JP2011122860A - Voltage detector - Google Patents

Voltage detector Download PDF

Info

Publication number
JP2011122860A
JP2011122860A JP2009279013A JP2009279013A JP2011122860A JP 2011122860 A JP2011122860 A JP 2011122860A JP 2009279013 A JP2009279013 A JP 2009279013A JP 2009279013 A JP2009279013 A JP 2009279013A JP 2011122860 A JP2011122860 A JP 2011122860A
Authority
JP
Japan
Prior art keywords
signal
detection
reference signal
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009279013A
Other languages
Japanese (ja)
Other versions
JP5420387B2 (en
Inventor
Koichi Yanagisawa
浩一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009279013A priority Critical patent/JP5420387B2/en
Publication of JP2011122860A publication Critical patent/JP2011122860A/en
Application granted granted Critical
Publication of JP5420387B2 publication Critical patent/JP5420387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect a to-be-detected AC voltage of a to-be-detected object without calculating an electrostatic capacitance between a detection electrode and the to-be-detected object. <P>SOLUTION: A voltage detector comprises: the detection electrode 2 capacitively coupled to the to-be-detected object 6; a reference signal output section 4 for outputting a reference signal Ss; a detection section 3 connected to the detection electrode 2, inputting the reference signal Ss, and outputting a detection signal S1 whose amplitude is varied in response to both current values of a to-be-detected current Iv1 flowing based on the AC voltage V1 and a reference current Is1 flowing based on the reference signal Ss; and a signal extraction section 5 for amplifying the detection signal S1 at a predetermined gain, generating an amplified detection signal S3, controlling the gain so as to cancel the reference signal Ss and a signal component of the reference signal Ss contained in the amplified detection signal by adding the reference signal Ss and the amplified detection signal S3, extracting a signal component of the AC voltage V1 from the amplified detection signal S3, and outputting it as an output signal So. The reference signal output section 4 integrates the detection signal S1 and outputs the reference signal Ss. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、検出対象体の検出対象交流電圧を非接触で検出する非接触型の電圧検出装置に関するものである。   The present invention relates to a non-contact type voltage detection device that detects a detection target AC voltage of a detection target body in a non-contact manner.

この種の電圧検出装置として、下記の特許文献1に開示された非接触電圧計測装置(以下、「電圧検出装置」ともいう)が知られている。この電圧検出装置は、電線の絶縁物についての一部の表面を覆うことが可能な検出電極および検出電極を覆うシールド電極を備えた検出プローブと、所定の周波数の信号を出力する発振器とを備え、発振器の信号を検出電極に加えることによって、検出電極と電線の導体との間のインピーダンスを計測し、導体に印加された電圧に起因して検出電極から流出する電流を検出用抵抗器(抵抗値:R1)を用いて計測し、電流とインピーダンスとから導体に印加された電圧を計測することが可能となっている。   As this type of voltage detection device, a non-contact voltage measurement device (hereinafter also referred to as “voltage detection device”) disclosed in Patent Document 1 below is known. This voltage detection device includes a detection probe including a detection electrode capable of covering a part of the surface of an insulator of a wire and a shield electrode covering the detection electrode, and an oscillator that outputs a signal of a predetermined frequency. , By applying an oscillator signal to the detection electrode, measure the impedance between the detection electrode and the conductor of the wire, and detect the current flowing out of the detection electrode due to the voltage applied to the conductor (resistor It is possible to measure the voltage applied to the conductor from the current and impedance by using the value: R1).

具体的には、この電圧検出装置では、まず、検出プローブを開き、発振器からの信号を検出用抵抗器を介して検出電極に印加している状態において、シールド電極と接地との間の静電容量(以下、説明のため第1静電容量という)の計測を行う。この計測によって得られる第1静電容量は、検出用抵抗器の抵抗値が第1静電容量についてのリアクタンスに比べて無視できる程度に小さいため、発振器から出力される信号電圧、検出用抵抗器の抵抗値、発振器から出力される信号の角周波数、および検出用抵抗の両端電圧から算出される。   Specifically, in this voltage detection device, first, the detection probe is opened, and a signal from the oscillator is applied to the detection electrode via the detection resistor. Capacitance (hereinafter referred to as first capacitance for explanation) is measured. Since the first capacitance obtained by this measurement is so small that the resistance value of the detection resistor is negligible compared to the reactance of the first capacitance, the signal voltage output from the oscillator, the detection resistor , The angular frequency of the signal output from the oscillator, and the voltage across the detection resistor.

次いで、電線を挟んで検出プローブを閉じ、発振器からの信号を検出用抵抗器を介して検出電極に印加している状態での静電容量(以下、説明のため第2静電容量という)の計測を行う。これによって計測される第2静電容量は、上記した第1静電容量と、検出電極および電線間の静電容量(以下、説明のため第3静電容量という)との合成容量となり、検出用抵抗器の抵抗値がこの合成容量についてのリアクタンスに比べて無視できる程度に小さいため、発振器から出力される信号電圧、検出用抵抗器の抵抗値、発振器から出力される信号の角周波数、および検出用抵抗の両端電圧から算出される。また、算出された第2静電容量から上記した第1静電容量を減算することにより、第3静電容量、つまり検出電極と電線の導体との間の静電容量が算出される。   Next, the detection probe is closed with the electric wire sandwiched, and the capacitance (hereinafter referred to as a second capacitance for explanation) in a state where the signal from the oscillator is applied to the detection electrode via the detection resistor. Take measurements. The second capacitance measured by this is a combined capacitance of the first capacitance described above and the capacitance between the detection electrode and the electric wire (hereinafter referred to as a third capacitance for explanation), and is detected. Because the resistance value of the resistor for use is negligibly small compared to the reactance for this combined capacitance, the signal voltage output from the oscillator, the resistance value of the detection resistor, the angular frequency of the signal output from the oscillator, and It is calculated from the voltage across the detection resistor. Further, the third capacitance, that is, the capacitance between the detection electrode and the conductor of the electric wire is calculated by subtracting the first capacitance from the calculated second capacitance.

続いて、電線を挟んで検出プローブを閉じ、発振器からの信号を検出用抵抗器を介して検出電極に印加している状態での、導体に印加された電圧に起因する検出用抵抗器の両端電圧を求める。導体の側から見た検出用抵抗器を経由する回路のインピーダンスは、検出用抵抗器の抵抗値と第3静電容量のリアクタンスとの加算値となるが、検出用抵抗器の抵抗値が第3静電容量についてのリアクタンスに比べて無視できる程度に小さいため、第3静電容量についてのリアクタンスとなる。これにより、検出用抵抗器に流れる電流は、導体に印加された電圧をこのリアクタンスで除算した値となるため、検出用抵抗器の両端電圧は、検出用抵抗器に流れる電流に検出用抵抗器の抵抗値を乗算した値となる。この場合、この検出用抵抗器の両端電圧は、導体に印加された電圧の角周波数、検出電極と電線との間の第3静電容量、導体に印加されている電圧、および検出用抵抗器の抵抗値の各パラメータで表される。したがって、電圧検出装置では、導体に印加されている電圧を、検出用抵抗器の両端電圧、導体に印加された電圧の角周波数、検出電極と電線との間の第3静電容量、および検出用抵抗器の抵抗値から算出して、表示部に表示させる。   Subsequently, the detection probe is closed with the electric wire interposed therebetween, and both ends of the detection resistor caused by the voltage applied to the conductor in a state where the signal from the oscillator is applied to the detection electrode via the detection resistor. Find the voltage. The impedance of the circuit passing through the detection resistor as viewed from the conductor side is the sum of the resistance value of the detection resistor and the reactance of the third capacitance, but the resistance value of the detection resistor is the first value. The reactance for the third capacitance is smaller than the reactance for the third capacitance, which is negligible. As a result, the current flowing through the detection resistor has a value obtained by dividing the voltage applied to the conductor by this reactance, so the voltage across the detection resistor is equal to the current flowing through the detection resistor. It is a value obtained by multiplying the resistance value of. In this case, the voltage across the detection resistor includes the angular frequency of the voltage applied to the conductor, the third capacitance between the detection electrode and the wire, the voltage applied to the conductor, and the detection resistor. It is represented by each parameter of the resistance value. Therefore, in the voltage detection device, the voltage applied to the conductor includes the voltage across the detection resistor, the angular frequency of the voltage applied to the conductor, the third capacitance between the detection electrode and the electric wire, and the detection. It is calculated from the resistance value of the resistor and is displayed on the display unit.

特許第3158063号公報(第4−6頁、第3図)Japanese Patent No. 3158063 (page 4-6, Fig. 3)

ところが、上記の電圧検出装置には、以下のような問題点がある。すなわち、この電圧検出装置では、シールド電極と接地との間の静電容量(上記の第1静電容量)、および検出電極と電線の導体との間の静電容量(上記の第3静電容量)を個別に算出しなければならないため、導体に印加されている電圧の検出作業に手間や時間がかかるという問題点が存在している。また、発振器から出力される信号の検出に際してバンドパスフィルタを使用しているが、発振器から出力される信号以外の信号であっても同じ周波数の信号については検出されるため、ノイズの多い環境においては発振器から出力される信号のみを正確に検出できない結果、導体に印加されている電圧について検出誤差が生じ易いという問題点も存在している。   However, the above voltage detection device has the following problems. That is, in this voltage detection device, the capacitance between the shield electrode and the ground (the first capacitance described above), and the capacitance between the detection electrode and the conductor of the electric wire (the third capacitance described above). (Capacitance) must be calculated individually, and there is a problem that it takes time and effort to detect the voltage applied to the conductor. In addition, a bandpass filter is used to detect the signal output from the oscillator. However, signals other than the signal output from the oscillator can be detected for signals having the same frequency. As a result, it is impossible to accurately detect only the signal output from the oscillator, and as a result, there is a problem that a detection error tends to occur with respect to the voltage applied to the conductor.

