JP2011122228A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2011122228A
JP2011122228A JP2009283100A JP2009283100A JP2011122228A JP 2011122228 A JP2011122228 A JP 2011122228A JP 2009283100 A JP2009283100 A JP 2009283100A JP 2009283100 A JP2009283100 A JP 2009283100A JP 2011122228 A JP2011122228 A JP 2011122228A
Authority
JP
Japan
Prior art keywords
furnace
gas
blast furnace
ratio
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009283100A
Other languages
Japanese (ja)
Inventor
Atsushi Sato
佐藤  淳
Shinji Kitano
新治 北野
Kenji Ito
健児 伊藤
Rikizo Tadai
力造 唯井
Hisashi Uchida
尚志 内田
Nayuta Mitsuoka
那由多 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009283100A priority Critical patent/JP2011122228A/en
Publication of JP2011122228A publication Critical patent/JP2011122228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace which achieves, even under the condition of drastically reduced production, a stable operation without bringing about the cost-increase caused by increase in reducing material ratio. <P>SOLUTION: In the method for operating the blast furnace under the condition of the reduced production of ≤1.8 Nm<SP>3</SP>/(minxm<SP>3</SP>) being a bosh-gas ratio defined with a bosh-gas amount per 1m<SP>3</SP>of the inner volume in the blast furnace, the charging material distributing control and/or the adjustment of the blasting speed before tuyere, are performed so that a center gas flowing index defined with the furnace top-center gas temperature (°C)/the furnace top gas average temperature (°C) becomes 2.0-3.0 and a peripheral gas flowing index defined with the furnace peripheral gas temperature (°C)/the furnace top gas average temperature (°C) becomes 1.0-1.5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、減産操業条件下における高炉操業方法に関する。   The present invention relates to a blast furnace operating method under reduced production operating conditions.

経済情勢の変化等による急激な鉄鋼需要の減退があった場合には、高炉の大幅な減産操業を長期間継続する必要が生じることがある。   When there is a sudden decline in steel demand due to changes in the economic situation, it may be necessary to continue production cuts in the blast furnace for a long time.

高炉の減産手段としては、主として、羽口から吹き込む酸素量の低減(富化酸素量および/または送風量の低減)と還元材比の増加の2手段がある。しかしながら、酸素量の低減による減産では、ボッシュガス量が減少して中心ガス流を維持できなくなり高炉の安定操業が確保できなくなることから、ボッシュガス比(高炉内容積1m当たりのボッシュガス量)1.8Nm/(min・m)程度に限界があり、それ以上の減産は還元材比の増加による装入物降下速度の低下が必要であった。 As means for reducing the production of a blast furnace, there are mainly two means: reduction of the amount of oxygen blown from the tuyere (reduction of enriched oxygen amount and / or blast amount) and increase of the reducing material ratio. However, when the production is reduced by reducing the amount of oxygen, the amount of Bosch gas decreases, the central gas flow cannot be maintained, and stable operation of the blast furnace cannot be secured, so the Bosch gas ratio (Bosch gas amount per 1 m 3 of blast furnace volume) There was a limit of about 1.8 Nm 3 / (min · m 3 ), and further reduction in production required a reduction in the rate of charge drop due to an increase in the ratio of reducing materials.

ところが、還元材比の増加による減産では、溶銑の製造コストの増加を招き、また溶銑中Si濃度の上昇にも繋がり、後工程での脱珪コストも増加する問題があった。   However, a reduction in production due to an increase in the reducing material ratio has a problem in that the manufacturing cost of the hot metal is increased, the Si concentration in the hot metal is increased, and the desiliconization cost in the subsequent process is increased.

ところで、通常操業時(減産操業時ではない)における高炉の安定操業には、中心ガス流の確保が重要であることがよく知られている。例えば、本出願人は、鉱石中のペレット配合率が50質量%以上のペレット多配合条件下にてコークス中心装入を行うにあたり、炉内最上部における鉱石層厚さ比Lo/(Lc+Lo)が、炉中心部領域(R/Ro≦0.1)で0.1以下、炉周辺部領域(0.6≦R/Ro≦1.0)で0.5以上とすることで、中心ガス流を確保し、炉内のガス流れを安定させて炉内通気性を良好に維持するとともに、炉頂ガス温度を高く維持し、この高温の炉頂ガスに伴って亜鉛ガスが高炉から排出されるので、炉壁への亜鉛の付着が抑制できる高炉操業方法を開発した(特許文献1参照)。   By the way, it is well known that securing a central gas flow is important for stable operation of a blast furnace during normal operation (not during production reduction). For example, when the present applicant performs coke center charging under the pellet multiple blending condition in which the pellet blending ratio in the ore is 50 mass% or more, the ore layer thickness ratio Lo / (Lc + Lo) at the uppermost part in the furnace is By setting the furnace center region (R / Ro ≦ 0.1) to 0.1 or less and the furnace peripheral region (0.6 ≦ R / Ro ≦ 1.0) to 0.5 or more, the central gas flow Ensuring stable gas flow in the furnace and maintaining good ventilation in the furnace, maintaining a high furnace top gas temperature, and zinc gas is discharged from the blast furnace along with the high temperature furnace top gas. Therefore, the blast furnace operating method which can suppress the adhesion of zinc to the furnace wall was developed (see Patent Document 1).

