JP2011122318A - Control method and control system of water storage tank - Google Patents

Control method and control system of water storage tank Download PDF

Info

Publication number
JP2011122318A
JP2011122318A JP2009279263A JP2009279263A JP2011122318A JP 2011122318 A JP2011122318 A JP 2011122318A JP 2009279263 A JP2009279263 A JP 2009279263A JP 2009279263 A JP2009279263 A JP 2009279263A JP 2011122318 A JP2011122318 A JP 2011122318A
Authority
JP
Japan
Prior art keywords
water
temperature
tank
water temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009279263A
Other languages
Japanese (ja)
Other versions
JP4885264B2 (en
Inventor
Hiroshi Sato
浩 佐藤
Kenji Imamura
建二 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009279263A priority Critical patent/JP4885264B2/en
Publication of JP2011122318A publication Critical patent/JP2011122318A/en
Application granted granted Critical
Publication of JP4885264B2 publication Critical patent/JP4885264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method and a control system of a water storage tank allowing a worker to grasp accumulation in the water storage tank simply and accurately and prevent the occurrence of the accumulation. <P>SOLUTION: In this control method of the water storage tank connected with a water service pipeline for supplying water into each house from a city water source, the water flowing in through an inlet formed on one side passes through the tank at a certain flow velocity and is drained through an outlet formed on the other side, water temperature in an upper layer and water temperature in a lower layer in the water storage tank are measured, and whether opening of a valve installed on an inlet side of the water storage tank must be adjusted or not is determined based on a difference between the water temperature in the upper layer and the water temperature in the lower layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地下に埋設され、市水源より各戸に給水する水道管路に接続された貯水槽の管理方法及び管理システムに関する。   The present invention relates to a management method and a management system for a water tank that is buried underground and connected to a water pipe that supplies water to each house from a city water source.

従来から、地震等の災害に備えて給水を確保するために、市水源より各戸に給水する水道管路網に貯水槽が設けられている。貯水槽は、地下に埋設されており、水道本管に直結して水道管路網の一部として使用されている。さらに貯水槽は、災害時の緊急避難場所の公園等の地下に埋設され、災害時の利用に便なるように設置されている。
図8は一般概念の貯水槽の側断面図である。貯水槽50は、横置円筒状に形成された槽本体51と、槽本体51の一側に設けられた流入口52と、他側に設けられた流出口55とを有する。また、流入口52は、弁54が設けられた流入管53に接続され、流出口55は流出管56に接続されている。
Conventionally, in order to secure water supply in preparation for disasters such as earthquakes, water tanks have been provided in the water pipe network that supplies water to each house from a city water source. The water tank is buried underground and is directly connected to the water main and used as part of the water pipeline network. Furthermore, the water tank is buried in the basement of an emergency evacuation site at the time of a disaster, and is installed so that it can be used in the event of a disaster.
FIG. 8 is a side sectional view of a general concept water tank. The water storage tank 50 includes a tank main body 51 formed in a horizontal cylindrical shape, an inlet 52 provided on one side of the tank main body 51, and an outlet 55 provided on the other side. The inflow port 52 is connected to an inflow pipe 53 provided with a valve 54, and the outflow port 55 is connected to an outflow pipe 56.

このような貯水槽50においては、槽内に水が滞留すると腐敗して非常時に使用できなくなってしまう。したがって、貯水槽内の水質保全管理は重要であり、従来より様々な方法が提案、実用化されている。一般的には、流入口52より流入した水を流出口55より排出し、常に槽内を水が流れている状態とすることにより水の滞留が発生しないようにしていた。   In such a water storage tank 50, if water stays in the tank, it will rot and become unusable in an emergency. Therefore, water quality maintenance management in the water tank is important, and various methods have been proposed and put into practical use. In general, water flowing in from the inflow port 52 is discharged from the outflow port 55, and water is always flowing in the tank so that no water stays.

ところが、貯水槽50内の水の通過流量は非常に小さく、微流速しか得られないため滞留の発生を防止できない場合があった。そこで、貯水槽の構造を工夫して、槽内に撹拌流れを形成する貯水槽の構成が提案されている。例えば、特許文献1(特許第3546106号公報)には、貯水槽の出口を掩蔽するように貯水槽内に円板状の遮蔽板を設置した構成が開示されている。また、特許文献2(特開平10−25776号公報)には、多数の小孔が穿設されたスパージャ管を貯水槽内に複数配置し、小孔から水を噴射する構成が開示されている。   However, the flow rate of water passing through the water storage tank 50 is very small, and only a very low flow rate can be obtained. Then, the structure of the water storage tank is devised and the structure of the water storage tank which forms a stirring flow in the tank is proposed. For example, Patent Document 1 (Japanese Patent No. 3546106) discloses a configuration in which a disk-shaped shielding plate is installed in a water storage tank so as to cover the outlet of the water storage tank. Patent Document 2 (Japanese Patent Laid-Open No. 10-25776) discloses a configuration in which a plurality of sparger pipes having a large number of small holes are disposed in a water storage tank and water is injected from the small holes. .

特許第3546106号公報Japanese Patent No. 3546106 特開平10−25776号公報Japanese Patent Laid-Open No. 10-25776

しかしながら、特許文献1や特許文献2のように、遮蔽板を設置する構成や多孔管を設置する構成を備えていても、構造上の工夫のみでは部分的な撹拌効果しか得られず、滞留領域は残るため、水の滞留は完全には防止できなかった。
そこで、貯水槽に設けられた検水管から水を抜き出し、塩素濃度を測定する検査を行っていたが、現地に赴かなければならず、複数の貯水槽を監視することは時間と手間がかかっていた。
However, as in Patent Document 1 and Patent Document 2, even if a configuration in which a shielding plate is installed or a configuration in which a perforated tube is installed is provided, only a partial stirring effect can be obtained only by structural ingenuity. As a result, water retention could not be completely prevented.
Therefore, water was extracted from the water test tubes installed in the water tanks and the chlorine concentration was measured, but it was necessary to go to the site, and monitoring multiple water tanks took time and effort. It was.

したがって、本発明はかかる従来技術の問題に鑑み、貯水槽内の滞留を簡単に且つ正確に把握し、滞留を防止することができる貯水槽の管理方法及び管理システムを提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention aims to provide a water tank management method and management system that can easily and accurately grasp the stay in the water tank and prevent the stay. .