本発明は、上記の問題を解決すべくなされたものであり、検出電極と検出対象体(上記の例では電線の導体)との間の静電容量を算出することなく、検出対象体の電圧を精度よく検出し得る非接触型の電圧検出装置を提供することを主目的とする。   The present invention has been made to solve the above problem, and without detecting the capacitance between the detection electrode and the detection object (conductor of the electric wire in the above example), the voltage of the detection object. The main object of the present invention is to provide a non-contact type voltage detecting device capable of detecting the above accurately.

上記目的を達成すべく請求項1記載の電圧検出装置は、検出対象体に生じている検出対象交流電圧を検出する電圧検出装置であって、前記検出対象体に対向して配設されて当該検出対象体と容量結合する検出電極と、参照信号を出力する参照信号出力部と、前記検出電極に接続されると共に前記参照信号を入力して、前記検出対象交流電圧に基づいて流れる検出対象電流および前記参照信号に基づいて流れる参照電流の両電流値に応じて振幅が変化する検出信号を出力する検出部と、前記検出信号を所定の利得で増幅して増幅検出信号を生成しつつ、前記参照信号出力部から出力される前記参照信号と当該増幅検出信号との加算または減算によって当該参照信号と当該増幅検出信号に含まれている前記参照信号の信号成分とを相殺可能に前記利得を制御すると共に、前記検出対象交流電圧の信号成分を当該増幅検出信号から抽出して出力信号として出力する信号抽出部とを備え、前記参照信号出力部は、前記検出信号を積分または微分して前記参照信号を出力する。   In order to achieve the above object, a voltage detection device according to claim 1 is a voltage detection device for detecting a detection target AC voltage generated in a detection target body, and is disposed to face the detection target body. A detection electrode that is capacitively coupled to the detection target, a reference signal output unit that outputs a reference signal, and a detection target current that is connected to the detection electrode and that receives the reference signal and flows based on the detection target AC voltage And a detection unit that outputs a detection signal whose amplitude changes according to both current values of a reference current that flows based on the reference signal, and amplifying the detection signal with a predetermined gain to generate an amplified detection signal, The reference signal and the signal component of the reference signal included in the amplified detection signal can be canceled by adding or subtracting the reference signal output from the reference signal output unit and the amplified detection signal. And a signal extraction unit that extracts a signal component of the detection target AC voltage from the amplified detection signal and outputs it as an output signal, and the reference signal output unit integrates or differentiates the detection signal. To output the reference signal.

また、請求項2記載の電圧検出装置は、請求項1記載の電圧検出装置において、前記信号抽出部は、前記検出信号を前記利得で増幅して前記増幅検出信号を生成する増幅回路と、当該増幅検出信号と前記参照信号とを加算または減算して前記出力信号として出力する演算回路と、当該出力信号に含まれている前記参照信号の信号成分の振幅を示す検波信号を前記参照信号出力部から出力される前記参照信号を用いた同期検波によって検出する検波回路と、前記増幅回路の前記利得を前記検波信号に基づいて制御する制御回路とを備えている。   The voltage detection device according to claim 2 is the voltage detection device according to claim 1, wherein the signal extraction unit amplifies the detection signal with the gain and generates the amplified detection signal; and An arithmetic circuit that adds or subtracts the amplified detection signal and the reference signal and outputs the result as the output signal, and a detection signal that indicates the amplitude of the signal component of the reference signal included in the output signal. A detection circuit for detecting by synchronous detection using the reference signal output from the control circuit, and a control circuit for controlling the gain of the amplifier circuit based on the detection signal.

また、請求項3記載の電圧検出装置は、請求項2記載の電圧検出装置において、前記参照信号出力部は、前記検出信号を積分して前記参照信号を出力し、前記検波回路は、前記参照信号出力部から出力される前記参照信号に基づいて同期信号を生成すると共に、当該同期信号を用いた同期検波によって前記検波信号を検出する。   The voltage detection device according to claim 3 is the voltage detection device according to claim 2, wherein the reference signal output unit integrates the detection signal and outputs the reference signal, and the detection circuit includes the reference signal. A synchronization signal is generated based on the reference signal output from the signal output unit, and the detection signal is detected by synchronous detection using the synchronization signal.

請求項1記載の電圧検出装置によれば、検出対象体と検出電極との間の結合容量が未知の場合であっても、検出対象交流電圧についての感度が一定の感度になるように制御されるため、つまり、出力信号に含まれている検出対象交流電圧の信号成分の振幅が検出対象交流電圧の振幅に対応した大きさとなるように制御されるため、出力信号に含まれているこの電圧成分を検出することにより、結合容量の算出を行うことなく、検出対象交流電圧を非接触で検出することができる。また、この電圧検出装置では、参照信号出力部が検出信号を積分または微分して生成した信号を参照信号として使用する構成としたことにより、参照信号の周波数が検出対象交流電圧の周波数に常に一致する。このため、この電圧検出装置によれば、検出対象交流電圧の周波数と異なる周波数の信号を電圧検出装置内部で発生させて参照信号として使用する構成とは異なり、ノイズの多い環境下においても、増幅検出信号と参照信号との加算によって増幅検出信号に含まれている参照信号の信号成分を除去する際におけるノイズ(検出対象交流電圧の周波数と異なる周波数の信号)の影響を大幅に低減することができる。したがって、この電圧検出装置によれば、ノイズの多い環境下においても、ノイズによる影響を低減しつつ出力信号を検出することができるため、検出対象交流電圧の検出誤差についても低減することができる結果、検出対象交流電圧の検出精度を十分に向上させることができる。   According to the voltage detection device of the first aspect, even when the coupling capacitance between the detection object and the detection electrode is unknown, the sensitivity with respect to the detection object AC voltage is controlled to be constant. That is, since the amplitude of the signal component of the detection target AC voltage included in the output signal is controlled to be a magnitude corresponding to the amplitude of the detection target AC voltage, this voltage included in the output signal By detecting the component, the AC voltage to be detected can be detected in a non-contact manner without calculating the coupling capacitance. In this voltage detection device, the reference signal output unit uses a signal generated by integrating or differentiating the detection signal as a reference signal, so that the frequency of the reference signal always matches the frequency of the AC voltage to be detected. To do. For this reason, according to this voltage detection device, unlike a configuration in which a signal having a frequency different from the frequency of the AC voltage to be detected is generated inside the voltage detection device and used as a reference signal, amplification is performed even in a noisy environment. The effect of noise (a signal having a frequency different from the frequency of the detection target AC voltage) when removing the signal component of the reference signal included in the amplified detection signal by adding the detection signal and the reference signal can be greatly reduced. it can. Therefore, according to this voltage detection device, an output signal can be detected while reducing the influence of noise even in a noisy environment, so that the detection error of the detection target AC voltage can also be reduced. The detection accuracy of the detection target AC voltage can be sufficiently improved.

また、請求項2記載の電圧検出装置によれば、同期検波によって参照信号の信号成分を正確に検出することができるため、増幅検出信号に含まれている参照信号の信号成分を高い精度で相殺でき、これによって出力信号に含まれる参照信号の信号成分を大幅に低減することができる結果、検出対象交流電圧の検出精度を一層向上させることができる。   In addition, according to the voltage detection device of the second aspect, since the signal component of the reference signal can be accurately detected by synchronous detection, the signal component of the reference signal included in the amplified detection signal is canceled with high accuracy. As a result, the signal component of the reference signal included in the output signal can be greatly reduced, and as a result, the detection accuracy of the detection target AC voltage can be further improved.

また、請求項3記載の電圧検出装置によれば、高周波成分の非常に少ない積分信号としての参照信号を使用して同期信号を生成し、この同期信号によって同期検波を実行しているため、例えば、ゼロクロス検出を行って同期信号を生成する場合においてはゼロクロス検出時のエラー(ゼロクロス点を正確に検出できないというエラー)の発生を低減でき、ひいては検出対象交流電圧の検出精度を一層向上させることができる。   Further, according to the voltage detection device of the third aspect, the synchronization signal is generated using the reference signal as the integration signal with very little high frequency component, and the synchronous detection is executed by this synchronization signal. In the case of generating a synchronization signal by performing zero cross detection, it is possible to reduce the occurrence of an error at the time of zero cross detection (an error that the zero cross point cannot be accurately detected), and further improve the detection accuracy of the AC voltage to be detected. it can.

電圧検出装置1の構成図である。1 is a configuration diagram of a voltage detection device 1. FIG. 図1における検出部3の回路図である。It is a circuit diagram of the detection part 3 in FIG. 電圧検出装置1Aの構成図である。It is a block diagram of voltage detection apparatus 1A.

以下、添付図面を参照して、電圧検出装置の実施の形態について説明する。   Hereinafter, embodiments of a voltage detection device will be described with reference to the accompanying drawings.

最初に、電圧検出装置1について、図面を参照して説明する。   First, the voltage detection apparatus 1 will be described with reference to the drawings.

電圧検出装置1は、非接触型の電圧検出装置であって、図1に示すように、検出電極2、検出部3、参照信号出力部4および信号抽出部5を備え、検出対象体6に生じている交流電圧V1(検出対象交流電圧)を非接触で検出可能に構成されている。検出電極2は、一例として平板状に形成されて、交流電圧V1の検出に際しては、図1に示すように、検出対象体6と容量結合(静電容量C0を介して結合)する。   The voltage detection device 1 is a non-contact type voltage detection device, and includes a detection electrode 2, a detection unit 3, a reference signal output unit 4, and a signal extraction unit 5 as shown in FIG. The generated AC voltage V1 (detection target AC voltage) can be detected in a non-contact manner. The detection electrode 2 is formed in a flat plate shape as an example, and when detecting the AC voltage V1, as shown in FIG. 1, the detection electrode 2 is capacitively coupled (coupled via the capacitance C0) as shown in FIG.

