像高P7を起点として、高像高側のP6,P5、P4までとなり、これらの像高に対応する補正データA7、A6、A5、A4が、カメラ本体200に転送され、RAM12に記憶される。
期間T1では、RAM12に記憶されているデータプロットA7、A6、A5、A4を用いた補間が、補間部11で行われ、現フレームの全像高に適用できる補間済み光学補正データDA1が生成される。補間済み光学補正データDA1の補正特性は、図12(b)の実線のようになっており、例えば、データプロットA4、A5、A6、A7を2次曲線で接続し、データプロットのない像高範囲については、一様にA4と同じ補正値として生成する。
次の期間T2では、光学条件が1V前と同様のAである。光学条件Aに対応した光学補正データのうち、A7、A6、A5、A4は、1V前の期間T1に転送済みであるので、期間T2で転送対象となるのは、A0、A1、A2、A3のデータプロットとなる。カメラ本体200内のRAM12には一光学状態分の光学補正データが保持できるので、このとき、RAM12には、期間T1で転送されたデータプロットA7、A6、A5、A4と、期間T2で転送されたデータプロットA0、A1、A2、A3が全て保持される。
期間T2において、補間部11では、カメラ本体200内のRAM12に保持されているデータプロットA0、A1、A2、A3、A4、A5、A6、A7を用いて補間を行い、現フレームの画像高に適用できる補間済み光学補正データDA2を生成する。補間済み光学補正データDA2補正特性は、図12(c)の実線のようになり、期間T1よりも精度良く光学状態Aに対応した補正を行うことができる。
次の期間T3では、光学条件が1V前から変化しBとなるので、1V前までの転送履歴を記した転送フラグを0にリセットする。次に、全像高に対して、直前の光学条件Aに対応する光学補正データと、現フレームの光学条件Bに対応する光学補正データとを比較し、最も補正値の差分が大きくなる像高P7が選択される。そこで、期間T3では、像高P7を起点として、高像高側のP6,P5、P4に対応したデータプロットB7、B6、B5、B4が、カメラ本体200内部のRAM12に転送される。転送された光学補正データは、RAM12に保持されている同じ像高P7、P6、P5、P4に対応するデータプロットを上書きする。即ち、期間T3において、RAM12に記憶される光学補正データは、A0,A1,A2,A3,B4,B5,B6,B7となる。
期間T3において、補間部11では、カメラ本体200内のRAM12に保持されているデータプロットA0、A1、A2、A3、B4、B5、B6、B7を用いて補間を行い、現フレームの全像高に適用できる補間済み光学補正データDB1生成する。補間済み光学補正データDB1の補正特性は、図12(d)の実線のようになる。期間T2のときの補正特性から、特性変動が大きい高像高側の特性が修正されているので、光学状態の変化に追従して精度良く補正を行うことができる。
次の期間T4では、光学条件が1V前と同様のBとなる。光学条件Bに対応した光学補正データのうち、B7、B6、B5、B4は、1V前の期間T3に転送済みであるので、期間T4で転送対象となるのは、B0、B1、B2、B3のデータプロットとなる。転送されたデータプロットは、RAM12に保持されている像高P0、P1、P2、P3のデータを上書きする。即ち、期間T3において、RAM12に記憶される光学補正データは、B0,B1,B2,B3,B4,B5,B6,B7となる。
期間T4において、補間部11では、カメラ本体200内のRAM12に保持されているデータプロットB0、B1、B2、B3、B4、B5、B6、B7を用いて補間を行い、現フレームの画像全体に適用する補間済み光学補正データDB2生成する。補間済み光学補正データDB2補正特性は、図12(e)の実線のようになり、期間T3よりも精度良く光学状態Bに対応した補正を行うことができる。
次の期間T5でも、光学条件は1V前と同様のBである。しかし、1V前までに、光学条件Bに対応した一条件分の光学補正データが、全て、カメラ本体200内のRAM12に転送済みであるので、期間T5では、光学補正データのカメラ本体200への転送、及び補間部11での補間処理を行わない。期間T5では、1V前に生成され、RAM12に保持されている補間済み光学補正特性DB2を参照して、光学補正部6での光学補正処理が行われる。
<第3の実施の形態に係る利点>
以上のように、本実施の形態においても、ある一つの光学条件に対応した光学補正データを交換レンズ100からカメラ本体200に転送する際、光学補正データの像高分解能を落として複数回に分けて転送する。そして、この光学補正データをカメラ本体200内で補間して補正処理に用いる。これにより、交換レンズ100−カメラ本体200間の通信容量を抑えながら、精度よく光学補正を行うことができる。
また、光学条件が同一とみなせるV期間が連続する場合には、V期間の経過とともに、カメラ本体200内部のRAM12に、その光学条件に対応した光学補正データが取り揃うようなる。これにより、交換レンズ100−カメラ本体200間の通信容量を抑えながら、高像高側の複雑な特性を考慮した、より精度の高い補正データを適用できるようになる。
また、光学条件が変化した場合でも、補正特性の変化が大きい像高を中心に、光学補正データを部分的に更新していくので、効率良く、精度の高い補正データを適用できる。
[他の実施の形態]
なお、本発明の実施の形態は、ネットワーク又は各種記憶媒体を介して取得したソフトウェア(プログラム)をパーソナルコンピュータ(CPU,プロセッサ)にて実行することでも実現できる。
1 光学系
2 光学補正データベース
3 交換レンズ内のマイコン
4 撮像素子
6 光学補正部
7 カメラ本体内のマイコン
11 補間部
12 RAM
100 交換レンズ
200 カメラ本体