本発明者らは、上述の課題を解決すべく、貯水槽の滞留の原因について詳細な調査を行った。その結果、以下の知見が得られた。
貯水槽は地下に埋設されているため、季節を通じて温度の変化が小さい。これに対して、貯水槽に流入する水は、地上の貯水池から供給されるものであるため季節変動が大きい。したがって、貯水槽内に貯留されている水と、流入水とでは温度に差がある。例えば、夏季を例にとってみると、貯水槽は地熱で冷却され、槽内の水も冷却される。その冷却された水が底部に停滞し、外から流入するやや温度の高い水は、底部の冷却された水と混合せずに貯水槽の上層を通り抜けることがある。これが夏季の滞留発生原因と考えられる。冬季は逆に、外から流入するやや温度の低い水が、貯水槽の下層を通り抜け、上層に滞留が生じる。このことから、地下に埋設される貯水槽に地上からの水が流入する貯水槽においては、貯水と流入水との温度差が滞留を引き起こす大きな要因の一つだと考えられる。
In order to solve the above-mentioned problems, the present inventors have conducted a detailed investigation on the cause of the retention of the water tank. As a result, the following knowledge was obtained.
Since the water tank is buried underground, temperature changes are small throughout the season. On the other hand, since the water flowing into the water tank is supplied from the above-ground reservoir, the seasonal variation is large. Therefore, there is a difference in temperature between the water stored in the water tank and the inflow water. For example, taking summer as an example, the water tank is cooled by geothermal heat, and the water in the tank is also cooled. The cooled water stagnates at the bottom, and the slightly hot water flowing from the outside may pass through the upper layer of the water storage tank without mixing with the cooled water at the bottom. This is thought to be the cause of stagnation in summer. On the contrary, in winter, water with a slightly low temperature flowing in from outside passes through the lower layer of the water storage tank and stays in the upper layer. From this, it is considered that the temperature difference between the stored water and the inflowing water is one of the major factors that cause the stagnation in the water storage tank where water from the ground flows into the water storage tank buried underground.

ここで、滞留発生の定量評価について説明する。
上記したように貯水槽内の水は、上層と下層とで水温が異なる場合には、2層密度流となって槽内に存在する。2層密度流は、単一流体にくらべて密度差に起因する特異な流れがみられることは、参考文献1(「基礎土木工学全書7 水理学II」、椿 東一郎著、森北出版株式会社 1978年4月)等に記載されている。
Here, the quantitative evaluation of the occurrence of stagnation will be described.
As described above, when the water temperature is different between the upper layer and the lower layer, the water in the water storage tank exists in the tank as a two-layer density flow. The two-layer density flow has a peculiar flow due to the density difference compared to a single fluid. Reference 1 ("Basic Civil Engineering Complete Book 7 Hydrology II", Toichiro Taki, Morikita Publishing Co., Ltd. 1978 April).

この2層密度流の混合は、Keulegan数により定量評価できる。Keulegan数は以下のように定義されている。
ρ1:上層の水の密度
ρ2:下層の水の密度
ε:(ρ1−ρ2)/ρ1
ν:水の動粘性係数
g:重力加速度
U1:上層と下層の流れの相対速度
Θ:Keulegan数=(νεg)^(1/3)/U1
The mixing of this two-layer density flow can be quantitatively evaluated by the Keulegan number. The Keulegan number is defined as follows:
ρ1: Upper layer water density ρ2: Lower layer water density ε: (ρ1-ρ2) / ρ1
ν: Kinematic viscosity coefficient of water g: Gravity acceleration U1: Relative velocity of upper and lower layer flows Θ: Keulegan number = (νεg) ^ (1/3) / U1

上層と下層の流れの相対速度が増加し、Keulegan数Θの値がある限界値以下になると、2層密度流の境界面に発生する内部波は砕けて上下層の流体の混合が起こる。層流の限界値は0.127であり、Θ<0.127となる大き目な流速では上下の混合は生じるが、Θ≧0.127となる小さな流速では上下の混合は生じない。Keulegan数の定義によれば、2層密度流の混合に影響を与える因子は、流速と、上層の水の密度及び下層の水の密度である。水の密度は温度関数であるため、流速と、上層水温と下層水温の温度差とが2層密度流の混合を決定する因子となる。   When the relative velocity of the upper and lower flows increases and the value of the Keulegan number Θ falls below a certain limit value, the internal wave generated at the boundary surface of the two-layer density flow is broken and mixing of the upper and lower fluids occurs. The limit value of laminar flow is 0.127, and upper and lower mixing occurs at a large flow rate where Θ <0.127, but upper and lower mixing does not occur at a small flow rate where Θ ≧ 0.127. According to the definition of the Keulegan number, the factors affecting the mixing of a two-layer density flow are the flow velocity, the density of the upper water and the density of the lower water. Since the density of water is a temperature function, the flow rate and the temperature difference between the upper layer water temperature and the lower layer water temperature are factors that determine the mixing of the two-layer density flow.

上記した知見から鋭意検討した結果、本発明者らは、上層水温と下層水温の温度差を検知し、この温度差を用いて貯水槽の滞留を防止できること見出した。
すなわち、本発明の貯水槽の管理方法は、市水源より各戸に給水する水道管路(水道本管)に接続された貯水槽であって、一側に設けられた流入口より流入した水が流速をもって槽内を通り、他側に設けられた流出口より排出される貯水槽の管理方法において、前記貯水槽内の上層水温と下層水温とを測定し、前記上層水温と前記下層水温との温度差に基づいて、前記貯水槽の前記流入口側に設けられた弁の開度調整の要否を判断することを特徴とする。
As a result of intensive studies from the above findings, the present inventors have found that the temperature difference between the upper layer water temperature and the lower layer water temperature can be detected, and that the retention of the water storage tank can be prevented using this temperature difference.
That is, the water tank management method of the present invention is a water tank connected to a water pipe (water main) supplying water to each house from a city water source, and water flowing in from an inflow port provided on one side. In the management method of the water tank that passes through the tank at a flow rate and is discharged from the outlet provided on the other side, the upper water temperature and the lower water temperature in the water tank are measured, and the upper water temperature and the lower water temperature are Based on the temperature difference, it is determined whether or not it is necessary to adjust the opening of a valve provided on the inlet side of the water tank.

