JP2011118988A - Method of manufacturing magnetic recording medium - Google Patents

Method of manufacturing magnetic recording medium Download PDF

Info

Publication number
JP2011118988A
JP2011118988A JP2009275714A JP2009275714A JP2011118988A JP 2011118988 A JP2011118988 A JP 2011118988A JP 2009275714 A JP2009275714 A JP 2009275714A JP 2009275714 A JP2009275714 A JP 2009275714A JP 2011118988 A JP2011118988 A JP 2011118988A
Authority
JP
Japan
Prior art keywords
magnetic
kneading
recording medium
energy
dilution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009275714A
Other languages
Japanese (ja)
Inventor
Makoto Terasawa
誠 寺澤
Kazuhiko Nakiri
和彦 菜切
Masayoshi Kawarai
正義 河原井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009275714A priority Critical patent/JP2011118988A/en
Publication of JP2011118988A publication Critical patent/JP2011118988A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a kneading method and a diluting method in consideration of a diluting process, in a manufacturing method of a coating type magnetic recording medium for reducing a magnetic cluster size as a cohesion parameter of magnetic powder as much as possible and forming a smooth magnetic surface. <P>SOLUTION: In a method of manufacturing a magnetic recording medium, an energy ratio Ek/Ed between kneading energy (Ek) and diluting energy (Ed) to be added to per unit volume of a kneaded material is 0.5 to 1.1, in a kneading process and a diluting process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は磁気記録媒体の製造方法に係り、特に、塗布型磁気記録媒体に用いる磁性粉末の混練方法に関するものである。  The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly to a method for kneading magnetic powder used in a coating type magnetic recording medium.

塗布型磁気記録媒体は、連続走行する帯状の支持体(以下、「ウェブ」という)上に磁性塗料を塗布して塗膜を形成する塗布工程を経ておもに磁気テープとして製造される。磁気テープは、近年、再生ヘッドに磁気抵抗型のMRヘッド(Magneto Resistive head)を採用したコンピュータバックアップ用が主流となってきて、ハードの大容量、高記録密度への急速な傾向に伴い、これに対応して磁気テープにもより優れたC/N(信号レベルのノイズに対する比)を有するものが求められている。  The coating-type magnetic recording medium is manufactured as a magnetic tape mainly through a coating process in which a magnetic coating is applied to a continuously running belt-like support (hereinafter referred to as “web”) to form a coating film. In recent years, magnetic tape has been mainly used for computer backup, which uses a magnetoresistive MR head (Magneto Resistive head) as a reproducing head. With the rapid trend toward higher capacity and higher recording density, Accordingly, magnetic tapes having a better C / N (ratio of signal level to noise) are also demanded.

このため、材料面では従来以上の微粒子磁性粉末の使用と磁気テープの磁性層の表面性をより平滑にしてスペーシングロスの低減への要求が高まっている。この磁性層表面を平滑にする方法として、現在では重層塗布方式を用い、下層に非磁性の層を設けて上層に薄い磁性層を塗布する方法が一般的である。高記録密度や大容量の要求の高まりにつれ重層構成でも、最近は上層の磁性層は0.1μm以下とますます薄くなりつつある。 For this reason, in terms of materials, there is an increasing demand for the use of finer magnetic powders than before and the smoothness of the surface properties of the magnetic layer of the magnetic tape to reduce the spacing loss. As a method for smoothing the surface of the magnetic layer, a method of using a multilayer coating method at present and providing a nonmagnetic layer as a lower layer and applying a thin magnetic layer as an upper layer is generally used. As the demand for high recording density and large capacity increases, the upper magnetic layer has recently become increasingly thinner to 0.1 μm or less, even in a multi-layer structure.

一方、先に述べたMRヘッドは、誘導型磁気ヘッドと比較して数倍の再生出力を得ることができるとともに、誘導コイルを用いないため、インピーダンスノイズ等の機器ノイズが大幅に低下し、磁気記録媒体側のノイズを下げることにより、C/Nを向上できるという特徴を持っている。 On the other hand, the MR head described above can obtain a reproduction output several times that of the induction type magnetic head and does not use an induction coil. It has a feature that C / N can be improved by reducing noise on the recording medium side.

ところが、MRヘッドでは、磁気記録媒体との接触による発熱やテープ上の凹みによる吸熱の影響を受けて、サーマルアスペリティノイズが発生するという問題がある。また、誘導型磁気ヘッドと比較して感度が良好なことに加えて特に、高密度記録用の磁気記録媒体では、そのビット長が短いため、以前は無視しうる程度でしかなかった磁性層表面の凹凸や微小なわずかな厚み変動や下層との界面の乱れが記録再生時のノイズを大きくしてC/Nの低下となるのでこれらを極力小さくすることに注力されつつある。 However, the MR head has a problem that thermal asperity noise is generated due to heat generated by contact with the magnetic recording medium or heat absorption due to a dent on the tape. In addition to good sensitivity compared to induction type magnetic heads, the surface of the magnetic layer was previously negligible because the bit length of magnetic recording media for high-density recording is short. Concavities and convexities, slight slight thickness fluctuations, and disturbances at the interface with the lower layer increase noise during recording and reproduction and lower C / N. Therefore, efforts are being made to reduce these as much as possible.

これの対応として、磁性塗料中のより微粒子となった磁性粉末の分散性を高度に向上させることがえられ、磁性粉末の分散性向上のための製造工程に注目した分野から磁性塗料に関する各種の提案がなされている(特許文献1〜4等参照)。  In response to this, the dispersibility of the finely divided magnetic powder in the magnetic paint can be improved to a high degree, and various fields related to the magnetic paint from the field focusing on the manufacturing process for improving the dispersibility of the magnetic powder can be obtained. Proposals have been made (see Patent Documents 1 to 4).

良好な磁性粉末の分散ということは、本質的には、磁性塗料において磁性粉末の個々の粒子がバラバラで、凝集していない一次粒子により近い状態で磁性塗料中に存在することである。
磁性塗料製造工程においてこの分散性にもっとも関係する工程は、磁性粉末を結合剤等の媒体中に練り込む混練と呼ばれる工程である。したがって、製造工程からの磁性塗料に関する提案もこの工程に関してのものが多数を占める。
The good dispersion of the magnetic powder essentially means that the individual particles of the magnetic powder in the magnetic coating are scattered and are present in the magnetic coating in a state closer to the non-aggregated primary particles.
The process most related to the dispersibility in the magnetic paint manufacturing process is a process called kneading in which magnetic powder is kneaded into a medium such as a binder. Therefore, many proposals related to the magnetic coating from the manufacturing process are also related to this process.

特許文献1から4のいずれも混練工程についての、混練物の固形物濃度や処理温度を制御することで混練物に加えるせん断力を増して磁性粉末を分散しやすくしようとするものである。しかし、いずれの文献も対象となっている磁性粉末の粒子径は、明確に表示されてないものも含めて結晶子サイズや比表面積から長軸長が80nm以上と推測されて現在主流となりつつある長軸長が60nm以下のものはない。また、混練工程につづく希釈工程との関連やせん断力自体の定量的扱いはなされていない。   In any of Patent Documents 1 to 4, an attempt is made to easily disperse the magnetic powder by increasing the shearing force applied to the kneaded product by controlling the solid concentration and the treatment temperature of the kneaded product in the kneading step. However, the particle diameters of magnetic powders that are the subject of any literature, including those that are not clearly displayed, are now becoming mainstream, assuming that the major axis length is 80 nm or more from the crystallite size and specific surface area. There is no long axis length of 60 nm or less. In addition, the relationship with the dilution step following the kneading step and the quantitative handling of the shearing force itself are not made.