検出部3は、検出電極2に接続されると共に、参照信号出力部4から参照信号Ssを入力して(参照信号Ssが印加されて)、交流電圧V1に基づいて流れる検出対象電流(交流電圧V1に起因した電流信号成分)Iv1、および参照信号Ssに基づいて流れる参照電流(参照信号Ssに起因した電流信号成分)Is1の両電流値に応じて振幅が変化する検出信号S1を出力する。   The detection unit 3 is connected to the detection electrode 2 and receives the reference signal Ss from the reference signal output unit 4 (the reference signal Ss is applied), and the detection target current (AC voltage) that flows based on the AC voltage V1. The detection signal S1 whose amplitude changes according to both current values of the current signal component (Iv1 caused by V1) and the reference current (current signal component caused by the reference signal Ss) Is1 flowing based on the reference signal Ss is output.

本例では、検出部3は、一例として図2に示すように、検出抵抗11および差動増幅部12を備えている。検出抵抗11は、一端が検出電極2に接続されると共に、他端が参照信号出力部4に接続されている。差動増幅部12は、一例として3つの演算増幅器AP1〜AP3、および7つの抵抗R1〜R7を備えた公知のインスツルメンテーションアンプで構成されている。この差動増幅部12では、各抵抗R1〜R7のうちの対称の位置にある抵抗同士はバランスが取られている(つまり、R2とR3、R4とR5、およびR6とR7が、それぞれ同一の抵抗値に規定されている)ものとする。また、差動増幅部12では、差動増幅部12における1つの入力端子として機能する演算増幅器AP1の非反転入力端子が検出抵抗11の一端に接続され、差動増幅部12における他の1つの入力端子として機能する演算増幅器AP2の非反転入力端子が検出抵抗11の他端に接続されている。この差動増幅部12では、各入力端子に入力される電圧をVin1,Vin2としたときに、検出信号S1は以下の式で表される。
S1=(Vin2−Vin1)×(1+2×R2/R1)×R6/R4
In this example, the detection unit 3 includes a detection resistor 11 and a differential amplification unit 12 as shown in FIG. 2 as an example. The detection resistor 11 has one end connected to the detection electrode 2 and the other end connected to the reference signal output unit 4. As an example, the differential amplifier 12 includes a known instrumentation amplifier including three operational amplifiers AP1 to AP3 and seven resistors R1 to R7. In this differential amplifying unit 12, the resistors at symmetrical positions among the resistors R1 to R7 are balanced (that is, R2 and R3, R4 and R5, and R6 and R7 are the same. Stipulated in the resistance value). In the differential amplifying unit 12, the non-inverting input terminal of the operational amplifier AP <b> 1 that functions as one input terminal in the differential amplifying unit 12 is connected to one end of the detection resistor 11, and the other one in the differential amplifying unit 12. A non-inverting input terminal of the operational amplifier AP2 functioning as an input terminal is connected to the other end of the detection resistor 11. In the differential amplifier 12, when the voltages input to the input terminals are Vin1 and Vin2, the detection signal S1 is expressed by the following equation.
S1 = (Vin2-Vin1) × (1 + 2 × R2 / R1) × R6 / R4

この場合、上記のS1の式における(Vin2−Vin1)は、検出対象電流Iv1および参照電流Is1が検出抵抗11に流れることによって検出抵抗11の両端間に発生する電圧を表している。したがって、検出部3は、上記したように、検出対象電流Iv1および参照電流Is1の両電流値に応じて振幅が変化する検出信号S1を出力する。また、交流電圧V1が検出抵抗11の一端側に印加されるのに対して、参照信号Ssは検出抵抗11の他端に印加される。このため、検出信号S1に含まれている参照信号Ssの信号成分は、検出抵抗11の一端側に印加される参照信号Ssを基準として、位相が180°ずれた状態となっている。   In this case, (Vin2−Vin1) in the equation of S1 represents a voltage generated between both ends of the detection resistor 11 when the detection target current Iv1 and the reference current Is1 flow through the detection resistor 11. Therefore, as described above, the detection unit 3 outputs the detection signal S1 whose amplitude changes according to both the current values of the detection target current Iv1 and the reference current Is1. Further, the AC voltage V1 is applied to one end side of the detection resistor 11, while the reference signal Ss is applied to the other end of the detection resistor 11. For this reason, the signal component of the reference signal Ss included in the detection signal S1 is in a state where the phase is shifted by 180 ° with reference to the reference signal Ss applied to one end side of the detection resistor 11.

参照信号出力部4は、図1に示すように、一例として、積分回路21および増幅回路22を備え、検出信号S1に基づいて参照信号Ssを生成して出力する。積分回路21は、検出信号S1を入力すると共に積分して、積分信号S2として出力する。増幅回路22は、積分信号S2を入力すると共に、予め決められた増幅率(1未満の増幅率)で増幅して参照信号Ssとして低インピーダンスで出力する。この構成により、参照信号出力部4は、積分によって位相が検出信号S1の位相に対して90°ずれた(遅れた)参照信号Ssを出力する。   As shown in FIG. 1, the reference signal output unit 4 includes, for example, an integration circuit 21 and an amplification circuit 22, and generates and outputs a reference signal Ss based on the detection signal S1. The integration circuit 21 receives and integrates the detection signal S1, and outputs the integration signal S2. The amplifier circuit 22 receives the integration signal S2 and amplifies it with a predetermined amplification factor (amplification factor of less than 1) and outputs it as a reference signal Ss with low impedance. With this configuration, the reference signal output unit 4 outputs a reference signal Ss whose phase is shifted (delayed) by 90 ° with respect to the phase of the detection signal S1 by integration.

信号抽出部5は、一例として、増幅回路31、振幅変更回路32、加算回路33、検波回路34および制御回路35を備え、検出信号S1を所定の利得で増幅して増幅検出信号S3を生成し、増幅検出信号S3に含まれている参照信号Ssの信号成分と参照信号Ss(具体的には、後述するように、参照信号Ssの振幅が変更されてなる参照信号Ss1)とを、増幅検出信号S3と参照信号Ss1との加算によって相殺可能に増幅検出信号S3を増幅する際の利得を制御すると共に、交流電圧V1の信号成分を増幅検出信号S3から抽出(生成)して出力信号Soとして出力する。この場合、増幅検出信号S3に含まれている参照信号Ssの信号成分とは、参照信号Ssの検出部3への出力(印加)に基づいて検出信号S1に含まれる信号成分を意味する。   As an example, the signal extraction unit 5 includes an amplification circuit 31, an amplitude change circuit 32, an addition circuit 33, a detection circuit 34, and a control circuit 35, and amplifies the detection signal S1 with a predetermined gain to generate an amplified detection signal S3. Then, the signal component of the reference signal Ss and the reference signal Ss (specifically, the reference signal Ss1 in which the amplitude of the reference signal Ss is changed as described later) included in the amplification detection signal S3 are detected by amplification. The gain at the time of amplifying the amplified detection signal S3 so that it can be canceled out by adding the signal S3 and the reference signal Ss1 is controlled, and the signal component of the AC voltage V1 is extracted (generated) from the amplified detection signal S3 as the output signal So. Output. In this case, the signal component of the reference signal Ss included in the amplified detection signal S3 means a signal component included in the detection signal S1 based on the output (application) of the reference signal Ss to the detection unit 3.

増幅回路31は、検出信号S1を入力すると共に、制御回路35から出力される制御信号(具体的には制御電圧)Scのレベル(直流電圧レベル)によって規定される増幅率(利得は1以上でも1未満でもよい)で検出信号S1を増幅して、増幅検出信号S3を生成して出力する。振幅変更回路32は、例えば、アンプやアッテネータで構成されて、参照信号Ssを入力すると共に、参照信号Ssの振幅を予め規定された割合で変更して(減少または増加させて)、加算回路33で使用される新たな参照信号Ss1として出力する。   The amplification circuit 31 receives the detection signal S1 and also has an amplification factor (gain of 1 or more) defined by the level (DC voltage level) of the control signal (specifically, control voltage) Sc output from the control circuit 35. The detection signal S1 may be amplified by generating an amplified detection signal S3. The amplitude changing circuit 32 is configured by, for example, an amplifier or an attenuator, and receives the reference signal Ss, and changes (decreases or increases) the amplitude of the reference signal Ss at a predetermined ratio, thereby adding the adding circuit 33. Is output as a new reference signal Ss1 used in.

加算回路33は、演算回路の一例であって、増幅検出信号S3および参照信号Ss1を入力すると共に両信号S3,Ss1を加算して、加算によって得られた加算信号を出力信号Soとして出力する。この場合、上記したように、検出信号S1は、交流電圧V1に起因した信号成分と参照信号Ssに起因した信号成分とで構成され、この検出信号S1を増幅して生成された増幅検出信号S3も、交流電圧V1に起因した信号成分と参照信号Ssに起因した信号成分とで構成されている。   The adder circuit 33 is an example of an arithmetic circuit. The adder circuit 33 receives the amplification detection signal S3 and the reference signal Ss1, adds the signals S3 and Ss1, and outputs the addition signal obtained by the addition as the output signal So. In this case, as described above, the detection signal S1 includes a signal component caused by the AC voltage V1 and a signal component caused by the reference signal Ss, and an amplified detection signal S3 generated by amplifying the detection signal S1. Are also composed of a signal component caused by the AC voltage V1 and a signal component caused by the reference signal Ss.