上記したように、貯水槽の上層水温と下層水温との温度差は、貯水槽内の2層密度流の混合を決定する因子の一つである。したがって、上層水温と下層水温とを測定し、温度差を求めることにより、貯水槽内が滞留しているか否かを簡単に予測することができる。また、予測した結果に応じて応じて弁の開度調整の要否を判断することで、貯水槽内の滞留を防止する対策を講じることができる。   As described above, the temperature difference between the upper water temperature and the lower water temperature of the water tank is one of the factors that determine the mixing of the two-layer density flow in the water tank. Therefore, by measuring the upper layer water temperature and the lower layer water temperature and obtaining the temperature difference, it can be easily predicted whether or not the water tank is stagnant. Further, by determining whether or not the valve opening degree needs to be adjusted according to the predicted result, it is possible to take measures to prevent staying in the water tank.

また、前記貯水槽の前記上層水温と前記下層水温との温度差が、予め設定されたしきい値以上である場合に、前記弁の開度調整を行うことが好ましい。
このように、貯水槽の上層水温と下層水温との温度差が前記しきい値以上である場合、貯水槽内が滞留している可能性が高いため、弁の開度調整を行って貯水槽内を通過する流速を高くすることにより、貯水槽内の滞留を防止することができる。
Moreover, it is preferable to adjust the opening degree of the valve when the temperature difference between the upper layer water temperature and the lower layer water temperature of the water storage tank is equal to or higher than a preset threshold value.
Thus, when the temperature difference between the upper water temperature and the lower water temperature of the water storage tank is equal to or greater than the threshold value, the water storage tank is highly likely to stay. By increasing the flow velocity passing through the inside, it is possible to prevent stagnation in the water storage tank.

さらに、前記貯水槽の前記上層水温と前記下層水温との温度差を用いて滞留判断式に基づいて前記弁の開度量を求めることが好ましく、これにより弁の開度量を適正に設定することができる。
さらにまた、前記滞留判断式は、前記貯水槽の上層と下層の2層密度流における混合条件を求めるKeulegan数の演算式であることが好ましく、これにより2層密度流に起因する貯水層内の滞留を確実に防止することが可能となる。
Furthermore, it is preferable to obtain the opening amount of the valve based on a retention judgment formula using the temperature difference between the upper layer water temperature and the lower layer water temperature of the water storage tank, and thereby the valve opening amount can be set appropriately. it can.
Furthermore, the retention judgment formula is preferably a Keulegan number calculation formula for obtaining a mixing condition in the two-layer density flow of the upper and lower layers of the reservoir, and thereby, in the reservoir due to the two-layer density flow. It is possible to reliably prevent stagnation.

また、前記水道管路を複数含む水道管路網に前記貯水槽が複数接続されており、前記複数の貯水槽でそれぞれ検出された前記上層水温と前記下層水温とをネットワークを介して取得し、前記水道管路網の給水配分に基づいて、前記複数の貯水槽ごとにそれぞれ設けられた前記弁を連携して開度調整することが好ましい。
このように、複数の貯水槽の上層水温と下層水温を検出し、水道管路網の給水配分に基づいて各弁を連携して開度調整することにより、給水配分のバランスを保ったまま貯水槽の滞留を防止することができる。
Further, a plurality of water storage tanks are connected to a water pipe network including a plurality of the water pipes, and the upper layer water temperature and the lower layer water temperature respectively detected in the plurality of water storage tanks are acquired via a network, It is preferable to adjust the opening degree in cooperation with the valves provided for each of the plurality of water storage tanks based on the water supply distribution of the water pipe network.
In this way, by detecting the upper water temperature and lower water temperature of a plurality of water tanks, and adjusting the opening of each valve based on the water distribution of the water pipe network, The stagnation of the tank can be prevented.

また、本発明に係る貯水槽の管理システムは、市水源より各戸に給水する水道管路に接続され、一側に設けられた流入口と、他側に設けられた流出口と、前記流入口側に設けられた弁とを有し、前記流入口より流入した水が流速をもって槽内を通り前記流出口より排出される貯水槽の管理システムにおいて、前記貯水槽内の上層水温と下層水温とを測定する温度測定手段と、前記温度測定手段で測定された前記上層水温と前記下層水温との温度差に基づいて前記弁の開度調整の要否を判断する要否判断部を有する演算手段とを備えたことを特徴とする。   In addition, the storage tank management system according to the present invention is connected to a water pipe supplying water to each house from a city water source, an inlet provided on one side, an outlet provided on the other side, and the inlet A storage tank management system in which water flowing in from the inflow port passes through the tank with a flow velocity and is discharged from the outflow port, and the upper water temperature and the lower water temperature in the water storage tank And a calculation means having a necessity determination unit for determining whether or not the valve opening needs to be adjusted based on a temperature difference between the upper layer water temperature and the lower layer water temperature measured by the temperature measurement unit. It is characterized by comprising.

さらに、前記演算手段の前記要否判断部は、前記貯水槽の前記上層水温と前記下層水温との温度差が、予め設定されたしきい値以上である場合に、前記弁の開度調整の必要ありと判断することが好ましい。
また、前記演算手段は、前記貯水槽の前記上層水温と前記下層水温との温度差を用いて滞留判断式に基づいて前記弁の開度量を求める弁開度算出部を有することが好ましい。
Further, the necessity determination unit of the calculating means adjusts the opening of the valve when a temperature difference between the upper layer water temperature and the lower layer water temperature of the water storage tank is equal to or higher than a preset threshold value. It is preferable to judge that it is necessary.
Moreover, it is preferable that the said calculating means has a valve opening calculation part which calculates | requires the opening amount of the said valve based on a residence judgment formula using the temperature difference of the said upper-layer water temperature of the said water tank, and the said lower-layer water temperature.

