JP2011121992A - Semiconductive ultra-high molecular weight polyethylene molded article - Google Patents

Semiconductive ultra-high molecular weight polyethylene molded article Download PDF

Info

Publication number
JP2011121992A
JP2011121992A JP2009264527A JP2009264527A JP2011121992A JP 2011121992 A JP2011121992 A JP 2011121992A JP 2009264527 A JP2009264527 A JP 2009264527A JP 2009264527 A JP2009264527 A JP 2009264527A JP 2011121992 A JP2011121992 A JP 2011121992A
Authority
JP
Japan
Prior art keywords
molecular weight
weight polyethylene
semiconductive
oxide
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009264527A
Other languages
Japanese (ja)
Inventor
Eiji Ohira
英治 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKUSHIN KOGYO KK
Original Assignee
SAKUSHIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKUSHIN KOGYO KK filed Critical SAKUSHIN KOGYO KK
Priority to JP2009264527A priority Critical patent/JP2011121992A/en
Publication of JP2011121992A publication Critical patent/JP2011121992A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductive ultra-high molecular weight polyethylene molded article stably having a volume resistivity in a range of 10<SP>5</SP>to 10<SP>10</SP>Ω cm in which a conductive powder is dispersed in the ultra-high molecular weight polyethylene. <P>SOLUTION: The compression molded article or an injection molded article of the semiconductive ultra-high molecular weight polyethylene having the volume resistivity in a range of 10<SP>5</SP>to 10<SP>10</SP>Ω cm obtained by compression-molding or injection-molding a dry mixture of the ultra-high molecular weight polyethylene and the conductive powder is provided. Further, the semiconductive ultra-high molecular weight polyethylene film obtained by cutting-processing the compression molded article is provided. Especially, as a preferable embodiment, the semiconductive ultra-high molecular weight polyethylene film having the volume resistivity in a range of 10<SP>5</SP>to 10<SP>10</SP>Ω cm in which zinc oxide, titanium oxide or stannic oxide is dispersed in the ultra-high molecular weight polyethylene as the conductive powder is provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は半導電性超高分子量ポリエチレン成形品に関し、詳しくは、体積抵抗率が105 〜1010Ω・cmの範囲にある半導電性超高分子量ポリエチレンの圧縮成形品、射出成形品及びフィルムに関する。 The present invention relates to a semiconductive ultrahigh molecular weight polyethylene molded article, and more specifically, a compression molded article, injection molded article and film of semiconductive ultrahigh molecular weight polyethylene having a volume resistivity in the range of 10 5 to 10 10 Ω · cm. About.

半導電性領域の体積抵抗率を有するフィルムのようなポリマー成形品は、例えば、電子写真複写機のような種々の電子装置において、電荷制御のための部材として、広く用いられている。このような電荷制御のための部材として用いる際の要求特性としては、部材全体を通じて、体積抵抗率にばらつきがないことは勿論、種々の物理的化学的特性、例えば、機械的強度、表面平滑性、耐摩耗性、耐熱性等にすぐれることが求められる。   Polymer molded articles such as films having a volume resistivity in the semiconductive region are widely used as members for charge control in various electronic devices such as electrophotographic copying machines. The required properties when used as a member for charge control include various physical and chemical properties such as mechanical strength, surface smoothness, as well as no variation in volume resistivity throughout the member. It is required to have excellent wear resistance and heat resistance.

このような特性を有するポリマーとして、超高分子量ポリエチレンが知られている。しかし、超高分子量ポリエチレンは上述したような特性にすぐれる反面、溶融粘度が著しく高く、例えば、フィルムやシートの製造において、汎用のポリエチレンやポリプロピレンに好適に用いられる押出成形を適用することが困難である。そこで、超高分子量ポリエチレンのフィルムやシートは、これまで、通常、超高分子量ポリエチレン粉末を板や棒状の成形品に圧縮成形し、これをフィルムやシートに切り出す方法によって製造されている。   Ultra high molecular weight polyethylene is known as a polymer having such characteristics. However, ultrahigh molecular weight polyethylene has excellent properties as described above, but has extremely high melt viscosity. For example, it is difficult to apply extrusion molding suitably used for general-purpose polyethylene and polypropylene in the production of films and sheets. It is. Thus, ultra-high molecular weight polyethylene films and sheets have been conventionally produced by a method in which ultra-high molecular weight polyethylene powder is compression-molded into a plate or rod-shaped molded product and cut into a film or sheet.

従って、超高分子量ポリエチレンにカーボンブラックのような導電性フィラーを分散させて、導電性複合体を製造する場合にも、超高分子量ポリエチレンにカーボンブラックを乾式にて混合し、加熱下に圧縮成形することによって製造している(特許文献1参照)。   Therefore, even when conductive fillers such as carbon black are dispersed in ultra high molecular weight polyethylene to produce conductive composites, carbon black is mixed dry with ultra high molecular weight polyethylene and compression molded under heating. It manufactures by doing (refer patent document 1).