ところが、上記特許文献1に記載の高炉操業方法を酸素量の低減による減産操業に適用しようとすると、酸素量の低減に伴って高炉内を通過するガス総量(ボッシュガス量)が減少するので、中心ガス流を確保するために炉中心部に多くのガス量を振り向けると炉周辺部へ振り向けることができるガス量が減少してしまう。その結果、炉周辺部に存在する鉱石をガス還元(間接還元)し溶解する能力が低下してしまい、炉下部での急激な直接還元(溶融還元)を引き起こし、炉下部の通気性が悪化して送風圧力変動が大きくなって操業の安定性が失われ、棚吊り、スリップ、吹き抜けなどの操業トラブル発生の可能性が高まる。   However, when trying to apply the blast furnace operation method described in Patent Document 1 to a production reduction operation by reducing the amount of oxygen, the total amount of gas passing through the blast furnace (Bosch gas amount) decreases as the amount of oxygen decreases. If a large amount of gas is directed to the center of the furnace in order to secure the central gas flow, the amount of gas that can be directed to the periphery of the furnace is reduced. As a result, the ability of gas reduction (indirect reduction) to dissolve ore existing in the periphery of the furnace is reduced, causing rapid direct reduction (smelting reduction) at the lower part of the furnace, resulting in deterioration of the air permeability at the lower part of the furnace. As a result, fluctuations in the blast pressure increase and operational stability is lost, increasing the possibility of operational troubles such as shelf hanging, slipping, and blowout.

したがって、一定以上の大幅な減産操業を行うには、酸素量の低減に加えて還元材比の増加による減産操業を採用せざるを得ず、高コスト操業を余儀なくされる状況にあった。   Therefore, in order to perform a significant reduction in production beyond a certain level, it was necessary to adopt a reduction in production due to an increase in the ratio of reducing materials in addition to a reduction in the amount of oxygen, which forced a high-cost operation.

なお、特許文献2には、コークス又は鉱石の装入物を高炉内に装入した後、高炉炉頂のガス温度を、高炉炉頂の炉径方向に複数設置された温度計によって測定し、この測定した高炉炉頂の炉径方向におけるガス温度パターンと、予め設定したガス温度パターンとを比較して、高炉の炉径方向における装入物の流れ込み分布状態を判定する高炉の装入物分布状態の判定方法が開示されている。この方法により、高炉へ装入した装入物の流れ込み挙動を的確に得ることができ、高炉操業を安定に行うことができるとしているが、過去の操業で経験のないような大幅な減産操業条件下では、ガス温度パターンを予め設定すること自体が困難であり、上記一定以上の大幅な減産操業下における課題を解決しうるものではない。   In Patent Document 2, after charging the coke or ore charge into the blast furnace, the gas temperature at the top of the blast furnace is measured with a plurality of thermometers installed in the furnace radial direction at the top of the blast furnace, The measured gas temperature pattern in the furnace diameter direction at the top of the blast furnace furnace is compared with a preset gas temperature pattern to determine the charge distribution state of the charge in the furnace diameter direction of the blast furnace. A state determination method is disclosed. According to this method, the flow behavior of the charge charged into the blast furnace can be accurately obtained, and the blast furnace operation can be performed stably. Below, it is difficult to set the gas temperature pattern in advance, and it is not possible to solve the above-mentioned problems in a significant reduction in production.

特開2008−184626号公報JP 2008-184626 A 特開2006−265647号公報JP 2006-265647 A

そこで、本発明は、大幅な減産操業条件下においても、還元材比の増加によるコスト増を招くことなく、安定操業を実現しうる高炉操業方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a blast furnace operating method capable of realizing a stable operation without incurring an increase in cost due to an increase in the ratio of reducing materials even under a drastically reduced production operation condition.

請求項1に記載の発明は、高炉内容積1m当たりのボッシュガス量で定義されるボッシュガス比が1.8Nm/(min・m)以下の減産操業条件下における高炉操業方法であって、炉頂中心ガス温度(℃)/炉頂ガス平均温度(℃)で定義される中心ガス流指数が2.0〜3.0になるとともに、炉頂周辺ガス温度(℃)/炉頂ガス平均温度(℃)で定義される周辺ガス流指数が1.0〜1.5になるように装入物分布制御および/または羽口前風速の調整を行うことを特徴とする高炉操業方法である。 The invention described in claim 1 is a blast furnace operating method under a reduced production operating condition in which a Bosch gas ratio defined by a Bosch gas amount per 1 m 3 of blast furnace internal volume is 1.8 Nm 3 / (min · m 3 ) or less. The center gas flow index defined by the furnace top center gas temperature (° C.) / The furnace top gas average temperature (° C.) becomes 2.0 to 3.0, and the furnace top peripheral gas temperature (° C.) / Furnace top Blast furnace operating method characterized by performing charge distribution control and / or adjusting wind speed before tuyere so that ambient gas flow index defined by gas average temperature (° C) is 1.0 to 1.5 It is.

請求項2に記載の発明は、微粉炭比150kg/t−溶銑以上の高微粉炭比操業条件下で行う請求項1に記載の高炉操業方法である。   The invention described in claim 2 is the blast furnace operating method according to claim 1, which is performed under a high pulverized coal ratio operating condition with a pulverized coal ratio of 150 kg / t-molten iron or more.

請求項3に記載の発明は、鉱石中のペレット配合率が15質量%以上のペレット多配合操業条件下で行う請求項1または2に記載の高炉操業方法である。   Invention of Claim 3 is a blast furnace operating method of Claim 1 or 2 performed on the pellet multi-mixing operation conditions whose pellet mixing rate in an ore is 15 mass% or more.