さらに、前記温度測定手段で測定した前記上層水温と前記下層水温とを、無線通信を介して前記演算手段に送信する無線通信手段を備えることが好ましい。
このように、温度測定手段で測定した上層水温と下層水温とを無線通信を介して送信することにより、地下に埋設された貯水槽の温度を簡単に取得することができる。
Furthermore, it is preferable to include a wireless communication unit that transmits the upper layer water temperature and the lower layer water temperature measured by the temperature measuring unit to the arithmetic unit via wireless communication.
Thus, the temperature of the water tank buried underground can be easily acquired by transmitting the upper layer water temperature measured by the temperature measuring means and the lower layer water temperature via wireless communication.

さらにまた、前記水道管路を複数含む水道管路網に前記貯水槽が複数接続されており、前記演算手段は、前記水道管路網における前記貯水槽の位置情報と、各弁の開度情報とを格納した記憶部と、前記複数の貯水槽でそれぞれ検出された前記上層水温と前記下層水温とをネットワークを介して取得し、前記水道管路網の給水配分に基づいて前記複数の貯水槽ごとにそれぞれ設けられた前記弁の連携した開度量を求める弁連携開度算出部とを有することが好ましい。   Furthermore, a plurality of water storage tanks are connected to a water pipe network including a plurality of water pipes, and the calculation means includes position information of the water storage tanks in the water pipe network and opening information of each valve. And the upper layer water temperature and the lower layer water temperature detected respectively in the plurality of water storage tanks via a network, and the plurality of water storage tanks based on the water supply distribution of the water pipe network It is preferable to have a valve cooperation opening degree calculation unit that obtains an opening degree of the valve that is provided for each of them.

以上記載のように本発明によれば、貯水槽の上層水温と下層水温との温度差は、貯水槽内の2層密度流の混合を決定する因子の一つである。したがって、上層水温と下層水温とを測定し、温度差を求めることにより、貯水槽内が滞留しているか否かを簡単に予測することができる。また、予測した結果に応じて弁の開度調整の要否を判断することで、貯水槽内の滞留を防止する対策を講じることができる。   As described above, according to the present invention, the temperature difference between the upper water temperature and the lower water temperature of the water tank is one of the factors that determine the mixing of the two-layer density flow in the water tank. Therefore, by measuring the upper layer water temperature and the lower layer water temperature and obtaining the temperature difference, it can be easily predicted whether or not the water tank is stagnant. Moreover, the measure which prevents the stay in a water tank can be taken by determining the necessity of valve opening degree adjustment according to the estimated result.

本発明の実施形態に係る貯水槽の管理システムの基本構成図である。It is a basic lineblock diagram of a storage tank management system concerning an embodiment of the present invention. (A)〜(C)は貯水槽の他の構成例を示す側断面図である。(A)-(C) are sectional side views which show the other structural example of a water storage tank. 本発明の実施形態に係る貯水槽の管理方法のフローチャートである。It is a flowchart of the management method of the water tank which concerns on embodiment of this invention. 複数の貯水槽を含む給水系統を示す模式図である。It is a schematic diagram which shows the water supply system containing a some water tank. 複数の貯水槽に対応した管理システムの構成図である。It is a block diagram of the management system corresponding to a some water tank. 管理コンピュータが保有する水温データベースを示す図である。It is a figure which shows the water temperature database which a management computer holds. 管理コンピュータが保有する流量データベースを示す図である。It is a figure which shows the flow volume database which a management computer holds. 一般概念の貯水槽の側断面図である。It is side sectional drawing of the water tank of a general concept.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施形態に係る貯水槽の管理システムの基本構成図である。
本実施形態に係る貯水槽の管理システムは、主に、貯水槽10内に設置された温度測定装置20と、温度測定装置20の測定結果が入力される演算手段とを備えている。なお、演算手段として、本実施形態では管理コンピュータ30を用いた例を示している。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a basic configuration diagram of a water tank management system according to an embodiment of the present invention.
The water tank management system according to the present embodiment mainly includes a temperature measuring device 20 installed in the water tank 10 and a calculation means to which a measurement result of the temperature measuring device 20 is input. In the present embodiment, an example using the management computer 30 is shown as the calculation means.

本発明の実施形態の管理対象である貯水槽10(10A、10B、10C)は、災害時に備えて、飲料水等の生活用水や消火用水などの給水を確保するために用いられる。
図4に示すように、貯水池等の市水源40より給水対象域41の各戸に給水する水道管路42に接続されている。
The water storage tank 10 (10A, 10B, 10C) which is a management target of the embodiment of the present invention is used for securing water supply such as water for daily life such as drinking water and water for fire extinguishing in preparation for a disaster.
As shown in FIG. 4, it connects to the water supply line 42 which supplies water to each house of the water supply target area 41 from city water sources 40, such as a reservoir.

また、図1に示すように、貯水槽10は、横置円筒状の槽本体11と、槽本体11の一側に設けられた流入口12と、流入口12に接続された流入管13と、他側に設けられた流出口14と、流出口14に接続された流出管15と、流入口12側の流出管13に設けられた弁16とを有する。流入管13は水道管路42(水道本管)に直結されて、市水源40からの給水が供給される。流出管15は、水道管路42に直結されて、給水対象域41に給水する。貯水槽10は、流入口12より流入した水が流速をもって槽内を通り、流出口14より排出される。さらに、貯水槽10は、上部に非常用の取水口17を有するとともに、槽内の塩素濃度等を検査する検水管(図示略)を有している。   As shown in FIG. 1, the water storage tank 10 includes a horizontal cylindrical tank body 11, an inlet 12 provided on one side of the tank body 11, and an inlet pipe 13 connected to the inlet 12. And an outlet 14 provided on the other side, an outlet pipe 15 connected to the outlet 14, and a valve 16 provided in the outlet pipe 13 on the inlet 12 side. The inflow pipe 13 is directly connected to a water pipe 42 (water main) and supplied with water from the city water source 40. The outflow pipe 15 is directly connected to the water pipe 42 and supplies water to the water supply target area 41. In the water storage tank 10, water flowing in from the inlet 12 passes through the tank with a flow velocity and is discharged from the outlet 14. Furthermore, the water storage tank 10 has an emergency water intake 17 at the top and a water test tube (not shown) for inspecting the chlorine concentration and the like in the tank.