Claims (11)

  1. 光学系と、前記光学系によって生成された被写体像を光電変換する撮像手段と、前記光学系の状態に応じた光学補正データを保持した第1の記憶手段と、前記第1の記憶手段と異なる第2の記憶手段と、前記光学補正データを前記第1の記憶手段から前記第2の記憶手段に転送する転送手段と、前記第2の記憶手段に保持された光学補正データを補間する補間手段と、前記補間手段にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正手段とを有し、
    前記転送手段は、前記光学系の所定の状態に対応した光学補正データを複数回に分けて前記第1の記憶手段から前記第2の記憶手段に転送し、
    前記補間手段は、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものがある場合に、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正手段で用いる光学補正データを生成し、
    前記補間手段が、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正手段で用いる光学補正データを生成した後に、前記転送手段が、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものを新たに前記第2の記憶手段に転送した場合には、前記補間手段は、前記第2の記憶手段に転送済みの光学補正データを再び補間して、前記光学補正手段で用いる光学補正データを生成することを特徴とする撮像装置。
  2. 前記転送手段は、現在の光学系の状態と前記第2の記憶手段への光学補正データの転送状況とに応じて、前記第1の記憶手段から、現在の光学系の状態に対応した光学補正データの中の一部分を選択して、前記第2の記憶手段に転送することを特徴とする請求項1の撮像装置。
  3. 前記転送手段は、現在の光学系の状態に対応し且つ前記第2の記憶手段に転送されていない光学補正データの中から、像高の低い領域に対応する一部分の光学補正データを選択して、前記第2の記憶手段に転送することを特徴とする請求項2に記載の撮像装置。
  4. 前記転送手段は、現在の光学系の状態に対応し且つ前記第2の記憶手段に転送されていない光学補正データの中から、離散的に、一部分の光学補正データを選択して、前記第2の記憶手段に転送することを特徴とする請求項2に記載の撮像装置。
  5. 前記転送手段は、現在の光学系の状態に対応し且つ前記第2の記憶手段に転送されていない光学補正データの中から、過去の補正特性との差分が大きい一部分の光学補正データを選択して、転送することを特徴とする請求項2に記載の撮像装置。
  6. 着脱可能なレンズ装置の光学系によって生成された被写体像を光電変換する撮像手段と、前記レンズ装置の第1の記憶手段から転送された前記光学系の状態に応じた光学補正データを保持する第2の記憶手段と、前記第2の記憶手段に保持された光学補正データを補間する補間手段と、前記補間手段にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正手段とを有し、
    前記第2の記憶手段は、前記第1の記憶手段から前記レンズ装置の光学系の所定の状態に対応した光学補正データを複数回に分けて転送され、
    前記補間手段は、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものがある場合に、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正手段で用いる光学補正データを生成し、
    前記補間手段が、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正手段で用いる光学補正データを生成した後に、前記第2の記憶手段が、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものを新たに転送された場合には、前記補間手段は、前記第2の記憶手段に転送済みの光学補正データを再び補間して、前記光学補正手段で用いる光学補正データを生成することを特徴とする撮像装置。
  7. 被写体像を光電変換する撮像手段と、光学補正データを保持する第2の記憶手段と、前記第2の記憶手段に保持された光学補正データを補間する補間手段と、前記補間手段にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正手段とを備えた撮像装置に着脱可能なレンズ装置であって、
    光学系と、前記光学系の状態に応じた光学補正データを保持した第1の記憶手段と、前記光学補正データを前記第1の記憶手段から前記第2の記憶手段に転送する転送手段とを有し、
    前記転送手段は、前記光学系の所定の状態に対応した光学補正データを複数回に分けて前記第1の記憶手段から前記第2の記憶手段に転送することを特徴とするレンズ装置。
  8. 光学系と、前記光学系によって生成された被写体像を光電変換する撮像手段と、前記光学系の状態に応じた光学補正データを保持した第1の記憶手段と、前記第1の記憶手段と異なる第2の記憶手段とを有する撮像装置の制御方法であって、
    前記光学補正データを前記第1の記憶手段から前記第2の記憶手段に転送する転送工程と、前記第2の記憶手段に保持された光学補正データを補間する補間工程と、前記補間工程にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正工程とを有し、
    前記転送工程は、前記光学系の所定の状態に対応した光学補正データを複数回に分けて前記第1の記憶手段から前記第2の記憶手段に転送し、
    前記補間工程は、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものがある場合に、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正工程で用いる光学補正データを生成し、
    前記補間工程で、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正工程で用いる光学補正データを生成した後に、前記転送工程で、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものを新たに前記第2の記憶手段に転送した場合には、再び前記補間工程で、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正工程で用いる光学補正データを生成することを特徴とする撮像装置の制御方法。
  9. 着脱可能なレンズ装置の光学系によって生成された被写体像を光電変換する撮像手段と、前記レンズ装置の第1の記憶手段から転送された前記光学系の状態に応じた光学補正データを保持する第2の記憶手段とを有する撮像装置の制御方法であって、
    前記光学補正データが前記第1の記憶手段から前記第2の記憶手段に転送される転送工程と、前記第2の記憶手段に保持された光学補正データを補間する補間工程と、前記補間工程にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正工程とを有し、
    前記転送工程は、前記光学系の所定の状態に対応した光学補正データが複数回に分けて前記第1の記憶手段から前記第2の記憶手段に転送され、
    前記補間工程は、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものがある場合に、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正工程で用いる光学補正データを生成し、
    前記補間工程で、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正工程で用いる光学補正データを生成した後に、前記転送工程で、前記光学系の所定の状態に対応した光学補正データの中で、前記第2の記憶手段に転送されていないものが新たに前記第1の記憶手段から前記第2の記憶手段に転送された場合には、再び前記補間工程で、前記第2の記憶手段に転送済みの光学補正データを補間して、前記光学補正工程で用いる光学補正データを生成することを特徴とする撮像装置の制御方法。
  10. 被写体像を光電変換する撮像手段と、光学補正データを保持する第2の記憶手段と、前記第2の記憶手段に保持された光学補正データを補間する補間手段と、前記補間手段にて補間された光学補正データに基づいて、前記撮像手段の出力信号を補正する光学補正手段とを備えた撮像装置に着脱可能であって、光学系と、前記光学系の状態に応じた光学補正データを保持した第1の記憶手段を有するレンズ装置の制御方法であって、
    前記光学補正データを前記第1の記憶手段から前記第2の記憶手段に転送する転送工程とを有し、
    前記転送工程は、前記光学系の所定の状態に対応した光学補正データを複数回に分けて前記第1の記憶手段から前記第2の記憶手段に転送することを特徴とするレンズ装置の制御方法。
  11. 請求項8乃至10のいずれか一項に記載の制御方法をコンピュータに実行させるための、前記コンピュータで読み取り可能なプログラム。
JP2009282826A 2009-12-14 2009-12-14 撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム Abandoned JP2011123413A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282826A JP2011123413A (ja) 2009-12-14 2009-12-14 撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282826A JP2011123413A (ja) 2009-12-14 2009-12-14 撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム

Publications (1)

Publication Number Publication Date
JP2011123413A true JP2011123413A (ja) 2011-06-23

Family

ID=44287325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282826A Abandoned JP2011123413A (ja) 2009-12-14 2009-12-14 撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム

Country Status (1)

Country Link
JP (1) JP2011123413A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180434A (ja) * 2017-04-20 2018-11-15 キヤノン株式会社 補正情報出力装置及びそれを有するレンズ装置及びカメラ装置及びアダプタ光学装置及び撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180434A (ja) * 2017-04-20 2018-11-15 キヤノン株式会社 補正情報出力装置及びそれを有するレンズ装置及びカメラ装置及びアダプタ光学装置及び撮像装置

Similar Documents

Publication Publication Date Title
US8749659B2 (en) Image processing program, image processing method, image processing apparatus, and image pickup apparatus
US11228701B2 (en) Image capturing apparatus
JP6104010B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP2005509961A (ja) 較正を導き出す方法および画像処理の方法
JP2014146107A (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP5358344B2 (ja) 撮像装置及び撮像方法
JP6247795B2 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
JP5730036B2 (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム。
JP5268533B2 (ja) 画像処理方法、画像処理装置、撮像装置及び画像処理プログラム
JP5460281B2 (ja) 撮像装置、レンズ装置及びこれらの制御方法、並びにプログラム
JP2008311730A (ja) ホワイトバランス調整装置およびホワイトバランス調整方法
JP2011123413A (ja) 撮像装置及びその制御方法、レンズ装置及びその制御方法、並びにプログラム
JP5645981B2 (ja) 撮像装置、画像処理装置、画像処理方法、画像処理プログラム、および、記憶媒体
US8780228B2 (en) Image capture apparatus and control method thereof
JP5933306B2 (ja) 撮像装置
JP2010191390A (ja) 撮像装置
JP6333076B2 (ja) 撮像装置、撮像装置の制御方法、プログラム、および、記憶媒体
JP2017028583A (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP2011193276A (ja) 撮像装置、その制御方法及びプログラム
JP2016015685A (ja) 画像処理装置
JP2012156714A (ja) プログラム、画像処理装置、画像処理方法および撮像装置。
JP4321317B2 (ja) 電子カメラ、カメラシステムおよび電子カメラの黒点補正方法
JP5963542B2 (ja) 画像処理装置、その制御方法及びプログラム
US20230168568A1 (en) Accessory, image pickup apparatus, image pickup system, accessory control method, and storage medium
JP2016118856A (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130729