特許文献5(特開平10−21538)では平均長軸長が1.0μm以下の微粒子磁性粉末を混練する際の、磁性塗料単位重量当りの動力を定量的に扱って、処理する磁性粉末の平均長軸長との関係を検討して、磁性粉末を均一に分散させるに好適な動力(エネルギー)の範囲を開示している。   In Patent Document 5 (Japanese Patent Application Laid-Open No. 10-21538), the average power of magnetic powder to be processed is determined by quantitatively handling the power per unit weight of magnetic coating material when kneading fine magnetic powder having an average major axis length of 1.0 μm or less. Examining the relationship with the major axis length, the range of power (energy) suitable for uniformly dispersing the magnetic powder is disclosed.

また、特許文献6(特開2005−339649)では希釈工程でのせん断力についても言及して、混練工程と希釈工程とにおける塗料温度を規定することを開示している。   Further, Patent Document 6 (Japanese Patent Application Laid-Open No. 2005-339649) discloses that the coating temperature in the kneading step and the diluting step is specified with reference to the shearing force in the diluting step.

しかしながら、特許文献5や特許文献6の対象である磁性粉末の粒子径は、最小のものでも長軸長が80nmである。現在、コンピューターバックアップ用の記録媒体で主に使用されている60nm以下で粒子径が小さいので粒子間凝集力が大きく分散がより困難な磁性粉末については開示されていない。   However, even if the particle diameter of the magnetic powder that is the subject of Patent Document 5 and Patent Document 6 is the smallest, the major axis length is 80 nm. Currently, there is no disclosure of a magnetic powder that is mainly used in computer backup recording media and has a particle size of 60 nm or less and has a large interparticle cohesive force and is more difficult to disperse.

さらに、特許文献5では混練工程に続く希釈工程については何ら触れていない。また、特許文献6では希釈工程についても言及しているものの、発明の思想は、混練工程と同様に、せん断力を単により大きく与えることがよいというものである。 Further, Patent Document 5 does not mention any dilution process following the kneading process. Moreover, although patent document 6 also mentions the dilution process, the idea of the invention is that the shearing force should be given simply and larger as in the kneading process.

また、磁性粉末の分散性の評価もそれまでの周知の項目である磁性塗膜についての表面の平均粗さ(Ra)、保磁力分布(SFD)、光沢、単位面積中の一定の高さ以上の突起の個数などである。このような項目は、磁性粉末の分散が不十分なために生じる物理的な凝集に起因する特性の直接的な情報を与えるという意味で有力ではある。しかし、前述したように現状の超微粒子磁性粉末を用いた塗膜では、上であげたパラメーターよりも電磁変換特性のC/Nのノイズレベルに本質的に影響する磁気クラスター(磁気的凝集)サイズの大きさ(特許文献7)を評価することが、磁性粉末の分散性の尺度を知るには有効である。 In addition, evaluation of the dispersibility of the magnetic powder is a well-known item up to the average surface roughness (Ra), coercive force distribution (SFD), gloss, and a certain height in a unit area. The number of protrusions. Such items are powerful in the sense that they provide direct information on properties resulting from physical agglomeration caused by insufficient dispersion of the magnetic powder. However, as described above, in the coating film using the current ultrafine particle magnetic powder, the size of the magnetic cluster (magnetic aggregation) that essentially affects the C / N noise level of the electromagnetic conversion characteristics rather than the parameters listed above. It is effective to evaluate the size of the magnetic powder (Patent Document 7) in order to know a measure of the dispersibility of the magnetic powder.

特開平5−298690号公報JP-A-5-298690 特開平9−320051号公報Japanese Patent Laid-Open No. 9-320051 特開平7−14158号公報Japanese Patent Laid-Open No. 7-14158 特開平8−96357号公報JP-A-8-96357 特開平10−21538号公報Japanese Patent Laid-Open No. 10-21538 特開2005−339649号公報JP 2005-339649 A 特許第4001532号公報Japanese Patent No. 4001532

すなわち、これまでの製造工程に注目した磁性粉末の分散性を向上させる特許は、電磁変換特性のノイズレベルに関与する磁気クラスターサイズの大きさを評価したものはなく、さらに分散の対象である磁性粉末の平均粒子径が60nm以下のものを対象として実証したものはなく、また、混練工程にのみに関与したものか、希釈工程を含むものも混練工程と全く同じ思想で対処したものでしかない。まして、二つの工程の、磁性塗料中の磁性粉末の分散との関係を明らかにしてかつ両者の工程の分散するためのエネルギー比を定量的に規定したものは一切ない。   In other words, there are no patents that improve the dispersibility of magnetic powders that have focused on the manufacturing process so far, and have not evaluated the size of the magnetic cluster size involved in the noise level of electromagnetic conversion characteristics. There has been no demonstration of powders with an average particle diameter of 60 nm or less, and those involved only in the kneading process or those that include a dilution process have been dealt with in exactly the same way as the kneading process. . Moreover, none of the two processes clarifies the relationship between the dispersion of the magnetic powder in the magnetic paint and quantitatively defines the energy ratio for the dispersion of both processes.

それゆえ、混練工程で過剰なエネルギーを与えて微小な磁性粉末の凝集を生じさせてあとの希釈工程でときほぐすことができずに分散後の磁性塗料でも磁気的凝集が存在したり、逆に混練工程でのエネルギーが少ないために希釈工程で大きなエネルギーを与えても磁気的凝集が残ったままで分散後の磁気クラスターの大きさが小さくならないなどの問題があった。また、重層構造の磁気記録媒体ではこれらの分散不良は、先述した磁性層の厚み変動とか上下層の界面の乱れの発生原因となった。   Therefore, excessive energy is applied in the kneading process to cause agglomeration of minute magnetic powder, which cannot be loosened in the subsequent dilution process, and there is magnetic aggregation in the dispersed magnetic paint, or conversely kneading. Since the energy in the process is small, there is a problem that even when a large energy is applied in the dilution process, the magnetic aggregation remains and the size of the magnetic cluster after dispersion does not decrease. Further, in the multi-layered magnetic recording medium, these dispersion defects cause the above-described fluctuations in the thickness of the magnetic layer or disturbances in the interface between the upper and lower layers.

これらは磁気特性の低下や磁性層表面の平滑性の損失も生じさせ、高密度記録の再生においてノイズを増加させてC/N低下の原因となった。 These also cause a decrease in magnetic properties and a loss of smoothness on the surface of the magnetic layer, which increases noise during reproduction of high-density recording and causes a decrease in C / N.

本発明は、このような事情に鑑みてなされたもので上記の問題を解決して、本質的に磁性粉末の凝集パラメーターである磁気クラスターサイズの大きさをできる限り小さくしてかつ平滑な磁性面をうることができる塗布型磁気記録媒体に用いる磁性粉末の混練方法を提供することを目的とする。   The present invention has been made in view of such circumstances, solves the above problems, and makes the magnetic cluster size as small as possible, which is essentially an agglomeration parameter of the magnetic powder, and a smooth magnetic surface. It is an object of the present invention to provide a method for kneading magnetic powder used in a coating type magnetic recording medium capable of obtaining the above.

前記目的を達成するために、本発明は混練機を使用して、強磁性粉末及び/または非磁性粉末と結合剤とを有機溶剤中で混練する混練工程と、該混練物に樹脂溶液及び/または有機溶剤を加えて希釈する希釈工程を経て製造された磁性塗料を非磁性の支持体上に塗布してなる磁気記録媒体の製造方法において、 前記混練工程と希釈工程とにおいて該混練物の単位体積当りに加える混練エネルギーEk(MJ/m)と希釈エネルギーEd(MJ/m)のエネルギー比Ek/Edが0.5〜1.1で行うことを特徴とする磁気記録媒体の磁性粉末の混練方法を提供する。 In order to achieve the above object, the present invention uses a kneader to knead a ferromagnetic powder and / or nonmagnetic powder and a binder in an organic solvent, a resin solution and / or Alternatively, in a method for producing a magnetic recording medium obtained by applying a magnetic coating produced through a dilution step of adding an organic solvent to a non-magnetic support, the unit of the kneaded product in the kneading step and the diluting step Magnetic powder for magnetic recording medium, characterized in that the energy ratio Ek / Ed of kneading energy Ek (MJ / m 3 ) and dilution energy Ed (MJ / m 3 ) applied per volume is 0.5 to 1.1 A kneading method is provided.