また、上記したように、検出信号S1に含まれている参照信号Ssの信号成分は、参照信号出力部4から出力されて検出抵抗11の一端側に印加される参照信号Ssを基準として(参照信号Ss1を基準としても同様にして)、位相が180°ずれた状態となる。このため、加算回路33が、両信号S3,Ss1の加算処理を実行することにより、増幅検出信号S3を構成する参照信号Ssの信号成分は、振幅が参照信号Ss1の振幅と同一のときには完全にキャンセルされて(打ち消されて)除去される。一方、この参照信号Ssの信号成分は、振幅が参照信号Ss1の振幅と相違するときには出力信号Soに残存する。また、この残存する参照信号Ssの信号成分は、増幅検出信号S3を構成する参照信号Ssの信号成分についての振幅が参照信号Ss1の振幅よりも大きいときには参照信号Ssと逆位相となり、増幅検出信号S3を構成する参照信号Ssの信号成分についての振幅が参照信号Ss1の振幅以下のときには参照信号Ssと同位相となる。一方、参照信号Ssは上記したように検出信号S1に対して位相が90°ずれているため、検出信号S1に含まれている参照信号Ssの信号成分は、検出信号S1に対して位相が90°または−90°ずれた状態となる。したがって、検出信号S1に含まれている交流電圧V1の信号成分は、加算回路33での両信号S3,Ss1の加算処理によっては影響を受けることなく、そのまま出力信号Soに含まれた状態で加算回路33から出力される。   As described above, the signal component of the reference signal Ss included in the detection signal S1 is based on the reference signal Ss output from the reference signal output unit 4 and applied to one end side of the detection resistor 11 (see Similarly, with the signal Ss1 as a reference), the phase is shifted by 180 °. For this reason, when the addition circuit 33 executes the addition process of both signals S3 and Ss1, the signal component of the reference signal Ss constituting the amplification detection signal S3 is completely when the amplitude is the same as the amplitude of the reference signal Ss1. Canceled (cancelled) and removed. On the other hand, the signal component of the reference signal Ss remains in the output signal So when the amplitude is different from the amplitude of the reference signal Ss1. Further, the signal component of the remaining reference signal Ss has an opposite phase to the reference signal Ss when the amplitude of the signal component of the reference signal Ss constituting the amplification detection signal S3 is larger than the amplitude of the reference signal Ss1, and the amplification detection signal When the amplitude of the signal component of the reference signal Ss constituting S3 is equal to or smaller than the amplitude of the reference signal Ss1, the phase is the same as that of the reference signal Ss. On the other hand, since the phase of the reference signal Ss is shifted by 90 ° with respect to the detection signal S1 as described above, the signal component of the reference signal Ss included in the detection signal S1 has a phase of 90 with respect to the detection signal S1. It is in a state shifted by ° or -90 °. Therefore, the signal component of the AC voltage V1 included in the detection signal S1 is not affected by the addition processing of both signals S3 and Ss1 in the addition circuit 33, and is added as it is included in the output signal So. Output from the circuit 33.

検波回路34は、一例として、図1に示すように、乗算回路41および積分回路42を備えている。乗算回路41は、出力信号Soおよび参照信号Ssを入力すると共に、両信号So,Ssを乗算することにより、出力信号Soに含まれている参照信号Ssの信号成分(参照信号Ssと周波数が一致し、かつ位相が同一(一致)または反転する(180°ずれた)信号成分)を同期検出して出力する。積分回路42は、乗算回路41で検出された参照信号Ssの信号成分を積分することにより、検波信号Vdを生成して出力する。   As an example, the detection circuit 34 includes a multiplication circuit 41 and an integration circuit 42 as shown in FIG. The multiplication circuit 41 receives the output signal So and the reference signal Ss, and multiplies both signals So and Ss, thereby causing the signal component of the reference signal Ss included in the output signal So (the frequency of the reference signal Ss to be equal to that of the reference signal Ss). Signal components having the same (coincidence) or inversion (shifted by 180 °) phase are detected and output. The integrating circuit 42 generates and outputs a detection signal Vd by integrating the signal component of the reference signal Ss detected by the multiplying circuit 41.

具体的には、検波回路34は、出力信号Soに含まれている参照信号Ssの信号成分(具体的には、参照信号Ssと同一周波数の信号成分)の振幅の増減に応じて電圧の絶対値が増減し、かつ出力信号Soに含まれている参照信号Ssの信号成分についての位相が参照信号Ssの位相と一致しているとき(同位相のとき)と180°ずれているとき(逆位相のとき)とで極性の異なる検波信号Vdを生成して出力する。本例では、一例として、検波回路34は、出力信号Soに含まれている参照信号Ssの信号成分と参照信号Ssとが同位相のときには正極性(正電圧)となり、逆位相のときには負極性(負電圧)となる検波信号Vdを生成して出力する。   Specifically, the detection circuit 34 determines the absolute voltage according to the increase or decrease in the amplitude of the signal component of the reference signal Ss included in the output signal So (specifically, the signal component having the same frequency as the reference signal Ss). When the value increases and decreases and the phase of the signal component of the reference signal Ss included in the output signal So coincides with the phase of the reference signal Ss (when it is the same phase), and when it is shifted by 180 ° (inversely) A detection signal Vd having a different polarity in phase) is generated and output. In this example, as an example, the detection circuit 34 has a positive polarity (positive voltage) when the signal component of the reference signal Ss included in the output signal So and the reference signal Ss are in phase, and has a negative polarity when in the opposite phase. A detection signal Vd that becomes (negative voltage) is generated and output.

制御回路35は、入力した検波信号Vdの極性に基づいて電圧が増減する制御信号Scを生成して、増幅回路31に出力する。本例では、一例として、制御回路35は、入力した検波信号Vdが正極性のときには、制御信号Scの電圧レベルを増加させ、一方、入力した検波信号Vdが負極性のときには、制御信号Scの電圧レベルを減少させる。   The control circuit 35 generates a control signal Sc whose voltage increases or decreases based on the polarity of the input detection signal Vd and outputs the control signal Sc to the amplifier circuit 31. In this example, as an example, the control circuit 35 increases the voltage level of the control signal Sc when the input detection signal Vd is positive, and on the other hand, when the input detection signal Vd is negative, Reduce the voltage level.

以上の構成により、信号抽出部5では、増幅回路31の利得(増幅率)に対するフィードバック制御が検波回路34および制御回路35によって行われて、制御回路35が、増幅検出信号S3を構成する参照信号Ssの信号成分の振幅が一定となるように(本例では加算回路33に入力される参照信号Ss1の振幅と同じ振幅となるように)、増幅回路31の増幅率を検波信号Vdに基づいて制御する。これにより、増幅検出信号S3を構成する参照信号Ssの信号成分の振幅が、加算回路33に入力される参照信号Ss1の振幅に一致させられる。したがって、加算回路33は、増幅検出信号S3および参照信号Ss1の加算処理を実行して、増幅検出信号S3を構成する参照信号成分を参照信号Ss1で相殺(キャンセル)させて、検出対象体6の交流電圧V1に起因した検出対象電流Iv1に基づく電圧成分(交流電圧V1と同一周波数の信号成分)で構成される出力信号Soを生成して出力する。   With the above configuration, in the signal extraction unit 5, feedback control for the gain (amplification factor) of the amplifier circuit 31 is performed by the detection circuit 34 and the control circuit 35, and the control circuit 35 makes the reference signal that constitutes the amplification detection signal S3. Based on the detection signal Vd, the amplification factor of the amplification circuit 31 is set so that the amplitude of the signal component of Ss is constant (in this example, the amplitude is the same as the amplitude of the reference signal Ss1 input to the addition circuit 33). Control. As a result, the amplitude of the signal component of the reference signal Ss constituting the amplification detection signal S3 is matched with the amplitude of the reference signal Ss1 input to the adder circuit 33. Therefore, the addition circuit 33 executes addition processing of the amplified detection signal S3 and the reference signal Ss1, cancels (cancels) the reference signal component constituting the amplified detection signal S3 with the reference signal Ss1, and An output signal So composed of a voltage component (a signal component having the same frequency as that of the AC voltage V1) based on the detection target current Iv1 caused by the AC voltage V1 is generated and output.

この場合、検出対象体6と検出電極2との間に形成される静電容量C0の大きさに応じて、参照電流Is1および検出対象電流Iv1が同じ割合で変動し、検出信号S1に含まれる参照電圧成分(参照信号Ssに起因した信号成分)および検出対象電圧成分(交流電圧V1に起因したで信号成分)も同じ割合で変動する。したがって、増幅検出信号S3を構成する参照信号Ssの信号成分および交流電圧V1の信号成分についても、両成分は同じ割合で変動する。この場合、信号抽出部5では、上記したフィードバック制御により、増幅検出信号S3は、この信号S3を構成する参照信号Ssの信号成分についての振幅が参照信号Ss1の振幅と一致するように増幅回路31によって生成される。このため、本例の構成の電圧検出装置1では、出力信号Soに含まれている検出対象電流Iv1に基づく電圧成分は、静電容量C0の大きさに拘わらず、その振幅が検出対象体6に発生している交流電圧V1の振幅に対応した大きさとなり、理論的には、その振幅が検出対象体6に発生している交流電圧V1の振幅と一致した状態となる。   In this case, the reference current Is1 and the detection target current Iv1 fluctuate at the same rate according to the magnitude of the capacitance C0 formed between the detection target body 6 and the detection electrode 2, and are included in the detection signal S1. The reference voltage component (signal component due to the reference signal Ss) and the detection target voltage component (signal component due to the AC voltage V1) also vary at the same rate. Therefore, both the component of the reference signal Ss and the signal component of the AC voltage V1 constituting the amplification detection signal S3 fluctuate at the same rate. In this case, in the signal extraction unit 5, the amplification detection signal S3 is amplified by the feedback control described above so that the amplitude of the signal component of the reference signal Ss constituting the signal S3 matches the amplitude of the reference signal Ss1. Generated by. For this reason, in the voltage detection device 1 having the configuration of this example, the voltage component based on the detection target current Iv1 included in the output signal So has an amplitude of the detection target body 6 regardless of the magnitude of the capacitance C0. The amplitude corresponds to the amplitude of the AC voltage V1 generated at the time, and theoretically, the amplitude matches the amplitude of the AC voltage V1 generated at the detection object 6.