本発明によれば、一定以上の減産操業下においても、炉頂中心ガス温度(℃)/炉頂ガス平均温度(℃)で定義される中心ガス流指数と、炉頂周辺ガス温度(℃)/炉頂ガス平均温度(℃)で定義される周辺ガス流指数とを、ともに所定範囲になるように装入物分布制御を行うことで、還元材比を増加することなく、中心ガス流を維持しつつ、炉周辺部へのガス流れをも確保することが可能となり、その結果、炉周辺部に存在する鉱石をガス還元(間接還元)し溶解する能力が保持されるので、炉下部での圧損の変動を来たすことなく、操業の安定性が確保できる。   According to the present invention, the core gas flow index defined by the furnace top central gas temperature (° C.) / Furnace top gas average temperature (° C.) and the furnace top peripheral gas temperature (° C.) even under a production cut-off operation above a certain level. / By controlling the charge distribution so that the ambient gas flow index defined by the furnace top gas average temperature (° C) is within the specified range, the central gas flow can be reduced without increasing the reducing agent ratio. While maintaining the gas flow to the furnace periphery, it is possible to maintain the ability to gas reduce (indirect reduction) or dissolve the ore present in the furnace periphery. Operation stability can be ensured without causing fluctuations in pressure loss.

本発明適用前後における高炉操業結果の変化を示す推移図である。It is a transition figure showing change of a blast furnace operation result before and after application of the present invention. ボッシュガス比と中心ガス流指数との関係を示すグラフ図である。It is a graph which shows the relationship between a Bosch gas ratio and a center gas flow index. ボッシュガス比と周辺ガス流指数との関係を示すグラフ図である。It is a graph which shows the relationship between a Bosch gas ratio and a surrounding gas flow index. ボッシュガス比と送風圧変動との関係を示すグラフ図である。It is a graph which shows the relationship between a Bosch gas ratio and ventilation pressure fluctuation | variation.

以下、本発明を、旋回シュートを用いるベルレス式装入装置を有する高炉の操業に適用する場合を代表例に挙げてさらに詳細に説明する。   Hereinafter, a case where the present invention is applied to the operation of a blast furnace having a bellless charging device using a turning chute will be described in more detail as a representative example.

〔実施形態〕
本発明は、高炉内容積1m当たりのボッシュガス量で定義されるボッシュガス比が1.8Nm/(min・m)以下の減産操業条件下における高炉操業方法であって、炉頂中心ガス温度(℃)/炉頂ガス平均温度(℃)で定義される中心ガス流指数が2.0〜3.0になるとともに、炉頂周辺ガス温度(℃)/炉頂ガス平均温度(℃)で定義される周辺ガス流指数が1.0〜1.5になるように装入物分布制御を行うことを特徴とする高炉操業方法である。
Embodiment
The present invention relates to a blast furnace operating method under a reduced production operating condition in which the Bosch gas ratio defined by the amount of Bosch gas per 1 m 3 of blast furnace volume is 1.8 Nm 3 / (min · m 3 ) or less, The central gas flow index defined by gas temperature (° C.) / Furnace top gas average temperature (° C.) is 2.0 to 3.0, and top gas temperature around the top (° C.) / Top gas average temperature (° C. The blast furnace operating method is characterized in that the charge distribution control is performed so that the peripheral gas flow index defined in (1) is 1.0 to 1.5.

上記のとおり、本発明は、高炉内容積1m当たりのボッシュガス量で定義されるボッシュガス比が1.8Nm/(min・m)以下の減産操業条件下における高炉操業に適用される。 As described above, the present invention is applied to blast furnace operation under reduced production operation conditions in which the Bosch gas ratio defined by the amount of Bosch gas per 1 m 3 of blast furnace volume is 1.8 Nm 3 / (min · m 3 ) or less. .

なお、ボッシュガス量Vbosh(単位:Nm/min)は、下記式(1)で算出される。 The Bosch gas amount V bosh (unit: Nm 3 / min) is calculated by the following formula (1).

bosh=VN2+VH2+2VO2 …式(1)
ここに、VN2:羽口からの投入N量(Nm/min)、VH2:羽口からの投入H量(Nm/min)、VO2:羽口からの投入O量(Nm/min)であり、例えば微粉炭吹き込みを行う場合は、送風中と微粉炭中に含まれる各成分の合計量である。
V bosh = V N2 + V H2 + 2V O2 Formula (1)
Here, V N2 : the amount of N 2 charged from the tuyere (Nm 3 / min), V H2 : the amount of H 2 charged from the tuyere (Nm 3 / min), V O2 : the amount of O 2 charged from the tuyere (Nm 3 / min) at and, for example, when performing blowing pulverized coal, the total amount of each component contained in the pulverized in coal blowing.

ここで、ボッシュガス比を1.8Nm/(min・m)以下に限定したのは、ボッシュガス比が1.8Nm/(min・m)超の場合には、高炉内を通過するガス総量(ボッシュガス流量)が十分にあるため、中心ガス流を確保するために炉中心部に多目のガス量を振り向けても、まだ炉周辺部へ十分なガス量を振り向けることができるので、本発明を適用するまでもなく、従来の装入物分布制御により操業の安定性を維持できることによる。 Here, the Bosch gas ratio was limited to 1.8 Nm 3 / (min · m 3 ) or less when the Bosch gas ratio exceeded 1.8 Nm 3 / (min · m 3 ). The total amount of gas (Bosch gas flow rate) is sufficient, so even if a large amount of gas is directed to the center of the furnace to secure the central gas flow, a sufficient amount of gas may still be directed to the periphery of the furnace. This is because the operation stability can be maintained by the conventional charge distribution control without applying the present invention.