ここでは一例として、貯水槽10の流入口12は、槽本体11断面の上部、中心部、下部の3か所に設け、これに対向して流出口14も上部、中心部、下部の3か所に設けた構成を示している。
図2(A)〜(C)は貯水槽10の他の構成例を示す側断面図である。図2(A)は、鉛直方向に設けられた5か所の流入口12aと、同様に5か所の流出口14aを有しており、いずれも槽本体11の端部側に向いている。図2(B)は、槽本体11の側壁に沿って設けられた多孔管で流入口12bが形成され、他の側壁に沿って設けられた多孔管で流出口14bが形成されている。図2(C)は、槽本体11の軸方向に流入口12c及び流出口14cが設けられているとともに、流入口12dにより旋回流を発生させるようになっている。
Here, as an example, the inlet 12 of the water storage tank 10 is provided at three locations, the upper part, the central part, and the lower part of the cross section of the tank body 11, and the outlet 14 is opposed to the upper part, the central part, and the lower part. The structure provided in the place is shown.
2A to 2C are side cross-sectional views illustrating other configuration examples of the water storage tank 10. FIG. 2A has five inflow ports 12a provided in the vertical direction and five outflow ports 14a in the same manner, all of which are directed to the end side of the tank body 11. . In FIG. 2B, the inflow port 12 b is formed by a porous tube provided along the side wall of the tank body 11, and the outflow port 14 b is formed by a porous tube provided along the other side wall. In FIG. 2C, an inlet 12c and an outlet 14c are provided in the axial direction of the tank body 11, and a swirling flow is generated by the inlet 12d.

図1に戻り、温度測定装置20は、少なくとも、貯水槽10の上層水温を測定する測定部21と、下層水温を測定する測定部23とを有している。好ましくは、中層水温を測定する測定部22、あるいは鉛直方向に異なる高さの他の部位を測定する測定部を有し、鉛直方向の温度分布を測定してもよい。
また、温度測定装置20には、測定した温度データを無線通信を介して管理コンピュータ30に送信する無線通信装置25が接続されていることが好ましい。このように、温度測定装置20で測定した上層水温と下層水温とを無線通信を介して送信することにより、地下に埋設された貯水槽10の温度を簡単に送ることができる。
Returning to FIG. 1, the temperature measuring device 20 includes at least a measuring unit 21 that measures the upper water temperature of the water storage tank 10 and a measuring unit 23 that measures the lower water temperature. Preferably, it may include a measuring unit 22 that measures the middle layer water temperature or a measuring unit that measures other portions having different heights in the vertical direction, and may measure the temperature distribution in the vertical direction.
The temperature measuring device 20 is preferably connected to a wireless communication device 25 that transmits the measured temperature data to the management computer 30 via wireless communication. Thus, the temperature of the water storage tank 10 buried underground can be easily sent by transmitting the upper layer water temperature and the lower layer water temperature measured by the temperature measuring device 20 via wireless communication.

管理コンピュータ30は、温度測定装置20で測定された上層水温と下層水温との温度差に基づいて、弁16の開度調整の要否を判断する。具体的には、管理コンピュータ30は、温度測定装置20の温度データを入力する入力部31と、弁開度や上下温度差やしきい値を記憶する記憶部32と、弁制御要否判断部35とKeulegan数算出部35と弁開度量算出部36とを含む演算部33と、演算結果を出力する出力部37とを有している。   The management computer 30 determines whether or not the opening degree of the valve 16 needs to be adjusted based on the temperature difference between the upper water temperature and the lower water temperature measured by the temperature measuring device 20. Specifically, the management computer 30 includes an input unit 31 that inputs temperature data of the temperature measuring device 20, a storage unit 32 that stores a valve opening, a vertical temperature difference, and a threshold value, and a valve control necessity determination unit. 35, a calculation unit 33 including a Keulegan number calculation unit 35 and a valve opening amount calculation unit 36, and an output unit 37 that outputs a calculation result.

弁制御要否判断部34は、貯水槽10の上層水温と下層水温との温度差に基づいて、貯水槽10の弁16の開度調整の要否を判断する。
Keulegan数算出部35は、上述したKeulegan数の演算式に基づいてKeulegan数を算出する。
弁開度量算出部36は、貯水槽10の上層水温と下層水温との温度差が、予め設定されたしきい値以上である場合に、弁16の開度量を算出する。しきい値は、実験的に求めてもよいし、Keulegan数に基づいて設定してもよい。
The valve control necessity determination unit 34 determines whether it is necessary to adjust the opening degree of the valve 16 of the water tank 10 based on the temperature difference between the upper water temperature and the lower water temperature of the water tank 10.
The Keulegan number calculation unit 35 calculates the Keulegan number based on the above-described arithmetic expression for the Keulegan number.
The valve opening amount calculation unit 36 calculates the opening amount of the valve 16 when the temperature difference between the upper layer water temperature and the lower layer water temperature of the water storage tank 10 is equal to or greater than a preset threshold value. The threshold value may be obtained experimentally or set based on the Keulegan number.

図3は本発明の実施形態に係る貯水槽の管理方法の一例を示すフローチャートである。
まず、温度測定装置20により貯水槽10の上層水温と下層水温とを測定する(S1)。測定した温度データは、温度測定装置20に接続された無線通信装置25により管理コンピュータ30に送信する。
管理コンピュータ30では、最初に弁制御要否判断部34により滞留予測を行う(S2)。滞留予測は、上層水温と下層水温との温度差と、予め設定されたしきい値とを比較し(S3)、温度差がしきい値よりも大きい場合には滞留の可能性があると予測し、弁開度調整の要否を判断する。次いで、Keulegan算出部35によりKeulegan数を算出する(S4)。
Keulegan数が、限界値0.127よりも大きい場合には(S6)、滞留の危険性が大きいと判断し(S5)、弁開度量算出部36により弁開度量を算出する(S7)。上層水温と下層水温との温度差がしきい値以下である場合(S3)、及びKeulegan数が限界値0.127以下である場合には、貯水槽10内が滞留していないと判断する(S8)。
FIG. 3 is a flowchart showing an example of a water tank management method according to the embodiment of the present invention.
First, the upper water temperature and lower water temperature of the water storage tank 10 are measured by the temperature measuring device 20 (S1). The measured temperature data is transmitted to the management computer 30 by the wireless communication device 25 connected to the temperature measuring device 20.
In the management computer 30, first, the valve control necessity determination unit 34 makes a stay prediction (S2). The residence prediction compares the temperature difference between the upper layer water temperature and the lower layer water temperature with a preset threshold value (S3), and predicts that there is a possibility of residence if the temperature difference is larger than the threshold value. Then, the necessity of adjusting the valve opening is determined. Next, the number of Keulegan is calculated by the Keulegan calculating unit 35 (S4).
When the Keulegan number is larger than the limit value 0.127 (S6), it is determined that the risk of stagnation is large (S5), and the valve opening amount calculation unit 36 calculates the valve opening amount (S7). When the temperature difference between the upper layer water temperature and the lower layer water temperature is equal to or less than the threshold value (S3), and when the Keulegan number is equal to or less than the threshold value 0.127, it is determined that the water tank 10 is not retained ( S8).