次いで、電圧検出装置1による検出対象体6の交流電圧V1に対する検出動作について説明する。   Next, the detection operation for the AC voltage V1 of the detection object 6 by the voltage detection device 1 will be described.

まず、検出電極2を検出対象体6と非接触の状態で、かつ検出対象体6に対向するように配置する。これにより、図1に示すように、検出電極2と検出対象体6との間に静電容量C0が形成された状態となる。この場合、静電容量C0の容量値は、検出電極2と検出対象体6の距離に反比例して変化するが、検出電極2を一旦配設した後は、温度などの環境が一定の条件下においては一定の(変動しない)値となる。この場合、静電容量C0の容量値は一般的に極めて小さい値(例えば数pF〜数十pF程度)となる。   First, the detection electrode 2 is disposed so as not to contact the detection target body 6 and to face the detection target body 6. Thereby, as shown in FIG. 1, a capacitance C <b> 0 is formed between the detection electrode 2 and the detection target body 6. In this case, the capacitance value of the electrostatic capacitance C0 changes in inverse proportion to the distance between the detection electrode 2 and the detection object 6. However, after the detection electrode 2 is disposed once, the environment such as temperature is constant. Is a constant (non-fluctuating) value. In this case, the capacitance value of the capacitance C0 is generally an extremely small value (for example, about several pF to several tens pF).

また、検出電極2と検出対象体6とが静電容量C0を介して交流的に接続されることにより、検出対象体6、検出電極2および検出部3を含む経路に、参照信号Ssに起因した参照電流Is1と、交流電圧V1に起因した検出対象電流Iv1とが流れ、検出部3は、参照電流Is1および検出対象電流Iv1の合成電流を検出して、検出信号S1を出力する。   Further, when the detection electrode 2 and the detection target body 6 are connected in an AC manner via the capacitance C0, the path including the detection target body 6, the detection electrode 2 and the detection unit 3 is caused by the reference signal Ss. The detected reference current Is1 and the detection target current Iv1 due to the AC voltage V1 flow, and the detection unit 3 detects the combined current of the reference current Is1 and the detection target current Iv1, and outputs a detection signal S1.

また、参照信号出力部4は、検出信号S1を入力すると共に積分して、積分信号S2を生成し、生成した積分信号S2を増幅回路22において1未満の増幅率で増幅して参照信号Ssとして出力する。参照信号出力部4は、この参照信号Ssを、検出部3に印加すると共に、振幅変更回路32および検波回路34に出力する。このようにして、参照信号出力部4が検出信号S1を積分して検出部3に印加することにより、上記したように、検出信号S1には、交流電圧V1の信号成分と共に、参照信号Ssの信号成分が含まれることになる。   The reference signal output unit 4 receives and integrates the detection signal S1 to generate an integration signal S2, and amplifies the generated integration signal S2 with an amplification factor of less than 1 in the amplifier circuit 22 as a reference signal Ss. Output. The reference signal output unit 4 applies the reference signal Ss to the detection unit 3 and outputs the reference signal Ss to the amplitude changing circuit 32 and the detection circuit 34. In this way, the reference signal output unit 4 integrates the detection signal S1 and applies the detection signal S1 to the detection unit 3, so that the detection signal S1 includes the signal component of the AC voltage V1 and the reference signal Ss as described above. A signal component will be included.

この関係をラプラス変換を用いて説明すると、交流電圧V1を関数x(t)で表し、この関数x(t)のラプラス変換をX(s)で表すとすると、積分回路21を含む参照信号出力部4から出力される最初の参照信号Ssのラプラス変換はX(s)/sで表される。また、この参照信号Ssは1未満の増幅率(一例として、増幅率を「α」で表す)で増幅されて検出部3に印加され、さらに、この印加によって検出信号S1に含まれている参照信号Ssの信号成分は、検出部3に印加される参照信号Ssに対して位相が180°ずれた状態となる。参照信号出力部4は、検出信号S1を積分して参照信号Ssとして検出部3に印加する動作を繰り返し実行する。このため、検出信号S1をラプラス変換したものは、下記式で表される。
X(s)−α×X(s)/s+α×X(s)/s−α×X(s)/s+・・・
ここで、上記したようにαは1未満の数値であることから、αに対して、それらの複数回の乗算値(α,α,・・・)はいずれも小さい値となるため、上記式を構成する各項のうちのこれらを係数に持つ項は無視できるとすると、上記式は、一例として第1項および第2項のみで簡略化できる。
したがって、検出信号S1は、式(X(s)−α×X(s)/s)で表され、参照信号Ssは、式(α×X(s)/s)で表される。
This relationship will be described using Laplace transform. When the AC voltage V1 is represented by a function x (t) and the Laplace transform of this function x (t) is represented by X (s), a reference signal output including the integration circuit 21 is output. The Laplace transform of the first reference signal Ss output from the unit 4 is represented by X (s) / s. Further, the reference signal Ss is amplified with an amplification factor of less than 1 (for example, the amplification factor is represented by “α”) and applied to the detection unit 3, and further, the reference included in the detection signal S1 by this application. The signal component of the signal Ss is in a state where the phase is shifted by 180 ° with respect to the reference signal Ss applied to the detection unit 3. The reference signal output unit 4 repeatedly executes an operation of integrating the detection signal S1 and applying it to the detection unit 3 as the reference signal Ss. For this reason, the Laplace transformed version of the detection signal S1 is expressed by the following equation.
X (s) −α × X (s) / s + α 2 × X (s) / s 2 −α 3 × X (s) / s 3 +.
Here, since α is a numerical value less than 1 as described above, the multiplication values (α 2 , α 3 ,. Assuming that the terms having the coefficients among the terms constituting the above formula can be ignored, the above formula can be simplified by only the first term and the second term as an example.
Therefore, the detection signal S1 is represented by an expression (X (s) −α × X (s) / s), and the reference signal Ss is represented by an expression (α × X (s) / s).

信号抽出部5では、増幅回路31が、検出信号S1を入力すると共に、制御回路35から出力される制御信号Scの電圧レベルで規定される増幅率βで検出信号S1を増幅して、増幅検出信号S3として出力する。この場合、増幅検出信号S3は、式(β×X(s)−α×β×X(s)/s)で表される。また、振幅変更回路32が、参照信号Ssを入力すると共にその振幅を変更して参照信号Ss1として出力する。この場合、振幅変更回路32での増幅率をγとすると、参照信号Ss1は、式(α×γ×X(s)/s)で表される。   In the signal extraction unit 5, the amplification circuit 31 receives the detection signal S1, and amplifies the detection signal S1 at an amplification factor β defined by the voltage level of the control signal Sc output from the control circuit 35, thereby performing amplification detection. Output as signal S3. In this case, the amplification detection signal S3 is expressed by an equation (β × X (s) −α × β × X (s) / s). In addition, the amplitude changing circuit 32 receives the reference signal Ss, changes its amplitude, and outputs the reference signal Ss1. In this case, if the amplification factor in the amplitude changing circuit 32 is γ, the reference signal Ss1 is expressed by the equation (α × γ × X (s) / s).

次いで、加算回路33が、増幅検出信号S3および参照信号Ss1を入力すると共に、両信号S3,Ss1を互いに加算する加算処理を実行して、出力信号Soとして出力する。この場合、増幅検出信号S3が、式(β×X(s)−α×β×X(s)/s)で表され、また参照信号Ss1が、式(α×γ×X(s)/s)で表されるため、上記したように、増幅回路31の利得(増幅率)に対するフィードバック制御が検波回路34および制御回路35によって行われて、増幅回路31からの増幅検出信号S3を構成する参照信号Ssの信号成分(α×β×X(s)/s)の振幅が参照信号Ss1(α×γ×X(s)/s)の振幅に一致させられる。このため、加算回路33での加算処理により、増幅検出信号S3を構成する参照信号Ssの信号成分(α×β×X(s)/s)が参照信号Ss1で相殺(キャンセル)されて、つまり、増幅検出信号S3を構成する参照信号Ssの信号成分が除去されて、検出対象体6の交流電圧V1に起因した検出対象電流Iv1に基づく電圧成分(β×X(s))で構成される出力信号Soが出力される。   Next, the addition circuit 33 inputs the amplification detection signal S3 and the reference signal Ss1, and executes addition processing for adding both signals S3 and Ss1 to each other and outputs the result as an output signal So. In this case, the amplification detection signal S3 is expressed by the equation (β × X (s) −α × β × X (s) / s), and the reference signal Ss1 is expressed by the equation (α × γ × X (s) / s), as described above, feedback control on the gain (amplification factor) of the amplifier circuit 31 is performed by the detection circuit 34 and the control circuit 35, and the amplification detection signal S3 from the amplifier circuit 31 is configured. The amplitude of the signal component (α × β × X (s) / s) of the reference signal Ss is matched with the amplitude of the reference signal Ss1 (α × γ × X (s) / s). Therefore, the signal component (α × β × X (s) / s) of the reference signal Ss constituting the amplification detection signal S3 is canceled (cancelled) by the reference signal Ss1 by the addition processing in the addition circuit 33, that is, The signal component of the reference signal Ss constituting the amplified detection signal S3 is removed, and the voltage component (β × X (s)) based on the detection target current Iv1 caused by the AC voltage V1 of the detection target body 6 is formed. An output signal So is output.