しかし、このように、超高分子量ポリエチレンにカーボンブラックを分散させて導電性複合体を製造する場合、超高分子量ポリエチレンに対する導電性カーボンブラックの割合と得られる複合体の体積抵抗率とは比例関係にはなく、ある一定の量までは、超高分子量ポリエチレンに導電性カーボンブラックを配合しても、超高分子量ポリエチレンの体積抵抗率は1013Ω・cm程度の値を有して、殆ど変化しないが、ある一定の量を超えれば、体積抵抗率が急激に低下し、103Ω・cm程度の一定値となって安定する。 However, when carbon black is dispersed in ultra high molecular weight polyethylene to produce a conductive composite, the proportion of conductive carbon black to ultra high molecular weight polyethylene is proportional to the volume resistivity of the resulting composite. However, up to a certain amount, even if conductive carbon black is blended with ultra high molecular weight polyethylene, the volume resistivity of ultra high molecular weight polyethylene has a value of about 10 13 Ω · cm and changes almost. However, if the amount exceeds a certain amount, the volume resistivity rapidly decreases and becomes a constant value of about 10 3 Ω · cm and is stabilized.

従って、従来、超高分子量ポリエチレンに導電性フィラーを分散させてなり、体積抵抗率がばらつきなしに、105 〜1010Ω・cmの範囲にある半導電性超高分子量ポリエチレン成形品を安定して製造することが困難であった。 Therefore, conventionally, a semi-conductive ultra high molecular weight polyethylene molded product having a volume resistivity of 10 5 to 10 10 Ω · cm can be stabilized without dispersion of the conductive filler in ultra high molecular weight polyethylene. It was difficult to manufacture.

特開平07−094018号公報Japanese Patent Application Laid-Open No. 07-094018

本発明は、超高分子量ポリエチレンに導電性フィラーを分散させてなる半導電性超高分子量ポリエチレン成形品における上述した問題を解決するためになされたものであって、超高分子量ポリエチレンに導電性粉末を分散させてなり、安定して体積抵抗率が105〜1010Ω・cmの範囲にある半導電性超高分子量ポリエチレン成形品を提供することを目的とする。 The present invention has been made in order to solve the above-described problems in a semiconductive ultrahigh molecular weight polyethylene molded article in which a conductive filler is dispersed in ultra high molecular weight polyethylene, and the conductive powder is added to the ultra high molecular weight polyethylene. It is an object of the present invention to provide a semiconductive ultra high molecular weight polyethylene molded article having a volume resistivity in the range of 10 5 to 10 10 Ω · cm.

本発明によれば、超高分子量ポリエチレンと導電性粉末の乾式混合物を圧縮成形又は射出成形して得られる105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレン成形品が提供される。 According to the present invention, a semiconductive ultra high molecular weight polyethylene having a volume resistivity in the range of 10 5 to 10 10 Ω · cm obtained by compression molding or injection molding a dry mixture of ultra high molecular weight polyethylene and conductive powder. A molded article is provided.

本発明によれば、上記導電性粉末は、導電性金属、導電性金属酸化物及び導電性炭素物質から選ばれる少なくとも1種の粉末である。   According to the present invention, the conductive powder is at least one powder selected from conductive metals, conductive metal oxides, and conductive carbon materials.

本発明においては、上記導電性粉末としては、なかでも、導電性金属酸化物が好ましく、そのような導電性金属酸化物としては、なかでも、酸化亜鉛、酸化第二スズ、酸化チタン、酸化第二鉄及び酸化第二銅から選ばれる少なくとも1種の金属酸化物の粉末が好ましい。   In the present invention, the conductive powder is preferably a conductive metal oxide, and among such conductive metal oxides, zinc oxide, stannic oxide, titanium oxide, oxide oxide Preference is given to powders of at least one metal oxide selected from ferric and cupric oxide.

特に、本発明によれば、最も好ましい態様として、超高分子量ポリエチレンと酸化亜鉛粉末4〜25重量%の乾式混合物を圧縮成形し、得られた成形品を切削して得られる105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレンフィルムが提供される。 In particular, according to the present invention, as a most preferable embodiment, 10 5 to 10 10 obtained by compression molding a dry mixture of ultrahigh molecular weight polyethylene and zinc oxide powder 4 to 25% by weight and cutting the obtained molded product. A semiconductive ultra high molecular weight polyethylene film having a volume resistivity in the range of Ω · cm is provided.

このような半導電性超高分子量ポリエチレンフィルムは、本発明に従って、超高分子量ポリエチレンに酸化亜鉛粉末を4〜25重量%の割合で乾式混合し、得られた混合物を圧縮成形し、得られた成形品を厚み0.05〜0.6mmの範囲にフィルムに切削することによって得ることができる。   According to the present invention, such a semiconductive ultra high molecular weight polyethylene film was obtained by dry-mixing 4 to 25% by weight of zinc oxide powder with ultra high molecular weight polyethylene, and compression-molding the resulting mixture. It can be obtained by cutting the molded product into a film having a thickness of 0.05 to 0.6 mm.

本発明による半導電性超高分子量ポリエチレン成形品は、耐磨耗性と摺動特性にすぐれ、そのうえ、安定して、105〜1010Ω・cmの範囲の体積抵抗率を有する。このような半導電性超高分子量ポリエチレン成形品、例えば、フィルムは、上記特性によって、例えば、電子写真複写機におけるトナーのクリーニング部材に好適に用いることができる。 The semiconductive ultrahigh molecular weight polyethylene molded article according to the present invention is excellent in wear resistance and sliding properties, and has a volume resistivity in the range of 10 5 to 10 10 Ω · cm. Such a semiconductive ultra-high molecular weight polyethylene molded product, for example, a film can be suitably used, for example, as a toner cleaning member in an electrophotographic copying machine due to the above characteristics.