そして、炉頂中心ガス温度(℃)/炉頂ガス平均温度(℃)で定義される中心ガス流指数が2.0〜3.0になるとともに、炉頂周辺ガス温度(℃)/炉頂ガス平均温度(℃)で定義される周辺ガス流指数が1.0〜1.5になるように装入物分布制御を行う。   The central gas flow index defined by the furnace top center gas temperature (° C.) / The furnace top gas average temperature (° C.) becomes 2.0 to 3.0, and the furnace top peripheral gas temperature (° C.) / Furnace top Charge distribution control is performed so that the peripheral gas flow index defined by the gas average temperature (° C.) is 1.0 to 1.5.

ここで、装入物分布制御の目標指数として、炉頂中心ガス温度(℃)/炉頂ガス平均温度(℃)で定義される中心ガス流指数と、炉頂周辺ガス温度(℃)/炉頂ガス平均温度(℃)で定義される周辺ガス流指数を用いたのは、以下の理由による。   Here, as the target index for charge distribution control, the center gas flow index defined by the furnace top center gas temperature (° C.) / The furnace top gas average temperature (° C.) and the furnace top peripheral gas temperature (° C.) / Furnace The reason why the peripheral gas flow index defined by the average top gas temperature (° C.) is used is as follows.

すなわち、炉頂ガスはダストを多量に含むことから、炉頂においてガス流速を常時直接測定することは実用的でないので、炉頂ガス流速と正の相関関係を有することが知られており、しかも常時測定することが容易な炉頂ガス温度を用いることとし、これを炉頂ガス平均温度で割って無次元化することにより標準化して用いることとしたものである。例えば、中心ガス流指数(または周辺ガス流指数)が1.0を超えると炉頂の炉中心(または炉周辺)におけるガス流速は、炉頂における平均ガス流速よりも大きいことを意味する。   That is, since the gas at the top of the furnace contains a large amount of dust, it is not practical to always directly measure the gas flow rate at the top of the furnace, so it is known to have a positive correlation with the gas flow rate at the top of the furnace. The furnace top gas temperature, which is easy to measure at all times, is used, and this is divided by the furnace top gas average temperature to make it dimensionless and used. For example, if the central gas flow index (or ambient gas flow index) exceeds 1.0, it means that the gas flow rate at the furnace center (or around the furnace) at the furnace top is greater than the average gas flow rate at the furnace top.

ここで、炉頂中心ガス温度および炉頂周辺ガス温度は、炉頂の炉径方向に複数設置した温度計で測定した炉頂ガス温度分布から求めることができる。そして、炉頂中心ガス温度については、炉頂の炉中心に温度計が設置できる場合は、その温度計で測定されたガス温度をそのまま炉頂中心ガス温度とすればよいが、炉頂の炉中心に温度計が設置できない場合は、炉中心に最も近い側から2点の温度計で測定されたガス温度を用いて外挿法により炉中心におけるガス温度を推定して求めればよい。例えば、炉中心に最も近い側から2点の温度計の設置位置が、炉中心からの距離でそれぞれa、b(a<b)で、これらの温度計で測定された温度がそれぞれT1、T2である場合、炉頂中心温度Tcは、Tc=T1+(T1−T2)/(b−a)×aで算出できる。また、炉頂周辺ガス温度についても、炉壁に近接して温度計を設置できる場合は、その温度計で測定されたガス温度をそのまま炉頂周辺ガス温度とすればよいが、炉壁に近接して温度計を設置できない場合は、炉壁に最も近い側から2点の温度計で測定されたガス温度を用い、上記炉頂中心ガス温度の推定と同様の考え方で、外挿法により炉壁におけるガス温度を推定して求めればよい。   Here, the furnace top center gas temperature and the furnace top peripheral gas temperature can be obtained from the furnace top gas temperature distribution measured by a plurality of thermometers installed in the furnace radial direction of the furnace top. As for the furnace center gas temperature, if a thermometer can be installed at the furnace center at the furnace top, the gas temperature measured with the thermometer may be used as the furnace center gas temperature as it is. If a thermometer cannot be installed at the center, the gas temperature at the furnace center may be estimated by an extrapolation method using the gas temperatures measured by two thermometers from the side closest to the furnace center. For example, two thermometers are installed from the side closest to the furnace center at positions a and b (a <b) from the furnace center, and the temperatures measured by these thermometers are T1 and T2, respectively. In this case, the furnace top center temperature Tc can be calculated by Tc = T1 + (T1−T2) / (b−a) × a. As for the gas temperature around the furnace top, if a thermometer can be installed close to the furnace wall, the gas temperature measured with the thermometer can be used as the gas temperature around the furnace top as it is, but it is close to the furnace wall. If the thermometer cannot be installed, the gas temperature measured by the two thermometers from the side closest to the furnace wall is used, and the furnace is estimated by extrapolation in the same way as the estimation of the furnace center gas temperature. What is necessary is just to estimate and estimate the gas temperature in a wall.

また、炉頂ガス平均温度は、炉頂ガス上昇管内に設置した温度計で測定することができる。   Further, the furnace top gas average temperature can be measured with a thermometer installed in the furnace top gas riser.

中心ガス流指数を2.0〜3.0の範囲としたのは、2.0未満では中心部へのガス量が不足し、炉内通気性が十分に確保できなくなったり、亜鉛ガスの排出が不十分となるおそれが高まるためであり、一方3.0を超えると高温のガスにより炉頂の設備が損傷するおそれが高まるためである。中心ガス流指数の好ましい範囲は2.2〜3.0である。   The reason why the central gas flow index is in the range of 2.0 to 3.0 is that if it is less than 2.0, the amount of gas to the center is insufficient, and sufficient air permeability in the furnace cannot be secured, or zinc gas is discharged. This is because there is an increased risk that the temperature of the furnace will be insufficient. On the other hand, if it exceeds 3.0, the high temperature gas is likely to damage the equipment at the top of the furnace. A preferred range for the central gas flow index is 2.2 to 3.0.