この電圧検出装置1では、検出部3が、交流電圧V1に基づいて流れる検出対象電流(交流電圧V1に起因した電流信号成分)Iv1、および参照信号Ssに基づいて流れる参照電流(参照信号Ssに起因した電流信号成分)Is1の両電流値に応じて振幅が変化する検出信号S1を検出して出力する。この場合、参照信号出力部4は、検出信号S1を積分して参照信号Ssを生成して、検出部3に印加する。また、信号抽出部5では、検出信号S1を入力して増幅検出信号S3として出力し、増幅検出信号S3に含まれている参照信号Ssの振幅が参照信号出力部4から出力される参照信号Ss(具体的には、振幅変更回路32によって参照信号Ssの振幅が変更されて生成された参照信号Ss1)の振幅と一致するように(参照信号Ss1との加算または減算によって増幅検出信号S3に含まれている参照信号Ssの信号成分(参照信号Ssと周波数が一致し、かつ位相が同一または反転する(180°ずれた)信号成分)を相殺可能な振幅となるように)、検出信号S1の振幅を制御して増幅検出信号S3として出力すると共に、このように振幅が制御された増幅検出信号S3と参照信号Ss1との加算または減算によって増幅検出信号S3に含まれている上記参照信号Ssの信号成分を除去して出力信号Soとして出力する。   In this voltage detection device 1, the detection unit 3 includes a detection target current (current signal component caused by the AC voltage V1) Iv1 that flows based on the AC voltage V1, and a reference current (based on the reference signal Ss) that flows based on the reference signal Ss. The detection signal S1 whose amplitude changes according to both current values of the current signal component (Is1) is detected and output. In this case, the reference signal output unit 4 integrates the detection signal S <b> 1 to generate the reference signal Ss and applies it to the detection unit 3. The signal extraction unit 5 receives the detection signal S1 and outputs it as an amplification detection signal S3. The reference signal Ss output from the reference signal output unit 4 includes the amplitude of the reference signal Ss included in the amplification detection signal S3. (Specifically, it is included in the amplified detection signal S3 by addition or subtraction with the reference signal Ss1 so that it matches the amplitude of the reference signal Ss1 generated by changing the amplitude of the reference signal Ss by the amplitude changing circuit 32). Of the detected signal S1 (so that the amplitude of the signal component is such that the signal component of the reference signal Ss that has the same frequency as the reference signal Ss and whose phase is the same or reversed (180 ° shifted)) can be canceled out. The amplitude is controlled and output as the amplified detection signal S3, and the amplified detection signal S3 is added to or subtracted from the amplified detection signal S3 and the reference signal Ss1 thus controlled in amplitude. Rare and are removed signal components of the reference signal Ss and outputs as an output signal So..

したがって、この電圧検出装置1によれば、検出対象体6と検出電極2との間の結合容量(静電容量C0)が未知の場合であっても(静電容量C0の値に拘わらず)、交流電圧V1についての感度が一定となるように制御するため、つまり、出力信号Soに含まれている検出対象電流Iv1に基づく電圧成分の振幅が交流電圧V1の振幅に対応した大きさとなるように制御するため、出力信号Soに含まれているこの電圧成分を検出することにより、静電容量C0の算出を行うことなく、交流電圧V1を非接触で検出することができる。   Therefore, according to the voltage detection device 1, even when the coupling capacitance (capacitance C0) between the detection object 6 and the detection electrode 2 is unknown (regardless of the value of the capacitance C0). In order to control the sensitivity with respect to the AC voltage V1 to be constant, that is, the amplitude of the voltage component based on the detection target current Iv1 included in the output signal So becomes a magnitude corresponding to the amplitude of the AC voltage V1. Therefore, by detecting this voltage component included in the output signal So, the AC voltage V1 can be detected in a non-contact manner without calculating the capacitance C0.

また、この電圧検出装置1では、参照信号出力部4が検出信号S1を積分して生成した信号を参照信号Ssとして使用する構成としたことにより、参照信号Ssの周波数が交流電圧V1の周波数に常に一致する。このため、この電圧検出装置1によれば、交流電圧V1の周波数と異なる周波数の信号を電圧検出装置1内部で発生させて参照信号Ssとして使用する構成とは異なり、ノイズの多い環境下においても、増幅検出信号S3と参照信号Ss1との加算によって増幅検出信号S3に含まれている参照信号Ssの信号成分を除去する際におけるノイズ(交流電圧V1の周波数と異なる周波数の信号)の影響を大幅に低減することができる。したがって、この電圧検出装置1によれば、ノイズの多い環境下においても、ノイズによる影響を低減しつつ出力信号Soを出力することができるため、交流電圧V1の検出誤差についても低減することができる結果、交流電圧V1の検出精度を十分に向上させることができる。   Moreover, in this voltage detection apparatus 1, since the reference signal output unit 4 uses a signal generated by integrating the detection signal S1 as the reference signal Ss, the frequency of the reference signal Ss becomes the frequency of the AC voltage V1. Always match. For this reason, according to this voltage detection device 1, unlike the configuration in which a signal having a frequency different from the frequency of the AC voltage V1 is generated inside the voltage detection device 1 and used as the reference signal Ss, even in a noisy environment. The influence of noise (a signal having a frequency different from the frequency of the AC voltage V1) when removing the signal component of the reference signal Ss included in the amplified detection signal S3 by adding the amplified detection signal S3 and the reference signal Ss1 is greatly increased. Can be reduced. Therefore, according to this voltage detection device 1, since the output signal So can be output while reducing the influence of noise even in a noisy environment, the detection error of the AC voltage V1 can also be reduced. As a result, it is possible to sufficiently improve the detection accuracy of the AC voltage V1.

また、この電圧検出装置1では、信号抽出部5が、増幅回路31、加算回路33、検波回路34および制御回路35を備えて構成されて、検波回路34が、出力信号Soに含まれている参照信号Ssの信号成分についての振幅を示す検波信号Vdを参照信号出力部4から出力される参照信号Ssを用いた同期検波によって検出し、制御回路35が、この検波信号Vdに基づいて増幅回路31の利得を制御する。したがって、この電圧検出装置1によれば、同期検波によって参照信号Ssの信号成分を正確に検出することができ、この結果、増幅検出信号S3に含まれている参照信号Ssの信号成分を高い精度で相殺することができ、これによって出力信号Soに含まれる参照信号Ssの信号成分を大幅に低減することができる結果、交流電圧V1の検出精度を一層向上させることができる。   Further, in the voltage detection device 1, the signal extraction unit 5 includes an amplifier circuit 31, an addition circuit 33, a detection circuit 34, and a control circuit 35, and the detection circuit 34 is included in the output signal So. The detection signal Vd indicating the amplitude of the signal component of the reference signal Ss is detected by synchronous detection using the reference signal Ss output from the reference signal output unit 4, and the control circuit 35 amplifies the amplification circuit based on the detection signal Vd. The gain of 31 is controlled. Therefore, according to the voltage detection device 1, the signal component of the reference signal Ss can be accurately detected by synchronous detection. As a result, the signal component of the reference signal Ss included in the amplified detection signal S3 can be detected with high accuracy. As a result, the signal component of the reference signal Ss included in the output signal So can be significantly reduced, and as a result, the detection accuracy of the AC voltage V1 can be further improved.

なお、上記の電圧検出装置1では、出力信号Soに含まれている参照信号Ssの信号成分についての振幅を示す検波信号Vdを検出する構成として、出力信号Soと参照信号出力部4から出力される参照信号Ssとを乗算する乗算回路41を使用する構成を使用しているが、図3に示す電圧検出装置1Aのように、同期信号生成回路43および同期検波回路44を備えて構成された検波回路34Aを使用する構成を採用することもできる。なお、電圧検出装置1と同一の構成については同一の符号を付して重複する説明を省略する。   In the voltage detection apparatus 1 described above, the detection signal Vd indicating the amplitude of the signal component of the reference signal Ss included in the output signal So is detected and output from the output signal So and the reference signal output unit 4. Although the configuration using the multiplication circuit 41 that multiplies the reference signal Ss is provided, it is configured to include the synchronous signal generation circuit 43 and the synchronous detection circuit 44 as in the voltage detection device 1A shown in FIG. A configuration using the detection circuit 34A can also be adopted. In addition, about the structure same as the voltage detection apparatus 1, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

この電圧検出装置1Aでは、検波回路34Aの同期信号生成回路43が、積分信号としての参照信号Ssに対してゼロクロス法を適用して同期信号S5を生成し、同期検波回路44がこの同期信号S5に基づいて出力信号Soに含まれている参照信号Ssの信号成分についての振幅を示す検波信号Vdを同期検出する。この電圧検出装置1Aにおいても、電圧検出装置1と同様にして、静電容量C0の算出を行うことなく、交流電圧V1を非接触で検出することができるという効果と、ノイズの多い環境下においても、交流電圧V1を精度よく検出することができるという効果とを奏することができる。また、この電圧検出装置1Aでは、同期信号生成回路43が高周波成分の非常に少ない積分信号としての参照信号Ssを使用して同期信号S5を生成しているため、ゼロクロス検出時のエラー(ゼロクロス点を正確に検出できないというエラー)の発生を低減することができ、ひいては交流電圧V1の検出精度を一層向上させることができる。   In this voltage detection device 1A, the synchronization signal generation circuit 43 of the detection circuit 34A applies the zero cross method to the reference signal Ss as the integration signal to generate the synchronization signal S5, and the synchronization detection circuit 44 uses the synchronization signal S5. Based on, the detection signal Vd indicating the amplitude of the signal component of the reference signal Ss included in the output signal So is synchronously detected. In this voltage detection device 1A, as in the voltage detection device 1, the AC voltage V1 can be detected without contact without calculating the capacitance C0, and in a noisy environment. In addition, there is an effect that the AC voltage V1 can be detected with high accuracy. Further, in this voltage detection apparatus 1A, the synchronization signal generation circuit 43 generates the synchronization signal S5 using the reference signal Ss as an integration signal having very little high frequency component, and therefore an error (zero cross point) at the time of zero cross detection is generated. ) Can be reduced, and as a result, the detection accuracy of the AC voltage V1 can be further improved.