本発明において用いる超高分子量ポリエチレンは、重量平均分子量が100×104以上、好ましくは、200×104 以上であると共に、平均粒子径が10〜400μmの範囲にあるものが好ましい。超高分子量ポリエチレンの重量平均分子量の上限は、特に限定されるものではないが、通常、1000×104程度であり、好ましくは、500×104程度である。 The ultra high molecular weight polyethylene used in the present invention preferably has a weight average molecular weight of 100 × 10 4 or more, preferably 200 × 10 4 or more and an average particle diameter in the range of 10 to 400 μm. The upper limit of the weight average molecular weight of the ultrahigh molecular weight polyethylene is not particularly limited, but is usually about 1000 × 10 4 , and preferably about 500 × 10 4 .

本発明による半導電性超高分子量ポリエチレン成形品は、このような超高分子量ポリエチレンと導電性粉末の乾式混合物を圧縮成形又は射出成形して得られる成形品と、上記圧縮成形による圧縮成形を切削加工して得られるフィルムであって、いずれも、105〜1010Ω・cmの範囲の体積抵抗率を有する。 The semiconductive ultra high molecular weight polyethylene molded product according to the present invention is obtained by cutting a molded product obtained by compression molding or injection molding of such a dry mixture of ultra high molecular weight polyethylene and conductive powder, and compression molding by the above compression molding. Each of the films obtained by processing has a volume resistivity in the range of 10 5 to 10 10 Ω · cm.

即ち、本発明において、成形品とは圧縮成形品、射出成形品又はフィルムであり、圧縮成形品の具体例として、シート、プレート及びロッドを挙げることができ、また、射出成形品の具体例として、シートを挙げることができる。   That is, in the present invention, the molded product is a compression molded product, an injection molded product or a film, and specific examples of the compression molded product can include sheets, plates and rods, and specific examples of the injection molded product. And a sheet.

本発明において、上記導電性粉末は、導電性金属、導電性金属酸化物及び導電性炭素物質から選ばれる少なくとも1種の粉末であり、なかでも、導電性金属酸化物の粉末が好ましい。導電性金属酸化物は、酸化亜鉛、酸化第二スズ、酸化チタン、酸化第二鉄及び酸化第二銅から選ばれる少なくとも1種の金属酸化物の粉末であり、特に、酸化亜鉛、酸化第二スズ及び酸化チタンから選ばれる少なくとも1種が好ましい。   In the present invention, the conductive powder is at least one powder selected from conductive metals, conductive metal oxides, and conductive carbon substances, and among them, conductive metal oxide powders are preferable. The conductive metal oxide is a powder of at least one metal oxide selected from zinc oxide, stannic oxide, titanium oxide, ferric oxide, and cupric oxide. At least one selected from tin and titanium oxide is preferred.

本発明によれば、上述したような超高分子量ポリエチレンに上記導電性粉末を乾式混合し、得られた混合物を圧縮成形又は射出成形すれば、目的とする圧縮成形品又は射出成形品を得ることができ、更に、このようにして得られた圧縮成形品、例えば、円柱状成形品を常法に従って切削することによって、半導電性超高分子量ポリエチレンフィルムを得ることができる。   According to the present invention, if the above conductive powder is dry-mixed with the ultrahigh molecular weight polyethylene as described above, and the resulting mixture is compression molded or injection molded, the desired compression molded product or injection molded product is obtained. Further, a semiconductive ultrahigh molecular weight polyethylene film can be obtained by cutting the compression molded product thus obtained, for example, a cylindrical molded product, according to a conventional method.

ここに、本発明によれば、導電性金属酸化物粉末として酸化亜鉛を用いるときは、酸化亜鉛は、平均粒子径が5〜300nmの範囲にあり、体積抵抗率が30〜1000Ω・cmの範囲にあるものが好ましく、超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて、4〜25重量%の範囲で用いられる。超高分子量ポリエチレンに対する酸化亜鉛の割合が上記範囲を外れるときは、105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレン成形品を安定して得ることができないか、又は成形品自体を得ることができない。 Here, according to the present invention, when zinc oxide is used as the conductive metal oxide powder, the zinc oxide has an average particle diameter in the range of 5 to 300 nm and a volume resistivity in the range of 30 to 1000 Ω · cm. And preferably used in the range of 4 to 25% by weight based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide. When the ratio of zinc oxide to ultrahigh molecular weight polyethylene is out of the above range, a semiconductive ultrahigh molecular weight polyethylene molded product having a volume resistivity in the range of 10 5 to 10 10 Ω · cm cannot be obtained stably. Or the molded product itself cannot be obtained.

一方、導電性金属酸化物粉末として酸化チタンを用いるときは、酸化チタンは、超高分子量ポリエチレンと酸化チタンの合計量に基づいて、20〜34重量%の範囲で用いられる。超高分子量ポリエチレンに対する酸化チタンの割合が上記範囲を外れるときは、105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレン成形品を安定して得ることができないか、又は成形品自体を得ることができない。 On the other hand, when titanium oxide is used as the conductive metal oxide powder, titanium oxide is used in the range of 20 to 34% by weight based on the total amount of ultrahigh molecular weight polyethylene and titanium oxide. When the ratio of titanium oxide to ultrahigh molecular weight polyethylene is out of the above range, a semiconductive ultrahigh molecular weight polyethylene molded product having a volume resistivity in the range of 10 5 to 10 10 Ω · cm cannot be obtained stably. Or the molded product itself cannot be obtained.