微粒子の磁性粉末を分散するには先述したように、せん断力(エネルギー)が大きく加えられる混練工程が重視されるがこれに続く分散前の希釈工程も同様に重要な工程である。これらの工程の機能は、まず混練工程の、分散対象である磁性粉末を含む組成物(以下混練物という)に対する機能は(1)磁性粉末に高いせん断力を加えてできるかぎりほぐす機能(以下解砕機能という)が主であり、希釈工程の機能は(2)ほぐされた磁性粉末の表面にせん断力を加え、バインダである結合剤樹脂を展ばした状態でできる限り吸着させて覆い、表面にバインダが吸着した状態での磁性粉末を次の分散工程で、安定して均一に分散できるような適度な流動性を維持できるように調節する機能と考えられる。これらの機能を与える工程は、一般にはともに混練装置にて行われる。 As described above, in order to disperse the fine magnetic powder, the kneading step in which a large shearing force (energy) is applied is emphasized, but the subsequent dilution step before dispersion is also an important step. The functions of these steps are as follows. First, the function of the kneading step with respect to the composition containing the magnetic powder to be dispersed (hereinafter referred to as kneaded product) is as follows: The function of the dilution process is (2) the shearing force is applied to the surface of the loosened magnetic powder, and the binder resin as the binder is spread and covered as much as possible to cover the surface. This is considered to be a function of adjusting the magnetic powder in the state where the binder is adsorbed in the next dispersion step so as to maintain an appropriate fluidity so that the magnetic powder can be stably and uniformly dispersed. Both of the processes for providing these functions are generally performed in a kneading apparatus.

磁性粉末を良好に分散させるには、(1)と(2)のそれぞれの機能を最大限に発揮させることが重要である。そして(1)の混練解砕機能は、いわゆる一次粒子がいくつか凝集してかたまりとなった磁性粉末を本質的にほぐすという物理的力が有効であり、(2)の希釈工程での機能は吸着という化学的現象を含むことから時間の因子を考慮する必要がある。   In order to satisfactorily disperse the magnetic powder, it is important to maximize the functions of (1) and (2). The kneading and crushing function of (1) is effective due to the physical force of essentially loosening the magnetic powder formed by agglomerating several so-called primary particles, and the function in the dilution step of (2) is It is necessary to consider the time factor because it includes the chemical phenomenon of adsorption.

この考えに基づいて、両工程において混練物に対して作用させたせん断力を設備に与えた動力から、時間も計算しての仕事量から混練物の単位体積当りに換算したエネルギー量として捉えて、その量と混練物を分散したあとの磁性塗料から得た塗膜の平滑性や磁性粉末の凝集度合いの尺度となる磁気クラスターサイズとの関係を明らかにして良好な分散性である磁性塗料をうる磁性粉末の混練方法を提供したものである。 Based on this idea, the amount of energy converted per unit volume of the kneaded material is calculated from the amount of work calculated from the power given to the equipment by the shear force applied to the kneaded material in both steps. By clarifying the relationship between the amount and the smoothness of the coating film obtained from the magnetic paint after dispersing the kneaded material and the magnetic cluster size as a measure of the degree of aggregation of the magnetic powder, a magnetic paint having good dispersibility is obtained. The present invention provides a kneading method for magnetic powder.

本発明の混練方法において、混練物の単位体積当りの混練エネルギーEkが1000MJ/m以上であることが好ましい。
In the kneading method of the present invention, the kneading energy Ek per unit volume of the kneaded product is preferably 1000 MJ / m 3 or more.

本発明の混練方法において、混練機が、回分式ニーダ、加圧ニーダ、連続ニーダ、2軸連続式混練機、及び2軸連続式押し出し機のうちのいずれかであることが好ましい。 In the kneading method of the present invention, the kneader is preferably one of a batch kneader, a pressure kneader, a continuous kneader, a biaxial continuous kneader, and a biaxial continuous extruder.

本発明の混練方法において、混練工程の混練物の固形分濃度を75wt%以上に調製することが磁性粉末の凝集をよく解砕できるので好ましい。 In the kneading method of the present invention, it is preferable to adjust the solid content concentration of the kneaded product in the kneading step to 75 wt% or more because the aggregation of the magnetic powder can be well broken.

本発明によれば、磁性塗膜面の平滑性が大幅に向上し、磁気クラスターサイズが小さい磁性塗料が得られる。 According to the present invention, it is possible to obtain a magnetic coating material having greatly improved smoothness of the magnetic coating film surface and a small magnetic cluster size.

本発明にかかる磁性塗料の製造方法が適用される工程図である。It is process drawing to which the manufacturing method of the magnetic coating concerning this invention is applied. 本発明にかかる混練工程、希釈工程に使用した装置の断面模式図である。It is a cross-sectional schematic diagram of the apparatus used for the kneading | mixing process and dilution process concerning this invention. 本発明にかかる混練工程、希釈工程をふくむ混練機の動力の電流値の変化を示す図である。It is a figure which shows the change of the electric current value of the motive power of the kneader containing the kneading | mixing process and dilution process concerning this invention. 混練物の単位体積当りに加える混練エネルギーEk(MJ/m)と希釈エネルギーEd(MJ/m)のエネルギー比と磁気シートの特性との関係を示す図である。It is a figure which shows the relationship between the energy ratio of the kneading | mixing energy Ek (MJ / m < 3 >) added per unit volume of a kneaded material, and the dilution energy Ed (MJ / m < 3 >), and the characteristic of a magnetic sheet.

以下、本発明に係る磁性塗料の製造方法について、更に詳細に説明する。先述したように、本発明は、混練機を使用して、強磁性粉末及び/又は非磁性粉末と結合剤とを有機溶剤中で混練する混練工程と、この混練物にさらに結合剤樹脂及び/又は有機溶剤(以下樹脂溶液等と略す)を加えて希釈する希釈工程を経て磁性塗料を製造し、この磁性塗料を非磁性の支持体上に塗布して、磁気記録媒体を製造する方法に関するもので、特に、塗布型磁気記録媒体に用いる磁性粉末の混練方法に関するものである。 Hereinafter, the method for producing a magnetic paint according to the present invention will be described in more detail. As described above, the present invention uses a kneader to knead a ferromagnetic powder and / or nonmagnetic powder and a binder in an organic solvent, and further add a binder resin and / or Or a method of manufacturing a magnetic recording medium by manufacturing a magnetic coating material through a dilution process in which an organic solvent (hereinafter abbreviated as a resin solution or the like) is added for dilution, and coating the magnetic coating material on a nonmagnetic support. In particular, the present invention relates to a method for kneading magnetic powder used in a coating type magnetic recording medium.

図1は、本発明の塗布型磁気記録媒体の製造方法の1例を示す工程図である。この図において、本発明が係るのは混練工程と希釈工程である。これらの工程に使用する装置は混練機であり、オープンニーダ、加圧ニーダ、連続ニーダ、2軸連続式混練機等いずれも使用できる。 FIG. 1 is a process diagram showing an example of a method for producing a coating type magnetic recording medium of the present invention. In this figure, the present invention relates to a kneading step and a dilution step. The apparatus used for these steps is a kneader, and any of an open kneader, a pressure kneader, a continuous kneader, a biaxial continuous kneader, and the like can be used.