また、本実施形態に変形例として、図4に示すように、水道管路42を複数含む水道管路網に貯水槽10A〜10Cが接続されている場合の貯水槽の管理システムを説明する。貯水槽10A〜10Cには、それぞれ流入口側に弁16A〜16Cが設けられている。また、水道管路網には、給水配分を選択するための弁43A〜43Cが設けられている。
図5は複数の貯水槽10に対応した管理システムの構成図である。
このシステムでは、複数の貯水槽10A〜10Cで測定された温度データが、無線通信手段25A〜25Cとネットワーク29を介して管理コンピュータ30に送られる。また、管理コンピュータ30で求められた弁開度量が、各弁16A〜16Cの近くの端末28A〜28Cに送られ、弁の開度が調整される。
As a modification of the present embodiment, as shown in FIG. 4, a water tank management system when water tanks 10A to 10C are connected to a water pipe network including a plurality of water pipes 42 will be described. The water storage tanks 10A to 10C are provided with valves 16A to 16C on the inlet side, respectively. Further, the water pipe network is provided with valves 43A to 43C for selecting a water supply distribution.
FIG. 5 is a configuration diagram of a management system corresponding to a plurality of water storage tanks 10.
In this system, temperature data measured in the plurality of water storage tanks 10 </ b> A to 10 </ b> C is sent to the management computer 30 via the wireless communication means 25 </ b> A to 25 </ b> C and the network 29. Moreover, the valve opening amount calculated | required with the management computer 30 is sent to the terminal 28A-28C near each valve 16A-16C, and the opening degree of a valve is adjusted.

管理コンピュータ30は、図1に示した構成に加えて、温度測定装置20で測定された上層水温及び下層水温と、水道管路網の給水配分とに基づいて複数の貯水槽10A〜10Cごとにそれぞれ設けられた弁16A〜16Cの連携した開度量を求める弁連携開度算出部38をさらに有している。
また、記憶部32には、図6及び図7に示すように、貯水槽を認識するための貯水槽番号と貯水槽通過流量と関係弁開度とがそれぞれ関連づけられた流量データベースと、貯水槽番号と上層水温と下層水温とがそれぞれ関連づけられた水温データベースとが格納されている。
In addition to the configuration shown in FIG. 1, the management computer 30 is provided for each of the plurality of water storage tanks 10 </ b> A to 10 </ b> C based on the upper layer water temperature and the lower layer water temperature measured by the temperature measuring device 20 and the water supply distribution of the water pipe network. It further has a valve cooperation opening degree calculation unit 38 for obtaining an opening degree in which the valves 16A to 16C provided respectively are linked.
Moreover, as shown in FIG.6 and FIG.7, in the memory | storage part 32, the flow volume database in which the water tank number for recognizing a water tank, the water tank passage flow rate, and the related valve opening degree were each linked | related, and water tank A water temperature database in which numbers, upper water temperature, and lower water temperature are associated with each other is stored.

上記システムにおいて、各貯水槽10A〜10Cに設けられた弁16A〜16Cがそれぞれ変更されたら、その都度、流量データベースの関係弁開度データを更新する。同時に、弁開度データから求められる貯水槽通過流量(流速に対応)データも更新する。また、各貯水槽10A〜10Cでは、断続的または連続的に温度測定装置20で上層水温及び下層水温を測定し、これらの水温を無線通信手段25A〜25Cで送信し、ネットワーク29を介して管理コンピュータ30の入力部35から入力する。入力された各貯水槽10A〜10Cの水温データにより、水温データベースに格納されている前回の水温データを更新する。そして、流量データベースに格納された最新の貯水槽通過流速と、水温データーベースに格納された最新の上層水温及び下層水温とに基づいて、各弁16A〜16Cのそれぞれにおいて図3に示すフローに基づいて弁開度量を算出し、この算出された弁開度量と、給水対象域41への給水配分とを満たすような各弁16A〜16C、43A〜43Cの弁開度を連携弁開度量算出部38で算出する。算出された弁開度に基づいて、各弁16A〜16C、43A〜43Cの開度を調整する。なお、ここでいう弁の開度調整とは、開度を変更しない場合を含む。
このように、複数の貯水槽の上層水温と下層水温を検出し、水道管路網の給水配分に基づいて各弁を連携して開度調整することにより、給水配分のバランスを保ったまま貯水槽の滞留を防止することができる。
In the above system, each time the valves 16A to 16C provided in the water storage tanks 10A to 10C are changed, the related valve opening data in the flow rate database is updated. At the same time, the storage tank passage flow rate (corresponding to the flow velocity) data obtained from the valve opening degree data is also updated. Further, in each of the water tanks 10A to 10C, the upper layer water temperature and the lower layer water temperature are measured intermittently or continuously by the temperature measuring device 20, and these water temperatures are transmitted by the wireless communication means 25A to 25C and managed via the network 29. Input from the input unit 35 of the computer 30. The previous water temperature data stored in the water temperature database is updated with the water temperature data of the input water tanks 10A to 10C. Then, based on the latest water tank passage flow velocity stored in the flow rate database and the latest upper layer water temperature and lower layer water temperature stored in the water temperature database, each of the valves 16A to 16C is based on the flow shown in FIG. The valve opening amount is calculated, and the valve opening amounts of the valves 16A to 16C and 43A to 43C satisfying the calculated valve opening amount and the distribution of the water supply to the water supply target area 41 are calculated. 38 is calculated. Based on the calculated valve opening, the opening of each of the valves 16A to 16C and 43A to 43C is adjusted. In addition, the opening degree adjustment of a valve here includes the case where an opening degree is not changed.
In this way, by detecting the upper water temperature and lower water temperature of a plurality of water tanks, and adjusting the opening of each valve based on the water distribution of the water pipe network, The stagnation of the tank can be prevented.