また、周辺ガス流指数を1.0〜1.5の範囲としたのは、1.0未満では周辺部へのガス量が不足し、炉周辺部に存在する鉱石をガス還元(間接還元)し溶解する能力が低下してしまい、[背景技術]の項で既述したように、炉下部での急激な直接還元(溶融還元)を引き起こし、炉下部の通気性が悪化して送風圧変動が大きくなって操業の安定性が失われ、棚吊りや吹き抜けといった操業トラブルの発生の可能性が高まるためであり、一方1.5を超えると周辺部へのガス量が過剰になって炉壁からの熱損失が過大となり還元材比が過度に上昇するおそれが高まるためである。周辺ガス流指数の好ましい範囲は1.1〜1.5である。   Further, the peripheral gas flow index is set to a range of 1.0 to 1.5. If less than 1.0, the gas amount to the peripheral portion is insufficient, and ore existing in the peripheral portion of the furnace is gas reduced (indirect reduction). As a result, the rapid reduction (melting reduction) at the lower part of the furnace causes a deterioration in the air permeability at the lower part of the furnace, resulting in fluctuations in the blast pressure. This is because the stability of the operation is lost and the possibility of operation troubles such as hanging from the shelf and blowout increases, while if it exceeds 1.5, the amount of gas to the surroundings becomes excessive and the furnace wall This is because there is an increased possibility that the heat loss from the heat source becomes excessive and the reducing material ratio increases excessively. A preferred range for the peripheral gas flow index is 1.1 to 1.5.

そして、中心ガス流指数と周辺ガス流指数の両方が同時に上記規定範囲に入るように、装入物分布制御および/または羽口前風速の調整を行えばよい。   Then, the charge distribution control and / or adjustment of the wind speed before the tuyere may be performed so that both the central gas flow index and the peripheral gas flow index fall within the specified range at the same time.

装入物分布制御は、本例では例えば旋回シュートの傾動角度および旋回数を適宜操作することにより(例えば、特開平11−117007号公報、段落[0023]参照)炉半径方向のO/Cの分布を自由に調整することができる。例えば炉中心部と炉周辺部のO/Cを減少させると、炉径方向全体の平均O/Cは一定に維持する必要があるので、必然的に炉中間部のO/Cは増加し、中心ガス流指数と周辺ガス流指数はともに上昇する。   In this example, the charge distribution control is performed by appropriately operating the tilt angle and the number of turns of the turning chute (see, for example, Japanese Patent Laid-Open No. 11-117007, paragraph [0023]). The distribution can be adjusted freely. For example, if the O / C at the furnace center and the periphery of the furnace is reduced, the average O / C in the entire furnace radial direction needs to be kept constant, so that the O / C at the furnace intermediate part inevitably increases. Both the central gas flow index and the peripheral gas flow index increase.

また、羽口前風速の調整は、羽口径の変更、送風温度の昇降で行うことができる。例えば羽口径の縮小および/または送風温度の上昇により羽口前風速を上昇させると、中心ガス流化するので、中心ガス流指数は上昇し、周辺ガス流指数は低下する。   Moreover, the adjustment of the wind speed before the tuyere can be performed by changing the tuyere diameter and raising / lowering the blowing temperature. For example, if the wind speed before the tuyere is increased by reducing the tuyere diameter and / or increasing the blowing temperature, the central gas flow index is increased, and the peripheral gas flow index is decreased.

したがって、ボッシュガス比の値(すなわち、減産の程度)に応じて、装入物分布制御と羽口前風速の調整の双方またはいずれか一方を行うことで、中心ガス流指数と周辺ガス流指数をともに所定範囲に入るようにすることができる。   Therefore, depending on the value of Bosch gas ratio (that is, the degree of production reduction), the central gas flow index and the peripheral gas flow index can be controlled by controlling the charge distribution and / or adjusting the wind speed before the tuyere. Both can fall within a predetermined range.

本発明は、微粉炭比150kg/t−溶銑以上の高微粉炭比操業条件下で行う高炉操業に適用するのが推奨される。高微粉炭比操業条件下では、コークス比が小さいため必然的に炉内の平均O/Cが大きくなるので、通常操業時においてさえ炉内の通気性を良好に維持することが難しいことが知られており、ましてや減産操業条件下ではさらに炉内通気性の維持が困難になることが予想されるが、本発明を適用することで、容易かつ確実に炉内通気性の維持が行える。本発明は、微粉炭比160kg/t−溶銑以上、特に170kg/t−溶銑以上の高微粉炭比操業条件下で行う高炉操業に適用するのがさらに推奨される。   It is recommended that the present invention be applied to blast furnace operation performed under high pulverized coal ratio operation conditions with a pulverized coal ratio of 150 kg / t-molten iron or higher. Under high pulverized coal ratio operating conditions, the coke ratio is small, and the average O / C in the furnace inevitably increases. Therefore, it is difficult to maintain good air permeability in the furnace even during normal operation. However, it is expected that maintenance of the air permeability in the furnace will become more difficult under the reduced production operation conditions. However, by applying the present invention, the air permeability in the furnace can be easily and reliably maintained. It is further recommended that the present invention be applied to blast furnace operation performed under high pulverized coal ratio operation conditions with a pulverized coal ratio of 160 kg / t-hot metal or higher, particularly 170 kg / t-hot metal or higher.