また、交流電圧V1を示す出力信号Soを検出する電圧検出装置1,1Aについて上記したが、出力信号Soの電圧波形(レベル)を所定周波数のサンプリングクロックでサンプリングしてデジタルデータに変換するA/D変換器およびCPUを備えた処理部と、このデジタルデータと交流電圧V1の電圧値とが対応させられた電圧算出用テーブルを記憶する記憶部と、ディスプレイ装置などで構成された出力部とをさらに設け、処理部が出力信号Soから取得したデジタルデータに基づいて交流電圧V1の電圧値を算出して出力部に出力(表示)させる構成とすることで、交流電圧V1の電圧値を測定する電圧測定装置を構成することもできる。   Further, the voltage detection devices 1 and 1A for detecting the output signal So indicating the AC voltage V1 have been described above. However, the voltage waveform (level) of the output signal So is sampled with a sampling clock having a predetermined frequency and converted into digital data. A processing unit including a D converter and a CPU, a storage unit that stores a voltage calculation table in which the digital data and the voltage value of the AC voltage V1 are associated, and an output unit configured by a display device or the like Further, the voltage value of the AC voltage V1 is measured by providing a configuration in which the processing unit calculates the voltage value of the AC voltage V1 based on the digital data acquired from the output signal So and outputs (displays) the voltage value to the output unit. A voltage measuring device can also be configured.

また、上記した電圧検出装置1,1Aおよび電圧測定装置では、参照信号出力部4を積分回路21を用いて構成すると共に、この参照信号出力部4において検出信号S1を積分することにより、参照信号Ssを生成する構成を採用しているが、検出信号S1を微分して参照信号Ssを生成する構成を採用することもできる。この構成では、図示はしないが、参照信号出力部4は、積分回路21に代えて微分回路を備えて構成される。   Further, in the voltage detection devices 1 and 1A and the voltage measurement device described above, the reference signal output unit 4 is configured using the integration circuit 21, and the reference signal output unit 4 integrates the detection signal S1 to thereby generate the reference signal. Although the configuration for generating Ss is employed, a configuration for generating the reference signal Ss by differentiating the detection signal S1 may be employed. In this configuration, although not shown, the reference signal output unit 4 includes a differentiation circuit instead of the integration circuit 21.

この構成の場合には、検出信号S1をラプラス変換したものは、下記式で表される。
X(s)−α×s×X(s)+α×s×X(s)−α×s×X(s)+・・・
ここで、上記したようにαは1未満の数値であることから、αに対して、それらの複数回の乗算値(α,α,・・・)はいずれも小さい値となるため、上記式を構成する各項のうちのこれらを係数に持つ項は無視できるとすると、上記式は、一例として第1項および第2項のみで簡略化できる。したがって、検出信号S1は、式(X(s)−α×s×X(s))で表され、参照信号Ssは、式(α×s×X(s))で表される。また、増幅回路31の増幅率をβとすると、増幅検出信号S3は、式(β×X(s)−α×β×s×X(s))で表される。また、振幅変更回路32の増幅率をγとすると、参照信号Ss1は、式(α×γ×s×X(s))で表される。
In the case of this configuration, the Laplace transformed version of the detection signal S1 is expressed by the following equation.
X (s) -α × s × X (s) + α 2 × s 2 × X (s) -α 3 × s 3 × X (s) + ···
Here, since α is a numerical value less than 1 as described above, the multiplication values (α 2 , α 3 ,. Assuming that the terms having the coefficients among the terms constituting the above formula can be ignored, the above formula can be simplified by only the first term and the second term as an example. Therefore, the detection signal S1 is represented by an equation (X (s) −α × s × X (s)), and the reference signal Ss is represented by an equation (α × s × X (s)). Further, when the amplification factor of the amplifier circuit 31 is β, the amplification detection signal S3 is expressed by an equation (β × X (s) −α × β × s × X (s)). Further, when the amplification factor of the amplitude changing circuit 32 is γ, the reference signal Ss1 is expressed by an expression (α × γ × s × X (s)).

この構成の場合においても、上記したように、増幅回路31の利得(増幅率)に対するフィードバック制御が検波回路34および制御回路35によって行われて、増幅回路31からの増幅検出信号S3を構成する参照信号Ssの信号成分(α×β×s×X(s))の振幅が参照信号Ss1(α×γ×s×X(s))の振幅に一致させられる。このため、加算回路33での加算処理により、増幅検出信号S3を構成する参照信号Ssの信号成分(α×β×s×X(s))が参照信号Ss1で相殺(キャンセル)されて、つまり、増幅検出信号S3を構成する参照信号Ssの信号成分が除去されて、検出対象体6の交流電圧V1に起因した検出対象電流Iv1に基づく電圧成分(β×X(s))で構成される出力信号Soを検出することができ、これによって、出力信号Soを出力することができる。   Also in the case of this configuration, as described above, the feedback control for the gain (amplification factor) of the amplifier circuit 31 is performed by the detection circuit 34 and the control circuit 35, and the reference for configuring the amplification detection signal S3 from the amplifier circuit 31 is provided. The amplitude of the signal component (α × β × s × X (s)) of the signal Ss is matched with the amplitude of the reference signal Ss1 (α × γ × s × X (s)). For this reason, the signal component (α × β × s × X (s)) of the reference signal Ss constituting the amplification detection signal S3 is canceled (cancelled) by the reference signal Ss1 by the addition processing in the addition circuit 33, that is, The signal component of the reference signal Ss constituting the amplified detection signal S3 is removed, and the voltage component (β × X (s)) based on the detection target current Iv1 caused by the AC voltage V1 of the detection target body 6 is formed. The output signal So can be detected, whereby the output signal So can be output.

また、上記の信号抽出部5では、演算回路の一例として加算回路33を使用して、増幅検出信号S3と参照信号Ss1とを加算して出力信号Soとして出力する構成を採用しているが、例えば、増幅回路31については、検出信号S1を反転増幅して増幅検出信号S3を出力する構成とすることもでき、この構成を採用したときには、演算回路としての加算回路33に代えて演算回路としての減算回路を使用して、増幅検出信号S3と参照信号Ss1とを減算することで、出力信号Soを出力することができる。   Further, the signal extraction unit 5 employs a configuration in which the addition circuit 33 is used as an example of an arithmetic circuit, and the amplification detection signal S3 and the reference signal Ss1 are added and output as the output signal So. For example, the amplifier circuit 31 can be configured to invert and amplify the detection signal S1 and output the amplified detection signal S3. When this configuration is adopted, the calculation circuit can be replaced with an addition circuit 33 as an arithmetic circuit. The output signal So can be output by subtracting the amplification detection signal S3 and the reference signal Ss1 using the subtracting circuit.

1,1A 電圧検出装置
2 検出電極
3 検出部
4 参照信号出力部
5 信号抽出部
S1 検出信号
S3 増幅検出信号
So 出力信号
Ss 参照信号
V1 交流電圧
DESCRIPTION OF SYMBOLS 1,1A Voltage detection apparatus 2 Detection electrode 3 Detection part 4 Reference signal output part 5 Signal extraction part S1 Detection signal S3 Amplification detection signal So Output signal Ss Reference signal V1 AC voltage

Claims (3)

検出対象体に生じている検出対象交流電圧を検出する電圧検出装置であって、
前記検出対象体に対向して配設されて当該検出対象体と容量結合する検出電極と、
参照信号を出力する参照信号出力部と、
前記検出電極に接続されると共に前記参照信号を入力して、前記検出対象交流電圧に基づいて流れる検出対象電流および前記参照信号に基づいて流れる参照電流の両電流値に応じて振幅が変化する検出信号を出力する検出部と、
前記検出信号を所定の利得で増幅して増幅検出信号を生成しつつ、前記参照信号出力部から出力される前記参照信号と当該増幅検出信号との加算または減算によって当該参照信号と当該増幅検出信号に含まれている前記参照信号の信号成分とを相殺可能に前記利得を制御すると共に、前記検出対象交流電圧の信号成分を当該増幅検出信号から抽出して出力信号として出力する信号抽出部とを備え、
前記参照信号出力部は、前記検出信号を積分または微分して前記参照信号を出力する電圧検出装置。
A voltage detection device for detecting a detection target alternating voltage generated in a detection target body,
A detection electrode disposed opposite to the detection object and capacitively coupled to the detection object;
A reference signal output unit for outputting a reference signal;
Detection in which amplitude is changed according to both current values of a detection target current flowing based on the detection target AC voltage and a reference current flowing based on the reference signal by being connected to the detection electrode and inputting the reference signal A detector for outputting a signal;
While amplifying the detection signal with a predetermined gain to generate an amplified detection signal, the reference signal and the amplified detection signal are added or subtracted between the reference signal output from the reference signal output unit and the amplified detection signal. A signal extractor that controls the gain so as to cancel out the signal component of the reference signal included in the signal, and extracts the signal component of the detection target AC voltage from the amplified detection signal and outputs the signal as an output signal. Prepared,
The reference signal output unit is a voltage detection device that outputs the reference signal by integrating or differentiating the detection signal.
前記信号抽出部は、前記検出信号を前記利得で増幅して前記増幅検出信号を生成する増幅回路と、当該増幅検出信号と前記参照信号とを加算または減算して前記出力信号として出力する演算回路と、当該出力信号に含まれている前記参照信号の信号成分の振幅を示す検波信号を前記参照信号出力部から出力される前記参照信号を用いた同期検波によって検出する検波回路と、前記増幅回路の前記利得を前記検波信号に基づいて制御する制御回路とを備えている請求項1記載の電圧検出装置。   The signal extracting unit amplifies the detection signal with the gain to generate the amplified detection signal, and an arithmetic circuit that adds or subtracts the amplified detection signal and the reference signal and outputs the result as the output signal A detection circuit that detects a detection signal indicating an amplitude of a signal component of the reference signal included in the output signal by synchronous detection using the reference signal output from the reference signal output unit, and the amplification circuit The voltage detection apparatus according to claim 1, further comprising: a control circuit that controls the gain based on the detection signal. 前記参照信号出力部は、前記検出信号を積分して前記参照信号を出力し、
前記検波回路は、前記参照信号出力部から出力される前記参照信号に基づいて同期信号を生成すると共に、当該同期信号を用いた同期検波によって前記検波信号を検出する請求項2記載の電圧検出装置。
The reference signal output unit integrates the detection signal and outputs the reference signal,
The voltage detection device according to claim 2, wherein the detection circuit generates a synchronization signal based on the reference signal output from the reference signal output unit, and detects the detection signal by synchronous detection using the synchronization signal. .
JP2009279013A 2009-12-09 2009-12-09 Voltage detector Expired - Fee Related JP5420387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279013A JP5420387B2 (en) 2009-12-09 2009-12-09 Voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279013A JP5420387B2 (en) 2009-12-09 2009-12-09 Voltage detector