10、10A、10B、10C 貯水槽
11 槽本体
12、12a、12b、12c、12d 流入口
13 流入管
14、14a、14b、14c 流出口
15 流出管
16、16A、16B、16C 弁
20 温度測定装置
21、22、23 測定部
30 管理コンピュータ
32 記憶部
33 演算部
34 弁制御要否判断部
35 Keulegan数算出部
36 弁開度量算出部
10, 10A, 10B, 10C Water storage tank 11 Tank body 12, 12a, 12b, 12c, 12d Inlet 13 Inlet pipes 14, 14a, 14b, 14c Outlet 15 Outlet pipes 16, 16A, 16B, 16C Valve 20 Temperature measuring device 21, 22, 23 Measuring unit 30 Management computer 32 Storage unit 33 Calculation unit 34 Valve control necessity determination unit 35 Keulegan number calculation unit 36 Valve opening amount calculation unit

Claims (10)

市水源より各戸に給水する水道管路に接続された貯水槽であって、一側に設けられた流入口より流入した水が流速をもって槽内を通り、他側に設けられた流出口より排出される貯水槽の管理方法において、
前記貯水槽内の上層水温と下層水温とを測定し、前記上層水温と前記下層水温との温度差に基づいて、前記貯水槽の前記流入口側に設けられた弁の開度調整の要否を判断することを特徴とする貯水槽の管理方法。
A water tank connected to a water supply line that supplies water to each house from a city water source, and water that flows in from an inlet provided on one side passes through the tank with a flow velocity, and is discharged from an outlet provided on the other side. In the water tank management method,
The necessity of adjusting the opening degree of the valve provided on the inlet side of the water storage tank based on the temperature difference between the water temperature of the upper water layer and the water temperature of the lower water layer based on the temperature difference between the upper water temperature and the lower water temperature. A method for managing a water tank, characterized in that
前記貯水槽の前記上層水温と前記下層水温との温度差が、予め設定されたしきい値以上である場合に、前記弁の開度調整を行うことを特徴とする請求項1に記載の貯水槽の管理方法。   2. The water storage according to claim 1, wherein when the temperature difference between the upper water temperature and the lower water temperature of the water storage tank is equal to or higher than a preset threshold value, the opening degree of the valve is adjusted. Tank management method. 前記貯水槽の前記上層水温と前記下層水温との温度差を用いて滞留判断式に基づいて前記弁の開度量を求めることを特徴とする請求項1または2に記載の貯水槽の管理方法。   3. The water tank management method according to claim 1, wherein an opening amount of the valve is obtained based on a retention judgment formula using a temperature difference between the upper layer water temperature and the lower layer water temperature of the water tank. 前記滞留判断式は、前記貯水槽の上層と下層の2層密度流における混合条件を求めるKeulegan数の演算式であることを特徴とする請求項3に記載の貯水槽の管理方法。   4. The water tank management method according to claim 3, wherein the retention judgment formula is an arithmetic expression of a Keulegan number for obtaining a mixing condition in a two-layer density flow of an upper layer and a lower layer of the water tank. 前記水道管路を複数含む水道管路網に前記貯水槽が複数接続されており、
前記複数の貯水槽でそれぞれ検出された前記上層水温と前記下層水温とをネットワークを介して取得し、
前記水道管路網の給水配分に基づいて、前記複数の貯水槽ごとにそれぞれ設けられた前記弁を連携して開度調整することを特徴とする請求項1乃至3のいずれか一項に記載の貯水槽の管理方法。
A plurality of the water storage tanks are connected to a water pipe network including a plurality of the water pipes;
Obtaining the upper layer water temperature and the lower layer water temperature respectively detected in the plurality of water storage tanks via a network;
4. The opening degree is adjusted in cooperation with each of the valves provided for each of the plurality of water storage tanks based on the distribution of water supply in the water pipe network. 5. Water tank management method.
市水源より各戸に給水する水道管路に接続され、一側に設けられた流入口と、他側に設けられた流出口と、前記流入口側に設けられた弁とを有し、前記流入口より流入した水が流速をもって槽内を通り前記流出口より排出される貯水槽の管理システムにおいて、
前記貯水槽内の上層水温と下層水温とを測定する温度測定手段と、
前記温度測定手段で測定された前記上層水温と前記下層水温との温度差に基づいて前記弁の開度調整の要否を判断する要否判断部を有する演算手段とを備えたことを特徴とする貯水槽の管理システム。
It is connected to a water pipe that supplies water to each house from a city water source, and has an inlet provided on one side, an outlet provided on the other side, and a valve provided on the inlet side. In the storage tank management system in which water flowing in from the inlet passes through the tank at a flow velocity and is discharged from the outlet,
Temperature measuring means for measuring the upper water temperature and the lower water temperature in the water tank;
And an arithmetic means having a necessity judging unit for judging whether or not the valve opening degree is necessary based on a temperature difference between the upper water temperature and the lower water temperature measured by the temperature measuring means. Water tank management system.
前記演算手段の前記要否判断部は、前記貯水槽の前記上層水温と前記下層水温との温度差が、予め設定されたしきい値以上である場合に、前記弁の開度調整の必要ありと判断することを特徴とする請求項6に記載の貯水槽の管理システム。   The necessity determination unit of the calculating means needs to adjust the opening of the valve when a temperature difference between the upper water temperature and the lower water temperature of the water storage tank is equal to or higher than a preset threshold value. The storage tank management system according to claim 6, wherein the storage tank management system is determined. 前記演算手段は、前記貯水槽の前記上層水温と前記下層水温との温度差を用いて滞留判断式に基づいて前記弁の開度量を求める弁開度算出部を有することを特徴とする請求項7に記載の貯水槽の管理システム。   The said calculating means has a valve opening calculation part which calculates the amount of opening of the said valve based on a residence judgment formula using the temperature difference of the upper-layer water temperature and the lower-layer water temperature of the water tank. 8. The storage tank management system according to 7. 前記温度測定手段で測定した前記上層水温と前記下層水温とを、無線通信を介して前記演算手段に送信する無線通信手段を備えることを特徴とする請求項6乃至8のいずれか一項に記載の貯水槽の管理システム。   The wireless communication means for transmitting the upper layer water temperature and the lower layer water temperature measured by the temperature measuring means to the arithmetic means via wireless communication is provided. Water tank management system. 前記水道管路を複数含む水道管路網に前記貯水槽が複数接続されており、
前記演算手段は、前記水道管路網における前記貯水槽の位置情報と、各弁の開度情報とを格納した記憶部と、前記複数の貯水槽でそれぞれ検出された前記上層水温と前記下層水温とをネットワークを介して取得し、前記水道管路網の給水配分に基づいて前記複数の貯水槽ごとにそれぞれ設けられた前記弁の連携した開度量を求める弁連携開度算出部とを有することを特徴とする請求項6乃至9のいずれか一項に記載の貯水槽の管理システム。
A plurality of the water storage tanks are connected to a water pipe network including a plurality of the water pipes;
The calculation means includes a storage unit storing position information of the water tank in the water pipe network and opening information of each valve, and the upper layer water temperature and the lower layer water temperature respectively detected in the plurality of water tanks. And a valve cooperation opening degree calculation unit that obtains the opening degree of the valves provided for each of the plurality of water storage tanks based on the water distribution of the water pipe network. The water tank management system according to any one of claims 6 to 9.
JP2009279263A 2009-12-09 2009-12-09 Water tank management method and management system Expired - Fee Related JP4885264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279263A JP4885264B2 (en) 2009-12-09 2009-12-09 Water tank management method and management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279263A JP4885264B2 (en) 2009-12-09 2009-12-09 Water tank management method and management system