また、本発明は、鉱石中のペレット配合率が15質量%以上のペレット多配合操業条件下で行う高炉操業に適用するのが推奨される。ペレットを多配合すると、ペレットは球体であるためコークス層の斜面上を転がって炉中心部に流れ込み、中心ガス流を阻害しやすいので、通常操業時においてさえ炉内の通気性を良好に維持することが難しいことが知られており、ましてや減産操業条件下ではさらに炉内通気性の維持が困難になることが予想されるが、本発明を適用することで、容易かつ確実に炉内通気性の維持が行える。本発明は、ペレット配合率30質量%以上、特に50質量%以上のペレット多配合操業条件下で行う高炉操業に適用するのがさらに推奨される。   In addition, it is recommended that the present invention be applied to blast furnace operation performed under pellet multiple blending operation conditions in which the pellet blending ratio in the ore is 15 mass% or more. When pellets are mixed in a large amount, the pellets are spherical, so they roll on the slope of the coke layer and flow into the center of the furnace, making it easy to block the central gas flow, so that the air permeability in the furnace is maintained well even during normal operation. However, it is expected that it will become more difficult to maintain the air permeability in the furnace under reduced production operation conditions. However, by applying the present invention, the air permeability in the furnace can be easily and reliably achieved. Can be maintained. It is further recommended that the present invention be applied to blast furnace operation performed under pellet multiple blending operation conditions with a pellet blending ratio of 30% by mass or more, particularly 50% by mass or more.

なお、鉱石中には通常、ペレットの他、焼結鉱および/または塊鉱石が配合され、さらに必要により高炉スラグの塩基度調整の目的で石灰石、珪石、転炉スラグ等のフラックス成分含有物質が配合されるが、ここでいう鉱石中のペレット配合率は、フラックス成分含有物質を除いた鉱石種のみの合計質量を100%として算出された値である。   In addition, the ore is usually mixed with pellets, sintered ore and / or block ore, and, if necessary, for the purpose of adjusting the basicity of blast furnace slag, contains flux component-containing substances such as limestone, silica, and converter slag. Although it mix | blends, the pellet compounding rate in an ore here is the value computed by making the total mass of only the ore seed | species except a flux component containing material into 100%.

(変形例)
上記実施形態では、本発明をベルレス装入方式の高炉操業に適用する例を示したが、本発明をベル装入方式の高炉操業に適用する場合は、アーマープレートの角度および炉内側への変位量を適宜操作することにより、炉径方向のO/C分布の調整、すなわち、装入物分布制御を行うことができる(例えば、特開2006−131967号公報、段落[0017]〜[0019]参照)。
(Modification)
In the above embodiment, an example in which the present invention is applied to the blast furnace operation of the bell-less charging method is shown, but when the present invention is applied to the blast furnace operation of the bell charging method, the angle of the armor plate and the displacement to the inside of the furnace By appropriately manipulating the amount, O / C distribution adjustment in the furnace radial direction, that is, charge distribution control can be performed (for example, JP 2006-131967 A, paragraphs [0017] to [0019]. reference).

本発明の作用効果を確証するため、内容積2112m(炉口半径Ro=3.9m)の実機高炉において大幅な減産操業を行った際に本発明を適用し、その適用前後における操業結果の変化を調査した。 In order to confirm the operational effects of the present invention, the present invention was applied when a significant reduction in production was performed in an actual blast furnace with an internal volume of 2112 m 3 (furnace port radius Ro = 3.9 m). The change was investigated.

操業条件としては、鉱石配合はペレットの配合率70質量%で外数にて石灰石等を配合したものとし、炉頂圧力はゲージ圧で1.7kgf/cm[ただし、1kgf/cm=98.0665kPa]に固定した。 The operating conditions, ore blending is assumed blended with limestone or the like at an external number at load ratio 70 percent by weight of the pellets, the furnace top pressure 1.7 kgf / cm 2 [however a gauge pressure, 1kgf / cm 2 = 98 .0665 kPa].

本発明適用前後における操業結果の変化を図1に示す。なお、同図中の送風圧力変動は、1minごとに測定した、1日分の送風圧力のデータから求めた標準偏差の値である。   The change of the operation result before and after applying the present invention is shown in FIG. In addition, the ventilation pressure fluctuation | variation in the figure is the value of the standard deviation calculated | required from the data of the ventilation pressure for 1 day measured every 1min.

そして、同図に示す、参考例の通常操業期間〔出銑比:約2.0t/(d・m)〕から、比較例の減産操業期間1〔出銑比:約1.4t/(d・m)〕まで、富化酸素量と送風量を段階的に減少させて出銑比を低下させ減産操業条件下の操業に移行した際には、羽口径を縮小して羽口前風速を維持するようにするとともに、炉中心部のO/Cのみを低下させて中心流のみを強化する操業アクションを採った。 Then, from the normal operation period [output ratio: about 2.0 t / (d · m 3 )] of the reference example shown in the figure, the production reduction operation period 1 of the comparative example [output ratio: about 1.4 t / ( d · m 3 )], the amount of oxygen enriched and the amount of air blown are reduced step by step to lower the output ratio and shift to operation under reduced production operating conditions. While maintaining the wind speed, an operation action was taken in which only the central flow was strengthened by reducing only the O / C at the center of the furnace.

