JP2011121032A - Sorting apparatus, sorting method, and soil purification equipment - Google Patents

Sorting apparatus, sorting method, and soil purification equipment Download PDF

Info

Publication number
JP2011121032A
JP2011121032A JP2009282857A JP2009282857A JP2011121032A JP 2011121032 A JP2011121032 A JP 2011121032A JP 2009282857 A JP2009282857 A JP 2009282857A JP 2009282857 A JP2009282857 A JP 2009282857A JP 2011121032 A JP2011121032 A JP 2011121032A
Authority
JP
Japan
Prior art keywords
bed
soil
particles
fluid
sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009282857A
Other languages
Japanese (ja)
Inventor
Akiko Kitagawa
明子 北川
Masakatsu Kin
雅克 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009282857A priority Critical patent/JP2011121032A/en
Publication of JP2011121032A publication Critical patent/JP2011121032A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately sort soil and heavy metals. <P>SOLUTION: This sorting apparatus is constituted so as to sort heavy metals from heavy metal-containing soil by utilizing sedimentation rate difference and includes a water tank 1, a bed screen 2 provided so as to be immersed in the water of the water tank 1, a bed 5 provided so as to be immersed in the water of the water tank 1, formed so that bed particles having a particle size larger than the mesh size of the bed screen 2 are provided on the bed screen 2 in a layered state and receiving the supply of the heavy metal-containing soil 6 on the upper side thereof, a water supply valve 8 for supplying water to the water thank 1, a separated soil discharge port 14 for discharging the water in the water tank 1 and the soil on the bed 5 and a diaphragm 10 for shaking the bed 5 on the soil 6 on the bed 5. The bed 5 is constituted of the bed particles having a specific gravity between the specific gravities of both of the particles of the soil 6 and the particles of the heavy metals and higher than the particles of the soil 6 and lower than the particles of the heavy metals with respect to a sedimentation rate prescribed by specific gravity and a particle size. The heavy metals in the soil 6 are sorted by passing the soil 6 through the bed 5 and the bed screen 2 to sediment the heavy metals in the water tank 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛、カドミウム、クロム等の重金属で汚染された土壌から沈降速度差を利用して重金属を選別する選別装置、選別方法及び土壌浄化設備に関する。   The present invention relates to a sorting apparatus, a sorting method, and a soil purification facility that sort heavy metals from soil contaminated with heavy metals such as lead, cadmium, and chromium by using a sedimentation speed difference.

近年の産業活動により、市街地や工場跡地における油分、有機溶剤、重金属等による土壌や地下水の汚染が顕在化してきており、土地や地下水の利用に支障をきたし社会問題となっている。
現在、このような汚染に対して、各種の浄化対策が行われており、特に重金属汚染土壌の対策としては、不溶化処理による方法が従来から多用されてきた。しかし、原土に重金属が残留するこの種の方法を用いて土地の再利用を図る場合には、法改正によって制限を受けることとなり、今後制限を受けずに土地を再利用するためには、汚染土壌から重金属を分離させて除去することが求められる。
Due to recent industrial activities, contamination of soil and groundwater due to oil, organic solvents, heavy metals, etc. in urban areas and factory sites has become apparent, which has become a social problem that has hindered the use of land and groundwater.
At present, various purification measures are being taken against such pollution, and in particular, as a countermeasure for heavy metal-contaminated soil, a method using insolubilization treatment has been frequently used. However, when reusing land using this kind of method, in which heavy metals remain on the raw soil, it is subject to restrictions due to legal revisions, and in order to reuse land without any restrictions in the future, It is required to separate and remove heavy metals from contaminated soil.

このように汚染土壌から重金属を分離させる技術としては、特許文献1,2に記載されているような土壌と重金属の沈降速度差を利用して汚染土壌から重金属を分離させるものが知られている。
特許文献1には、水槽にスクリーンプレートを配置し、その上方を、投入される汚染土壌から重金属を分離するための分離室とすると共に、スクリーンプレートの下方に気室を設け、さらにこの気室に空気を送排気することによってスクリーンプレート上の水と汚染土壌を揺動し、比重差による沈降速度差によって土壌と重金属を層状に分離する装置が記載されている。
また、特許文献2には、鉛と砂を含む液体を鉛分離槽に流入して上昇流を生じさせ、上昇流の上昇速度を鉛の沈降速度より小さく、砂の沈降速度以上となるようにし、鉛と砂の比重差によって生じる沈降速度差を利用することで双方を分離する装置が記載されている。
As a technique for separating heavy metals from contaminated soil in this way, there is known a technique for separating heavy metals from contaminated soil using the difference in sedimentation speed between soil and heavy metals as described in Patent Documents 1 and 2. .
In Patent Document 1, a screen plate is disposed in a water tank, and an upper portion thereof is used as a separation chamber for separating heavy metal from the contaminated soil to be introduced, and an air chamber is provided below the screen plate. Describes an apparatus that swings water on a screen plate and contaminated soil by sending and exhausting air, and separates the soil and heavy metal into layers by a difference in sedimentation speed due to a difference in specific gravity.
Further, in Patent Document 2, a liquid containing lead and sand flows into a lead separation tank to generate an upward flow, and the upward flow rising speed is smaller than the lead sedimentation speed and equal to or higher than the sand sedimentation speed. A device is described that separates both by utilizing the difference in sedimentation velocity caused by the difference in specific gravity between lead and sand.

特開2003−39060号公報JP 2003-39060 A 特開2004−216204号公報JP 2004-216204 A

ところで、沈降速度差を利用して土壌と重金属とを分離する技術を用いることにより、省エネルギーで処理ができ、しかも乾式処理においては不可欠である発塵による環境汚染への対策が不要となるという効果が得られる。
しかしながら、流体中の固形物の沈降速度は、固形物の粒径が大きい場合に速く、粒径が小さい場合に遅くなる傾向があるため、土壌の粒径を考慮せずに単に土壌と重金属の比重差だけを用いている特許文献1,2の装置では、土壌と重金属を正確に選別することは困難である。
即ち、特許文献1の装置では、沈降速度の遅い小粒径の重金属が土壌の上層に沈積して土壌と重金属との境界が曖昧になり、それぞれの分離産物に相互混入する虞がある。また、特許文献2の装置では、大粒径の土壌を上部に排出しようとすると小粒径の鉛が共に排出されることになり、清浄土壌に鉛が混入する虞がある。
そのため、土壌と重金属の沈降速度差を利用しつつ、土壌と重金属を正確に選別することができる技術が求められている。
By the way, by using the technology to separate soil and heavy metals using the difference in sedimentation rate, it is possible to save energy and eliminate the need for measures against environmental pollution caused by dusting, which is essential in dry processing. Is obtained.
However, the sedimentation rate of solids in the fluid tends to be fast when the particle size of the solids is large and slow when the particle size is small. In the devices of Patent Documents 1 and 2 that use only the specific gravity difference, it is difficult to accurately select soil and heavy metals.
That is, in the apparatus of Patent Document 1, a heavy metal having a small particle size with a slow sedimentation rate is deposited on the upper layer of the soil, the boundary between the soil and the heavy metal becomes ambiguous, and there is a possibility that the separated products are mixed with each other. Moreover, in the apparatus of patent document 2, if it is going to discharge | emit large particle | grains of soil to upper part, lead with small particle size will be discharged | emitted together and there exists a possibility that lead may mix in clean soil.
Therefore, there is a need for a technique that can accurately select soil and heavy metal while utilizing the difference in sedimentation speed between soil and heavy metal.

本発明は、上記課題に鑑み提案するものであって、省エネルギー処理できる、発塵による環境汚染対策が不要である等の有利性を有し、加えて双方の沈降速度差を利用して土壌と重金属とを正確に選別することができる選別装置、選別方法及び土壌浄化設備を提供することを目的とする。   The present invention is proposed in view of the above-described problems, and has advantages such as energy saving treatment, no need for countermeasures against environmental pollution due to dust generation, and in addition, using the difference in sedimentation speed between the soil and It is an object of the present invention to provide a sorting device, a sorting method, and a soil purification facility that can accurately sort heavy metals.

本発明の選別装置は、重金属を含有する土壌から沈降速度差を利用して重金属を選別する選別装置であって、流体槽と、前記流体槽の流体中に没して設けられるベッドスクリーンと、前記流体槽の流体中に没して設けられ、前記ベッドスクリーンの網目より粒径の大きいベッド粒子が前記ベッドスクリーン上に層状に設けられると共に、重金属を含有する土壌が上側に供給されるベッドと、前記流体槽に流体を供給する流体供給部と、前記流体槽中の流体及び前記ベッド上の土壌を排出する排出口と、前記ベッド及び前記ベッド上の前記土壌を揺動する揺動部とを備え、前記土壌の粒子と前記重金属の粒子の中間の比重を有し、比重と粒径で規定される沈降速度について、前記土壌の粒子より速く且つ前記重金属の粒子より遅いベッド粒子で前記ベッドを構成し、前記土壌中の重金属を前記ベッド及び前記ベッドスクリーンを通過させ前記流体槽内に沈降させることにより選別することを特徴とする。前記流体は、水など本発明の趣旨の範囲内で適宜である。
前記構成では、比重と粒径で規定される沈降速度について土壌粒子より速く且つ重金属粒子より遅いベッド粒子を設けることにより、正確に沈降速度差を利用して土壌と重金属を選別することができる。また、ベッド粒子のベッドによって土壌中の固体重金属の多寡に関わらず土壌と重金属を明確に分離し、相互混入を防止することができる。従って、省エネルギーで処理できる、発塵による環境汚染対策が不要である等の有利性を有する土壌と重金属を利用する土壌と重金属の選別において、土壌と重金属を正確に選別することができる。また、ベッド粒子が土壌粒子と重金属粒子の中間の比重を有することから、ベッドスクリーン上にベッド粒子をより安定して層状に設けることができる。
The sorting device of the present invention is a sorting device that sorts heavy metals from soil containing heavy metals using a difference in sedimentation speed, a fluid tank, and a bed screen provided to be immersed in the fluid of the fluid tank, Beds that are immersed in the fluid of the fluid tank, and bed particles having a particle size larger than the mesh of the bed screen are provided in layers on the bed screen, and soil containing heavy metal is supplied to the upper side. A fluid supply section for supplying fluid to the fluid tank; a discharge port for discharging the fluid in the fluid tank and the soil on the bed; and a swinging section for swinging the soil on the bed and the bed. A bed particle having a specific gravity intermediate between the particles of the soil and the particles of the heavy metal, and having a sedimentation rate defined by the specific gravity and the particle size that is faster than the particles of the soil and slower than the particles of the heavy metal. Configure the serial bed, characterized by sorting by precipitating the heavy metal of the soil to the bed and the fluid tank is passed through the bed screen. The fluid is appropriate within the scope of the present invention, such as water.
In the above configuration, by providing bed particles that are faster than the soil particles and slower than the heavy metal particles with respect to the sedimentation rate defined by the specific gravity and the particle size, it is possible to accurately select the soil and the heavy metal using the difference in the sedimentation rate. In addition, the bed of bed particles can clearly separate soil and heavy metal regardless of the amount of solid heavy metal in the soil, thereby preventing mutual contamination. Therefore, soil and heavy metal can be accurately selected in the selection of soil and heavy metal using soil and heavy metal, which can be processed with energy saving and have no advantage of environmental pollution countermeasures due to dust generation. Further, since the bed particles have an intermediate specific gravity between the soil particles and the heavy metal particles, the bed particles can be more stably provided in layers on the bed screen.

また、本発明の選別装置は、前記ベッド粒子を球状粒子とすることを特徴とする。
前記構成により、重金属をよりスムーズに沈降させることができ、重金属をより正確に選別することができる。
The sorting apparatus of the present invention is characterized in that the bed particles are spherical particles.
By the said structure, a heavy metal can be settled more smoothly and a heavy metal can be more correctly selected.

また、本発明の選別装置は、前記ベッドスクリーンの下側から上側に向かって前記流体を流すと共に、前記揺動部を、前記流体に振動を加えて前記ベッド及び前記土壌を揺動するものとすることを特徴とする。
前記構成により、例えばベッドスクリーンを振動させる機構等を用いずに、水流を利用してベッド及びその上の土壌を揺動することができる。
Further, the sorting device of the present invention is configured to flow the fluid from the lower side to the upper side of the bed screen and swing the bed and the soil by applying vibration to the fluid. It is characterized by doing.
With the above-described configuration, for example, the bed and the soil thereon can be swung using a water flow without using a mechanism for vibrating the bed screen.

また、本発明の選別装置は、前記ベッドスクリーンの近傍で且つ前記排出口の近傍に設けられる開閉可能なゲートと、前記ベッドスクリーンの近傍で且つ前記ゲートの近傍に設けられるサイトグラス若しくは残留金属検出部とを備え、前記サイトグラスからの目視若しくは前記残留金属検出部の検出により、前記ベッドスクリーン上に滞留する重金属が所定量に達した際に、前記ゲートを開放して排出し、前記滞留する重金属を前記流体槽内に沈降させることを特徴とする。
前記構成により、例えば土壌に混入している重金属が変形してベッドスクリーン下に排出されずにベッドスクリーン上に滞留した場合や、ベッドスクリーンの網目の目開きとベッド粒子、土壌粒子、重金属粒子の整合が十分でなく、僅かな粒径範囲の重金属がベッドスクリーン上に滞留した場合等、ベッドスクリーン上に重金属が滞留した場合に、滞留する重金属をゲートを介して流体槽内に排出し、ベッドスクリーン上に重金属が堆積することを防止することができる。
The screening apparatus according to the present invention includes an openable / closable gate provided in the vicinity of the bed screen and in the vicinity of the discharge port, and a sight glass or residual metal detection provided in the vicinity of the bed screen and in the vicinity of the gate. And when the heavy metal staying on the bed screen reaches a predetermined amount by visual inspection from the sight glass or detection by the residual metal detection part, the gate is opened and discharged to stay. A heavy metal is allowed to settle in the fluid tank.
For example, when the heavy metal mixed in the soil is deformed and stays on the bed screen without being discharged under the bed screen, the mesh of the bed screen and the bed particles, soil particles, heavy metal particles When heavy metal stays on the bed screen, such as when the heavy metal stays on the bed screen, such as when the alignment is not sufficient and the small particle size range stays on the bed screen, the staying heavy metal is discharged into the fluid tank through the gate. It is possible to prevent heavy metals from being deposited on the screen.

また、本発明の選別方法は、重金属を含有する土壌から重金属を沈降速度差を利用して選別する選別方法であって、流体槽の流体中で、ベッドスクリーンの網目より粒径が大きく且つ比重と粒径で規定される沈降速度について前記土壌の粒子より速く且つ前記重金属の粒子より遅いベッド粒子が前記ベッドスクリーン上に層状に設けられるベッド上に、重金属を含有する土壌を供給する第1工程と、前記流体槽に流体を供給し且つ前記ベッド及び前記土壌を揺動して、前記土壌中の重金属を前記ベッド及び前記ベッドスクリーンを通過させ前記流体槽内に沈降させる共に、前記流体の流れで前記ベッド上の土壌を排出する第2工程とを備えることを特徴とする。
前記構成では、比重と粒径で規定される沈降速度について土壌粒子より速く且つ重金属粒子より遅いベッド粒子を設けることにより、正確に沈降速度差を利用して土壌と重金属を選別することができる。また、ベッド粒子のベッドで土壌中の固体重金属の多寡に関わらず土壌と重金属を明確に分離し、相互混入を防止することができる。従って、省エネルギーで処理できる、発塵による環境汚染対策が不要である等の有利性を有する土壌と重金属を利用する土壌と重金属の選別において、土壌と重金属を正確に選別することができる。
The sorting method of the present invention is a sorting method for sorting heavy metals from soil containing heavy metals using the difference in sedimentation speed, and has a particle size larger than the mesh of the bed screen and has a specific gravity in the fluid of the fluid tank. A first step of supplying soil containing heavy metal on a bed in which bed particles that are faster than the particles of the soil and slower than the particles of the heavy metal are provided in layers on the bed screen with respect to the sedimentation rate defined by the particle size A fluid is supplied to the fluid tank and the bed and the soil are swung so that the heavy metal in the soil passes through the bed and the bed screen and settles in the fluid tank, and the flow of the fluid And a second step of discharging the soil on the bed.
In the above configuration, by providing bed particles that are faster than the soil particles and slower than the heavy metal particles with respect to the sedimentation rate defined by the specific gravity and the particle size, it is possible to accurately select the soil and the heavy metal using the difference in the sedimentation rate. Moreover, regardless of the amount of solid heavy metals in the soil, the bed and particles can clearly separate the soil and heavy metals and prevent mutual contamination. Therefore, soil and heavy metal can be accurately selected in the selection of soil and heavy metal using soil and heavy metal, which can be processed with energy saving and have no advantage of environmental pollution countermeasures due to dust generation.

また、本発明の選別方法は、前記第2工程において、前記ベッドスクリーンの下側から上側に向かって前記流体を流すと共に、前記流体に振動を加えて前記ベッド及び前記土壌を揺動することを特徴とする。
前記構成により、例えばベッドスクリーンを振動させる機構等を用いずに、水流を利用してベッド及びその上の土壌を揺動することができる。
In the second method, in the second step, the fluid is caused to flow from the lower side to the upper side of the bed screen, and the bed and the soil are shaken by applying vibration to the fluid. Features.
With the above-described configuration, for example, the bed and the soil thereon can be swung using a water flow without using a mechanism for vibrating the bed screen.

また、本発明の土壌浄化設備は、重金属を含有する土壌を2段湿式振動篩等の第1の分級部で粗粒と中粒と細粒に分級し、前記中粒に対して本発明によるの中粒用の選別装置を用いて重金属を選別すると共に、前記細粒を湿式振動篩等の第2の分級部で更に分級した細粒に対して本発明による細粒用の選別装置を用いて重金属を選別することを特徴とする。
前記構成では、選別装置の前工程に、分級する粒径範囲や沈降速度が予め選別装置と整合する分級部を設けることで、選別工程での選別量の減量化や草木による選別効率の低下を防止し、選別装置や土壌浄化設備の効率性の向上を図ることができる。
Moreover, the soil purification equipment of the present invention classifies soil containing heavy metals into coarse grains, medium grains, and fine grains in a first classifying section such as a two-stage wet vibrating sieve, and according to the present invention for the medium grains. The heavy metal is sorted using a sorting apparatus for medium grains, and the fine grain sorting apparatus according to the present invention is used for the fine grains obtained by further classifying the fine grains with a second classification section such as a wet vibration sieve. And selecting heavy metals.
In the above-described configuration, by providing a classification unit in which the particle size range to be classified and the sedimentation speed are matched in advance with the sorting device in the previous process of the sorting device, the sorting amount in the sorting process can be reduced and the sorting efficiency by the plants can be reduced. And improve the efficiency of the sorting device and soil purification equipment.

本発明により、省エネルギー処理できる、発塵による環境汚染対策が不要である等の有利性を有する土壌と重金属の沈降速度差を利用する土壌と重金属の選別において、土壌と重金属を正確に選別することができる。   According to the present invention, the soil and heavy metal can be accurately selected in the selection of soil and heavy metal using the difference in sedimentation speed between the soil and heavy metal, which has advantages such as energy saving treatment and no need for countermeasures against environmental pollution due to dust generation. Can do.

本発明による実施形態の選別装置の構成を示す縦断正面図。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal front view showing a configuration of a sorting device according to an embodiment of the present invention. 本発明による実施形態の選別装置の構成を示す縦断側面図。The longitudinal section side view showing the composition of the sorting device of the embodiment by the present invention. 実施形態の選別装置を備える土壌浄化設備の浄化処理工程を示すフローチャート。The flowchart which shows the purification process process of a soil purification facility provided with the screening device of embodiment. ベッド粒子の粒径と土壌粒子の粒径の関係の模式的に示す模式図。The schematic diagram which shows typically the relationship between the particle size of a bed particle, and the particle size of a soil particle. ベッド粒子の粒径と土壌粒子の粒径の関係の模式的に示す部分模式図。The partial schematic diagram which shows typically the relationship between the particle size of a bed particle and the particle size of a soil particle.

[実施形態の選別装置]
以下、本発明の実施形態について図に基づいて説明する。図1は実施形態の選別装置の構成を示す縦断正面図、図2は実施形態の選別装置の構成を示す縦断側面図である。
[Sorting Device of Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal front view showing the configuration of the sorting apparatus of the embodiment, and FIG. 2 is a longitudinal side view showing the configuration of the sorting apparatus of the embodiment.

本実施形態の選別装置は、重金属を含有する土壌から重金属を沈降速度差を利用して選別するものであり、図1及び図2に示すように、その下部が略円錐状等の錘状であり、選別用水が貯留される流体槽である水槽1を有する。水槽1で上側に突出している突出部1aには多数の網目を有するベッドスクリーン2が略水平に配置され、突出部1aに貯留されている水の水面3から離間した水中に没して設置されている。ベッドスクリーン2の上側は土壌と重金属を選別する選別室4となっており、ベッドスクリーン2の網目の目開きは土壌6層中の重金属の最大粒径より大きく設定されている。ベッドスクリーン2上には、ベッドスクリーン2の網目の目開きより大径であるベッド粒子が層状に敷設され、水面3から離間した水中に没してベッド5層が構成されている。ベッド5層上には、汚染され重金属を含有する土壌6が図2の上部左側に位置する汚染土壌供給口7から供給され、水面3から離間した水中に設けられる。   The sorting apparatus according to the present embodiment sorts heavy metals from soil containing heavy metals using a difference in sedimentation speed, and as shown in FIGS. 1 and 2, the lower part thereof has a weight shape such as a substantially conical shape. There is a water tank 1 which is a fluid tank in which sorting water is stored. A bed screen 2 having a large number of meshes is arranged substantially horizontally on the protruding portion 1a protruding upward in the water tank 1, and is immersed in water separated from the water surface 3 of the water stored in the protruding portion 1a. ing. The upper side of the bed screen 2 is a sorting chamber 4 for sorting soil and heavy metals, and the mesh opening of the bed screen 2 is set larger than the maximum particle size of heavy metals in the six layers of soil. On the bed screen 2, bed particles having a diameter larger than the mesh opening of the bed screen 2 are laid in layers, and are immersed in water separated from the water surface 3 to form five beds. On the bed 5 layer, the contaminated soil 6 containing heavy metal is supplied from the contaminated soil supply port 7 located on the upper left side of FIG. 2 and provided in the water separated from the water surface 3.

ここで、ベッド5を構成するベッド粒子について詳細に述べると、ベッド粒子は、上述のベッドスクリーン2の網目より粒子径が大径であること、土壌粒子と重金属粒子の中間比重を有することに加え、沈降速度が土壌粒子より大きく重金属粒子より小さい粒子径であることの条件を充足するものであり、好適には球状粒子とすることが好ましい。   Here, the bed particles constituting the bed 5 will be described in detail. The bed particles have a particle diameter larger than the mesh of the bed screen 2 described above and an intermediate specific gravity between soil particles and heavy metal particles. In order to satisfy the condition that the sedimentation rate is larger than the soil particles and smaller than the heavy metal particles, it is preferable to use spherical particles.

前記条件の粒子の沈降速度に関し、Re:レイノルズ数、μ:流体粘性係数(Pa・s)、V:沈降速度(終末速度m/s)、D:粒径(m)、ρf:流体密度(kg/m3)、ρs:粒子密度(kg/m3)、CR:抵抗係数とすると、レイノルズ数Reは下記式(1)で示される。
Re=VDρf/μ …(1)
そして、抵抗係数は下記式(2)、(3)、沈降速度は下記式(4)で示され、上記ベッド粒子の沈降速度の条件は下記式(4)を充足するものとなる。
CR=24/Re Re<1 …(2)
CR=(0.55+4.8/√Re) 1<Re<104 …(3)
V=(4gD(ρs−ρf)/3ρfCR)1/2 …(4)
Regarding the sedimentation velocity of the particles under the above conditions, Re: Reynolds number, μ: fluid viscosity coefficient (Pa · s), V: sedimentation velocity (terminal velocity m / s), D: particle size (m), ρf: fluid density ( kg / m3), ρs: particle density (kg / m3), CR: resistance coefficient, Reynolds number Re is expressed by the following formula (1).
Re = VDρf / μ (1)
The resistance coefficient is represented by the following formulas (2) and (3), the sedimentation speed is represented by the following formula (4), and the conditions for the sedimentation speed of the bed particles satisfy the following formula (4).
CR = 24 / Re Re <1 (2)
CR = (0.55 + 4.8 / √Re) 1 <Re <104 (3)
V = (4 gD (ρs−ρf) / 3ρfCR) 1/2 (4)

例えば重金属を鉛、ベッド粒子をアルミ球またはアルミナ球、流体を水とすると各緒元は、水の粒子密度:ρf=1000、水の流体粘性係数:μ=0.001、土壌の粒子密度:ρs=2600、鉛の粒子密度:ρs=11300、アルミの粒子密度:ρs=2700、アルミナの粒子密度:ρs=3600となる。実際の沈降速度は粒子の流体中の揺動や静止中の粒子間の粗密度合によって計算値より遅くなるが、単一の夫々の粒径について沈降速度を(4)式で計算すると表1のようになる。下記表1により、必要な粒子径のベッド粒子を用いることが可能である。   For example, if the heavy metal is lead, the bed particles are aluminum spheres or alumina spheres, and the fluid is water, the specifications are as follows: water particle density: ρf = 1000, water fluid viscosity coefficient: μ = 0.001, soil particle density: ρs = 2600, lead particle density: ρs = 1300, aluminum particle density: ρs = 2700, alumina particle density: ρs = 3600. The actual settling velocity is slower than the calculated value due to the fluctuation of the particles in the fluid and the coarse density between the particles at rest. Table 1 shows the settling velocity calculated for each single particle size by equation (4). become that way. According to Table 1 below, it is possible to use bed particles having a required particle size.

Figure 2011121032
Figure 2011121032

なお、図4、図5はベッド粒子の粒径と土壌粒子の粒径の関係を模式的に表したもので、大径の円がベッド粒子5a、小径の円が土壌粒子6aを表している。
図4は水流によって上昇したベッド粒子5a及び土壌粒子6aが沈降速度の差によって下降し、ベッド粒子5aより重く沈降速度の速い重金属の粒子がベッド粒子5aの間に保持された状態を示す。この粒子は断続水流によってベッド5及び土壌6を揺動する度に下部に移動し、最終的にはベッドスクリーン2からハッチに排出される。
図5は土壌粒子6aの粒子径とベッド粒子5aの粒子径の関係式を表したもので、土壌粒子6aの粒子径(半径)rはベッド粒子5aの粒子径(半径)r0の0.15倍となるが、実際の装置ではベッド5の層圧を適当に選定し、0.3倍程度に設定される。
4 and 5 schematically show the relationship between the particle size of the bed particles and the particle size of the soil particles. The large-diameter circle represents the bed particle 5a and the small-diameter circle represents the soil particle 6a. .
FIG. 4 shows a state in which the bed particles 5a and the soil particles 6a that have risen due to the water flow descend due to the difference in sedimentation speed, and the heavy metal particles that are heavier than the bed particles 5a and have a fast sedimentation speed are held between the bed particles 5a. The particles move to the lower portion every time the bed 5 and the soil 6 are swung by the intermittent water flow, and are finally discharged from the bed screen 2 to the hatch.
FIG. 5 shows a relational expression between the particle diameter of the soil particle 6a and the particle diameter of the bed particle 5a. The particle diameter (radius) r of the soil particle 6a is 0.15 times the particle diameter (radius) r0 of the bed particle 5a. However, in the actual apparatus, the bed pressure of the bed 5 is appropriately selected and set to about 0.3 times.

また、選別装置では、水槽1には流体供給部である給水弁8が設けられ、給水弁8を介して水槽1内に給水を常時または間欠的に供給するようになっている。また、水槽1の突出部1aが設けられている箇所以外の箇所に、駆動シャフト9で昇降可能に揺動部であるダイヤフラム10が設けられている。図示省略する駆動源で駆動シャフト9を介してダイヤフラム10を往復運動すると、ダイヤフラム10に接触して振動を加えられる水槽1内の水が図示太線の2点鎖線矢印方向に揺動し、その揺動する水が選別室4のベッドスクリーン2の網目を通してベッド5及び土壌6を揺動するようになっている。   In the sorting apparatus, the water tank 1 is provided with a water supply valve 8 that is a fluid supply unit, and the water supply is supplied into the water tank 1 through the water supply valve 8 constantly or intermittently. Further, a diaphragm 10 that is a swinging portion is provided at a place other than the place where the protruding portion 1 a of the water tank 1 is provided so that the drive shaft 9 can be moved up and down. When the diaphragm 10 is reciprocated through the drive shaft 9 by a drive source (not shown), the water in the water tank 1 that is subjected to vibration by being in contact with the diaphragm 10 is swung in the direction indicated by the two-dot chain line in the figure. The moving water swings the bed 5 and the soil 6 through the mesh of the bed screen 2 of the sorting chamber 4.

水槽1の底部には、その底部に堆積する分離重金属11を装置外に排出する排出弁12が設けられており、水槽1の下端近傍には、水槽1の下端に堆積した重金属が一定量になったことを検出する検出器13が設けられている。   A drain valve 12 is provided at the bottom of the water tank 1 to discharge the separated heavy metal 11 deposited on the bottom to the outside of the apparatus, and in the vicinity of the lower end of the water tank 1, the amount of heavy metal deposited on the lower end of the water tank 1 is constant. A detector 13 is provided for detecting the occurrence of the failure.

図2の上部右側には、水槽1から水と共に清浄土壌を排出するための分離土壌排出口14が形成され、分離土壌排出口14は層状の土壌6の高さに対応する或いは層状の土壌6の上部に対応する高さに形成されている。16は分離土壌排出口から排出された土壌6を更に搬送して排出するための分離土壌排出路である。また、ベッドスクリーン2の近傍で且つ分離土壌排出口14の近傍である分離土壌排出口14の下側には、ベッドスクリーン2上に残留した重金属を水槽1内に排出するための開閉可能なゲート15が設けられている。ゲート15の開閉では、ベッドスクリーン2の近傍でゲート15の近傍にベッドスクリーン2上の状態を目視観察するためのサイトグラス17を設け、サイトグラス17による観察結果に応じてゲート15を開閉する構成、或いはゲート15とベッドスクリーン2の近傍に残留する重金属を検出する残留金属検出器18を設け、残留金属検出器18の検出結果に連動させてゲート12を開閉する構成とする。   In the upper right side of FIG. 2, a separated soil discharge port 14 for discharging clean soil together with water from the aquarium 1 is formed. The separated soil discharge port 14 corresponds to the height of the layered soil 6 or the layered soil 6. It is formed in the height corresponding to the upper part of. Reference numeral 16 denotes a separated soil discharge path for further conveying and discharging the soil 6 discharged from the separated soil discharge port. In addition, a gate that can be opened and closed for discharging heavy metal remaining on the bed screen 2 into the aquarium 1 is disposed below the separated soil outlet 14 in the vicinity of the bed screen 2 and in the vicinity of the separated soil outlet 14. 15 is provided. In the opening and closing of the gate 15, a sight glass 17 for visually observing the state on the bed screen 2 is provided near the bed screen 2 in the vicinity of the bed screen 2, and the gate 15 is opened and closed according to the observation result by the sight glass 17. Alternatively, a residual metal detector 18 that detects heavy metal remaining in the vicinity of the gate 15 and the bed screen 2 is provided, and the gate 12 is opened and closed in conjunction with the detection result of the residual metal detector 18.

本実施形態の選別装置の動作について説明する。先ず、図示省略する汚染土壌供給手段により汚染土壌供給口7から選別室4に於けるベッド5の上に、鉛散弾で汚染された土壌など重金属で汚染された土壌6を供給する。他方において、図示省略する制御プラグラムに従って動作する制御部の制御により、給水弁8を連続的または間欠的に開放して水槽1内に連続的または間欠的に給水し、駆動シャフト9を介してダイヤフラム10を往復運動して振動を加え、これにより水槽1内の水を図示の太線二点鎖線の矢印方向に揺動する。この水の揺動は、選別室4のベッドスクリーン2の網目を通してベッド5とその上の土壌6を揺動する。また、給水された水はベッドスクリーン2の下側から上側に向かって流れて分離土壌排出口14からオーバーフローするように流れ、供給された土壌6は水流と水の揺動により、図2の左側の汚染土壌供給口7から図2の右側の分離土壌排出口14に向かって移動する。   The operation of the sorting apparatus of this embodiment will be described. First, soil 6 contaminated with heavy metals such as soil contaminated with lead shot is supplied from the contaminated soil supply port 7 to the bed 5 in the sorting chamber 4 by the contaminated soil supply means (not shown). On the other hand, the water supply valve 8 is continuously or intermittently opened by the control of a control unit that operates according to a control program (not shown), and water is continuously or intermittently supplied into the water tank 1. 10 is reciprocated to add vibration, and thereby the water in the water tank 1 is swung in the direction of the arrow of the thick two-dot chain line shown in the figure. This rocking of the water rocks the bed 5 and the soil 6 above it through the mesh of the bed screen 2 of the sorting chamber 4. Further, the supplied water flows from the lower side to the upper side of the bed screen 2 and flows so as to overflow from the separated soil discharge port 14, and the supplied soil 6 is left-hand side of FIG. From the contaminated soil supply port 7 toward the separated soil discharge port 14 on the right side of FIG.

給水しながら連続的に水を揺動すると、土壌6中の重金属は、漸次土壌6と共に分離土壌排出口14に移動しながら土壌粒子と重金属粒子の沈降速度差によって土壌6中を下降し、次第にベッド5に達してベッド粒子中を下降し、ベッド5を通過してベッドスクリーン2に達する。ベッドスクリーン2の網目の目開きは、土壌6中の重金属の最大粒径より大きく設定されていることから、重金属はベッドスクリーン2を通過して水槽1内を沈降し、水槽1の底部に分離重金属11として堆積する。また、重金属を分離された土壌6はベッド4の上を移動し、分離土壌排出口14を通って分離土壌排出路16からオーバーフローする水と共に排出される。   When the water is continuously swung while supplying water, the heavy metal in the soil 6 gradually moves along with the soil 6 to the separated soil discharge port 14 and descends in the soil 6 due to the difference in sedimentation speed between the soil particles and the heavy metal particles. It reaches the bed 5 and descends through the bed particles, passes through the bed 5 and reaches the bed screen 2. Since the mesh of the screen of the bed screen 2 is set larger than the maximum particle size of heavy metal in the soil 6, the heavy metal passes through the bed screen 2 and settles in the water tank 1 and is separated into the bottom of the water tank 1. Deposited as heavy metal 11. In addition, the soil 6 from which the heavy metal has been separated moves on the bed 4 and is discharged together with the overflowing water from the separated soil discharge path 16 through the separated soil discharge port 14.

検出器13は、水槽1の底部に堆積した分離重金属11の量を連続的または間欠的に検出しており、その検出値は図示省略する制御プログラムに従って動作する制御部に出力される。前記制御部は、その記憶部に設定されている基準値と検出部13から取得する検出値とを随時対比し、検出値が所定量である設定基準値に達した場合に、前記汚染土壌供給手段を一時停止して汚染された土壌6の供給を停止し、給水弁8の給水とダイヤフラム10の動作を停止し、排出弁12を開放して堆積した分離重金属11を装置外に排出する。分離重金属11の排出後には、前記制御部は、汚染土壌供給手段、給水弁8、ダイヤフラム10を再度動作させ、土壌6からの重金属の選別処理を再開する。なお、検出器13には、例えばX線を照射して蛍光X線を計測する蛍光X線検出器など重金属を検出可能な適宜の検出器を用いることが可能である。   The detector 13 detects the amount of the separated heavy metal 11 deposited on the bottom of the water tank 1 continuously or intermittently, and the detected value is output to a control unit that operates according to a control program (not shown). The control unit compares the reference value set in the storage unit with the detection value acquired from the detection unit 13 as needed, and supplies the contaminated soil when the detection value reaches a set reference value that is a predetermined amount. The means is temporarily stopped to stop the supply of the contaminated soil 6, the water supply of the water supply valve 8 and the operation of the diaphragm 10 are stopped, the discharge valve 12 is opened, and the deposited separated heavy metal 11 is discharged out of the apparatus. After the separated heavy metal 11 is discharged, the control unit operates the contaminated soil supply unit, the water supply valve 8 and the diaphragm 10 again, and restarts the heavy metal selection process from the soil 6. For the detector 13, for example, an appropriate detector capable of detecting heavy metals such as a fluorescent X-ray detector that measures X-ray fluorescence by irradiating X-rays can be used.

また、変形等によって、ベッドスクリーン2を通過しなかった残留重金属は、ベッドスクリーン2上を分離土壌排出口14或いはゲート15の方向に移動する。残留する重金属に対しては、サイトグラス17でベッドスクリーン2上の重金属を目視観察し、必要に応じてゲート15を開放して残留する重金属を水槽1内に排出する構成、或いはベッドスクリーン2上の重金属の残留金属検出器18による検出と連動させてゲート15を開放して残留する重金属を水槽1内に排出する構成とし、ベッドスクリーン2上に重金属を滞留させないようにする。   Further, residual heavy metal that has not passed through the bed screen 2 due to deformation or the like moves on the bed screen 2 toward the separated soil discharge port 14 or the gate 15. For the remaining heavy metal, the heavy metal on the bed screen 2 is visually observed with the sight glass 17, and the gate 15 is opened as necessary to discharge the remaining heavy metal into the water tank 1, or on the bed screen 2. In conjunction with the detection of heavy metal by the residual metal detector 18, the gate 15 is opened to discharge the remaining heavy metal into the water tank 1 so that the heavy metal is not retained on the bed screen 2.

なお、残留金属検出器18とゲート15の連動には、検出器13の制御部と同一或いは同種の構成を用いることが可能であり、例えば図示省略する制御プログラムに従って動作する制御部が、その記憶部に設定されている基準値と残留検出部18から取得する検出値とを随時対比し、検出値が所定量である設定基準値に達した場合に、ゲート15を開放してベッドスクリーン2上に残留する重金属を水槽1内に排出する。また、ゲート15の開閉は、選別装置を稼動中の適宜の時点で行うことが可能である。   For the interlocking of the residual metal detector 18 and the gate 15, the same or the same type of configuration as that of the control unit of the detector 13 can be used. For example, a control unit that operates according to a control program (not shown) stores its memory. The reference value set in the unit is compared with the detection value acquired from the residual detection unit 18 as needed, and when the detection value reaches the set reference value that is a predetermined amount, the gate 15 is opened and the bed screen 2 is opened. The heavy metal remaining in the water tank 1 is discharged into the water tank 1. Further, the gate 15 can be opened and closed at an appropriate point in time when the sorting device is in operation.

次に、本実施形態の選別装置を土壌浄化設備に設ける例について説明する。図3は実施形態の選別装置を備える土壌浄化設備の浄化処理工程を示すフローチャートである。   Next, the example which provides the sorting apparatus of this embodiment in soil purification equipment is demonstrated. Drawing 3 is a flow chart which shows the purification processing process of a soil purification facility provided with the sorting device of an embodiment.

図3の土壌浄化設備は、受入れホッパー101と、切り出しフィーダー102と、ドラムウオッシャー103と、2段湿式振動篩104と、中粒選別装置105と、湿式振動篩106と、脱水装置107と、脱水装置108と、水処理装置109と、細粒選別装置110と、微粒選別装置111と、分級装置112と、脱水装置113とを備え、本実施形態の選別装置を中粒選別装置105と細粒選別装置110として2台有する。   3 includes a receiving hopper 101, a cutting feeder 102, a drum washer 103, a two-stage wet vibrating screen 104, a medium grain sorting device 105, a wet vibrating screen 106, a dehydrating device 107, and a dehydrating device. The apparatus 108, the water treatment device 109, the fine particle sorting device 110, the fine particle sorting device 111, the classification device 112, and the dehydrating device 113 are provided. Two sorters 110 are provided.

この土壌浄化設備では、受入れホッパー101に投入される汚染土壌が一時貯留され、切り出しフィーダー102により汚染土壌が切り出されて供給される。ドラムウオッシャー103は、供給される汚染土壌に洗浄水を注水し、攪拌して汚染土壌を解砕・混錬し、重金属と土壌に分離して洗浄する。
第1の分級部に相当する2段湿式振動篩104は、ドラムウオッシャー103から投入される汚染土壌に洗浄水のスプレー洗浄を施しながら、汚染土壌を粗粒と中粒及び細粒に分級し、次いで中粒及び細粒を中粒と細粒にそれぞれ分級して2段階で分級するものであり、本例では2段湿式振動篩104の上段篩の網目の目開きを10mm、下段篩の網目の目開きを2.2mmとし、土壌を粒径10mm以上を粗粒、粒径2.2mm以上10mm未満を中粒、粒径2.2mm未満を細粒に篩い分けて分級する。ここで上段篩上の粗粒に分級されたものは回収される。
In this soil purification facility, contaminated soil to be input to the receiving hopper 101 is temporarily stored, and the contaminated soil is cut out and supplied by the cutting feeder 102. The drum washer 103 injects cleaning water into the supplied contaminated soil, and stirs to crush and knead the contaminated soil, and separates and cleans heavy metal and soil.
The two-stage wet vibrating screen 104 corresponding to the first classification unit classifies the contaminated soil into coarse particles, medium particles, and fine particles while spraying cleaning water on the contaminated soil charged from the drum washer 103, Next, the middle and fine grains are classified into a middle grain and a fine grain, respectively, and classified in two stages. In this example, the mesh size of the upper sieve of the two-stage wet vibrating sieve 104 is 10 mm, and the mesh of the lower sieve. The size of the soil is classified as 2.2 mm, and the soil is classified into coarse particles having a particle size of 10 mm or more, medium particles having a particle size of 2.2 mm or more and less than 10 mm, and fine particles having a particle size of less than 2.2 mm. Here, those classified into coarse particles on the upper sieve are collected.

2段湿式振動篩104で下段篩上の中粒に分級されたものは、中粒選別装置105に送られる。中粒選別装置105は、沈降速度差を利用して中粒の土壌と重金属とを選別し、ここで選別された中粒重金属は脱水装置107に送られて脱水され、回収される。
また、中粒選別装置105で選別された中粒の土壌は、脱水装置108に送られて脱水され、回収される。脱水装置108で発生する水は水処理装置109に送られて処理され、排水される。
What is classified into medium grains on the lower sieve by the two-stage wet vibrating sieve 104 is sent to the intermediate grain sorting device 105. The medium grain sorting device 105 sorts the medium grain soil and heavy metals using the difference in sedimentation speed, and the medium grain heavy metals sorted here are sent to the dehydrator 107 to be dehydrated and collected.
Further, the medium-sized soil sorted by the medium-grain sorting device 105 is sent to the dehydrating device 108 to be dehydrated and collected. Water generated in the dehydrator 108 is sent to the water treatment device 109 where it is treated and drained.

本例における中粒選別装置105では、ベッド5のベッド粒子として粒径10mmのアルミ粒子を用い、ベッドスクリーン2の網目の目開きを9mmとし、給水弁8から水を供給しながら揺動する。この場合、表1から2.2mm≦D(粒径)<10mmの重金属である鉛は、表1よりベッド粒子である粒径10mmのアルミ粒子より沈降速度が速いため、揺動を繰り返すうちに鉛は次第にベッド5の下に沈降していき、9mmより小粒径の鉛はベッドスクリーン2を通過して水槽1の底部に沈降堆積する。この時、9mm≦D(粒径)<10mmの鉛が存在すると、揺動に伴ってベッドスクリーン2上をゲート15側に移動していき、サイトグラス17による所定量の滞留或いは残留金属検出部18による所定量の検出により、ゲート15を開いて水槽1内に排出し、水槽1の底部に沈降させる。また、選別室4の2.2mm≦D(粒径)<10mmの土壌は、表1よりベッド粒子である粒径10mmのアルミ粒子より沈降速度が遅いためベッド5上に沈積し、給水しながら土壌6を供給して揺動すると次第に図2の右側に移動して分離土壌排出口14から排出される。   In the intermediate particle sorting apparatus 105 in this example, aluminum particles having a particle diameter of 10 mm are used as bed particles of the bed 5, the mesh of the bed screen 2 is 9 mm, and the bed screen 2 swings while supplying water from the water supply valve 8. In this case, from Table 1, lead, which is a heavy metal of 2.2 mm ≦ D (particle size) <10 mm, has a higher settling speed than aluminum particles of 10 mm particle size, which are bed particles, as shown in Table 1. Lead gradually settles under the bed 5, and lead having a particle size smaller than 9 mm passes through the bed screen 2 and settles on the bottom of the water tank 1. At this time, if lead of 9 mm ≦ D (particle diameter) <10 mm is present, it moves on the bed screen 2 to the gate 15 side as it swings, and a predetermined amount of staying or residual metal detection unit by the sight glass 17 When a predetermined amount is detected by 18, the gate 15 is opened, discharged into the water tank 1, and settled at the bottom of the water tank 1. In addition, the soil of 2.2 mm ≦ D (particle diameter) <10 mm in the sorting chamber 4 has a lower sedimentation speed than the aluminum particles having a particle diameter of 10 mm, which are bed particles, as shown in Table 1. When the soil 6 is supplied and rocked, the soil 6 gradually moves to the right side in FIG. 2 and is discharged from the separated soil discharge port 14.

また、2段湿式振動篩104で細粒に分級されたものは更に第2の分級部に相当する湿式振動篩106に送られ、湿式振動篩106で細粒と微粒に分級される。本例における湿式振動篩106の篩の網目の目開きは0.6mmであり、2段湿式振動104を通過し且つ湿式振動篩106の篩上に残った粒径0.6mm以上2.2mm未満のものを細粒に、2段湿式振動104を通過し且つ湿式振動篩106の篩を通過した粒径0.6mm未満のものを微粒に分級している。湿式振動篩106で分級された0.6mm≦D(粒径)<2.2mmの細粒は、細粒選別装置110に送られ、細粒選別装置110は、沈降速度差を利用して細粒の土壌と重金属とを選別し、ここで選別された細粒重金属は回収される。また、細粒選別装置110で選別された細粒の土壌は、後述する微粒選別装置111で選別された微粒の土壌と共に分級装置112に送られて分級され、所定粒径以上のものを脱水装置113に送って脱水し、土壌として回収される。分級装置112で生じたスラリーや水は水処理装置109に送られて処理され、排水される。   Further, the fine particles classified by the two-stage wet vibrating screen 104 are further sent to the wet vibrating screen 106 corresponding to the second classifying section, and are classified into fine particles and fine particles by the wet vibrating screen 106. In this example, the mesh size of the sieve of the wet vibrating sieve 106 is 0.6 mm, and the particle diameter of 0.6 mm or more and less than 2.2 mm that passes through the two-stage wet vibrating sieve 104 and remains on the sieve of the wet vibrating sieve 106. The one having a particle diameter of less than 0.6 mm that has passed through the two-stage wet vibration 104 and the wet vibration sieve 106 is classified into fine particles. Fine particles of 0.6 mm ≦ D (particle size) <2.2 mm classified by the wet vibrating screen 106 are sent to the fine particle sorting device 110, which uses the difference in sedimentation speed to finely fine the particles. Grain soil and heavy metals are sorted, and the fine heavy metals sorted here are recovered. Further, the fine soil selected by the fine particle sorting device 110 is sent to the classification device 112 together with the fine soil selected by the fine particle sorting device 111, which will be described later, and is classified. It is sent to 113 for dehydration and collected as soil. Slurry and water generated in the classification device 112 are sent to the water treatment device 109 for treatment and drainage.

本例における細粒選別装置110では、ベッド5のベッド粒子として粒径2.3mmのアルミ粒子を用い、ベッドスクリーン2の網目の目開きを2mmとし、給水弁8から水を供給しながら揺動する。この場合、表1から0.6mm≦D(粒径)<2.2mmの重金属である鉛は、表1よりベッド粒子である粒径2.3mmのアルミ粒子より沈降速度が速いため、揺動を繰り返すうちに鉛は次第にベッド5の下に沈降していき、2mmより小粒径の鉛はベッドスクリーン2を通過して水槽1の底部に沈降堆積する。この時、2mm≦D(粒径)<2.2mmの鉛が存在すると、揺動に伴ってベッドスクリーン2上をゲート15側に移動していき、サイトグラス17による所定量の滞留或いは残留金属検出部18による所定量の検出により、ゲート15を開いて水槽1内に排出し、水槽1の底部に沈降させる。また、選別室4の0.6mm≦D(粒径)<2.2mmの土壌は、表1よりベッド粒子である粒径10mmのアルミ粒子より沈降速度が遅いためベッド5上に沈積し、給水しながら土壌6を供給して揺動すると次第に図2の右側に移動して分離土壌排出口14から排出される。   In the fine particle sorting apparatus 110 in this example, aluminum particles having a particle size of 2.3 mm are used as bed particles of the bed 5, the mesh opening of the bed screen 2 is set to 2 mm, and rocking while supplying water from the water supply valve 8. To do. In this case, from Table 1, lead, which is a heavy metal with 0.6 mm ≦ D (particle size) <2.2 mm, has a higher settling speed than aluminum particles with a particle size of 2.3 mm, which are bed particles. As lead is gradually repeated, lead gradually settles under the bed 5, and lead having a particle diameter of less than 2 mm passes through the bed screen 2 and settles on the bottom of the water tank 1. At this time, if lead of 2 mm ≦ D (particle diameter) <2.2 mm is present, it moves on the bed screen 2 to the gate 15 side as it swings, and a predetermined amount of stagnation or residual metal by the sight glass 17 By detecting a predetermined amount by the detection unit 18, the gate 15 is opened, discharged into the water tank 1, and settled at the bottom of the water tank 1. In addition, the soil of 0.6 mm ≦ D (particle diameter) <2.2 mm in the sorting chamber 4 is deposited on the bed 5 because the settling speed is slower than the aluminum particles having a particle diameter of 10 mm, which is bed particles, as shown in Table 1. When the soil 6 is supplied and rocked while moving, it gradually moves to the right side of FIG. 2 and is discharged from the separated soil outlet 14.

湿式振動篩106で篩下に分級された微粒(本例では粒径0.6mm未満の微粒)は、図示省略する遠心式選別装置である微粒選別装置111に投入して選別され、選別された微粒重金属は廃棄または回収される。また、微粒選別装置111で選別された重金属を含まない土壌は、分級装置112に送られて分級され、所定粒径以上のものを脱水装置113に送って脱水し、土壌として回収され、また、分級装置112で使用した水は水処理装置109に送られて処理され、排水される。また、微粒選別装置111で使用した水も、そのまま水処理装置109に送られて処理され、排水される。   The fine particles classified under the sieve by the wet vibrating sieve 106 (in this example, fine particles having a particle size of less than 0.6 mm) are put into a fine particle sorting device 111 which is a centrifugal sorting device (not shown) and sorted and sorted. Fine heavy metals are discarded or recovered. In addition, the soil that does not contain heavy metals sorted by the fine grain sorting device 111 is sent to the classification device 112 and classified, and those having a predetermined particle size or more are sent to the dehydration device 113 for dehydration, and recovered as soil. The water used in the classification device 112 is sent to the water treatment device 109 for treatment and drainage. In addition, the water used in the fine particle sorting device 111 is also sent to the water treatment device 109 as it is for treatment and drainage.

上記実施形態では、比重と粒径で規定される沈降速度について土壌粒子より速く且つ重金属粒子より遅いベッド粒子を設けることにより、正確に沈降速度差を利用して土壌と重金属を選別することができる。また、ベッド粒子のベッド5で土壌と重金属との分離境界を明確にして、相互混入を防止することができる。また、中間比重のベッド粒子により、ベッドスクリーン2上にベッド粒子をより安定して層状に設けられると共に、沈降速度差で選別可能な粒径範囲を確実且つ広範囲に確保することができる。また、ベッド粒子を球状粒子とする場合には、重金属をよりスムーズに沈降させることができ、重金属をより正確に選別することができる。また、ダイヤフラムにより、水流を利用してベッド及びその上の土壌を揺動することができる。また、ゲートにより、ベッドスクリーン上に重金属が堆積することを防止することができる。また、選別装置の前工程に、分級する粒径範囲や沈降速度が予め選別装置と整合する分級部を設けることで、選別工程での選別量の減量化や草木による選別効率の低下を防止し、選別装置や土壌浄化設備の効率性の向上を図ることができる。   In the above embodiment, by providing bed particles that are faster than the soil particles and slower than the heavy metal particles with respect to the settling velocity defined by the specific gravity and the particle size, it is possible to accurately select the soil and heavy metals using the difference in the sedimentation velocity. . Moreover, the separation boundary of soil and heavy metals can be clarified by the bed 5 of bed particles, and mutual mixing can be prevented. In addition, the bed particles having an intermediate specific gravity can provide bed particles more stably on the bed screen 2 in a layered manner, and a reliable and wide range of particle diameters that can be selected based on the settling speed difference can be secured. In addition, when the bed particles are spherical particles, heavy metals can be settled more smoothly, and heavy metals can be more accurately selected. In addition, the diaphragm can swing the bed and the soil on the bed using water flow. Further, the gate can prevent heavy metal from being deposited on the bed screen. In addition, by providing a classification part in the pre-process of the sorting device in which the particle size range to be classified and the sedimentation speed are matched with the sorting device in advance, the sorting amount in the sorting process is reduced and the sorting efficiency is reduced due to the plants. Thus, it is possible to improve the efficiency of the sorting device and the soil purification facility.

なお、本明細書開示の発明は、各発明や実施形態の構成の他に、適用可能な範囲で、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものも包含する。   The invention disclosed in this specification is specified by changing these partial configurations to other configurations disclosed in this specification, in addition to the configurations of each invention and embodiment, to the extent applicable. Also included are those specified by adding other configurations disclosed in this specification to these configurations, or those conceptualized by deleting these partial configurations to the extent that partial effects can be obtained. To do.

下記表2の鉛散弾で汚染された土壌を選別装置で選別する例について説明する。表2には、各粒径の土壌と、その各粒径の土壌の分布・割合(粒度分布)と、各粒径の土壌に含まれる鉛含有量が示されている。また、選別装置におけるベッド粒子には粒径7mmのアルミナ球を用いてベッド5を形成し、ベッドスクリーン2の目開きを6mmに選定して、土壌粒子径2.2mm≦D(粒径)<10mmの土壌を選別する中粒選別装置を構成した。そして、この中粒選別装置に、前記汚染土壌を中粒に分級して投入し選別した結果、2.2mm≦D(粒径)<10mmの回収土壌における含有鉛は、150mg/kg未満、溶出量は0.01mg/L未満であった。   The example which sorts the soil contaminated with the lead shot of the following Table 2 with a sorting device is explained. Table 2 shows the soil of each particle size, the distribution / ratio (particle size distribution) of the soil of each particle size, and the lead content contained in the soil of each particle size. In addition, the bed 5 in the sorting apparatus is formed using an alumina sphere having a particle diameter of 7 mm, the bed screen 2 has an opening of 6 mm, and a soil particle diameter of 2.2 mm ≦ D (particle diameter) < A medium grain sorting device for sorting 10 mm of soil was constructed. As a result of classifying and sorting the contaminated soil into medium grains, the lead contained in the recovered soil of 2.2 mm ≦ D (particle diameter) <10 mm is eluted to less than 150 mg / kg. The amount was less than 0.01 mg / L.

また、選別装置におけるベッド粒子に粒径2.3mmのアルミ球を用いてベッド5を形成し、ベッドスクリーン2の目開きを2mmに選定して、土壌粒子径0.6mm≦D(粒径)<2.3mmの土壌を選別する細粒選別装置を構成した。そして、この細粒選別装置に、前記汚染土壌を細粒に分級して投入し選別した結果、0.6mm≦D(粒径)<2.3mmの回収土壌における含有鉛は、150mg/kg未満、溶出量は0.01mg/L未満であった。   Further, the bed 5 is formed by using an aluminum sphere having a particle size of 2.3 mm as bed particles in the sorting device, and the opening of the bed screen 2 is selected to be 2 mm, so that the soil particle size is 0.6 mm ≦ D (particle size). <The fine grain sorter which sorts out 2.3 mm soil was constituted. As a result of classifying and sorting the contaminated soil into fine particles in this fine particle sorting apparatus, the lead content in the recovered soil of 0.6 mm ≦ D (particle size) <2.3 mm is less than 150 mg / kg. The elution amount was less than 0.01 mg / L.

Figure 2011121032
Figure 2011121032

本発明は、例えば鉛、カドミウム、クロム等の重金属で汚染された土壌を浄化する際に利用することができる。   The present invention can be used for purifying soil contaminated with heavy metals such as lead, cadmium, and chromium.

1…水槽 1a…突出部 2…ベッドスクリーン 3…水面 4…選別室 5…ベッド 5a…ベッド粒子 6…土壌 6a…土壌粒子 7…汚染土壌供給口 8…給水弁 9…駆動シャフト 10…ダイヤフラム 11…分離重金属 12…排出弁 13…検出器 14…分離土壌排出口 15…ゲート 16…分離土壌排出路 17…サイトグラス 18…残留金属検出器 101…受入れホッパー 102…切り出しフィーダー 103…ドラムウオッシャー 104…2段湿式振動篩 105…中粒選別装置 106…湿度振動篩 107…脱水装置 108…脱水装置 109…水処理装置 110…細粒選別装置 111…微粒選別装置 112…分級装置 DESCRIPTION OF SYMBOLS 1 ... Water tank 1a ... Protruding part 2 ... Bed screen 3 ... Water surface 4 ... Sorting room 5 ... Bed 5a ... Bed particle 6 ... Soil 6a ... Soil particle 7 ... Contaminated soil supply port 8 ... Water supply valve 9 ... Drive shaft 10 ... Diaphragm 11 ... Separated heavy metal 12 ... Drain valve 13 ... Detector 14 ... Separated soil outlet 15 ... Gate 16 ... Separated soil outlet 17 ... Sight glass 18 ... Residual metal detector 101 ... Accepting hopper 102 ... Cutting feeder 103 ... Drum washer 104 ... 2-stage wet vibrating sieve 105 ... medium grain sorting apparatus 106 ... humidity vibrating sieve 107 ... dehydrating apparatus 108 ... dehydrating apparatus 109 ... water treatment apparatus 110 ... fine grain sorting apparatus 111 ... fine grain sorting apparatus 112 ... classifying apparatus

Claims (7)