混練工程から希釈工程を経て製造された磁性塗料は、サンドグラインダーミルに代表される分散機による分散工程を経由して塗布工程以降に供給され、所定速度で搬送されるウェブ(非磁性の支持体)上に所定の膜厚に塗布され、磁性塗膜が形成される。 The magnetic coating material produced from the kneading step through the dilution step is supplied after the coating step via a dispersing step represented by a sand grinder mill and conveyed at a predetermined speed (non-magnetic support). ) To form a magnetic coating film.

図2は、本発明で使用した回分式の 混練機の断面を模式的に示したものである。
混練機1の上面は、内部の空間体積が一定にできるように蓋(図示せず)が設置されている。原材料が投入されて1の内部には、ブレード(攪拌羽根)3が平行に配されており、互いに逆方向に回転駆動されて原材料にせん断力を与え、矢印に示されるように投入された原料が混練されるようなっている。原材料は混練物2で示した。
FIG. 2 schematically shows a cross section of the batch kneader used in the present invention.
A lid (not shown) is installed on the upper surface of the kneader 1 so that the internal space volume can be made constant. Raw materials are charged, and blades (stirring blades) 3 are arranged in parallel inside 1 and are driven to rotate in opposite directions to give shearing force to the raw materials. Are kneaded. The raw material is shown as kneaded material 2.

分散工程以降の装置や方法は、従来公知のものが採用されても本発明の思想の本質には直接には影響しないので自由に選択できる。また、磁気記録媒体の各構成部材についても、磁性層に用いる磁性粉末の平均粒子径が60nm以下の場合に、本発明の効果が顕著であること以外は、何ら本発明の思想に反しないので 従来公知の構成部材がいずれも使用できる。 The apparatus and method after the dispersion step can be freely selected because they do not directly affect the essence of the present invention even if a conventionally known apparatus is adopted. Further, each component of the magnetic recording medium is not contrary to the idea of the present invention except that the effect of the present invention is remarkable when the average particle diameter of the magnetic powder used in the magnetic layer is 60 nm or less. Any conventionally known component can be used.

図3には、図1の製造工程中混練機で実施される混練工程および希釈工程での混練機を駆動させるのに必要な動力の電流値の経時的変化を模式的に示した。
図3のA点に示すように表面処理工程を終えて混練機中にある組成物に樹脂溶液を添加してせん断力を加えたときにトルクが上昇して混練機の動力の電流値が大きく増加していわゆる湿潤ピークが出現する。本発明では、このピークが発生したあとトルクが減少しきった地点(図3のB点)を基準として混練開始とする。
FIG. 3 schematically shows changes over time in the current value of the power necessary to drive the kneader in the kneading step and dilution step performed in the kneader during the manufacturing process of FIG.
As shown at point A in FIG. 3, when the surface treatment process is completed and a resin solution is added to the composition in the kneader and a shearing force is applied, the torque increases and the current value of the kneader power increases. Increasing so-called wet peaks appear. In the present invention, the kneading is started on the basis of the point (B point in FIG. 3) where the torque has been reduced after the occurrence of this peak.

混練工程での混練物の固形分濃度は75wt%以上が好ましい。これより低濃度だと混練物が軟らかくてせん断力がかからない。75wt%以上であればよいが、固形分濃度は95wt%以内が好ましい。95wt%を超えると溶剤が不足して混練物がひと塊にならずバラバラになってやはりせん断力がかからないからである。   The solid content concentration of the kneaded product in the kneading step is preferably 75 wt% or more. If the concentration is lower than this, the kneaded material is soft and shearing force is not applied. Although it may be 75 wt% or more, the solid content concentration is preferably within 95 wt%. If it exceeds 95 wt%, the solvent is insufficient, the kneaded material does not become one lump and falls apart, and no shear force is applied.

トルクの尺度である混練機の動力の電流値は、混練中は一定の値を維持して希釈用に固形分濃度を下げるためにあらたな樹脂溶液を加えた時点で低下し始める(図3のC点)。本発明の混練工程とは、B点からC点までをいう。本発明の場合、希釈工程の最終時点での固形分濃度は50wt%に設定した。    The current value of the power of the kneading machine, which is a measure of the torque, starts to decrease when a new resin solution is added to maintain a constant value during kneading and reduce the solid content concentration for dilution (see FIG. 3). C point). The kneading step of the present invention refers to points B to C. In the case of the present invention, the solid content concentration at the end of the dilution step was set to 50 wt%.

希釈工程を経たのちさらに、次工程に送るために混練機から組成物を取り出せるように有機溶剤を添加する(図3のD点)。D点での固形分濃度は通常30wt%以下なので
本発明の設定した希釈工程の最終時点(固形分濃度は50wt%)は、図3ではC点とD点の間に存在することになる。
After passing through the dilution step, an organic solvent is added so that the composition can be taken out from the kneader for sending to the next step (point D in FIG. 3). Since the solid content concentration at the point D is usually 30 wt% or less, the final time point (solid content concentration is 50 wt%) set in the present invention exists between the points C and D in FIG.

本発明は、この混練工程と希釈工程において混練機にかかった動力から、組成物(混練物)の単位体積当りに要したせん断力を算出して各々の工程にかかるエネルギーと塗料中の磁性粉末の分散性との関連を、磁性塗料から得た塗膜特性から明らかにしたものである。    The present invention calculates the shear force required per unit volume of the composition (kneaded material) from the power applied to the kneading machine in the kneading step and dilution step, and calculates the energy required for each step and the magnetic powder in the paint. The relationship with the dispersibility of the film is clarified from the characteristics of the coating film obtained from the magnetic paint.

なお、各工程の単位体積当りに要したエネルギーは、混練機に何も材料を入れない場合に駆動させたときの動力をエネルギー基準ゼロとして算出した。    In addition, the energy required per unit volume in each process was calculated by using the power when the kneader was driven without any material as the energy reference zero.

磁気記録媒体の構成部材は、先述したように本発明に本質的には影響はないが本発明の製造方法で得た磁性塗料が用いられる記録媒体の主な構成部材について簡単に述べる。    As described above, the constituent members of the magnetic recording medium have essentially no influence on the present invention, but the main constituent members of the recording medium using the magnetic paint obtained by the manufacturing method of the present invention will be briefly described.

(磁性層)
非磁性層(以下、「下層」ともいう。)と、磁性層(以下、「上層」ともいう。)を支持体の両面ないし片面に設けることができる。上下層は、下層を塗布後、下層が湿潤状態にある間(Wet on Wet)でも、乾燥した後(Wet on Dry)でも上層の磁性層を設けることができる。
(Magnetic layer)
A nonmagnetic layer (hereinafter also referred to as “lower layer”) and a magnetic layer (hereinafter also referred to as “upper layer”) can be provided on both sides or one side of the support. The upper and lower layers can be provided with an upper magnetic layer either after the lower layer is applied or while the lower layer is in a wet state (Wet on Wet) or after being dried (Wet on Dry).

(磁性粉末)
本発明における磁性粉末としては、強磁性金属粉末、窒化鉄粉末、六方晶系フェライト粉末など従来公知のものが挙げられる。これらの磁性粉末の大きさは、形状が針状ないしは紡錘状のものは長軸長、球状もしくは無定形の場合は長い方のさしわたし径、板状の場合は最大さしわたし径の長さが10〜60nmのものが好ましい。60nmより大きいと本発明の効果がさほど顕著でなく、10nmより小さいのは実情ではほぼ工業的には生産が困難だからである。
(Magnetic powder)
Examples of the magnetic powder in the present invention include conventionally known powders such as ferromagnetic metal powder, iron nitride powder, and hexagonal ferrite powder. The size of these magnetic powders is the long axis length for needle-shaped or spindle-shaped ones, the longer diameter for spherical or amorphous shapes, and the maximum length for the diameter for plate-shaped ones. A thickness of 10 to 60 nm is preferable. If it is larger than 60 nm, the effect of the present invention is not so remarkable, and the reason why it is smaller than 10 nm is that it is difficult to produce industrially in the actual situation.