その結果、同図に示すように、参考例の通常操業期間には、中心ガス流指数は2.5〜3.5の範囲で、かつ周辺ガス流指数は1.2〜1.5の範囲に維持されていたものが、比較例の減産操業期間1には、中心ガス流指数は2.5〜3.0の範囲に維持されていたものの、周辺ガス流指数が1.0未満に低下し、送風圧力変動が急に大きくなり2.0kPa以上に達し、操業が不安定化した。   As a result, as shown in the figure, during the normal operation period of the reference example, the central gas flow index is in the range of 2.5 to 3.5, and the peripheral gas flow index is in the range of 1.2 to 1.5. Although the central gas flow index was maintained in the range of 2.5 to 3.0 in the production reduction operation period 1 of the comparative example, the peripheral gas flow index decreased to less than 1.0. However, the blast pressure fluctuation suddenly increased and reached 2.0 kPa or more, and the operation became unstable.

このため、微粉炭比を下げてコークス比を上げる操業アクションにより炉内通気性の改善を試みたが、周辺ガス流指数の1.0以上への回復は認められず、送風圧力変動も大きいままであり、改善効果は得られなかった。   For this reason, we tried to improve the air permeability in the furnace by reducing the pulverized coal ratio and increasing the coke ratio, but the recovery of the peripheral gas flow index to 1.0 or higher was not observed, and the blast pressure fluctuation remained large. Therefore, the improvement effect was not obtained.

そこで、比較例の減産操業期間1から発明例の減産操業期間2への移行に際して、出銑比は約1.4t/(d・m)に固定したままで、炉中心部のO/Cは維持しつつ、炉中間部のO/Cを上げて炉周辺部のO/Cを下げる装入物分布制御アクションを行ったところ、同図の発明例に見られるとおり、中心ガス流指数は2.0〜3.0の範囲に維持しつつ、周辺ガス流指数は1.0〜1.5の範囲に回復し、送風圧力変動は参考例の通常操業期間と同程度の2.0kPa未満まで低下し、操業が安定化した。そこで、発明例の減産操業期間2において、出銑比は約1.4t/(d・m)に固定したままで、還元材比をほぼ一定に維持しつつ、コークス比を徐々に下げて微粉炭比を徐々に上昇させて参考例の通常操業期間の微粉炭比約180kg/t−溶銑を超える約200kg/t−溶銑まで微粉炭比を上昇させたが、中心ガス流指数は2.0〜3.0の範囲で、かつ周辺ガス流指数も1.0〜1.5を確保し、送風圧力変動は参考例の通常操業期間と同程度の低い値に維持され、高微粉炭比操業下でも炉内通気性が確保されて安定操業を実現できることが確認できた。 Therefore, when shifting from the reduced production operation period 1 of the comparative example to the reduced production operation period 2 of the invention example, the output ratio remains fixed at about 1.4 t / (d · m 3 ) and the O / C at the center of the furnace. Was maintained and the O / C in the middle part of the furnace was raised to lower the O / C in the peripheral part of the furnace, and as shown in the example of the invention, the central gas flow index was While maintaining the range of 2.0 to 3.0, the peripheral gas flow index is restored to the range of 1.0 to 1.5, and the blast pressure fluctuation is less than 2.0 kPa, which is the same as the normal operation period of the reference example. The operation was stabilized. Therefore, in the production cut-off period 2 of the invention example, the coke ratio is gradually lowered while maintaining the reducing agent ratio substantially constant while keeping the output ratio fixed at about 1.4 t / (d · m 3 ). Although the pulverized coal ratio was gradually increased to increase the pulverized coal ratio to about 200 kg / t-hot metal exceeding the pulverized coal ratio of about 180 kg / t-hot metal in the normal operation period of the reference example, the central gas flow index was 2. In the range of 0 to 3.0, the surrounding gas flow index is also secured to 1.0 to 1.5, and the blast pressure fluctuation is maintained at a low value comparable to the normal operation period of the reference example, and the high pulverized coal ratio It was confirmed that the air permeability in the furnace was ensured even during operation and stable operation could be realized.

図2〜4に、以上の操業経過を、ボッシュガス比と中心ガス流指数および周辺ガス流指数との関係、ならびに、ボッシュガス比と送風圧力変動との関係で整理し直して示す。   FIGS. 2 to 4 show the above-described operational process again by rearranging the relationship between the Bosch gas ratio, the central gas flow index and the peripheral gas flow index, and the relationship between the Bosch gas ratio and the variation in the blowing pressure.

ここで、図2においてボッシュガス比が約1.8Nm/(min・m)で中心ガス流指数が最小値を示しているが、これは以下の理由による。すなわち、ボッシュガス比を約2.0Nm/(min・m)から約1.8Nm/(min・m)まで下げていく際には、まだ中心流強化の操業アクションを採っていなかったので、ボッシュガス比の低下に伴って炉中心部に向かうガス量が減少し、炉頂中心ガス温度が低下して、中心ガス流指数が低下したのに対し、ボッシュガス比を約1.8Nm/(min・m)よりもさらに下げていく際には、炉中心部のO/Cを低下させて中心流を強化する操業アクションを採ったので、ボッシュガス比の低下にも関わらず、炉中心部に向かうガス量が増加し、炉頂中心ガス温度が上昇して、中心ガス流指数が上昇したためである。 Here, in FIG. 2, the Bosch gas ratio is about 1.8 Nm 3 / (min · m 3 ) and the central gas flow index shows the minimum value. This is due to the following reason. That is, when the Bosch gas ratio is lowered from about 2.0 Nm 3 / (min · m 3 ) to about 1.8 Nm 3 / (min · m 3 ), the operation action for strengthening the central flow has not yet been taken. Therefore, as the Bosch gas ratio decreases, the amount of gas toward the furnace center decreases, the furnace top center gas temperature decreases, and the center gas flow index decreases, whereas the Bosch gas ratio decreases by about 1. When further lowering than 8 Nm 3 / (min · m 3 ), the operation action was taken to reduce the O / C at the furnace center and strengthen the central flow. This is because the gas amount toward the furnace center increases, the furnace center gas temperature rises, and the center gas flow index rises.

一方、図3においては、参考例→比較例の間ではボッシュガス量の低下とともに周辺ガス流指数が低下し、比較例→発明例の間で周辺ガス流指数が上昇しているが、これは、比較例→発明例の間で初めて周辺流強化の操業アクションを採ったことによる。   On the other hand, in FIG. 3, the peripheral gas flow index decreases as the Bosch gas amount decreases between the reference example and the comparative example, and the peripheral gas flow index increases between the comparative example and the invention example. This is because, for the first time between the comparative example and the invention example, the operation action for enhancing the peripheral flow was taken.

図1の操業推移図を用いて既に説明したが、図2〜4からも明らかなように、比較例の期間では、中心ガス流指数は2.5〜3.5の範囲にあるものの、周辺ガス流指数は1.0未満であり、送風圧力変動は2.0kPa以上と大きくなるのに対し、発明例の期間では、中心ガス流指数は2.0〜3.0の範囲で、かつ周辺ガス流指数は1.0〜1.5の範囲にあり、送風圧力変動は2.0kPa未満に維持されることがわかる。   Although already demonstrated using the operation transition diagram of FIG. 1, although it is clear also from FIGS. 2-4, in the period of a comparative example, although a center gas flow index exists in the range of 2.5-3.5, The gas flow index is less than 1.0, and the blast pressure fluctuation is as large as 2.0 kPa or more, whereas in the period of the invention example, the central gas flow index is in the range of 2.0 to 3.0, and the surroundings It can be seen that the gas flow index is in the range of 1.0 to 1.5 and the blast pressure fluctuation is maintained below 2.0 kPa.

Claims (3)

高炉内容積1m当たりのボッシュガス量で定義されるボッシュガス比が1.8Nm/(min・m)以下の減産操業条件下における高炉操業方法であって、
炉頂中心ガス温度(℃)/炉頂ガス平均温度(℃)で定義される中心ガス流指数が2.0〜3.0になるとともに、
炉頂周辺ガス温度(℃)/炉頂ガス平均温度(℃)で定義される周辺ガス流指数が1.0〜1.5になるように装入物分布制御および/または羽口前風速の調整を行うことを特徴とする高炉操業方法。
A method for operating a blast furnace under a reduced production operating condition in which a Bosch gas ratio defined by an amount of Bosch gas per 1 m 3 of a blast furnace volume is 1.8 Nm 3 / (min · m 3 ) or less,
While the central gas flow index defined by the furnace top gas temperature (° C.) / Top gas average temperature (° C.) is 2.0 to 3.0,
Charge distribution control and / or pre-tuyere wind speed so that the ambient gas flow index defined by the furnace top ambient gas temperature (° C) / top gas average temperature (° C) is 1.0 to 1.5. A method of operating a blast furnace, characterized by adjusting.
微粉炭比150kg/t−溶銑以上の高微粉炭比操業条件下で行う請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, which is performed under a high pulverized coal ratio operating condition with a pulverized coal ratio of 150 kg / t-molten iron or higher. 鉱石中のペレット配合率が15質量%以上のペレット多配合操業条件下で行う請求項1または2に記載の高炉操業方法。   The blast furnace operating method according to claim 1 or 2, wherein the pellet mixing ratio in the ore is carried out under pellet multiple mixing operation conditions of 15 mass% or more.
JP2009283100A 2009-12-14 2009-12-14 Method for operating blast furnace Pending JP2011122228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283100A JP2011122228A (en) 2009-12-14 2009-12-14 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283100A JP2011122228A (en) 2009-12-14 2009-12-14 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JP2011122228A true JP2011122228A (en) 2011-06-23

Family

ID=44286388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283100A Pending JP2011122228A (en) 2009-12-14 2009-12-14 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP2011122228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436831B2 (en) 2020-04-13 2024-02-22 日本製鉄株式会社 Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436831B2 (en) 2020-04-13 2024-02-22 日本製鉄株式会社 Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program

Similar Documents

Publication Publication Date Title
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
CN111984907B (en) Method for judging development trend of blast furnace temperature
JP4971812B2 (en) Blast furnace operation method
CN104388612B (en) A kind of blast furnace low cost titanium ore furnace retaining method
JP2011122228A (en) Method for operating blast furnace
JP4792797B2 (en) Method of charging ores containing high crystal water into a bell-less blast furnace
JP5381899B2 (en) Blast furnace operation method
CN106048112A (en) Method of regular furnace protection using schreyerite
JP4765723B2 (en) Method of charging ore into blast furnace
WO2020196769A1 (en) Blast furnace operation method
JP2007270203A (en) Method for operating blast furnace
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
JP7167652B2 (en) Blast furnace operation method
Bonte et al. Influence of the coke and burden quality on the productivity of the blast furnace
JP5029085B2 (en) How to protect refractories at the bottom of the blast furnace
JP7107050B2 (en) Blast furnace operation method
JP3102626B2 (en) Blast furnace operation method
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JP2011111631A (en) Method for operating blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JP2019065352A (en) Method for protecting furnace bottom brick in blast furnace
JP2013256698A (en) Suspending method of blast furnace
JP2001152216A (en) Method of operating blast furnace
JPH03232915A (en) Method for dividedly charging coke to blast furnace

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526