また、導電性金属酸化物粉末として酸化第二スズを用いるときは、酸化第二スズは、超高分子量ポリエチレンと酸化第二スズの合計量に基づいて、25〜34重量%の範囲で用いられる。超高分子量ポリエチレンに対する酸化第二スズの割合が上記範囲を外れるときは、105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレン成形品を安定して得ることができないか、又は成形品自体を得ることができない。 When stannic oxide is used as the conductive metal oxide powder, stannic oxide is used in the range of 25 to 34% by weight based on the total amount of ultrahigh molecular weight polyethylene and stannic oxide. . When the ratio of stannic oxide to ultrahigh molecular weight polyethylene is outside the above range, a semiconductive ultrahigh molecular weight polyethylene molded product having a volume resistivity in the range of 10 5 to 10 10 Ω · cm can be stably obtained. Or the molded product itself cannot be obtained.

超高分子量ポリエチレンと導電性粉末を乾式混合するに際して、必要に応じて、種々の添加剤を用いてもよい。そのような添加剤として、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、滑剤、難燃剤、着色剤等を挙げることができる。   When the ultrahigh molecular weight polyethylene and the conductive powder are dry-mixed, various additives may be used as necessary. Examples of such additives include heat stabilizers, antioxidants, ultraviolet absorbers, lubricants, flame retardants, and colorants.

また、上述したような超高分子量ポリエチレンと導電性粉末を乾式混合するための手段は特に限定されるものではないが、例えば、ヘンシェルミキサーは好ましく用いられる乾式混合手段の一例である。   Further, the means for dry-mixing the ultrahigh molecular weight polyethylene and the conductive powder as described above is not particularly limited. For example, a Henschel mixer is an example of a dry-mixing means that is preferably used.

本発明に従って、例えば、圧縮成形品としてのロッドを得るには、超高分子量ポリエチレンと導電性粉末を乾式混合し、得られた乾式混合物を所定の形状の成形用容器に投入し、これに蓋をして、好ましくは、温度170〜200℃、圧力5〜50Kg/cm2の範囲にて、通常、5〜12時間圧縮成形すれば、圧縮成形品としてのロッドを得ることができる。 According to the present invention, for example, in order to obtain a rod as a compression molded article, ultrahigh molecular weight polyethylene and conductive powder are dry-mixed, and the obtained dry mixture is put into a molding container of a predetermined shape, and a lid is placed on the lid. The rod as a compression molded article can be obtained by compression molding usually at a temperature of 170 to 200 ° C. and a pressure of 5 to 50 kg / cm 2 for 5 to 12 hours.

また、本発明に従って、例えば、射出成形品としてのシートを得るには、超高分子量ポリエチレンと導電性粉末を乾式混合し、得られた乾式混合物を射出成形機に投入して、好ましくは、シリンダー温度180〜210℃、金型温度90〜110℃で射出成形すればよい。   Further, according to the present invention, for example, in order to obtain a sheet as an injection-molded product, dry mixing of ultrahigh molecular weight polyethylene and conductive powder, and the resulting dry mixture is put into an injection molding machine, preferably a cylinder The injection molding may be performed at a temperature of 180 to 210 ° C and a mold temperature of 90 to 110 ° C.

更に、本発明に従って、フィルムを得るには、上記圧縮成形品としての円柱状の圧縮成形品を常法に従って、切削加工(スカイブ加工)する。   Furthermore, in order to obtain a film in accordance with the present invention, the cylindrical compression molded product as the compression molded product is cut (skived) according to a conventional method.

このようにして、本発明によれば、安定して、体積抵抗率が105〜1010Ω・cm、好ましくは、106〜109Ω・cmを有する圧縮成形品、射出成形品又はフィルムを得ることができる。フィルムの場合には、厚み0.05〜0.6mm、好ましくは、0.08〜0.5mmの半導電超高分子量ポリエチレンフィルムを得ることができる。 Thus, according to the present invention, a compression molded article, injection molded article or film having a volume resistivity of 10 5 to 10 10 Ω · cm, preferably 10 6 to 10 9 Ω · cm, stably. Can be obtained. In the case of a film, a semiconductive ultrahigh molecular weight polyethylene film having a thickness of 0.05 to 0.6 mm, preferably 0.08 to 0.5 mm can be obtained.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例によって何ら限定されるものではない。以下において、得られたフィルムの体積抵抗率は、幅30mm、長さ1mのフィルムの一表面を幅方向に3等分すると共に、長さ方向に3等分して、9個の長方形に区画し、これら9区画において体積抵抗率を測定し、その平均値を記載した。106Ω・cm以下の測定には三菱化学(株)製ロレスターUP(型式MCP−T610)を用い、106Ω・cm以上の測定には三菱化学(株)製ハイレスタ(型式HT−201)を用いた。 Examples The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following, the volume resistivity of the obtained film is divided into nine rectangles by dividing one surface of a 30 mm wide and 1 m long film into three equal parts in the width direction and three equal parts in the length direction. And volume resistivity was measured in these 9 divisions, and the average value was described. Lorester UP (model MCP-T610) manufactured by Mitsubishi Chemical Corporation is used for measurement of 10 6 Ω · cm or less, and Hiresta (model HT-201) manufactured by Mitsubishi Chemical Corporation is used for measurement of 10 6 Ω · cm or more. Was used.

実施例1
超高分子量ポリエチレン(三井化学(株)製ハイゼックスミリオン、重量平均分子量200×104、平均粒子径200μm(標準篩を用いる篩分け法による測定))、以下、同じ。)50Kgに酸化亜鉛(ハクスイテック(株)製23−k、平均粒子径200nm(標準篩を用いる篩分け法による測定))、体積抵抗率200Ω・cm、以下、同じ。)2.5Kg(超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて4.8重量%)を加え、ヘンシェルミキサーを用いて3分間乾式混合した。
Example 1
Ultra high molecular weight polyethylene (Hi-Zex Million manufactured by Mitsui Chemicals, Inc., weight average molecular weight 200 × 10 4 , average particle size 200 μm (measured by a sieving method using a standard sieve)), the same hereinafter. ) Zinc oxide (23-k manufactured by Hakusuitec Co., Ltd., average particle diameter 200 nm (measured by a sieving method using a standard sieve)), volume resistivity 200 Ω · cm, the same applies hereinafter. ) 2.5 kg (4.8 wt% based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide) was added and dry mixed using a Henschel mixer for 3 minutes.

得られた混合物25Kgを内径300mm、深さ400mmの円筒型金型に仕込み、蓋をして密閉した後、金型温度180℃、面圧力25Kgf/cm2にて8時間圧縮成形して、直径300mm、高さ300mmの円柱状成形品を得た。この成形品を旋盤にて切削加工して、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このようにして得られたフィルムの体積抵抗率は5.5×109Ω・cmであった。 The obtained mixture 25 kg was charged into a cylindrical mold having an inner diameter of 300 mm and a depth of 400 mm, sealed with a lid, and then compression molded at a mold temperature of 180 ° C. and a surface pressure of 25 kgf / cm 2 for 8 hours. A cylindrical molded product having a height of 300 mm and a height of 300 mm was obtained. This molded product was cut by a lathe to obtain a film having a width of 30 mm, a thickness of 0.1 mm, and a length of 500 m. The volume resistivity of the film thus obtained was 5.5 × 10 9 Ω · cm.

実施例2
超高分子量ポリエチレン50Kgに対して酸化亜鉛9.0Kg(超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて15.3重量%)を用いた以外は、実施例1と同様にして、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このフィルムの体積抵抗率は8.0×106Ω・cmであった。
Example 2
30 mm in width in the same manner as in Example 1 except that 9.0 kg of zinc oxide (15.3 wt% based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide) was used for 50 kg of ultrahigh molecular weight polyethylene. A film having a thickness of 0.1 mm and a length of 500 m was obtained. The volume resistivity of this film was 8.0 × 10 6 Ω · cm.

実施例3
超高分子量ポリエチレン50Kgに対して酸化亜鉛15Kg(超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて23.1重量%)を用いた以外は、実施例1と同様にして、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このフィルムの体積抵抗率は2.4×105Ω・cmであった。
Example 3
A width of 30 mm and a thickness of 0 were obtained in the same manner as in Example 1 except that 15 kg of zinc oxide (23.1 wt% based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide) was used for 50 kg of ultrahigh molecular weight polyethylene. A film having a length of 1 mm and a length of 500 m was obtained. The volume resistivity of this film was 2.4 × 10 5 Ω · cm.

実施例4
超高分子量ポリエチレン50Kgに酸化亜鉛10Kg(超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて16.7重量%)を加え、ヘンシェルミキサーを用いて3分間乾式混合した。
Example 4
10 kg of zinc oxide (16.7% by weight based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide) was added to 50 kg of ultrahigh molecular weight polyethylene, and dry-mixed for 3 minutes using a Henschel mixer.

得られた混合物を東洋機械(株)製射出成形機180Tに投入し、シリンダー温度200℃、金型温度100℃の条件にて射出成形して、縦横各100mm、厚み0.2mmのシートを得た。このようにして得られたシートの体積抵抗率は1.5×107Ω・cmであった。 The obtained mixture was put into an injection molding machine 180T manufactured by Toyo Kikai Co., Ltd. and injection molded under the conditions of a cylinder temperature of 200 ° C. and a mold temperature of 100 ° C. to obtain a sheet having a length and width of 100 mm and a thickness of 0.2 mm. It was. The volume resistivity of the sheet thus obtained was 1.5 × 10 7 Ω · cm.

比較例1
超高分子量ポリエチレン50Kgに対して酸化亜鉛1.5Kg(超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて2.9重量%)を用いた以外は、実施例1と同様にして、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このフィルムの体積抵抗率は2.4×1011Ω・cmであった。
Comparative Example 1
A width of 30 mm was obtained in the same manner as in Example 1 except that 1.5 kg of zinc oxide (2.9 wt% based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide) was used for 50 kg of ultrahigh molecular weight polyethylene. A film having a thickness of 0.1 mm and a length of 500 m was obtained. The volume resistivity of this film was 2.4 × 10 11 Ω · cm.