上述した磁性粉末は、公知の分散剤、潤滑剤、界面活性剤、帯電防止剤などで分散前にあらかじめ処理を行ってもかまわない。   The magnetic powder described above may be treated in advance with a known dispersant, lubricant, surfactant, antistatic agent, or the like before dispersion.

磁性粉末の保磁力(Hc)は、好ましくは159〜240kA/m(2000〜3000Oe)である。強磁性金属粉末の場合の飽和磁化(σs)は、好ましくは80〜120A・m2 /kg(80〜120emu/g)である。 The coercive force (Hc) of the magnetic powder is preferably 159 to 240 kA / m (2000 to 3000 Oe). The saturation magnetization (σs) in the case of the ferromagnetic metal powder is preferably 80 to 120 A · m 2 / kg (80 to 120 emu / g).

(非磁性層)
本発明における下層は、少なくともカーボンブラックを含むと2種類以上の非磁性粉末、及び結合剤からなる。
(Nonmagnetic layer)
The lower layer in the present invention comprises at least carbon black and at least two kinds of nonmagnetic powders and a binder.

(非磁性粉末)
カーボンブラック以外の非磁性粉末としては、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の無機化合物から選択することができる。
(Non-magnetic powder)
Nonmagnetic powders other than carbon black can be selected from inorganic compounds such as metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides.

下層の結合剤樹脂(種類と量)、潤滑剤・分散剤・添加剤の種類、量、溶剤、分散方法等に関しては、磁性層に関する公知の技術が適用できる。  Known techniques relating to the magnetic layer can be applied to the binder resin (type and amount) of the lower layer, the type, amount, solvent, dispersion method, and the like of the lubricant / dispersant / additive.

(結合剤)
本発明に使用される結合剤としては、従来より公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂や、これらの混合物が使用される。
(Binder)
As the binder used in the present invention, conventionally known thermoplastic resins, thermosetting resins, reactive resins, and mixtures thereof are used.

(カーボンブラック、研磨剤)
本発明において、磁性層に使用されるカーボンブラックとしては、ゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック、等を用いることができる。
(Carbon black, abrasive)
In the present invention, as carbon black used in the magnetic layer, furnace for rubber, thermal for rubber, black for color, acetylene black, and the like can be used.

本発明において、研磨剤としては、主としてモース硬度6以上の公知の材料が単独又は組合せで使用される。これら研磨剤の平均粒径は、0.01〜2μmでその粒度分布が狭い方が好ましい。 In the present invention, as the abrasive, known materials having a Mohs hardness of 6 or more are mainly used alone or in combination. These abrasives preferably have an average particle size of 0.01 to 2 μm and a narrow particle size distribution.

これらの研磨剤は、必要に応じて下層に添加することもできる。これら磁性層、下層に添加する研磨剤の粒径、量は、最適値に設定すべきものである。 These abrasive | polishing agents can also be added to a lower layer as needed. The particle size and amount of the abrasive added to the magnetic layer and the lower layer should be set to optimum values.

本発明で用いられる添加剤のすべて又はその一部は、磁性及び非磁性塗料製造のどの工程で添加してもかまわない、たとえば、混練工程前に磁性体と混合する場合、磁性体と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。 All or part of the additives used in the present invention may be added in any step of magnetic and non-magnetic coating production. For example, when mixed with a magnetic material before the kneading step, the magnetic material and the binder When adding in a kneading step with a solvent, when adding in a dispersion step, when adding after dispersion, or when adding just before coating.

本発明で用いられる有機溶剤としては、公知のものが使用でき、たとえば、特開平6−68453号公報に記載の溶剤を用いることができる。 As the organic solvent used in the present invention, known ones can be used. For example, the solvents described in JP-A-6-68453 can be used.

(層構成)
本発明における磁気記録媒体の厚さ構成は、たとえば、支持体の厚さを、4〜10μmとでき、支持体と下層との間に密着性向上のための下塗り層を設けてもかまわない。
(Layer structure)
In the magnetic recording medium according to the present invention, for example, the thickness of the support may be 4 to 10 μm, and an undercoat layer may be provided between the support and the lower layer to improve adhesion.

本発明において、支持体の一方に下層と磁性層とを設け、他方にバック層を設ける構成も採用できる。このバック層の厚さを、0.3〜0.7μmとできる。これらの下塗層及びバック層には、公知の構成が使用できる。 In the present invention, a structure in which a lower layer and a magnetic layer are provided on one side of a support and a back layer is provided on the other side can also be employed. The thickness of the back layer can be 0.3 to 0.7 μm. For these undercoat layer and back layer, known structures can be used.

本発明における、磁気記録媒体の磁性層の厚さは、用いるヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、0.05〜0.3μmとできる。   In the present invention, the thickness of the magnetic layer of the magnetic recording medium is optimized depending on the saturation magnetization amount of the head to be used, the head gap length, and the band of the recording signal, but can be 0.05 to 0.3 μm.

本発明における磁気記録媒体の下層の厚さは0.5〜1.5μmとできる。 The thickness of the lower layer of the magnetic recording medium in the present invention can be 0.5 to 1.5 μm.

(支持体)
本発明に用いられる支持体は、非磁性であることが好ましい。非磁性の支持体としてはポリエチレンテレフタレート、ポリエチレンナフタレート、等のポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネート、ポリアミド(脂肪族ポリアミドやアラミド等の芳香族ポリアミドを含む)、ポリイミド、ポリアミドイミドなどの公知のフィルムが使用できる。
(Support)
The support used in the present invention is preferably nonmagnetic. Nonmagnetic supports such as polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamides (including aromatic polyamides such as aliphatic polyamides and aramids), polyimides, polyamideimides, etc. Can be used.

(製造方法)
本発明における磁気記録媒体の磁性塗布液を製造する工程は、少なくとも混練工程、及び、混練物に樹脂溶液等を加えて希釈する希釈工程からなり、必要に応じて、これ以外に、分散工程、及びこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。
(Production method)
The step of producing the magnetic coating liquid for the magnetic recording medium in the present invention comprises at least a kneading step, and a dilution step of diluting the kneaded product by adding a resin solution or the like. And a mixing step provided as necessary before and after these steps. Each process may be divided into two or more stages.

混練工程では、オープンニーダ、加圧ニーダ、連続ニーダ、エクストルーダ、2軸連続式混練機、及び2軸連続式押し出し機など強い混練力を持つものを使用することが好ましい。 In the kneading step, it is preferable to use an apparatus having a strong kneading force such as an open kneader, a pressure kneader, a continuous kneader, an extruder, a biaxial continuous kneader, and a biaxial continuous extruder.

ニーダを用いる場合には、磁性粉末又は非磁性粉末と結合剤のすべて又はその一部(ただし全結合剤の30重量%以上が好ましい)及び磁性粉末100重量部に対し10〜500重量部の範囲で混練処理するのが好ましい。 When using a kneader, the range is 10 to 500 parts by weight with respect to 100 parts by weight of magnetic powder or nonmagnetic powder and all or part of the binder (however, preferably 30% by weight or more of the total binder) and magnetic powder. It is preferable to perform kneading with.

また、磁性層液及び下層液を分散させるには、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。 In order to disperse the magnetic layer solution and the lower layer solution, zirconia beads, titania beads, and steel beads, which are high specific gravity dispersion media, are suitable. The particle diameter and filling rate of these dispersion media are optimized. A well-known thing can be used for a disperser.

本発明で重層構成の磁気記録媒体を塗布する場合、以下のような方式を用いることができる。 When applying a magnetic recording medium having a multilayer structure in the present invention, the following method can be used.

1)磁性塗料の塗布で一般的に用いられるグラビア塗布装置、ロール塗布装置、ブレード塗布装置、エクストルージョン塗布装置等により、まず下層を塗布し、下層がウェット状態のうちに支持体加圧型エクストルージョン塗布装置により上層を塗布する方法。
2)塗布液通液スリットを二つ内蔵する一つの塗布ヘッドにより上下層をほぼ同時に塗布する方法。
3)バックアップロール付きエクストルージョン塗布装置により上下層をほぼ同時に塗布する方法。
1) First, the lower layer is applied by a gravure coating device, roll coating device, blade coating device, extrusion coating device, etc., which are generally used in the application of magnetic paints, and the support pressure type extrusion while the lower layer is wet. A method of applying the upper layer with a coating apparatus.
2) A method in which the upper and lower layers are applied almost simultaneously with a single application head having two coating liquid passage slits.
3) A method in which the upper and lower layers are applied almost simultaneously using an extrusion coating apparatus with a backup roll.

本発明の構成を実現するために、下層を塗布し乾燥させたのち、その上に磁性層を設ける逐次重層塗布を用いても無論かまわず、本発明の効果が失われるものではない。 In order to realize the configuration of the present invention, it is possible to use a sequential multilayer coating in which a magnetic layer is provided on a lower layer after being applied and dried, and the effects of the present invention are not lost.

本発明では、配向装置は、希土類磁石とソレノイドで交流磁場を印加するなど公知の配向装置を用いることが好ましい。 In the present invention, the orientation device is preferably a known orientation device, such as applying an alternating magnetic field with a rare earth magnet and a solenoid.

次に、本発明の磁気記録媒体の製造における混練方法を実施例をもって具体的に説明するが、本発明はこれらに限定されるものではない。本発明の主旨から、磁性塗料の磁性粉末の分散性を注視するために磁性層のみの塗膜単独を作製して評価した。なお、実施例中の「部」の表示は「重量部」を示すものとする。 Next, the kneading method in the production of the magnetic recording medium of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. From the gist of the present invention, in order to pay close attention to the dispersibility of the magnetic powder of the magnetic paint, a coating film alone having only the magnetic layer was prepared and evaluated. In addition, the display of “parts” in the examples indicates “parts by weight”.

〈磁性粉末〉
表1には、本発明で使用の各種磁性粉末を示した。なおどの磁性粉末も磁性粉末に対して3wt%のリン酸系分散剤で表面処理したものである。

Figure 2011118988
表1
<Magnetic powder>
Table 1 shows various magnetic powders used in the present invention. All the magnetic powders were surface-treated with 3 wt% phosphoric acid dispersant with respect to the magnetic powder.
Figure 2011118988
Table 1

〈磁性塗料〉
混練工程と希釈工程を説明する。次の組成物(1)を、高速攪拌混合機にて、予め高速混合したのち、混練機に投入して固形分濃度81重量%の混練物とする。このとき混練機のブレードにかかるトルクが上昇して、図3に示すような電流値のピーク(いわゆる湿潤ピーク)が発現する。やがてこの電流値のピークは低下する。電流値が低下しきった点(図3のB点)からを混練工程のスタートとする。混練の終点は、次に混練機に樹脂や溶剤を投入して固形分濃度が81wt%より低下してトルクの電流値も低下し始める点(図3のC点)である。混練機のブレードを25rpmの回転数で40分間(図3のBからCもまでの時間)混練した。この時間が混練工程時間となる。
上記混練物を入れている混練機に、樹脂と溶剤を加えて、混練物がダマにならないように徐々に加えて稀釈を行った。最終希釈固形分濃度が50wt%の希釈物を得た。このときのブレード回転数は25rpmのままで、固形分濃度が81wt%より低下した点(図3のC点)から固形分濃度が50wt%になった時点(図示せず)までを希釈工程として混練機は90分間稼動した。
組成物(1)
磁性粉末(A) 100部
塩化ビニル系共重合体(日本ゼオン社製MR−104) 17.0 部
ポリエステルポリウレタン(東洋紡製UR8300) 6.0部
テトラヒドロフラン 2.2部
メチルエチルケトン 81.9部
トルエン 42.3部
<Magnetic paint>
A kneading process and a dilution process will be described. The following composition (1) is preliminarily mixed at a high speed with a high-speed stirring mixer, and then charged into a kneader to obtain a kneaded product having a solid concentration of 81% by weight. At this time, the torque applied to the blade of the kneader increases, and a peak of current value (so-called wet peak) as shown in FIG. 3 appears. Eventually, the peak of this current value decreases. The point at which the current value has completely decreased (point B in FIG. 3) is taken as the start of the kneading process. The end point of kneading is the point (point C in FIG. 3) where the resin or solvent is then introduced into the kneader and the solid content concentration falls below 81 wt% and the current value of torque begins to drop. The blades of the kneader were kneaded for 40 minutes (the time from B to C in FIG. 3) at a rotation speed of 25 rpm. This time becomes the kneading process time.
To the kneading machine containing the kneaded product, a resin and a solvent were added, and the kneaded product was gradually added so as not to become lumpy and diluted. A dilution having a final diluted solid content concentration of 50 wt% was obtained. At this time, the blade rotation speed remains at 25 rpm, and the dilution process is performed from the point where the solid content concentration is lower than 81 wt% (C point in FIG. 3) to the time when the solid content concentration is 50 wt% (not shown). The kneader was operated for 90 minutes.
Composition (1)
Magnetic powder (A) 100 parts Vinyl chloride copolymer (MR-104 manufactured by ZEON Corporation) 17.0 parts Polyester polyurethane (UR8300 manufactured by Toyobo) 6.0 parts Tetrahydrofuran 2.2 parts Methyl ethyl ketone 81.9 parts Toluene 42. 3 parts

希釈後の組成物に、下の量の溶剤を加えて最終稀釈固形分濃度が30wt%のプレミクス用組成物を得た。プレミクス処理後セラミックビーズを使用したビーズミルで分散した。
メチルエチルケトン 115.5部
トルエン 52.5部
The diluted amount of the solvent was added to the diluted composition to obtain a premixing composition having a final diluted solid content concentration of 30 wt%. After the premix treatment, it was dispersed in a bead mill using ceramic beads.
Methyl ethyl ketone 115.5 parts Toluene 52.5 parts

分散後の磁性塗料を簡易アプリケータを用いて、厚みが10μmのポリエチレンナフタレートの支持体上に磁性塗膜を作製した。 A magnetic coating film was prepared on a polyethylene naphthalate support having a thickness of 10 μm using a simple applicator.

得られた磁気シートは、より直接的に分散性を評価するために、磁性層表面処理加工である鏡面化工程のカレンダ処理を行わなかった。この状態で磁気シートの、磁性粉末の凝集パラメーターである磁気クラスターサイズと磁性層の平滑性評価を行った。    The obtained magnetic sheet was not subjected to the calendering process in the mirror surface process, which is a magnetic layer surface treatment process, in order to evaluate the dispersibility more directly. In this state, the magnetic cluster size, which is an aggregation parameter of the magnetic powder, and the smoothness of the magnetic layer of the magnetic sheet were evaluated.

混練物に加えたせん断力の算出は次のようにした。混練工程、希釈工程の混練機中の混練物について、各組成材料の重量から各々の比重を用いて混練物全体の体積を算出する。
混練物全体の体積は、混練工程では工程中の固形物濃度は変化しないで一定であるが、希釈工程では、断続的に樹脂溶液等を添加して希釈終了時点の固形物濃度50wt%にいたるため、本発明では、希釈工程の混練物全体の体積は、希釈工程開始および終了時点の混練物の両者の体積の平均を希釈工程の体積とした。
Calculation of the shear force applied to the kneaded material was performed as follows. About the kneaded material in the kneading machine of a kneading | mixing process and a dilution process, the volume of the whole kneaded material is calculated using each specific gravity from the weight of each composition material.
The volume of the entire kneaded product is constant in the kneading process without changing the solid concentration in the process, but in the dilution process, the resin solution is intermittently added to reach a solid concentration of 50 wt% at the end of the dilution. Therefore, in the present invention, the volume of the entire kneaded product in the dilution step is the average of the volumes of both the kneaded product at the start and end of the dilution step.