Publications (2)

Publication Number Publication Date
JP2011122860A true JP2011122860A (en) 2011-06-23
JP5420387B2 JP5420387B2 (en) 2014-02-19

Family

ID=44286902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279013A Expired - Fee Related JP5420387B2 (en) 2009-12-09 2009-12-09 Voltage detector

Country Status (1)

Country Link
JP (1) JP5420387B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119277A (en) * 2012-12-13 2014-06-30 Hioki Ee Corp Ground resistance meter, ground resistance measurement method and program
WO2015125761A1 (en) * 2014-02-19 2015-08-27 オムロン株式会社 Voltage measurement device, and voltage measurement method
US10120021B1 (en) 2017-06-16 2018-11-06 Fluke Corporation Thermal non-contact voltage and non-contact current devices
US10119998B2 (en) 2016-11-07 2018-11-06 Fluke Corporation Variable capacitance non-contact AC voltage measurement system
US10139435B2 (en) 2016-11-11 2018-11-27 Fluke Corporation Non-contact voltage measurement system using reference signal
CN109307839A (en) * 2018-11-23 2019-02-05 哈尔滨工业大学 The circuit of contact drop is tested during ac electric apparatus electrical endurance
US10254375B2 (en) 2016-11-11 2019-04-09 Fluke Corporation Proving unit for voltage measurement systems
US10281503B2 (en) 2016-11-11 2019-05-07 Fluke Corporation Non-contact voltage measurement system using multiple capacitors
US10352967B2 (en) 2016-11-11 2019-07-16 Fluke Corporation Non-contact electrical parameter measurement systems
US10359494B2 (en) 2016-11-11 2019-07-23 Fluke Corporation Proving unit for non-contact voltage measurement systems
US10502807B2 (en) 2017-09-05 2019-12-10 Fluke Corporation Calibration system for voltage measurement devices
US10509063B2 (en) 2017-11-28 2019-12-17 Fluke Corporation Electrical signal measurement device using reference signal
US10539643B2 (en) 2017-09-01 2020-01-21 Fluke Corporation Proving unit for use with electrical test tools
US10551416B2 (en) 2018-05-09 2020-02-04 Fluke Corporation Multi-sensor configuration for non-contact voltage measurement devices
US10557875B2 (en) 2018-05-09 2020-02-11 Fluke Corporation Multi-sensor scanner configuration for non-contact voltage measurement devices
US10591515B2 (en) 2016-11-11 2020-03-17 Fluke Corporation Non-contact current measurement system
US10605832B2 (en) 2016-11-11 2020-03-31 Fluke Corporation Sensor subsystems for non-contact voltage measurement devices
US10677876B2 (en) 2018-05-09 2020-06-09 Fluke Corporation Position dependent non-contact voltage and current measurement
US10746767B2 (en) 2018-05-09 2020-08-18 Fluke Corporation Adjustable length Rogowski coil measurement device with non-contact voltage measurement
US10775409B2 (en) 2018-05-09 2020-09-15 Fluke Corporation Clamp probe for non-contact electrical parameter measurement
US10802072B2 (en) 2018-05-11 2020-10-13 Fluke Corporation Non-contact DC voltage measurement device with oscillating sensor
US10908188B2 (en) 2018-05-11 2021-02-02 Fluke Corporation Flexible jaw probe for non-contact electrical parameter measurement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158063B2 (en) * 1997-01-21 2001-04-23 北斗電子工業株式会社 Non-contact voltage measurement method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158063B2 (en) * 1997-01-21 2001-04-23 北斗電子工業株式会社 Non-contact voltage measurement method and device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119277A (en) * 2012-12-13 2014-06-30 Hioki Ee Corp Ground resistance meter, ground resistance measurement method and program
WO2015125761A1 (en) * 2014-02-19 2015-08-27 オムロン株式会社 Voltage measurement device, and voltage measurement method
JP2015155801A (en) * 2014-02-19 2015-08-27 オムロン株式会社 Voltage measurement device and voltage measurement method
US10119998B2 (en) 2016-11-07 2018-11-06 Fluke Corporation Variable capacitance non-contact AC voltage measurement system
US10281503B2 (en) 2016-11-11 2019-05-07 Fluke Corporation Non-contact voltage measurement system using multiple capacitors
US10139435B2 (en) 2016-11-11 2018-11-27 Fluke Corporation Non-contact voltage measurement system using reference signal
US11237192B2 (en) 2016-11-11 2022-02-01 Fluke Corporation Non-contact current measurement system
US10254375B2 (en) 2016-11-11 2019-04-09 Fluke Corporation Proving unit for voltage measurement systems
US10591515B2 (en) 2016-11-11 2020-03-17 Fluke Corporation Non-contact current measurement system
US10352967B2 (en) 2016-11-11 2019-07-16 Fluke Corporation Non-contact electrical parameter measurement systems
US10359494B2 (en) 2016-11-11 2019-07-23 Fluke Corporation Proving unit for non-contact voltage measurement systems
US10605832B2 (en) 2016-11-11 2020-03-31 Fluke Corporation Sensor subsystems for non-contact voltage measurement devices
US10120021B1 (en) 2017-06-16 2018-11-06 Fluke Corporation Thermal non-contact voltage and non-contact current devices
US10539643B2 (en) 2017-09-01 2020-01-21 Fluke Corporation Proving unit for use with electrical test tools
US10502807B2 (en) 2017-09-05 2019-12-10 Fluke Corporation Calibration system for voltage measurement devices
US10509063B2 (en) 2017-11-28 2019-12-17 Fluke Corporation Electrical signal measurement device using reference signal
US10677876B2 (en) 2018-05-09 2020-06-09 Fluke Corporation Position dependent non-contact voltage and current measurement
US10557875B2 (en) 2018-05-09 2020-02-11 Fluke Corporation Multi-sensor scanner configuration for non-contact voltage measurement devices
US10551416B2 (en) 2018-05-09 2020-02-04 Fluke Corporation Multi-sensor configuration for non-contact voltage measurement devices
US10746767B2 (en) 2018-05-09 2020-08-18 Fluke Corporation Adjustable length Rogowski coil measurement device with non-contact voltage measurement
US10775409B2 (en) 2018-05-09 2020-09-15 Fluke Corporation Clamp probe for non-contact electrical parameter measurement
US10802072B2 (en) 2018-05-11 2020-10-13 Fluke Corporation Non-contact DC voltage measurement device with oscillating sensor
US10908188B2 (en) 2018-05-11 2021-02-02 Fluke Corporation Flexible jaw probe for non-contact electrical parameter measurement
US11209480B2 (en) 2018-05-11 2021-12-28 Fluke Corporation Non-contact DC voltage measurement device with oscillating sensor
CN109307839B (en) * 2018-11-23 2020-08-11 哈尔滨工业大学 Circuit for testing contact voltage drop in alternating current electrical appliance electrical life experimental process
CN109307839A (en) * 2018-11-23 2019-02-05 哈尔滨工业大学 The circuit of contact drop is tested during ac electric apparatus electrical endurance

Also Published As

Publication number Publication date
JP5420387B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5420387B2 (en) Voltage detector
JP5474707B2 (en) Detection circuit and voltage detection device for voltage detection device
US9933387B1 (en) Miniaturized sub-nanoampere sensitivity low-noise potentiostat system
WO2015109894A1 (en) Method and device for testing paper money thickness via electrical eddy current
JP2011053201A (en) Voltage detection device and line voltage detection device
JP2010286474A (en) Voltage detecting device
TW201732302A (en) Image sensor power supply noise detection
JP5313033B2 (en) Voltage detector and line voltage detector
JP6304956B2 (en) Resistance measuring device and resistance measuring method
JP2001324520A (en) Impedance detection circuit, impedance detection device, and impedance detection method
JP2020186934A (en) Capacitive electromagnetic flow meter and measurement control method
CN116699223A (en) Current detection system and method based on TMR sensor
JP2003090851A (en) Current detection system
JP6445360B2 (en) Current measuring device
JP4562551B2 (en) Impedance detection device
JP2002022785A (en) Impedance detecting circuit and impedance detecting method
CN114062764A (en) Direct current small current measuring system and method based on standard current
JP2016099207A (en) Voltage measuring device
JP2880830B2 (en) Electromagnetic flow meter
JP6299485B2 (en) Inspection apparatus and inspection method
US9936893B2 (en) Device for detecting electric potentials
JP4369909B2 (en) Magnetic property measuring method and measuring instrument
Deabes et al. Analysis, design and application of a capacitance measurement circuit with wide operating frequency range
Deabes et al. A new wide frequency band capacitance transducer with application to measuring metal fill time
Feihu et al. A high precision stray-immune weak capacitance measurement system for gas-solid two-phase flows detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees