JP2011119184A - Headlight for vehicle - Google Patents

Headlight for vehicle Download PDF

Info

Publication number
JP2011119184A
JP2011119184A JP2009277665A JP2009277665A JP2011119184A JP 2011119184 A JP2011119184 A JP 2011119184A JP 2009277665 A JP2009277665 A JP 2009277665A JP 2009277665 A JP2009277665 A JP 2009277665A JP 2011119184 A JP2011119184 A JP 2011119184A
Authority
JP
Japan
Prior art keywords
reflecting surface
light
focal point
projection lens
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009277665A
Other languages
Japanese (ja)
Other versions
JP5396254B2 (en
JP2011119184A5 (en
Inventor
Yoshiaki Nakaya
喜昭 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009277665A priority Critical patent/JP5396254B2/en
Publication of JP2011119184A publication Critical patent/JP2011119184A/en
Publication of JP2011119184A5 publication Critical patent/JP2011119184A5/ja
Application granted granted Critical
Publication of JP5396254B2 publication Critical patent/JP5396254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projector type headlight for a vehicle, switching between light distribution patterns for low beams and for high beams, in which hot zones for both the light distribution pattern for low beams and the light distribution pattern for high beams secure sufficient brightness, and each light distribution pattern contains the optimal shape and a light intensity distribution. <P>SOLUTION: A light source 2 is arranged at a first focal point f1 of a sub-reflecting surface 11b with a light-emitting axis facing upward and to a sub-reflecting surface 11b side, a movable mirror 20 having a plane reflecting surface 20a is fitted at a space with a projection lens 30 having a back side focal point f3 on an optical axis X<SB>L</SB>passing through the light source 2. When a front end edge side of the movable mirror 20 is inclined downward of the optical axis X<SB>L</SB>, a second focal point f2b of the sub-reflecting surface 11b positioned under the plane reflecting surface 20a is made placed in a plane-symmetrical position with the plane reflecting surface 20a as a symmetrical surface to the back side focal point f3 of the projection lens 30. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両用前照灯に関するものであり、詳しくは、ロービーム用配光パターンとハイビーム用配光パターンの切換えが可能なプロジェクタ型の車両用前照灯に関する。   The present invention relates to a vehicle headlamp, and more particularly to a projector-type vehicle headlamp capable of switching between a low beam light distribution pattern and a high beam light distribution pattern.

従来のこの種の車両用前照灯の構成が、特開2000−348508に開示されている(図11及び図12参照)。   A configuration of a conventional vehicle headlamp of this type is disclosed in Japanese Patent Laid-Open No. 2000-348508 (see FIGS. 11 and 12).

開示された車両用前照灯80はその光学系の主要部が、光源81、楕円系反射面82aを有する反射鏡82、平板状の遮蔽部83aと該遮蔽部83aの一方の面に設けられた内面鏡部83bと回動支持部83cとからなる遮蔽板83及び投影レンズ84で構成されている。   In the disclosed vehicle headlamp 80, the main parts of its optical system are provided on a light source 81, a reflecting mirror 82 having an elliptical reflecting surface 82a, a flat shield part 83a, and one surface of the shield part 83a. The shield plate 83 and the projection lens 84 are composed of the inner mirror part 83b and the rotation support part 83c.

反射鏡82の楕円系反射面82aは回転楕円面を長軸zに沿って略2等分したときの半分の形状とされ、その第一焦点f1の位置に光源81が配置されている。遮蔽板83は楕円系反射面82aの第一焦点f1と第二焦点f2との間に配置されており、遮蔽板83の平面状の内面鏡部83bが前記長軸zに沿うと共に楕円系反射面82aと対峙し、且つ回動支持部83cと反対側の端部が楕円系反射面82aの第二焦点f2の位置の近傍に位置している。   The elliptical reflecting surface 82a of the reflecting mirror 82 has a half shape when the spheroidal surface is divided into approximately two equal parts along the major axis z, and the light source 81 is arranged at the position of the first focal point f1. The shielding plate 83 is disposed between the first focal point f1 and the second focal point f2 of the elliptical reflecting surface 82a, and the planar inner mirror part 83b of the shielding plate 83 is along the major axis z and is elliptically reflecting. The end opposite to the surface 82a and opposite to the rotation support portion 83c is located in the vicinity of the position of the second focal point f2 of the elliptical reflecting surface 82a.

投影レンズ84は楕円系反射面82aの第二焦点f2の位置の近傍を後側焦点の位置とし、光軸が前記長軸zと一致するように配置されている。   The projection lens 84 is arranged so that the vicinity of the position of the second focal point f2 of the elliptical reflecting surface 82a is the position of the rear focal point, and the optical axis coincides with the long axis z.

光学系をこのような構成とすることにより、図11に示すように、遮蔽板83を、回動支持部83cを回動の中心としてロービーム(すれ違いビーム)用配光パターン形成位置sに回動すると、光源81から楕円系反射面82aに向けて発せられて該楕円系反射面82aで反射された光(反射光)は、直接第二焦点f2に結像する光と内面鏡部83bで反射されて第二焦点f2に結像する光とに分かれ、第二焦点f2には楕円系反射面82aで反射された全ての光による半円形状の結像が形成される。   By configuring the optical system as described above, as shown in FIG. 11, the shielding plate 83 is rotated to the low beam (passing beam) light distribution pattern forming position s with the rotation support portion 83c as the center of rotation. Then, the light (reflected light) emitted from the light source 81 toward the elliptical reflecting surface 82a and reflected by the elliptical reflecting surface 82a is reflected directly by the light focused on the second focal point f2 and the inner mirror part 83b. Then, it is divided into light that forms an image at the second focal point f2, and a semicircular image formed by all the light reflected by the elliptical reflecting surface 82a is formed at the second focal point f2.

この半円形状の結像は、円形状の結像に対して面積が略半減し輝度がほぼ倍増となるものであり、この結像が投影レンズ84を通して照射方向の下向き方向に投影されてロービーム用の明るい配光パターンが得られる。   This semi-circular image has an area approximately halved and the luminance almost doubled as compared with the circular image, and this image is projected through the projection lens 84 in the downward direction of the irradiation direction to generate a low beam. A bright light distribution pattern can be obtained.

一方、図12に示すように、遮蔽板83を、回動支持部83cを回動の中心としてハイビーム(走行ビーム)用配光パターン形成位置mに回動すると、光源81から楕円系反射面82aに向けて発せられて該楕円系反射面82aで反射された光(反射光)は、遮蔽されることなく第二焦点f2に円形の結像を形成し、この結像が投影レンズ84を通して照射方向の上向きを含めた方向に投影されてハイビーム用の配光パターンが得られる。   On the other hand, as shown in FIG. 12, when the shielding plate 83 is rotated to the high beam (traveling beam) light distribution pattern forming position m with the rotation support portion 83c as the center of rotation, the light source 81 to the elliptical reflection surface 82a. The light (reflected light) emitted toward and reflected by the elliptical reflecting surface 82a forms a circular image at the second focal point f2 without being shielded, and this image is irradiated through the projection lens 84. A light distribution pattern for a high beam is obtained by projecting in a direction including upward direction.

特開2000−348508号公報JP 2000-348508 A

ところで、上述の従来の車両用前照灯においては、ロービーム用配光パターンの高光度領域であるホットゾーンは内面鏡部83bで反射された反射光により形成されるものである。そのため、内面鏡部83bによる反射光を使用しないハイビーム用配光パターンのホットゾーンの明るさは、ロービーム用配光パターンのホットゾーンの明るさよりも暗いものとなり十分な明るさを得ることができず、ハイビーム用配光パターンを遠方視認性に優れたものとすることは不可能である。   By the way, in the above-described conventional vehicle headlamp, the hot zone, which is the high luminous intensity region of the low beam light distribution pattern, is formed by the reflected light reflected by the inner mirror part 83b. Therefore, the brightness of the hot zone of the high beam light distribution pattern that does not use the reflected light by the inner mirror part 83b is darker than the brightness of the hot zone of the low beam light distribution pattern, and sufficient brightness cannot be obtained. It is impossible to make the high beam light distribution pattern excellent in distance visibility.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、ロービーム用配光パターンとハイビーム用配光パターンの切換えが可能なプロジェクタ型の車両用前照灯において、ロービーム用配光パターンのホットゾーンとハイビーム用配光パターンのホットゾーンが共に十分な明るさを確保することができ、且つ夫々の配光パターンが最適な形状及び光度分布を有するようにすることにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a low-beam projector-type vehicle headlamp capable of switching between a low-beam light distribution pattern and a high-beam light distribution pattern. Both the hot zone of the light distribution pattern for the light and the hot zone of the light distribution pattern for the high beam can ensure sufficient brightness, and each light distribution pattern has an optimal shape and light intensity distribution. .

上記課題を解決するために、本発明の請求項1に記載された発明は、第一焦点の位置を共に共有して連設された夫々回転楕円面又はそれに類する回転自由曲面からなる2つの回転楕円系曲面を、前記一方の回転楕円系曲面の長軸を含む平面で上下に分割したときの略上側に位置する前記一方の回転楕円系曲面に形成された主反射面ともう一方の回転楕円系曲面に形成された副反射面からなると共に前記主反射面の前端部に前記副反射面の後端部が連接されてなる複合楕円系反射面と、前記第一焦点の近傍に位置しその発光軸を上方且つ前方に向けた光源と、前記長軸を光軸とし前記光軸上の前記主反射面の第二焦点と同一位置に後側焦点が位置する投影レンズと、前記光源と前記投影レンズとの間に位置し、上面を平面反射面とし後端縁側に回動支持部を有し該回動支持部を支点に前端縁側が上下に回動する可動ミラーと、を備えた車両用前照灯であって、前記可動ミラーの平面反射面が前記光軸近傍で且つ該光軸に沿った位置にあるときは、前記可動ミラーの前端縁が前記投影レンズの後側焦点近傍に位置し、前記光源から発せられて前記主反射面で反射された光が前記後側焦点を通って前記投影レンズを介して外部に照射され、前記可動ミラーの反射面が前記光軸に対して所定の角度をもって前方に向けて下方に傾斜した位置にあるときは、前記反射面の下方に位置する、前記副反射面の第二焦点が前記後側焦点に対して前記平面反射面を対称面とする面対称の位置にあり、前記光源から発せられて前記主反射面で反射された光が前記後側焦点を通って前記投影レンズを介して外部に照射されると共に、前記副反射面で反射された一次反射光が前記平面反射面で再度反射されてその二次反射光が前記後側焦点を通って前記投影レンズを介して外部に照射される、ことを特徴とするものである。   In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is characterized in that two rotations each composed of a spheroidal surface or a similar rotational free-form surface, which are connected in common while sharing the position of the first focal point. The main reflecting surface formed on the one spheroid surface and the other spheroid formed on the one spheroid surface that is positioned substantially above when the ellipsoidal surface is divided into upper and lower planes including the major axis of the one spheroid surface A complex ellipsoidal reflecting surface comprising a sub-reflecting surface formed on a system curved surface and having the rear end of the sub-reflecting surface connected to the front end of the main reflecting surface, and located near the first focal point; A light source having a light emitting axis directed upward and forward; a projection lens having the long axis as an optical axis and a rear focal point located at the same position as the second focal point of the main reflecting surface on the optical axis; the light source; Located between the projection lens and the upper surface as a plane reflecting surface, on the rear edge side A vehicular headlamp having a moving support portion and a movable mirror whose front end edge side is turned up and down with the turning support portion as a fulcrum, wherein the plane reflecting surface of the movable mirror is in the vicinity of the optical axis And at a position along the optical axis, the front end edge of the movable mirror is positioned near the rear focal point of the projection lens, and the light emitted from the light source and reflected by the main reflection surface is When the light is irradiated to the outside through the projection lens through the rear focal point, and the reflecting surface of the movable mirror is inclined downward at a predetermined angle with respect to the optical axis, the reflection is performed. The second focal point of the sub-reflecting surface, which is located below the surface, is in a plane-symmetrical position with the planar reflecting surface as a symmetric surface with respect to the rear focal point, and is emitted from the light source and is the main reflecting surface. The reflected light passes through the rear focal point and through the projection lens. The primary reflected light reflected by the sub-reflecting surface is reflected again by the planar reflecting surface, and the secondary reflected light passes through the rear focal point and radiates to the outside through the projection lens. It is characterized by that.

また、本発明の請求項2に記載された発明は、請求項1において、前記光源が前記主反射面を見込む立体角は前記副反射面を見込む立体角よりも大きいことを特徴とするものである。   The invention described in claim 2 of the present invention is characterized in that, in claim 1, the solid angle at which the light source expects the main reflection surface is larger than the solid angle at which the sub reflection surface is expected. is there.

本発明は、ハイビーム配光パターン形成時に、発光軸を副反射面側に向けられた光源から発せられた光が順次、その副反射面、可動ミラーの平面反射面、投影レンズの後側焦点及び投影レンズを通って外部に照射される光路の形成に係わる光学系を構成するようにした。   In the present invention, at the time of forming a high beam light distribution pattern, light emitted from a light source whose emission axis is directed to the sub-reflecting surface side sequentially, the sub-reflecting surface, the plane reflecting surface of the movable mirror, the rear focal point of the projection lens, and An optical system related to the formation of an optical path irradiated outside through the projection lens is configured.

その結果、発光軸を副反射面側に向けて配置された光源から発せられた光が上記光学系を経て照射する照射光は、ハイビーム用配光パターンにおいてホットゾーンを形成するものとなり、ホットゾーンの高光度化に大いに寄与するものとなった。   As a result, the light emitted from the light source arranged with the light emitting axis facing the sub-reflecting surface side irradiates through the optical system forms a hot zone in the high beam light distribution pattern. It greatly contributed to the increase in luminous intensity.

また、光源から発せられて主反射面に向かう光と副反射面に向かう光の光量比を適宜な比率に設定することにより、主反射面の反射光のみで形成されるロービーム用配光パターンと、主反射面の反射光と副反射面の反射光とで形成されるハイビーム用配光パターンとの明るさのバランスを最適な状態に設定することができるようになった。   Also, by setting the light quantity ratio of the light emitted from the light source toward the main reflection surface and the light toward the sub-reflection surface to an appropriate ratio, a low beam light distribution pattern formed only by the reflected light of the main reflection surface, In addition, the brightness balance between the light distribution pattern for high beam formed by the reflected light of the main reflecting surface and the reflected light of the sub-reflecting surface can be set to an optimum state.

これにより、ロービーム用配光パターン及びハイビーム用配光パターンのいずれも視認性の良好なものとすることができ、夜間走行時の前方確認を確実なものとすることが可能となった。   As a result, both the low-beam light distribution pattern and the high-beam light distribution pattern can have good visibility, and the forward confirmation during night driving can be ensured.

実施形態を斜め方向から見た説明図である。It is explanatory drawing which looked at the embodiment from the diagonal direction. 図1の縦断面による説明図である。It is explanatory drawing by the longitudinal cross-section of FIG. 実施形態を斜め方向から見た説明図である。It is explanatory drawing which looked at the embodiment from the diagonal direction. 図3の縦断面図による説明図である。It is explanatory drawing by the longitudinal cross-sectional view of FIG. 実施形態に係わる光学系の説明図である。It is explanatory drawing of the optical system concerning embodiment. 同じく、実施形態に係わる光学系の説明図である。Similarly, it is explanatory drawing of the optical system concerning embodiment. 実施形態に係わる配光パターンの説明図である。It is explanatory drawing of the light distribution pattern concerning embodiment. 同じく、実施形態に係わる配光パターンの説明図である。Similarly, it is explanatory drawing of the light distribution pattern concerning embodiment. 実施形態の、光源が見込む立体角に係わる説明図である。It is explanatory drawing regarding the solid angle which a light source anticipates of embodiment. 同じく、実施形態の、光源が見込む立体角に係わる説明図である。Similarly, it is explanatory drawing regarding the solid angle which the light source anticipates of embodiment. 従来例の説明図である。It is explanatory drawing of a prior art example. 同じく、従来例の説明図である。Similarly, it is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図10を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

なお、以下の説明において使用する「水平」、「垂直」、「前方」、「後方」、「下方」「上方」等の方向を示す用語は、車両用前照灯を車両に搭載した状態における「路面に水平」、「路面に垂直」、「灯具の照射方向」、「灯具の照射方向と反対方向」、「路面側に向かう方向」、「路面と反対側に向かう方向」を意味するものである。そのうち、「前方」及び「後方」は又、夫々後述するような「光源から投影レンズに向かう方向」、「投影レンズから光源に向かう方向」でもある。   In addition, the terms indicating the directions such as “horizontal”, “vertical”, “front”, “rear”, “lower”, “upper” and the like used in the following description are in the state where the vehicle headlamp is mounted on the vehicle. Meaning “horizontal to the road surface”, “perpendicular to the road surface”, “irradiation direction of the lamp”, “direction opposite to the irradiation direction of the lamp”, “direction toward the road surface”, “direction toward the opposite side of the road surface” It is. Among them, “front” and “rear” are also “a direction from the light source toward the projection lens” and “a direction from the projection lens toward the light source” as described later, respectively.

図1〜図4は本発明の車両用前照灯の主要部の構成を模式的に示すものであり、そのうち、図1及び図2はロービーム(すれ違いビーム)用配光パターンを形成するときの状態を示し、図3及び図4はハイビーム(走行ビーム)用配光パターンを形成するときの状態を示している。   1 to 4 schematically show the structure of the main part of the vehicle headlamp according to the present invention. Of these, FIGS. FIG. 3 and FIG. 4 show a state when a high beam (traveling beam) light distribution pattern is formed.

本発明の車両用前照灯はその主要部が、光源モジュール1、リフレクタ10、可動ミラー20、投影レンズ30、レンズホルダー40、ヒートシンク50及び回動機構部60により構成されている。   The main part of the vehicle headlamp according to the present invention includes a light source module 1, a reflector 10, a movable mirror 20, a projection lens 30, a lens holder 40, a heat sink 50, and a rotation mechanism 60.

光源モジュール1は、光源2と、光源2を備えた基板3と、該基板3が搭載されたメタルプレート4により構成されている。   The light source module 1 includes a light source 2, a substrate 3 provided with the light source 2, and a metal plate 4 on which the substrate 3 is mounted.

光源2は、光学系において点光源とみなすことができる発光源(発光素子)からなり、例えば、LED等の半導体発光素子5が用いられ、車両用前照灯に要求される明るさや配光特性を満足するように適宜の数、適宜の配置で基板3に実装されている。更に、発光素子5が実装された基板3はメタルプレート4に搭載され、基板3が搭載されたメタルプレート4はヒートシンク50に取り付けられている。   The light source 2 includes a light emitting source (light emitting element) that can be regarded as a point light source in an optical system. For example, a semiconductor light emitting element 5 such as an LED is used, and brightness and light distribution characteristics required for a vehicle headlamp. Are mounted on the board 3 in an appropriate number and in an appropriate arrangement. Furthermore, the substrate 3 on which the light emitting element 5 is mounted is mounted on a metal plate 4, and the metal plate 4 on which the substrate 3 is mounted is attached to a heat sink 50.

これにより、発光素子5の点灯時の発熱が基板3及びメタルプレート4を介してヒートシンク50に伝導されてヒートシンク50から外部に放散され、発光素子5の温度上昇が抑制される。その結果、発光素子5の点灯時の自己発熱による温度上昇に起因する発光効率の低下が抑制され、必要な照射光量を確実に確保することが可能となる。   As a result, heat generated when the light emitting element 5 is turned on is conducted to the heat sink 50 through the substrate 3 and the metal plate 4 and dissipated from the heat sink 50 to the outside, and the temperature rise of the light emitting element 5 is suppressed. As a result, a decrease in light emission efficiency due to a temperature increase due to self-heating when the light emitting element 5 is turned on is suppressed, and a necessary amount of irradiation light can be reliably ensured.

リフレクタ10は、光源2の位置を共通の第一焦点f1の位置とする互いに連設された、夫々回転楕円面又はそれに類する回転自由曲面からなる2つの回転楕円系曲面を、一方の回転楕円系曲面の長軸を含む水平面で上下に分割したときの一方の側(上側)に位置する部分からなる複合楕円面を有しており、複合楕円面は夫々前記一方の回転楕円系曲面を主反射面11a、もう一方の回転楕円系曲面を副反射面11bとする複合楕円系反射面11を備えており、主反射面11aの前端部に前方方向に延びる副反射面11bの後端部が連接されている。   The reflector 10 includes two spheroidal curved surfaces, each composed of a spheroidal surface or a similar free-rotating curved surface, which are connected to each other with the position of the light source 2 as a common first focus f1. It has a compound ellipsoid consisting of a part located on one side (upper side) when divided vertically on a horizontal plane including the major axis of the curved surface, and each compound ellipsoid mainly reflects the one spheroid curved surface. The composite ellipsoidal reflecting surface 11 having the surface 11a and the other spheroidal curved surface as the subreflecting surface 11b is provided, and the rear end portion of the subreflecting surface 11b extending in the forward direction is connected to the front end portion of the main reflecting surface 11a. Has been.

リフレクタ10はヒートシンク50に固定されており、複合楕円系反射面11が上方側から光源2を覆うように位置している。   The reflector 10 is fixed to the heat sink 50 and is positioned so that the composite elliptical reflecting surface 11 covers the light source 2 from above.

投影レンズ30は、前側の面(光出射面30b)が凸状で後側の面(光入射面30a)が平面状の平凸非球面レンズからなり、光軸Xが主反射面11aの長軸と一致すると共に、後側の焦点f3の位置が主反射面11aの第二焦点f2aの位置と一致するように配設されている。 The projection lens 30 is a plano-convex aspherical lens having a convex front surface (light emitting surface 30b) and a rear surface (light incident surface 30a), and the optical axis XL is the main reflecting surface 11a. Along with the long axis, the rear focal point f3 is disposed so as to coincide with the second focal point f2a of the main reflecting surface 11a.

この投影レンズ30は、ヒートシンク50に固定されて前方方向に略筒状に延びるレンズホルダー40のリング状の部分に支持されている。レンズホルダー40の略筒状の部分の内部は、光源2から発せられた光が投影レンズ30に至るまでの光路を形成するための空間領域となる。   The projection lens 30 is supported by a ring-shaped portion of the lens holder 40 that is fixed to the heat sink 50 and extends in a substantially cylindrical shape in the forward direction. The inside of the substantially cylindrical portion of the lens holder 40 is a space area for forming an optical path from the light emitted from the light source 2 to the projection lens 30.

可動ミラー20は、光源2と投影レンズ30との間に位置し、上面(複合楕円系反射面11側の面)を平面反射面20aとし、前端縁が後方側に凹状に湾曲すると共に後端縁側に回動支持部20bを有する平坦状を呈し、回動支持部20bを支点に回動自在に配設されている。   The movable mirror 20 is located between the light source 2 and the projection lens 30, and the upper surface (the surface on the composite elliptical reflecting surface 11 side) is a planar reflecting surface 20 a, and the front edge is curved in a concave shape on the rear side and the rear end It has a flat shape having a rotation support portion 20b on the edge side, and is rotatably arranged with the rotation support portion 20b as a fulcrum.

可動ミラー20の位置は、ロービーム用配光パターンを形成するときの位置とハイビーム用配光パターンを形成するときの位置が予め設定されており、ヒートシンク50に固定設置された回動機構部60を介して、車幅方向に位置する回動支持軸61の周りを回動する回動支持部20bを支点として回動することによりいずれかの位置に切換えられる。   The position of the movable mirror 20 is set in advance as the position for forming the low-beam light distribution pattern and the position for forming the high-beam light distribution pattern. Thus, the rotation support portion 20b that rotates around the rotation support shaft 61 positioned in the vehicle width direction is used as a fulcrum to switch to any position.

そのうち、ロービーム用配光パターンを形成する場合は、図2のように、可動ミラー20の平面反射面20aが光軸Xを含む水平面上に位置すると共に、その回動支持部20bと反対側の端部近傍に主反射面11aの第二焦点f2aと投影レンズ30の焦点f3との共有位置が位置するようになっている。 Among them, the case of forming a light distribution pattern for low beam, as shown in FIG. 2, the flat reflective surface 20a of the movable mirror 20 is positioned on the horizontal plane including the optical axis X L, opposite its pivot support portion 20b The shared position of the second focal point f2a of the main reflecting surface 11a and the focal point f3 of the projection lens 30 is located in the vicinity of the end of the projection lens 30.

一方、ハイビーム用配光パターンを形成する場合は、図4のように、可動ミラー20の平面反射面20aが光軸Xを含む水平面に対して所定の角度をもって前方に向けて下方に傾斜させた状態に位置すると共に、副反射面11bの第2焦点f2bの位置と主反射面11aの第2焦点f2aの位置とが平面反射面20aを対称面とする面対称の位置に位置するようになっている。 On the other hand, when forming a high beam light distribution pattern, as shown in FIG. 4, it is inclined downward toward the front at a predetermined angle plane reflecting surfaces 20a of the movable mirror 20 is with respect to the horizontal plane including the optical axis X L So that the position of the second focal point f2b of the sub-reflecting surface 11b and the position of the second focal point f2a of the main reflecting surface 11a are located in a plane-symmetrical position with the plane reflecting surface 20a as a symmetric surface. It has become.

つまり、副反射面11bの第2焦点f2bは主反射面11aの第一焦点f1と可動ミラー20の後側焦点f3との間で且つ光軸Xの下側に位置している。 That is, the second focal point f2b of the sub-reflecting surface 11b are and located below the optical axis X L between the back focal f3 after the first focal point f1 and the movable mirror 20 of the main reflecting surface 11a.

ところで、このように構成された車両用前照灯において、発光素子5からなる光源2は、その発光軸Xの方向を光軸Xに垂直な方向Zに対して、主反射面11aの前方側に位置する副反射面11b側に向くようにやや前方に傾けて配置されている。このときの発光軸Xの光軸Xに垂直な方向Zに対する具体的な傾斜角度αは、約10〜20°の範囲であることが好ましい。 Incidentally, in the vehicle headlamp having such a structure, the light source 2 comprising a light-emitting element 5, the direction of the light-emitting axis X S direction perpendicular Z of the optical axis X L, of the main reflecting surface 11a It is slightly tilted forward so as to face the sub-reflecting surface 11b located on the front side. It is preferable that specific inclination angle α with respect to the vertical direction Z to the optical axis X L of the light-emitting axis X S of this time, in the range of about 10 to 20 °.

これにより、光源2の発光軸Xは上向き方向にあるときよりも副反射面11b寄りの方向に位置することになり、光源2から副反射面11bに向かって発せられる光の光量増加を図ることができる。そのため、副反射面11bからの反射光を照射光として形成する配光パターンの照射領域の照度が高められる。 Thus, light-emitting axis X S of the light source 2 will be located in the direction of the sub-reflecting surface 11b nearer when in the upward direction, aim the light intensity increases in emitted light toward the light source 2 to the secondary reflecting surface 11b be able to. Therefore, the illumination intensity of the irradiation area of the light distribution pattern that forms the reflected light from the sub-reflecting surface 11b as the irradiation light is increased.

次に、上述の車両用前照灯におけるロービーム用配光パターン形成時とハイビーム用配光パターン形成時の夫々の光学系について夫々図5〜図8を参照して説明する。   Next, the respective optical systems at the time of forming the light distribution pattern for the low beam and the light distribution pattern for the high beam in the above-described vehicle headlamp will be described with reference to FIGS.

まず、ロービーム用配光パターンの形成時には、図5に示すように、可動ミラー20の回動支持部20bが回動機構部60を介して回動支持軸61の周りを回動され、それに伴って可動ミラー20が回動支持部20bを支点として、該可動ミラー20の平面反射面20aが光軸Xを含む水平面上に位置する。 First, at the time of forming the low beam light distribution pattern, as shown in FIG. 5, the rotation support portion 20 b of the movable mirror 20 is rotated around the rotation support shaft 61 via the rotation mechanism portion 60. the movable mirror 20 as a fulcrum pivot support portion 20b, a plane reflective surface 20a of the movable mirror 20 is positioned on the horizontal plane including the optical axis X L Te.

すると、主反射面11aの第一焦点f1近傍に位置する光源2から発せられた光のうち、主反射面11aに向かい該主反射面11aにより光軸X寄りの前方に向けて反射された光は、直接第二焦点f2aに向かう光と第二焦点近傍の平面反射面20aに向かう光に分かれ、直接第二焦点f2aに向かう光は一旦第二焦点f2aで収束してその後発散し、その発散光が投影レンズ30の光入射面30aに投影されて投影レンズ30内を導光されて光出射面30bから照射方向に向けて照射される。また、第二焦点f2a近傍の平面反射面20aに向かう光は平面反射面20aで反射されて反射光が第二焦点f2aで収束してその後発散し、同様にその発散光が投影レンズ30の光入射面30aに投影されて投影レンズ30内を導光されて光出射面30bから照射方向に向けて照射される。 Then, among the light emitted from the light source 2 located first near one focal point f1 of the main reflecting surface 11a, it is reflected toward the front of the optical axis X L toward the main reflection surface 11a toward the main reflection surface 11a The light is divided into light that goes directly to the second focus f2a and light that goes to the plane reflecting surface 20a near the second focus, and the light that goes directly to the second focus f2a once converges at the second focus f2a and then diverges, The divergent light is projected onto the light incident surface 30a of the projection lens 30, guided through the projection lens 30, and irradiated from the light emitting surface 30b in the irradiation direction. The light traveling toward the planar reflecting surface 20a near the second focal point f2a is reflected by the planar reflecting surface 20a, and the reflected light converges at the second focal point f2a and then diverges. Similarly, the divergent light is emitted from the projection lens 30. The light is projected onto the incident surface 30a, guided through the projection lens 30, and irradiated from the light exit surface 30b in the irradiation direction.

このとき、投影レンズ30からの照射光で形成される配光パターンは、図7のように、可動ミラー20の前端縁の反転投影像がカットオフラインCLを形成し、主反射面11aからの反射光の反転投影像でカットオフラインCLの下側のパターンが形成され、そのうち平面反射面11aでの反射光によってホットゾーンが形成される。この配光パターンはロービーム用配光パターンとなる。   At this time, in the light distribution pattern formed by the irradiation light from the projection lens 30, as shown in FIG. 7, the inverted projection image of the front edge of the movable mirror 20 forms a cut-off line CL, and is reflected from the main reflection surface 11a. A pattern on the lower side of the cut-off line CL is formed by the reverse projection image of the light, and a hot zone is formed by the reflected light from the planar reflecting surface 11a. This light distribution pattern is a low beam light distribution pattern.

一方、主反射面11aに連設されて該主反射面11aの前方に位置する副反射面11bに向かい該副反射面11bにより光軸Xの下方に向けて反射された光は、光軸Xを含む水平面上に位置する反射面20aで反射されて再度副反射面11b側に戻る。 On the other hand, the light reflected downward of the optical axis X L by sub reflective surface 11b toward the secondary reflective surface 11b located in front of the continuously to the main reflection surface 11a main reflection surface 11a, the optical axis again reflected by the reflecting surface 20a which is located on the horizontal plane including the X L returns to the secondary reflecting surface 11b side.

そのため、副反射面11bからの反射光は投影レンズ30に投影されることはなく、ロービーム用配光パターンの形成になんら影響を及ぼすものとはならない。   Therefore, the reflected light from the sub-reflecting surface 11b is not projected onto the projection lens 30 and does not affect the formation of the low beam light distribution pattern.

一方、ハイビーム用配光パターンの形成時には、図6に示すように、可動ミラー20の回動支持部20bが回動機構部60を介して回動支持軸61の周りを回動され、それに伴って可動ミラー20が回動支持部20bを支点として、可動ミラー20の平面反射面20aが光軸Xを含む水平面に対して所定の角度をもって前方に向けて下方(水平面から離れる方向)に傾斜させた状態に位置する。 On the other hand, at the time of forming the high beam light distribution pattern, as shown in FIG. 6, the rotation support portion 20 b of the movable mirror 20 is rotated around the rotation support shaft 61 via the rotation mechanism portion 60. tilting fulcrum movable mirror 20 is a pivot support portion 20b, downwardly toward the front flat reflective surface 20a of the movable mirror 20 at a predetermined angle with respect to the horizontal plane including the optical axis X L (direction away from the horizontal plane) Te It is located in the state that was allowed to.

このとき、可動ミラー20の平面反射面20aの具体的な位置は上述したように、この平面反射面20aを対称面としたときに副反射面11bの第2焦点f2bの位置と主反射面11aの第2焦点f2aの位置とが面対称となるような位置に設定されている。   At this time, the specific position of the planar reflecting surface 20a of the movable mirror 20 is as described above, and the position of the second focal point f2b of the sub-reflecting surface 11b and the main reflecting surface 11a when the planar reflecting surface 20a is a symmetrical surface. The position of the second focal point f2a is set to a position that is plane symmetric.

そのため、主反射面11aの第一焦点f1近傍に位置する光源2から発せられた光のうち、主反射面11aに向かい該主反射面11aにより光軸X寄りの前方方向に向けて反射された光は一旦第二焦点f2aで収束してその後発散し、その発散光が投影レンズ30の光入射面30aに投影されて投影レンズ30内を導光されて光出射面30bから照射方向に向けて照射される。 Therefore, among the light emitted from the light source 2 located first near one focal point f1 of the main reflecting surface 11a, it is reflected toward the front direction of the optical axis X L toward the main reflection surface 11a toward the main reflection surface 11a The light once converges at the second focal point f2a and then diverges, and the divergent light is projected onto the light incident surface 30a of the projection lens 30 and guided through the projection lens 30 toward the irradiation direction from the light exit surface 30b. Is irradiated.

この照射光によって形成される配光パターンは、主反射面11aからの反射光が可動ミラー20に遮蔽されることなくそのまま第二焦点f2aを通って投影レンズ30に投影され、その反転投影像によって配光パターンが形成される。そのため、図8(a)に示すような、水平基準線Hの上側(U側)と下側(D側)の両方に大きく広がる配光パターンとなる。   In the light distribution pattern formed by this irradiation light, the reflected light from the main reflecting surface 11a is projected as it is onto the projection lens 30 through the second focal point f2a without being shielded by the movable mirror 20, and by the inverted projection image. A light distribution pattern is formed. Therefore, a light distribution pattern that spreads greatly on both the upper side (U side) and the lower side (D side) of the horizontal reference line H as shown in FIG.

一方、主反射面11aに連設されて該主反射面11aの前方方向に位置する副反射面11bに向かい該副反射面11bにより光軸Xの下方に向けて反射された光は、光軸Xを含む水平面に対して所定の角度をもって前方に向けて下方(水平面から離れる方向)に傾斜させた平面反射面20aで反射されて、平面反射面20aを対称面とする副反射面11bの第二焦点f2bの仮想第二焦点の位置にある第二焦点f2aに一旦収束してその後発散し、その発散光が投影レンズ30の光入射面30aに投影されて投影レンズ30内を導光されて光出射面30bから照射方向に向けて照射される。 On the other hand, the light reflected downward of the optical axis X L by sub reflective surface 11b toward the secondary reflective surface 11b which is positioned in a forward direction of the main reflecting surface 11a is provided continuously to the main reflection surface 11a, the light It is reflected by the flat reflective surface 20a which is inclined downward (away from the horizontal plane) toward the front at a predetermined angle with respect to the horizontal plane including the axis X L, the sub-reflecting surface 11b of the flat reflective surface 20a and the plane of symmetry The second focal point f2b of the second focal point f2b is temporarily converged on the second focal point f2a and then diverges, and the diverging light is projected onto the light incident surface 30a of the projection lens 30 and guided through the projection lens 30. Then, the light is emitted from the light emitting surface 30b in the irradiation direction.

この照射光によって形成される配光パターンは、副反射面11bで反射された一次反射光が更に可動ミラー20の平面反射面20aで反射されてその二次反射光が第二焦点f2aを通って投影レンズ30に投影され、その反転投影像によって配光パターンが形成される。そのため、図8(b)に示すような、水平基準線Hの上側(U側)と下側(D側)の両方の狭い範囲で且つ照射光量の多い配光パターンとなる。   In the light distribution pattern formed by the irradiation light, the primary reflected light reflected by the sub-reflecting surface 11b is further reflected by the planar reflecting surface 20a of the movable mirror 20, and the secondary reflected light passes through the second focal point f2a. The light is projected onto the projection lens 30 and a light distribution pattern is formed by the inverted projection image. Therefore, as shown in FIG. 8B, a light distribution pattern having a large irradiation light amount in a narrow range on both the upper side (U side) and the lower side (D side) of the horizontal reference line H is obtained.

この2つの配光パターンが重畳されて図8(c)に示すハイビーム用配光パターンが形成される。図8(c)からわかるように、副反射面11bで反射された反射光によって形成される、水平基準線Hの上側(U側)と下側(D側)の両方の狭い範囲で且つ照射光量の多い配光パターンは、ハイビーム用配光パターンにおいてホットゾーンを形成するものであり、これにより良好な遠方視認性を確保することができる。   The two light distribution patterns are superimposed to form a high beam light distribution pattern shown in FIG. As can be seen from FIG. 8C, irradiation is performed in a narrow range both on the upper side (U side) and the lower side (D side) of the horizontal reference line H formed by the reflected light reflected by the sub-reflecting surface 11b. The light distribution pattern having a large amount of light forms a hot zone in the light distribution pattern for high beam, and thereby it is possible to ensure good far visibility.

ところで、光源2をその発光軸Xを前方に傾けて配置したことによるハイビーム用配光パターンの形成に対する効果について、図9及び図10を参照して説明する。光源2を構成する発光素子5として略球状の指向特性を有するものを使用すると仮定する。図において、発光素子5を発光軸Xが上向き(Z方向)となるように配置したときの指向特性(D1)を点線で表し、発光軸Xが上向き(Z方向)から前方に角度α傾くように配置したときの指向特性(D2)を実線で表している。また、光源2が主反射面11aを見込む立体角をβ1とし、副反射面11bを見込む立体角をβ2としている。 Meanwhile, the effect on the formation of a light distribution pattern for high beam by the light source 2 to the arrangement of tilting the light-emitting axis X S forward and described with reference to FIGS. It is assumed that a light emitting element 5 constituting the light source 2 has a substantially spherical directivity characteristic. In the figure, represents the directivity characteristics when the light emitting element 5 light-emitting axis X S is arranged so that the upward (Z direction) the (D1) by dotted lines, the light emitting axis X S angle α is forward from the upward (Z direction) The directivity (D2) when arranged so as to be inclined is represented by a solid line. The solid angle at which the light source 2 looks at the main reflecting surface 11a is β1, and the solid angle at which the light reflecting surface 11b looks at the sub-reflecting surface 11b is β2.

なお、光源が主反射面を見込む立体角β1は副反射面を見込む立体角β2よりも大きくなるように、主反射面と副反射面の大きさが設定されている。これにより、主反射面による反射光で配光パターンの全領域を形成し、副反射面による反射光で配光パターンの一部領域にホットゾーンを形成するようにしている。   Note that the sizes of the main reflection surface and the sub-reflection surface are set so that the solid angle β1 at which the light source expects the main reflection surface is larger than the solid angle β2 at which the sub-reflection surface is expected. Thereby, the entire region of the light distribution pattern is formed by the reflected light from the main reflection surface, and a hot zone is formed in a partial region of the light distribution pattern by the reflected light from the sub-reflection surface.

そこで、夫々の立体角β1、β2で切り取られる指向パターンの面積を、発光軸Xが上向方向きにある場合と上向き方向に対して前方方向に傾斜した場合について比較してみると、立体角β1で切り取られる面積については、図9のように、点線で表された指向特性(D1)のAで示された領域の方が、実線で表された指向特性(D2)のBで表された領域よりも大きい。 Therefore, each of the solid angle .beta.1, the area of oriented patterns are cut at .beta.2, Comparing the case where the inclined forward direction to the upward direction in the case where light-emitting axis X S is at the upward side facing, stereoscopic As for the area cut out at the angle β1, as shown in FIG. 9, the area indicated by A of the directivity (D1) represented by the dotted line is represented by B of the directivity (D2) represented by the solid line. Larger than the marked area.

つまり、発光軸Xが上向きにあるときの方が前方に傾斜したときよりも立体角β1で切り取られる指向パターンの面積が大きく、立体角β1内に含まれる光束が多いことを意味している。このことより、主反射面11aからの反射光により形成される配光パターン(図8(a)参照)は、光源2の向きを前方に傾けることにより上方に向けたときよりも暗いものとなる。 That is, when the light emitting axis XS is upward, the area of the directivity pattern cut out at the solid angle β1 is larger than when the light emission axis XS is tilted forward, and it means that there is more light flux included in the solid angle β1. . Thus, the light distribution pattern (see FIG. 8A) formed by the reflected light from the main reflecting surface 11a is darker than when the light source 2 is directed upward by tilting the light source 2 forward. .

一方、立体角β2で切り取られる面積については、図10のように、実線で表された指向特性(D2)のBで示された領域の方が、点線で表された指向特性(D1)のAで表された領域よりも大きい。   On the other hand, as for the area cut out by the solid angle β2, as shown in FIG. 10, the area indicated by B of the directivity (D2) represented by the solid line has the directivity (D1) represented by the dotted line. It is larger than the area represented by A.

つまり、発光軸Xが前方に傾斜したときの方が発光軸Xが上向きにあるときよりも立体角β2で切り取られる指向パターンの面積が大きく、立体角β2内に含まれる光束が多いことを意味している。このことより、副反射面11bからの反射光により形成される配光パターン(図8(b)参照)は、光源2の発光軸Xの向きを前方に傾けることにより上方に向けたときよりも明るいものとなる。 In other words, that the luminous axis X S is larger the area of the directional patterns are cut in the solid angle β2 than when better when the inclined forward in the upward emission axis X S is, the light beam contained in the solid angle β2 often Means. From this fact, than when the light distribution pattern formed by the light reflected from the auxiliary reflecting surface 11b (see FIG. 8 (b)), directed upward by inclining the orientation of the light-emitting axis X S of the light source 2 to the front Will also be bright.

このように、光源2を発光軸Xが上向き且つやや前方に傾斜するように配置することにより、光源2を発光軸Xが上向きになるように配置した場合に対して、光源2から発せられて複合楕円系反射面11に向かう光を、主反射面11aと副反射面11bに振り分けて夫々の反射面からの反射光で形成される配光パターンの光度分布を最適なものとした。その結果、図8(c)のような、十分な明るさが確保されたホットゾーンを有するハイビーム用配光パターンが実現し、良好な遠方視認性を有する車両用前照灯が可能となった。 Thus, by arranging so as to tilt the light source 2 to the front light-emitting axis X S upward and slightly, for the case of arranging the light source 2 so that the light emission axes X S faces upward, emitted from the light source 2 The light directed toward the composite elliptical reflecting surface 11 is distributed to the main reflecting surface 11a and the sub-reflecting surface 11b, and the luminous intensity distribution of the light distribution pattern formed by the reflected light from each reflecting surface is optimized. As a result, a high beam light distribution pattern having a hot zone in which sufficient brightness is ensured as shown in FIG. 8C is realized, and a vehicular headlamp having good distant visibility can be realized. .

以上説明したように、本発明の車両用前照灯は、発光軸を上方かつ前方に傾けた光源を覆うように、該光源を共有の第一焦点とする主反射面と副反射面とを設け、主反射面の長軸を光軸とし主反射面の第二焦点と同位置に後側焦点を位置させた投影レンズを配置し、光源と投影レンズとの間に、上面を平面反射面とすると共に光軸近傍に回動支持部が位置し該回動支持部から前方に延びる前端縁側が光軸に沿う位置と光軸の下方に傾斜する位置のいずれかに切換えられる可動ミラーが配設された。   As described above, the vehicular headlamp according to the present invention includes a main reflection surface and a sub-reflection surface that share a light source as a first focal point so as to cover a light source whose light emission axis is inclined upward and forward. A projection lens with the major axis of the main reflecting surface as the optical axis and the rear focal point positioned at the same position as the second focal point of the main reflecting surface, and the upper surface is a planar reflecting surface between the light source and the projection lens. In addition, a movable mirror is arranged in which the rotation support portion is positioned near the optical axis and the front end edge side extending forward from the rotation support portion is switched to either a position along the optical axis or a position inclined below the optical axis. Was established.

そして、ロービーム(すれ違いビーム)用配光パターン形成時には、可動ミラーの平面反射面を光軸に沿う位置にセットする。すると、光源から主反射面の方向に向けて発せられた光は該主反射面で反射されて主反射面の第二焦点と該第二焦点と同一位置にある、投影レンズの後側焦点を通って投影レンズに投影され、投影レンズを介して外部に照射される。   When the low beam (passing beam) light distribution pattern is formed, the plane reflecting surface of the movable mirror is set at a position along the optical axis. Then, the light emitted from the light source in the direction of the main reflection surface is reflected by the main reflection surface, and the rear focal point of the projection lens is located at the same position as the second focal point of the main reflection surface and the second focal point. Then, the light is projected onto the projection lens and irradiated outside through the projection lens.

一方、ハイビーム(走行ビーム)用配光パターン形成時には、可動ミラーの平面反射面を光軸の下方に傾斜する位置にセットする。このとき、副反射面の第二焦点は平面反射面の下方に位置し、主反射面の第二焦点と同一位置にある、投影レンズの後側焦点に対して平面反射面を対称面とする面対称の位置にある。そこで、光源から発せられた光のうち、主反射面の方向に向かう光は該主反射面で反射されて主反射面の第二焦点と該第二焦点と同一位置にある、投影レンズの後側焦点を通って投影レンズに投影され、投影レンズを介して外部に照射される。また、副反射面に向かう光は該副反射面で反射されてその反射光が副反射面の第二焦点に向かうが、途中、可動ミラーの平面反射面に遮られ反射されて投影レンズの後側焦点に向かい、後側焦点を通って投影レンズに投影され、投影レンズを介して外部に照射される。   On the other hand, when the high beam (running beam) light distribution pattern is formed, the plane reflecting surface of the movable mirror is set at a position inclined downward from the optical axis. At this time, the second focal point of the sub-reflecting surface is located below the planar reflecting surface, and the planar reflecting surface is symmetrical with respect to the rear focal point of the projection lens that is at the same position as the second focal point of the main reflecting surface. It is in a plane symmetrical position. Therefore, of the light emitted from the light source, the light directed toward the main reflection surface is reflected by the main reflection surface and is located at the same position as the second focal point of the main reflection surface and the second focal point. The light is projected onto the projection lens through the side focal point, and irradiated outside through the projection lens. The light traveling toward the sub-reflecting surface is reflected by the sub-reflecting surface, and the reflected light travels toward the second focal point of the sub-reflecting surface. It goes to the side focal point, passes through the rear side focal point, is projected onto the projection lens, and is irradiated to the outside through the projection lens.

このように、ハイビーム配光パターン形成時に、発光軸を副反射面側に向けられた光源から発せられた光が順次、その副反射面、可動ミラーの平面反射面、投影レンズの後側焦点及び投影レンズを通って外部に照射される光路の形成に係わる光学系を構成するようにした。   As described above, when the high beam distribution pattern is formed, the light emitted from the light source having the light emitting axis directed to the sub-reflecting surface side sequentially, the sub-reflecting surface, the plane reflecting surface of the movable mirror, the rear focal point of the projection lens, and An optical system related to the formation of an optical path irradiated outside through the projection lens is configured.

すると、発光軸を副反射面側に向けて配置された光源から発せられた光が上記光学系を経て照射する照射光は、ハイビーム用配光パターンにおいてホットゾーンを形成するものとなり、ホットゾーンの高光度化に大いに寄与するものとなる。   Then, the light emitted from the light source arranged with the emission axis facing the sub-reflecting surface side irradiates through the optical system forms a hot zone in the high beam light distribution pattern. It will greatly contribute to the increase in luminous intensity.

また、光源から発せられて主反射面に向かう光と副反射面に向かう光の光量比を適宜な比率に設定することにより、主反射面の反射光のみで形成されるロービーム用配光パターンと、主反射面の反射光と副反射面の反射光とで形成されるハイビーム用配光パターンとの明るさのバランスを最適な状態に設定することができる。   Also, by setting the light quantity ratio of the light emitted from the light source toward the main reflection surface and the light toward the sub-reflection surface to an appropriate ratio, a low beam light distribution pattern formed only by the reflected light of the main reflection surface, The balance of brightness between the light distribution pattern for high beam formed by the reflected light of the main reflecting surface and the reflected light of the sub-reflecting surface can be set to an optimum state.

なお、光源から主反射面に向かう光と副反射面に向かう光の光量比の設定は、光源の発光軸の方向を変えたり、光源が主反射面を見込む立体角と副反射面を見込む立体角の比率を変えることにより実現できる。   Note that the ratio of the amount of light from the light source toward the main reflection surface and the light toward the sub reflection surface can be set by changing the direction of the light emission axis of the light source or by the solid angle where the light source expects the main reflection surface and the solid reflection surface. This can be achieved by changing the corner ratio.

これにより、ロービーム用配光パターン及びハイビーム用配光パターンのいずれも視認性の良好なものとすることができ、夜間走行時の前方確認を確実なものとすることが可能となる。   As a result, both the low beam light distribution pattern and the high beam light distribution pattern can have good visibility, and the forward confirmation during night driving can be ensured.

なお、上述の説明における回動機構部は、可動ミラーを所定の位置に回動する機構を有するものであれば特に限定されるものではない。   In addition, the rotation mechanism part in the above-mentioned description will not be specifically limited if it has a mechanism which rotates a movable mirror to a predetermined position.

1… 光源モジュール
2… 光源
3… 基板
4… メタルプレート
5… 発光素子
10… リフレクタ
11… 複合楕円系反射面
11a… 主反射面
11b… 副反射面
20… 可動ミラー
20a… 平面反射面
20b… 回動支持部
30… 投影レンズ
30a… 光入射面
30b… 光出射面
40… レンズホルダー
50… ヒートシンク
60… 回動機構部
61… 回動支持軸
DESCRIPTION OF SYMBOLS 1 ... Light source module 2 ... Light source 3 ... Board | substrate 4 ... Metal plate 5 ... Light emitting element 10 ... Reflector 11 ... Composite ellipsoidal reflective surface 11a ... Main reflective surface 11b ... Sub reflective surface 20 ... Movable mirror 20a ... Planar reflective surface 20b ... Time Motion support portion 30 ... Projection lens 30a ... Light incident surface 30b ... Light exit surface 40 ... Lens holder 50 ... Heat sink 60 ... Rotation mechanism portion 61 ... Rotation support shaft

Claims (2)

第一焦点の位置を共に共有して連設された夫々回転楕円面又はそれに類する回転自由曲面からなる2つの回転楕円系曲面を、前記一方の回転楕円系曲面の長軸を含む平面で上下に分割したときの略上側に位置する前記一方の回転楕円系曲面に形成された主反射面ともう一方の回転楕円系曲面に形成された副反射面からなると共に前記主反射面の前端部に前記副反射面の後端部が連接されてなる複合楕円系反射面と、前記第一焦点の近傍に位置しその発光軸を上方且つ前方に向けた光源と、前記長軸を光軸とし前記光軸上の前記主反射面の第二焦点と同一位置に後側焦点が位置する投影レンズと、前記光源と前記投影レンズとの間に位置し、上面を平面反射面とし後端縁側に回動支持部を有し該回動支持部を支点に前端縁側が上下に回動する可動ミラーと、を備えた車両用前照灯であって、
前記可動ミラーの平面反射面が前記光軸近傍で且つ該光軸に沿った位置にあるときは、前記可動ミラーの前端縁が前記投影レンズの後側焦点近傍に位置し、前記光源から発せられて前記主反射面で反射された光が前記後側焦点を通って前記投影レンズを介して外部に照射され、
前記可動ミラーの反射面が前記光軸に対して所定の角度をもって前方に向けて下方に傾斜した位置にあるときは、前記反射面の下方に位置する、前記副反射面の第二焦点が前記後側焦点に対して前記平面反射面を対称面とする面対称の位置にあり、前記光源から発せられて前記主反射面で反射された光が前記後側焦点を通って前記投影レンズを介して外部に照射されると共に、前記副反射面で反射された一次反射光が前記平面反射面で再度反射されてその二次反射光が前記後側焦点を通って前記投影レンズを介して外部に照射される、ことを特徴とする車両用前照灯。
Two spheroidal curved surfaces, each consisting of a spheroidal surface or a similar free-rotating curved surface that share the first focal point position, are moved up and down on a plane including the major axis of the one spheroidal curved surface. The main reflecting surface formed on the one spheroid curved surface located substantially above when divided and the sub-reflecting surface formed on the other spheroid curved surface and at the front end of the main reflecting surface A composite elliptical reflecting surface formed by connecting rear end portions of the sub-reflecting surface, a light source located near the first focal point and having its emission axis directed upward and forward, and the light having the major axis as the optical axis. A projection lens whose rear focal point is located at the same position as the second focal point of the main reflecting surface on the axis, and is positioned between the light source and the projection lens, and the upper surface is a plane reflecting surface and is rotated to the rear edge side. It has a support part, and the front end edge side can be turned up and down with the turning support part as a fulcrum. A mirror, a vehicle headlamp equipped with,
When the plane reflecting surface of the movable mirror is in the vicinity of the optical axis and along the optical axis, the front edge of the movable mirror is positioned in the vicinity of the rear focal point of the projection lens and is emitted from the light source. The light reflected by the main reflecting surface is irradiated to the outside through the projection lens through the rear focal point,
When the reflecting surface of the movable mirror is at a position inclined downward with a predetermined angle with respect to the optical axis, the second focal point of the sub-reflecting surface located below the reflecting surface is The light emitted from the light source and reflected by the main reflection surface is located through the projection lens through the projection lens, in a plane-symmetric position with the plane reflection surface as a symmetry surface with respect to the rear focus. The primary reflected light reflected by the sub-reflecting surface is reflected again by the planar reflecting surface, and the secondary reflected light passes through the rear focal point to the outside through the projection lens. A vehicle headlamp characterized by being irradiated.
前記光源が前記主反射面を見込む立体角は前記副反射面を見込む立体角よりも大きいことを特徴とする請求項1に記載の車両用前照灯。   The vehicle headlamp according to claim 1, wherein a solid angle at which the light source looks at the main reflection surface is larger than a solid angle at which the sub-reflection surface is expected.
JP2009277665A 2009-12-07 2009-12-07 Vehicle headlamp Active JP5396254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277665A JP5396254B2 (en) 2009-12-07 2009-12-07 Vehicle headlamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277665A JP5396254B2 (en) 2009-12-07 2009-12-07 Vehicle headlamp

Publications (3)

Publication Number Publication Date
JP2011119184A true JP2011119184A (en) 2011-06-16
JP2011119184A5 JP2011119184A5 (en) 2013-01-10
JP5396254B2 JP5396254B2 (en) 2014-01-22

Family

ID=44284279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277665A Active JP5396254B2 (en) 2009-12-07 2009-12-07 Vehicle headlamp

Country Status (1)

Country Link
JP (1) JP5396254B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020831A (en) * 2011-07-12 2013-01-31 Koito Mfg Co Ltd Headlight for vehicle
KR20130129133A (en) * 2012-05-17 2013-11-27 오스람 실바니아 인코포레이티드 Headlamp featuring both low-beam and high-beam outputs and devoid of moving parts
KR20140133315A (en) * 2013-05-10 2014-11-19 현대모비스 주식회사 Head Lamp
JP2016076313A (en) * 2014-10-02 2016-05-12 マツダ株式会社 Vehicular headlamp
JP2016096115A (en) * 2014-11-17 2016-05-26 スタンレー電気株式会社 Vehicle lamp fitting
JP2016100234A (en) * 2014-11-25 2016-05-30 スタンレー電気株式会社 Vehicular lighting fixture
CN106958786A (en) * 2017-05-19 2017-07-18 上海小糸车灯有限公司 Convertible light-source system
JP2017208196A (en) * 2016-05-17 2017-11-24 スタンレー電気株式会社 Vehicular lighting fixture
JP2020024948A (en) * 2018-06-27 2020-02-13 株式会社小糸製作所 Vehicular lighting fixture unit
JP7404480B2 (en) 2019-11-13 2023-12-25 株式会社小糸製作所 Vehicle lighting unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651797B2 (en) * 2015-11-09 2020-02-19 市光工業株式会社 Vehicle headlights

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348508A (en) * 1999-06-04 2000-12-15 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2005276805A (en) * 2004-02-27 2005-10-06 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2008177130A (en) * 2007-01-22 2008-07-31 Ichikoh Ind Ltd Lamp tool unit of vehicle headlight
JP2009104995A (en) * 2007-10-25 2009-05-14 Ichikoh Ind Ltd Lighting fixture for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348508A (en) * 1999-06-04 2000-12-15 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2005276805A (en) * 2004-02-27 2005-10-06 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2008177130A (en) * 2007-01-22 2008-07-31 Ichikoh Ind Ltd Lamp tool unit of vehicle headlight
JP2009104995A (en) * 2007-10-25 2009-05-14 Ichikoh Ind Ltd Lighting fixture for vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020831A (en) * 2011-07-12 2013-01-31 Koito Mfg Co Ltd Headlight for vehicle
KR20130129133A (en) * 2012-05-17 2013-11-27 오스람 실바니아 인코포레이티드 Headlamp featuring both low-beam and high-beam outputs and devoid of moving parts
JP2013243130A (en) * 2012-05-17 2013-12-05 Osram Sylvania Inc Headlamp featuring both low-beam and high-beam output and devoid of moving part
KR102048876B1 (en) 2012-05-17 2019-11-26 오스람 실바니아 인코포레이티드 Headlamp featuring both low-beam and high-beam outputs and devoid of moving parts
KR102041082B1 (en) * 2013-05-10 2019-11-06 현대모비스 주식회사 Head Lamp
KR20140133315A (en) * 2013-05-10 2014-11-19 현대모비스 주식회사 Head Lamp
JP2016076313A (en) * 2014-10-02 2016-05-12 マツダ株式会社 Vehicular headlamp
JP2016096115A (en) * 2014-11-17 2016-05-26 スタンレー電気株式会社 Vehicle lamp fitting
JP2016100234A (en) * 2014-11-25 2016-05-30 スタンレー電気株式会社 Vehicular lighting fixture
JP2017208196A (en) * 2016-05-17 2017-11-24 スタンレー電気株式会社 Vehicular lighting fixture
CN106958786A (en) * 2017-05-19 2017-07-18 上海小糸车灯有限公司 Convertible light-source system
CN106958786B (en) * 2017-05-19 2024-01-30 华域视觉科技(上海)有限公司 Turnover type light source system
JP2020024948A (en) * 2018-06-27 2020-02-13 株式会社小糸製作所 Vehicular lighting fixture unit
JP7404480B2 (en) 2019-11-13 2023-12-25 株式会社小糸製作所 Vehicle lighting unit

Also Published As

Publication number Publication date
JP5396254B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5396254B2 (en) Vehicle headlamp
JP6581588B2 (en) Vehicle headlamp
JP5321048B2 (en) Vehicle headlamp
JP5537989B2 (en) Headlamp and bifocal lens
JP4970136B2 (en) Vehicle headlamp lamp unit
JP5937310B2 (en) Vehicle headlamp
JP2005166590A (en) Vehicular headlamp
JP4264319B2 (en) Vehicle headlamp
JP4895224B2 (en) Vehicle lighting
JP2005166589A (en) Vehicular headlamp
JP2004071489A (en) Vehicular headlamp
JP2005166587A (en) Vehicular headlamp
JP2007193960A (en) Headlight for vehicle
JP2017212037A (en) Vehicular headlight
JP2011165600A (en) Vehicular illumination lamp
JP2011040247A (en) Lamp unit of headlight for vehicle
JP2013152844A (en) Vehicle headlamp
JP2015046235A (en) Vehicle lighting fixture
JP5839677B2 (en) Lighting fixtures for vehicles
JP5497408B2 (en) Vehicle headlamp
JP2014123458A (en) Led head lamp
JP2011081975A (en) Vehicle headlight and reflector unit therefor
JP2017073344A (en) Lighting appliance for vehicle
JP2017208208A (en) Lamp
JP2011222367A (en) Vehicular headlight

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5396254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250