重金属を含有する土壌から沈降速度差を利用して重金属を選別する選別装置であって、
流体槽と、
前記流体槽の流体中に没して設けられるベッドスクリーンと、
前記流体槽の流体中に没して設けられ、前記ベッドスクリーンの網目より粒径の大きいベッド粒子が前記ベッドスクリーン上に層状に設けられると共に、重金属を含有する土壌が上側に供給されるベッドと、
前記流体槽に流体を供給する流体供給部と、
前記流体槽中の流体及び前記ベッド上の土壌を排出する排出口と、
前記ベッド及び前記ベッド上の前記土壌を揺動する揺動部とを備え、
前記土壌の粒子と前記重金属の粒子の中間の比重を有し、比重と粒径で規定される沈降速度について、前記土壌の粒子より速く且つ前記重金属の粒子より遅いベッド粒子で前記ベッドを構成し、
前記土壌中の重金属を前記ベッド及び前記ベッドスクリーンを通過させ前記流体槽内に沈降させることにより選別することを特徴とする選別装置。
A sorting device that sorts heavy metals from a soil containing heavy metals using a settling velocity difference,
A fluid tank;
A bed screen provided to be immersed in the fluid of the fluid tank;
Beds that are immersed in the fluid of the fluid tank, and bed particles having a particle size larger than the mesh of the bed screen are provided in layers on the bed screen, and soil containing heavy metal is supplied to the upper side. ,
A fluid supply section for supplying fluid to the fluid tank;
A discharge port for discharging the fluid in the fluid tank and the soil on the bed;
A rocking portion that rocks the bed and the soil on the bed,
The bed has a specific gravity intermediate between the particles of the soil and the particles of the heavy metal, and the bed is composed of bed particles that are faster than the particles of the soil and slower than the particles of the heavy metal with respect to the sedimentation rate defined by the specific gravity and the particle size. ,
A sorting apparatus for sorting heavy metals in the soil by passing through the bed and the bed screen and settling in the fluid tank.
前記ベッド粒子を球状粒子とすることを特徴とする請求項1記載の選別装置。   The sorting apparatus according to claim 1, wherein the bed particles are spherical particles. 前記ベッドスクリーンの下側から上側に向かって前記流体を流すと共に、
前記揺動部を、前記流体に振動を加えて前記ベッド及び前記土壌を揺動するものとすることを特徴とする請求項1又は2記載の選別装置。
While flowing the fluid from the bottom to the top of the bed screen,
The sorting apparatus according to claim 1 or 2, wherein the swinging section swings the bed and the soil by applying vibration to the fluid.
前記ベッドスクリーンの近傍で且つ前記排出口の近傍に設けられる開閉可能なゲートと、
前記ベッドスクリーンの近傍で且つ前記ゲートの近傍に設けられるサイトグラス若しくは残留金属検出部とを備え、
前記サイトグラスからの目視若しくは前記残留金属検出部の検出により、前記ベッドスクリーン上に滞留する重金属が所定量に達した際に、前記ゲートを開放して排出し、
前記滞留する重金属を前記流体槽内に沈降させることを特徴とする請求項1〜3の何れかに記載の選別装置。
An openable and closable gate provided in the vicinity of the bed screen and in the vicinity of the outlet;
A sight glass or a residual metal detector provided in the vicinity of the bed screen and in the vicinity of the gate;
When heavy metal staying on the bed screen reaches a predetermined amount by visual inspection from the sight glass or detection of the residual metal detection unit, the gate is opened and discharged,
The sorting apparatus according to claim 1, wherein the stagnant heavy metal is allowed to settle in the fluid tank.
重金属を含有する土壌から重金属を沈降速度差を利用して選別する選別方法であって、
流体槽の流体中で、ベッドスクリーンの網目より粒径が大きく且つ比重と粒径で規定される沈降速度について前記土壌の粒子より速く且つ前記重金属の粒子より遅いベッド粒子が前記ベッドスクリーン上に層状に設けられるベッド上に、重金属を含有する土壌を供給する第1工程と、
前記流体槽に流体を供給し且つ前記ベッド及び前記土壌を揺動して、前記土壌中の重金属を前記ベッド及び前記ベッドスクリーンを通過させ前記流体槽内に沈降させる共に、前記流体の流れで前記ベッド上の土壌を排出する第2工程と、
を備えることを特徴とする選別方法。
A sorting method for sorting heavy metals from soil containing heavy metals using a difference in sedimentation speed,
In the fluid of the fluid tank, bed particles having a particle size larger than the bed screen mesh and a sedimentation rate defined by specific gravity and particle size are faster than the soil particles and slower than the heavy metal particles are layered on the bed screen. A first step of supplying a heavy metal-containing soil on a bed provided in
The fluid is supplied to the fluid tank and the bed and the soil are swung so that the heavy metal in the soil passes through the bed and the bed screen and settles in the fluid tank. A second step of draining the soil on the bed;
A sorting method comprising:
前記第2工程において、前記ベッドスクリーンの下側から上側に向かって前記流体を流すと共に、前記流体に振動を加えて前記ベッド及び前記土壌を揺動することを特徴とする請求項5記載の選別方法。   6. The sorting according to claim 5, wherein, in the second step, the fluid is caused to flow from the lower side to the upper side of the bed screen, and the bed and the soil are shaken by applying vibration to the fluid. Method. 重金属を含有する土壌を第1の分級部で粗粒と中粒と細粒に分級し、
前記中粒に対して請求項1〜4の何れかに記載の中粒用の選別装置を用いて重金属を選別すると共に、
前記細粒を第2の分級部で更に分級した細粒に対して請求項1〜4の何れかに記載の細粒用の選別装置を用いて重金属を選別することを特徴とする土壌浄化設備。
The soil containing heavy metals is classified into coarse grains, medium grains and fine grains in the first classification section,
Sorting heavy metals using the medium grain sorting device according to any one of claims 1 to 4 with respect to the medium grain,
A soil remediation facility characterized in that heavy metals are sorted using the fine grain sorting apparatus according to any one of claims 1 to 4 with respect to the fine grains obtained by further classifying the fine grains with a second classification section. .
JP2009282857A 2009-12-14 2009-12-14 Sorting apparatus, sorting method, and soil purification equipment Withdrawn JP2011121032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282857A JP2011121032A (en) 2009-12-14 2009-12-14 Sorting apparatus, sorting method, and soil purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282857A JP2011121032A (en) 2009-12-14 2009-12-14 Sorting apparatus, sorting method, and soil purification equipment

Publications (1)

Publication Number Publication Date
JP2011121032A true JP2011121032A (en) 2011-06-23

Family

ID=44285498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282857A Withdrawn JP2011121032A (en) 2009-12-14 2009-12-14 Sorting apparatus, sorting method, and soil purification equipment

Country Status (1)

Country Link
JP (1) JP2011121032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289832A (en) * 2015-11-19 2016-02-03 李宝囯 Piston type jigging machine without water sealing diaphragm
CN109351035A (en) * 2018-12-12 2019-02-19 湖南万通科技股份有限公司 A kind of material dewatering storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289832A (en) * 2015-11-19 2016-02-03 李宝囯 Piston type jigging machine without water sealing diaphragm
CN109351035A (en) * 2018-12-12 2019-02-19 湖南万通科技股份有限公司 A kind of material dewatering storage device

Similar Documents

Publication Publication Date Title
US7666318B1 (en) Process, method and system for removing mercury from fluids
AU2010214045B2 (en) Hindered-settling fluid classifier
US9718104B2 (en) System and method for remediating highly contaminated fine soil using multiple micro hydrocyclones
US20060266676A1 (en) Rotary Aggregate Washing and Classification System
JP2008540155A (en) Process and apparatus for separating plastics with different chemical compositions
KR101207131B1 (en) Micro hydrocyclone for separating contaminated soil, multiple micro hydrocyclone using therewith and method for separating contaminated soil
JP4943309B2 (en) Powder processing system and powder processing method
JP2005081247A (en) Apparatus for cleaning contaminated soil
Marino et al. Heavy metal soil remediation: The effects of attrition scrubbing on a wet gravity concentration process
TWI549764B (en) A treating method of removing heavy metals in soil grains with mobility
JP4877736B2 (en) Specific gravity sorter
US10351454B2 (en) Mining apparatus with water reclamation system
JP2011121032A (en) Sorting apparatus, sorting method, and soil purification equipment
JP5868184B2 (en) Dry separation method and dry separation apparatus
Barry et al. Effect of hydroacoustic cavitation treatment on the spiral processing of bituminous coal
CN101203316A (en) Apparatus for separating solids from a liquid
US20040082828A1 (en) Method of decontaminating soil
JP2006035103A (en) Heavy metal-contaminated soil treatment system and heavy metal-contaminated soil treating method
JP6312016B2 (en) Contaminated soil treatment equipment
JP5478483B2 (en) Sorted processing system for mixed processed products
JPH105738A (en) Polluted soil remedial device and remediation thereof
KR101421252B1 (en) Apparatus and method for the purification of heavy metal contaminated soil
JP4376178B2 (en) Shredder dust treatment method and equipment
KR102300117B1 (en) Method for floating screen of fluorine-copntaminated soil
JP2010234217A (en) Powdery particle material treatment system, and powdery particle material treatment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305