比較例2
超高分子量ポリエチレン50Kgに対して酸化亜鉛20Kg(超高分子量ポリエチレンと酸化亜鉛の合計量に基づいて28.6重量%)を用いた以外は、実施例1と同様にして、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このフィルムの体積抵抗率は2.6×104Ω・cmであった。
Comparative Example 2
A width of 30 mm and a thickness of 0 are the same as in Example 1 except that 20 kg of zinc oxide (28.6 wt% based on the total amount of ultrahigh molecular weight polyethylene and zinc oxide) is used for 50 kg of ultrahigh molecular weight polyethylene. A film having a length of 1 mm and a length of 500 m was obtained. The volume resistivity of this film was 2.6 × 10 4 Ω · cm.

実施例5
超高分子量ポリエチレン50Kgに対して酸化チタン(三菱マテリアル電子化成(株)製W−1、平均1次粒子径0.2μm(カタログに記載の値))15Kg(超高分子量ポリエチレンと酸化チタンの合計量に基づいて23.1重量%)を用いた以外は、実施例1と同様にして、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このフィルムの体積抵抗率は1×108Ω・cmであった。同様に、超高分子量ポリエチレン50Kgに対して酸化チタン25Kg(超高分子量ポリエチレンと酸化チタンの合計量に基づいて33.3重量%)を用いた以外は、実施例1と同様にして、体積抵抗率は2×106Ω・cmのフィルムを得た。
Example 5
Titanium oxide (W-1 manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., average primary particle size 0.2 μm (value described in the catalog)) 15 kg (total of ultra high molecular weight polyethylene and titanium oxide) with respect to 50 kg of ultra high molecular weight polyethylene A film having a width of 30 mm, a thickness of 0.1 mm, and a length of 500 m was obtained in the same manner as in Example 1, except that 23.1 wt% was used. The volume resistivity of this film was 1 × 10 8 Ω · cm. Similarly, volume resistance was obtained in the same manner as in Example 1 except that 25 kg of titanium oxide (33.3% by weight based on the total amount of ultrahigh molecular weight polyethylene and titanium oxide) was used for 50 kg of ultrahigh molecular weight polyethylene. A film with a rate of 2 × 10 6 Ω · cm was obtained.

比較例3
超高分子量ポリエチレン50Kgに対して酸化チタン10Kg(超高分子量ポリエチレンと酸化チタンの合計量に基づいて16.7重量%)を用いた以外は、実施例1と同様にして、体積抵抗率8×1011Ω・cmのフィルムを得た。また、同様に、超高分子量ポリエチレン50Kgに対して酸化チタン27.5Kg(超高分子量ポリエチレンと酸化チタンの合計量に基づいて35.5重量%)を用いた以外は、実施例1と同様にして、体積抵抗率は3×104Ω・cmのフィルムを得た。
Comparative Example 3
Volume resistivity 8 × in the same manner as in Example 1 except that 10 kg of titanium oxide (16.7 wt% based on the total amount of ultrahigh molecular weight polyethylene and titanium oxide) was used for 50 kg of ultrahigh molecular weight polyethylene. A film of 10 11 Ω · cm was obtained. Similarly, in the same manner as in Example 1 except that 27.5 kg of titanium oxide (35.5 wt% based on the total amount of ultrahigh molecular weight polyethylene and titanium oxide) was used with respect to 50 kg of ultrahigh molecular weight polyethylene. Thus, a film having a volume resistivity of 3 × 10 4 Ω · cm was obtained.

実施例6
超高分子量ポリエチレン50Kgに対して酸化第二スズ(三菱マテリアル電子化成(株)製S−2000、平均1次粒子径0.03μm(カタログに記載の値))20Kg(超高分子量ポリエチレンと酸化第二スズの合計量に基づいて28.6重量%)を用いた以外は、実施例1と同様にして、幅30mm、厚み0.1mm、長さ500mのフィルムを得た。このフィルムの体積抵抗率は8×107Ω・cmであった。同様に、超高分子量ポリエチレン50Kgに対して酸化第二スズ25Kg(超高分子量ポリエチレンと酸化スズの合計量に基づいて33.3重量%)を用いた以外は、実施例1と同様にして、体積抵抗率は3×105Ω・cmのフィルムを得た。
Example 6
Stannic oxide (S-2000 manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., average primary particle size 0.03 μm (value described in the catalog)) 20 kg (ultra high molecular weight polyethylene and oxidized No. 1) for 50 kg of ultra high molecular weight polyethylene A film having a width of 30 mm, a thickness of 0.1 mm, and a length of 500 m was obtained in the same manner as in Example 1 except that 28.6% by weight based on the total amount of tin was used. The volume resistivity of this film was 8 × 10 7 Ω · cm. Similarly, in the same manner as in Example 1 except that 25 kg of stannic oxide (33.3% by weight based on the total amount of ultrahigh molecular weight polyethylene and tin oxide) was used with respect to 50 kg of ultrahigh molecular weight polyethylene, A film having a volume resistivity of 3 × 10 5 Ω · cm was obtained.

比較例4
超高分子量ポリエチレン50Kgに対して酸化第二スズ20Kg(超高分子量ポリエチレンと酸化スズの合計量に基づいて23.1重量%)を用いた以外は、実施例1と同様にして、体積抵抗率3×1011Ω・cmのフィルムを得た。同様に、超高分子量ポリエチレン50Kgに対して酸化第二スズ30Kg(超高分子量ポリエチレンと酸化スズの合計量に基づいて37.5重量%)を用いて、実施例1と同様にして、円柱状成形品を得た。しかし、この成形品においては、超高分子量ポリエチレンの熱融着が不十分であって、切削加工によってフィルムを得ることができなかった。
Comparative Example 4
Volume resistivity in the same manner as in Example 1 except that 20 kg of stannic oxide (23.1 wt% based on the total amount of ultrahigh molecular weight polyethylene and tin oxide) was used for 50 kg of ultrahigh molecular weight polyethylene. A film of 3 × 10 11 Ω · cm was obtained. Similarly, 30 kg of stannic oxide (37.5% by weight based on the total amount of ultrahigh molecular weight polyethylene and tin oxide) is used in the same manner as in Example 1 with respect to 50 kg of ultrahigh molecular weight polyethylene. A molded product was obtained. However, in this molded product, heat fusion of ultra high molecular weight polyethylene was insufficient, and a film could not be obtained by cutting.

Claims (11)

超高分子量ポリエチレンと導電性粉末の乾式混合物を圧縮成形又は射出成形して得られる105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレン成形品。 A semiconductive ultra high molecular weight polyethylene molded article having a volume resistivity in the range of 10 5 to 10 10 Ω · cm, obtained by compression molding or injection molding a dry mixture of ultra high molecular weight polyethylene and conductive powder. 導電性粉末が導電性金属、導電性金属酸化物及び導電性炭素物質から選ばれる少なくとも1種の粉末である請求項1に記載の半導電性超高分子量ポリエチレン成形品。   The semiconductive ultrahigh molecular weight polyethylene molded article according to claim 1, wherein the conductive powder is at least one powder selected from a conductive metal, a conductive metal oxide, and a conductive carbon substance. 導電性金属酸化物が酸化亜鉛、酸化第二スズ、酸化チタン、酸化第二鉄及び酸化第二銅から選ばれる少なくとも1種の金属酸化物の粉末である請求項2に記載の半導電性超高分子量ポリエチレン成形品。   3. The semiconductive superoxide according to claim 2, wherein the conductive metal oxide is a powder of at least one metal oxide selected from zinc oxide, stannic oxide, titanium oxide, ferric oxide, and cupric oxide. High molecular weight polyethylene molded product. 圧縮成形して得られる成形品がシート、プレート又はロッドである請求項1に記載の半導電性超高分子量ポリエチレン成形品。   The semiconductive ultrahigh molecular weight polyethylene molded product according to claim 1, wherein the molded product obtained by compression molding is a sheet, a plate or a rod. 超高分子量ポリエチレンと導電性粉末の乾式混合物を圧縮成形し、得られた成形品を切削して得られる105〜1010Ω・cmの範囲の体積抵抗率を有する半導電性超高分子量ポリエチレンフィルム。 Semiconductive ultra high molecular weight polyethylene having a volume resistivity in the range of 10 5 to 10 10 Ω · cm obtained by compression molding a dry mixture of ultra high molecular weight polyethylene and conductive powder and cutting the resulting molded product the film. 導電性粉末が導電性金属、導電性金属酸化物及び導電性炭素物質から選ばれる少なくとも1種の粉末である請求項5に記載の半導電性超高分子量ポリエチレンフィルム。   The semiconductive ultrahigh molecular weight polyethylene film according to claim 5, wherein the conductive powder is at least one powder selected from a conductive metal, a conductive metal oxide, and a conductive carbon substance. 導電性金属酸化物が酸化亜鉛、酸化第二スズ、酸化チタン、酸化第二鉄及び酸化第二銅から選ばれる少なくとも1種の金属酸化物の粉末である請求項6に記載の半導電性超高分子量ポリエチレンフィルム。   The semiconductive superconductivity according to claim 6, wherein the conductive metal oxide is a powder of at least one metal oxide selected from zinc oxide, stannic oxide, titanium oxide, ferric oxide and cupric oxide. High molecular weight polyethylene film. 乾式混合物が超高分子量ポリエチレンと4〜25重量%の酸化亜鉛粉末からなるものである請求項7に記載の半導電性超高分子量ポリエチレンフィルム。   The semiconductive ultrahigh molecular weight polyethylene film according to claim 7, wherein the dry mixture is composed of ultrahigh molecular weight polyethylene and 4 to 25% by weight of zinc oxide powder. 乾式混合物が超高分子量ポリエチレンと20〜34重量%の酸化チタン粉末からなるものである請求項7に記載の半導電性超高分子量ポリエチレンフィルム。   The semiconductive ultrahigh molecular weight polyethylene film according to claim 7, wherein the dry mixture is composed of ultrahigh molecular weight polyethylene and 20 to 34% by weight of titanium oxide powder. 乾式混合物が超高分子量ポリエチレンと25〜34重量%の酸化第二スズ粉末からなるものである請求項7に記載の半導電性超高分子量ポリエチレンフィルム。   The semiconductive ultrahigh molecular weight polyethylene film according to claim 7, wherein the dry mixture is composed of ultrahigh molecular weight polyethylene and 25 to 34% by weight of stannic oxide powder. 厚みが0.05〜0.6mmの範囲にある請求項7から10のいずれかに記載の半導電性超高分子量ポリエチレンフィルム。   The semiconductive ultrahigh molecular weight polyethylene film according to any one of claims 7 to 10, wherein the thickness is in a range of 0.05 to 0.6 mm.
JP2009264527A 2008-11-25 2009-11-20 Semiconductive ultra-high molecular weight polyethylene molded article Pending JP2011121992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264527A JP2011121992A (en) 2008-11-25 2009-11-20 Semiconductive ultra-high molecular weight polyethylene molded article

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008299327 2008-11-25
JP2008299327 2008-11-25
JP2009259342 2009-11-12
JP2009259342 2009-11-12
JP2009264527A JP2011121992A (en) 2008-11-25 2009-11-20 Semiconductive ultra-high molecular weight polyethylene molded article

Publications (1)

Publication Number Publication Date
JP2011121992A true JP2011121992A (en) 2011-06-23

Family

ID=44286200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264527A Pending JP2011121992A (en) 2008-11-25 2009-11-20 Semiconductive ultra-high molecular weight polyethylene molded article

Country Status (1)

Country Link
JP (1) JP2011121992A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514673A (en) * 2009-01-09 2012-06-28 テイジン・アラミド・ビー.ブイ. Ultra high molecular weight polyethylene containing refractory particles
JP2015140386A (en) * 2014-01-28 2015-08-03 東ソー株式会社 Ultrahigh molecular weight polyethylene-made compression molded body
JP2015174942A (en) * 2014-03-17 2015-10-05 東ソー株式会社 Ultrahigh-molecular weight polyethylene-made cutting thin film
JP2015174941A (en) * 2014-03-17 2015-10-05 東ソー株式会社 Ultrahigh-molecular weight polyethylene-made cutting molding
JP2016050306A (en) * 2014-08-29 2016-04-11 クオドラントポリペンコジャパン株式会社 Conductive resin composition and resin molded body
CN109438817A (en) * 2018-12-24 2019-03-08 攀枝花钢城集团有限公司 High hardness wear-resisting ultra-high molecular weight polyethylene product and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514673A (en) * 2009-01-09 2012-06-28 テイジン・アラミド・ビー.ブイ. Ultra high molecular weight polyethylene containing refractory particles
JP2015140386A (en) * 2014-01-28 2015-08-03 東ソー株式会社 Ultrahigh molecular weight polyethylene-made compression molded body
JP2015174942A (en) * 2014-03-17 2015-10-05 東ソー株式会社 Ultrahigh-molecular weight polyethylene-made cutting thin film
JP2015174941A (en) * 2014-03-17 2015-10-05 東ソー株式会社 Ultrahigh-molecular weight polyethylene-made cutting molding
JP2016050306A (en) * 2014-08-29 2016-04-11 クオドラントポリペンコジャパン株式会社 Conductive resin composition and resin molded body
CN109438817A (en) * 2018-12-24 2019-03-08 攀枝花钢城集团有限公司 High hardness wear-resisting ultra-high molecular weight polyethylene product and preparation method thereof
CN109438817B (en) * 2018-12-24 2021-10-15 攀枝花钢城集团有限公司 High-hardness wear-resistant ultra-high molecular weight polyethylene product and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2011121992A (en) Semiconductive ultra-high molecular weight polyethylene molded article
US9583230B2 (en) Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing, and sliding sheet
JP2017095694A (en) Three phase immiscible polymer-metal blends for high conductivity composites
JP6386114B2 (en) Method for producing conductive resin composition
HUE030291T2 (en) Masterbatches for preparing a composite materials with enhanced conductivity properties, process and composite materials produced
Kumar et al. Mechanical properties of modified biofiller‐polypropylene composites
CA2361434A1 (en) Electrically conductive compositions and methods for producing same
KR20100014903A (en) Fluororesin composition
JP2020185771A (en) Thermoplastic resin powder, resin powder for solid molding, manufacturing apparatus of solid molding, and manufacturing method of solid molding
US9346936B2 (en) Fluororesin composition and its molded product
JP6570172B2 (en) Conductive resin composition and resin molded body
Alghamdi et al. Creep resistance of novel polyethylene/carbon black nanocomposites
JP2008138134A (en) Semiconductive ultra-high-molecular-weight polyethylene composition, film composed thereof and its manufacturing method
KR101583596B1 (en) Manufacturing method of the antistatic pellet and manufacturing method of antistatic thermoplastic resin composite
Wu et al. Highly electrically conductive and injection moldable polymeric composites
JP2018080292A (en) Resin composition
WO2014203532A1 (en) Recycled resin and method of manufacturing the same
Mahyoedin et al. Effect of graphite sizes and carbon black content on flowability of the injection molded conductive composite material
JPWO2019181828A1 (en) Conductive resin composition and method for producing the same
JP4429706B2 (en) Conductive thermoplastic resin composition and molded article using the same
JP5052146B2 (en) Polyarylene thioether semiconductive film, charge control member formed from the film, endless belt, and transfer belt for image forming apparatus using the endless belt
Todorova et al. Investigation of conductivity characteristics of nitrile butadiene rubber vulcanizates filled with semiconducting carbide ceramic
KR101908613B1 (en) Functional masterbatch composition for photo-degradable plastic, the masterbatch and manufacturing method of thesame
WO2006080531A1 (en) Composition for processing aid
JP2018059004A (en) Vinyl chloride-based resin composition and extrusion molding for window frame