次式によって各工程での混練機の動力と仕事量を計算する。
動力=2π×T×N/60 [W] T:トルク[N・m],N:回転数[rpm]
仕事量=動力×t×10−6 [MJ] t:工程所要稼働時間[sec]
ここで、トルク(T)は工程時間中持続しての一定の値は示さない。そのため工程時間中の全トルクを積算して便宜上単位時間(分)にならした平均トルクをその工程のトルク値とした。
The power and work amount of the kneader in each process are calculated by the following formula.
Power = 2π × T × N / 60 [W] T: Torque [N · m], N: Number of revolutions [rpm]
Work amount = power × t × 10 −6 [MJ] t: process required operation time [sec]
Here, the torque (T) does not show a constant value that persists throughout the process time. For this reason, the average torque obtained by integrating all torques during the process time and making it unit time (minutes) for convenience is taken as the torque value of the process.

得た仕事量から、単位体積当りの混練物に与えたエネルギー(MJ/m)を算出して、
混練物の単位体積当りに加える混練エネルギー(Ek)とした。同様の計算方法で希釈工程についても混練物の単位体積当りに加える希釈エネルギー(Ed)を求めて、両者のエネルギー比Ek/Edを求めた。
From the obtained work amount, the energy (MJ / m 3 ) given to the kneaded product per unit volume is calculated,
The kneading energy (Ek) applied per unit volume of the kneaded product was used. The dilution energy (Ed) applied per unit volume of the kneaded product was also determined for the dilution step by the same calculation method, and the energy ratio Ek / Ed of the two was determined.

磁気シートの評価項目は、磁性層の表面粗さRaと磁気クラスターサイズである。   Evaluation items of the magnetic sheet are the surface roughness Ra and the magnetic cluster size of the magnetic layer.

表面粗さは、以下の手順で評価した。ZYGO社製汎用三次元表面構造解析装置NewView5000を用い、走査型白色光干渉法にてScan Lengthを2μmで10点平均粗さRaを求めた。測定の際には、50倍の対物レンズを用い、2倍ズームで測定した。よって、倍率は100倍である。測定視野は70μm×52μmである。   The surface roughness was evaluated by the following procedure. Using a general-purpose three-dimensional surface structure analyzer NewView 5000 manufactured by ZYGO, the 10-point average roughness Ra was determined at a scan length of 2 μm by scanning white light interferometry. In the measurement, a 50 × objective lens was used and the measurement was performed at 2 × zoom. Therefore, the magnification is 100 times. The measurement visual field is 70 μm × 52 μm.

磁気クラスターサイズは以下の手順で評価した。磁気力顕微鏡として、デジタルインスツルメント社製,Nano ScopeIIIを用い、周波数検出法により磁性層の漏れ磁界像を測定した。測定プローブには、コバルトアロイコートを有するプローブ(先端曲率半径:25〜40nm,保磁力:約400Oe,磁気モーメント:約1×10−13emu)を用い、走査範囲は5μm四方、走査速度は5μm/secとした。得られた漏れ磁界像の磁化強度の中心値Cと標準偏差δとの和(C+δ)より大きな磁化強度を有する部分を2値化処理することにより表示し、該部分を磁気クラスターとして、その円相当径の平均値を測定した。   The magnetic cluster size was evaluated by the following procedure. As a magnetic force microscope, a digital instrument company, Nano Scope III was used, and a leakage magnetic field image of the magnetic layer was measured by a frequency detection method. A probe having a cobalt alloy coat (tip radius of curvature: 25 to 40 nm, coercive force: about 400 Oe, magnetic moment: about 1 × 10 −13 emu) is used as a measurement probe, the scanning range is 5 μm square, and the scanning speed is 5 μm / sec. A portion having a magnetization intensity larger than the sum (C + δ) of the center value C and standard deviation δ of the magnetization intensity of the obtained leakage magnetic field image is displayed by binarization processing. The average value of equivalent diameters was measured.

実施例1以外の実施例および比較例は、表2に表示した磁性粉末を用いて混練物の固形分濃度を変化させて、また混練工程と希釈工程も表2に示す混練機の稼動条件で作業を行った以外は、実施例1と同様にして磁気シートを作製して評価に供した。   In Examples and Comparative Examples other than Example 1, the solid content concentration of the kneaded material was changed using the magnetic powders shown in Table 2, and the kneading step and the diluting step were also the operating conditions of the kneader shown in Table 2. A magnetic sheet was prepared for evaluation in the same manner as in Example 1 except that the work was performed.

表3には、各実施例および各比較例の混練工程と希釈工程の混練物単位体積あたりのエネルギーとその比をまとめた。表中で示したエネルギーが与えられて作製した磁気シートの表面平滑性Raと磁気クラスターサイズをまとめた。   Table 3 shows the energy per unit volume of the kneaded product and the ratio in the kneading step and dilution step of each example and each comparative example. The surface smoothness Ra and the magnetic cluster size of the magnetic sheet produced by applying the energy shown in the table are summarized.




Figure 2011118988

図4には、表3の結果から、磁性粉末A1を用いた場合についての混練物の単位体積当りに加える混練エネルギーEk(MJ/m)と希釈エネルギーEd(MJ/m)のエネルギー比と磁気シートの特性との関係をまとめて示した。
同程度の分散度であっても、磁性塗膜のRaや磁気クラスターサイズは、磁性粉末の平均粒子径によって大きく影響を受ける。よって、図4には同一磁性粉末A1を用いた磁気シートの結果をまとめている。

Figure 2011118988



Figure 2011118988

FIG. 4 shows the energy ratio between the kneading energy Ek (MJ / m 3 ) and the dilution energy Ed (MJ / m 3 ) applied per unit volume of the kneaded material when the magnetic powder A1 is used. The relationship between the magnetic sheet and the characteristics of the magnetic sheet is summarized.
Even with the same degree of dispersion, the Ra and magnetic cluster size of the magnetic coating film are greatly affected by the average particle size of the magnetic powder. Therefore, FIG. 4 summarizes the results of the magnetic sheet using the same magnetic powder A1.

Figure 2011118988

前述したように、磁気シートの特性は磁性塗料の磁性粉末の分散性の尺度となる表面平滑性Raと磁気クラスターサイズである。鏡面化処理前の表面平滑性Raと磁気クラスターサイズの好ましい数値は、われわれの過去からの実際の試作テープのデータの蓄積から、Raは6.0以下で磁気クラスターサイズは52nm以下であると良好なC/Nが確保されることを得ていたのでこれらの値をしきい値とした。   As described above, the characteristics of the magnetic sheet are the surface smoothness Ra and the magnetic cluster size, which are a measure of the dispersibility of the magnetic powder of the magnetic paint. The preferred values for the surface smoothness Ra and the magnetic cluster size before the mirror finishing treatment are good when Ra is 6.0 or less and the magnetic cluster size is 52 nm or less from the accumulation of data of actual prototype tapes from our past. These values were used as threshold values because it was confirmed that a good C / N was secured.

図4から、優れたC/Nを確保する、すなわち磁性粉末の分散が良好なことを示す表面平滑性Raと磁気クラスターサイズを得るには、磁性塗料の製造において混練工程と希釈工程の混練物単位体積あたりのエネルギー比をある一定範囲に制御することが必要であることがわかる。   From FIG. 4, in order to obtain an excellent C / N, that is, to obtain surface smoothness Ra and magnetic cluster size indicating good dispersion of the magnetic powder, the kneaded product of the kneading step and the dilution step in the production of the magnetic coating material It can be seen that it is necessary to control the energy ratio per unit volume within a certain range.

すなわち、本発明ではじめて、良好なC/Nが得られる、磁性塗膜の特性であるRaと磁気クラスターサイズの両者がともに先にあげたしきい値を満足するのは、混練物の単位体積当りに加える混練エネルギー(Ek)と希釈エネルギー(Ed)のエネルギー比Ek/Edが0.5〜1.1の範囲であることを実証した。   That is, for the first time in the present invention, both Ra and the magnetic cluster size, which are the characteristics of the magnetic coating film, which provide good C / N, satisfy both the above-mentioned threshold values. It was proved that the energy ratio Ek / Ed of kneading energy (Ek) and dilution energy (Ed) applied per hit is in the range of 0.5 to 1.1.

実施例17と比較例8との比較から、磁性粉末の粒子径が60nmより大きいものを用いた場合は、混練機での混練物の単位体積当りに加える混練エネルギー(Ek)と希釈エネルギー(Ed)のエネルギー比についての好ましい範囲の効果はさほど顕著でない。磁性粉末がA1やA3を用いた場合の結果からも、平均粒子径が60nm以下の微粒子磁性粉末を用いる場合に、特に本発明が有用であることがわかる。   From comparison between Example 17 and Comparative Example 8, when a magnetic powder having a particle size larger than 60 nm was used, kneading energy (Ek) and dilution energy (Ed) applied per unit volume of the kneaded material in the kneader were used. The effect of the preferable range on the energy ratio is not so remarkable. From the results when A1 or A3 is used as the magnetic powder, it can be seen that the present invention is particularly useful when the fine particle magnetic powder having an average particle diameter of 60 nm or less is used.

実施例18〜20と比較例9〜11の結果から、磁性粉末が、窒化鉄系磁性粉末や六方晶系磁性粉末であっても、混練物の単位体積当りに加える混練エネルギー(Ek)と希釈エネルギー(Ed)のエネルギー比Ek/Edが、本発明で明らかにして規定した範囲にある方が、好ましい表面平滑性Raと磁気クラスターサイズがえられることがわかる。   From the results of Examples 18 to 20 and Comparative Examples 9 to 11, even if the magnetic powder is an iron nitride magnetic powder or a hexagonal magnetic powder, the kneading energy (Ek) and dilution applied per unit volume of the kneaded product It can be seen that a preferable surface smoothness Ra and magnetic cluster size can be obtained when the energy ratio Ek / Ed of the energy (Ed) is in the range clearly defined in the present invention.

1・・・混練機、2・・・混練物、3・・・ブレード   DESCRIPTION OF SYMBOLS 1 ... Kneading machine, 2 ... Kneaded material, 3 ... Blade

Claims (3)

混練機を使用して、強磁性粉末及び/又は非磁性粉末と結合剤とを有機溶剤中で混練する混練工程と、該混練物に有機溶剤を加えて希釈する希釈工程を経て製造された磁性塗料を非磁性の支持体上に塗布してなる磁気記録媒体の製造方法において、
前記混練工程と希釈工程とにおいて該混練物の単位体積当りに加える混練エネルギー(Ek)と希釈エネルギー(Ed)のエネルギー比Ek/Edが0.5〜1.1で行うことを特徴とする磁気記録媒体の製造方法。
Magnetic material produced through a kneading step using a kneader to knead ferromagnetic powder and / or non-magnetic powder and a binder in an organic solvent, and a dilution step in which the organic solvent is added to the kneaded product to dilute. In a method for producing a magnetic recording medium obtained by applying a paint on a nonmagnetic support,
The magnetism is characterized in that the kneading step and the diluting step are performed at an energy ratio Ek / Ed of kneading energy (Ek) and dilution energy (Ed) applied per unit volume of the kneaded product of 0.5 to 1.1. A method for manufacturing a recording medium.
前記混練エネルギーEkが1000MJ/m以上であることを特徴とする請求項1に記載の磁気記録媒体の製造方法。 The method of manufacturing a magnetic recording medium according to claim 1, wherein the kneading energy Ek is 1000 MJ / m 3 or more. 前記混練工程において、前記混練物の固形分濃度を75wt%以上に調製することを特徴とする請求項1〜2のいずれか1項に記載の磁気記録媒体の製造方法。 3. The method of manufacturing a magnetic recording medium according to claim 1, wherein, in the kneading step, the solid content concentration of the kneaded material is adjusted to 75 wt% or more.
JP2009275714A 2009-12-03 2009-12-03 Method of manufacturing magnetic recording medium Pending JP2011118988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275714A JP2011118988A (en) 2009-12-03 2009-12-03 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275714A JP2011118988A (en) 2009-12-03 2009-12-03 Method of manufacturing magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2011118988A true JP2011118988A (en) 2011-06-16

Family

ID=44284137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275714A Pending JP2011118988A (en) 2009-12-03 2009-12-03 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2011118988A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151622A (en) * 1984-08-21 1986-03-14 Canon Inc Manufacture of magnetic recording medium
JPH0447526A (en) * 1990-06-14 1992-02-17 Matsushita Electric Ind Co Ltd Production of kneaded matter of magnetic coating material and magnetic recording medium
JPH0912936A (en) * 1995-07-05 1997-01-14 Kao Corp Production of magnetic coating
JPH11310736A (en) * 1997-11-07 1999-11-09 Emtec Magnetics Gmbh Production of magnetic dispersion for magnetic recording medium and magnetic recording medium produced therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151622A (en) * 1984-08-21 1986-03-14 Canon Inc Manufacture of magnetic recording medium
JPH0447526A (en) * 1990-06-14 1992-02-17 Matsushita Electric Ind Co Ltd Production of kneaded matter of magnetic coating material and magnetic recording medium
JPH0912936A (en) * 1995-07-05 1997-01-14 Kao Corp Production of magnetic coating
JPH11310736A (en) * 1997-11-07 1999-11-09 Emtec Magnetics Gmbh Production of magnetic dispersion for magnetic recording medium and magnetic recording medium produced therefrom

Similar Documents

Publication Publication Date Title
JP2006054000A (en) Magnetic recording medium
JP3514068B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and method for producing the same, nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP2008248238A (en) Manufacturing method of magnetic coating, and magnetic recording medium using the magnetic coating
JP2011118988A (en) Method of manufacturing magnetic recording medium
JP2010080608A (en) Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium, and method of manufacturing the same
JP4305589B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3832539B2 (en) Magnetic recording medium
JP3427883B2 (en) Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
US5374478A (en) Magnetic recording medium having a magnetic layer comprising magnetic powder, binder, and a single carbon black having a specified narrow particle size distribution
JP4732556B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3763333B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661734B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder
JP2008097677A (en) Surface treatment method of magnetic powder and magnetic recording medium manufactured by using same
JP3512056B2 (en) Hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
US7160481B2 (en) Method for manufacturing magnetic paint, and magnetic recording medium
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP4562671B2 (en) Method for producing magnetic paint
JPH11353637A (en) Acicular hematite particle powder for nonmagnetic base layer and magnetic recording medium having nonmagnetic base layer using the acicular hematite particle powder
JP3828534B2 (en) Method for manufacturing magnetic paint and magnetic recording medium
JP2005243191A (en) Production method of magnetic paint and manufacturing method of magnetic recording medium
JP3632727B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP2009230770A (en) Method of manufacturing magnetic recording medium, and magnetic recording medium
JP4537179B2 (en) Method for manufacturing magnetic recording medium
JP3661733B2 (en) Magnetic recording medium
JP4378079B2 (en) Method for manufacturing magnetic recording medium

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20110825

A621 Written request for application examination

Effective date: 20120820

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730