Publications (2)

Publication Number Publication Date
JP2011122318A true JP2011122318A (en) 2011-06-23
JP4885264B2 JP4885264B2 (en) 2012-02-29

Family

ID=44286456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279263A Expired - Fee Related JP4885264B2 (en) 2009-12-09 2009-12-09 Water tank management method and management system

Country Status (1)

Country Link
JP (1) JP4885264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197485A (en) * 2014-08-18 2014-12-10 珠海格力电器股份有限公司 Water supply device and household appliance
JP2016133232A (en) * 2015-01-16 2016-07-25 ジオシステム株式会社 Water pumping type heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153574A (en) * 1982-03-09 1983-09-12 Syst Kagaku Consultant Kk Method for controlling purifying device for sewage in storage pond or the like
JPH1025776A (en) * 1996-07-09 1998-01-27 Kobe Steel Ltd Retention preventive device in water storage tank
JP2000064370A (en) * 1998-08-26 2000-02-29 Hitachi Zosen Corp Water storage tank
JP2002081099A (en) * 2000-09-08 2002-03-22 Fuji Electric Co Ltd Reservoir security system for building
JP2002293396A (en) * 2001-03-30 2002-10-09 Kurimoto Ltd Internal hydraulic situation controller of reservoir
JP3546106B2 (en) * 1996-02-15 2004-07-21 日立造船株式会社 Water storage tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153574A (en) * 1982-03-09 1983-09-12 Syst Kagaku Consultant Kk Method for controlling purifying device for sewage in storage pond or the like
JP3546106B2 (en) * 1996-02-15 2004-07-21 日立造船株式会社 Water storage tank
JPH1025776A (en) * 1996-07-09 1998-01-27 Kobe Steel Ltd Retention preventive device in water storage tank
JP2000064370A (en) * 1998-08-26 2000-02-29 Hitachi Zosen Corp Water storage tank
JP2002081099A (en) * 2000-09-08 2002-03-22 Fuji Electric Co Ltd Reservoir security system for building
JP2002293396A (en) * 2001-03-30 2002-10-09 Kurimoto Ltd Internal hydraulic situation controller of reservoir

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197485A (en) * 2014-08-18 2014-12-10 珠海格力电器股份有限公司 Water supply device and household appliance
JP2016133232A (en) * 2015-01-16 2016-07-25 ジオシステム株式会社 Water pumping type heat exchanger

Also Published As

Publication number Publication date
JP4885264B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
Besner et al. Assessing the public health risk of microbial intrusion events in distribution systems: Conceptual model, available data, and challenges
Blokker et al. Modeling temperature in the drinking water distribution system
ES2655274T3 (en) Installation and procedure of water quality control in a drinking water network
Kim et al. Evaluation of geometric factors influencing thermal performance of horizontal spiral-coil ground heat exchangers
BRPI0913194B1 (en) method for measuring multiphase flow
Zlatanovic et al. Development and validation of a drinking water temperature model in domestic drinking water supply systems
Fontanazza et al. The apparent losses due to metering errors: a proactive approach to predict losses and schedule maintenance
KR20070081461A (en) Water quality telemetering system
Kinnari et al. Hydrate management of deadlegs in oil and gas production systems–background and development of experimental systems
KR100991227B1 (en) Water and wastewater integrated management system based on geographic information system and control method thereof
ES2907005T3 (en) Procedure for assessing the condition of a water distribution system
Elías-Maxil et al. Development and performance of a parsimonious model to estimate temperature in sewer networks
JP4885264B2 (en) Water tank management method and management system
WO2016140665A1 (en) Path optimization in production network systems
Hawes et al. Predicting contaminated water removal from residential water heaters under various flushing scenarios
RU2319003C1 (en) Method to determine mass flow rate of gas-and-liquid mixture
JP6214979B2 (en) Information system for water distribution network
JP2010048617A (en) Gas meter
US20220349589A1 (en) A method and an apparatus for determining a deviation in a thermal energy circuit
Mitchell et al. Experimental development of natural convection heat transfer correlations for spiral-helical surface water heat exchangers (1385-RP)
KR100984752B1 (en) apparatus of water works in small scale
Imberger A lake diagnostic system for managing lakes and reservoirs
Lu et al. Enhancing the ventilation of sewers by using inhaled air in the vertical stack of a building
Olson et al. The effects of tank operation and design characteristics on water quality in distribution system storage tanks
CN108225476B (en) Hydraulic measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4885264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees