JP2011118045A - Laser light source and gas detection apparatus using the same - Google Patents

Laser light source and gas detection apparatus using the same Download PDF

Info

Publication number
JP2011118045A
JP2011118045A JP2009273605A JP2009273605A JP2011118045A JP 2011118045 A JP2011118045 A JP 2011118045A JP 2009273605 A JP2009273605 A JP 2009273605A JP 2009273605 A JP2009273605 A JP 2009273605A JP 2011118045 A JP2011118045 A JP 2011118045A
Authority
JP
Japan
Prior art keywords
wavelength
laser light
light source
gas
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009273605A
Other languages
Japanese (ja)
Other versions
JP5210290B2 (en
Inventor
Hiroshi Mori
浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2009273605A priority Critical patent/JP5210290B2/en
Publication of JP2011118045A publication Critical patent/JP2011118045A/en
Application granted granted Critical
Publication of JP5210290B2 publication Critical patent/JP5210290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser light source for detecting with high accuracy the gas which is to be detected and the central wavelength of whose absorption line is shorter than 1.2 μm and to provide a gas detection apparatus using the laser light source. <P>SOLUTION: The laser light source includes: a semiconductor light emitting element 11 for emitting the laser light the wavelength of which is modulated to have predetermined wavelength width (modulation frequency); a light emitting element drive part 13 for applying a drive current I<SB>d</SB>to the semiconductor light emitting element 11 in order to generate the wavelength-modulated laser light; and a wavelength conversion element 12 for converting the wavelength of the wavelength-modulated laser light into the shorter wavelength by a nonlinear optical effect. The wavelength of the wavelength-modulated laser light is included only on the wavelength side longer or shorter than the wavelength when the conversion efficiency of the wavelength conversion element 12 becomes maximum. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レーザ光源およびそれを用いたガス検知装置に関し、特に、検知対象ガスの吸収線を利用してガス検知を行うためのレーザ光源およびそれを用いたガス検知装置に関する。   The present invention relates to a laser light source and a gas detection device using the same, and more particularly to a laser light source for performing gas detection using an absorption line of a detection target gas and a gas detection device using the same.

近年、環境問題に関して、地球温暖化ガスの排出削減、大気汚染物質の監視等のため、大気中の特定のガスを検知するという技術が必要とされている。ガスの検知に当たっては、従来からガスクロマトグラフ等の化学式のガス検知装置が用いられてきた。しかしながら、このような化学的測定を行うガス検知装置では、簡易な測定、迅速な測定を行うことが困難であった。   In recent years, with respect to environmental problems, a technique for detecting a specific gas in the atmosphere is required for reducing greenhouse gas emissions, monitoring air pollutants, and the like. In detecting gas, chemical gas detectors such as gas chromatographs have been used conventionally. However, it has been difficult to perform simple measurement and quick measurement with a gas detector that performs such chemical measurement.

ところで、メタン、酸素、二酸化炭素、アセチレン、アンモニア等のガスは、分子の回転や構成原子間の振動等に応じた特定波長の光を吸収することが知られている。一般的にガス分子は、赤外領域の電磁波を吸収する。例えばメタンは1.6μm、3.3μm、7μmの波長の光を吸収し、酸素は760nmの波長の光を吸収する。   By the way, it is known that gases such as methane, oxygen, carbon dioxide, acetylene, and ammonia absorb light having a specific wavelength according to molecular rotation, vibration between constituent atoms, and the like. In general, gas molecules absorb electromagnetic waves in the infrared region. For example, methane absorbs light with wavelengths of 1.6 μm, 3.3 μm, and 7 μm, and oxygen absorbs light with a wavelength of 760 nm.

そこで、この現象を利用した分光式のガス検知装置が開発された。このような分光式のガス検知装置は、測定対象の空間に特定波長のレーザ光を出射しその減衰状態を測定することにより、極めて簡便かつ迅速に検知対象ガスの有無、濃度を検知することができる。   Therefore, a spectroscopic gas detector utilizing this phenomenon has been developed. Such a spectroscopic gas detection device can detect the presence and concentration of a detection target gas extremely simply and quickly by emitting a laser beam having a specific wavelength into the measurement target space and measuring the attenuation state thereof. it can.

一般的にガスの吸収線は極めて急峻であるため、高精度なガス検出を実現するためには、上述の分光式のガス検知装置に用いられるレーザ光源は単一縦モードのレーザ発振が可能であることが好ましい。   In general, the absorption line of gas is extremely steep, so in order to realize highly accurate gas detection, the laser light source used in the above-described spectroscopic gas detector can perform single longitudinal mode laser oscillation. Preferably there is.

このような要求に応えるレーザ光源としては分布帰還型(DFB:Distributed FeedBack)半導体レーザが挙げられる。分布帰還型半導体レーザは、光導波路に光の導波方向に沿った周期構造を設け、周期構造のピッチの長さと光導波路の屈折率によって定まる特定波長の単一縦モードのレーザ発振を実現するものである。   As a laser light source that meets such a demand, a distributed feedback (DFB) semiconductor laser can be cited. The distributed feedback semiconductor laser has a periodic structure along the light guiding direction in the optical waveguide, and realizes laser oscillation in a single longitudinal mode having a specific wavelength determined by the pitch length of the periodic structure and the refractive index of the optical waveguide. Is.

DFB半導体レーザを備えたガス検知装置は、例えば図8に示すように、半導体レーザモジュール100と、受光器102と、ガス検知部103と、を備えている(例えば、特許文献1参照)。特許文献1に開示されたガス検知装置においては、DFB半導体レーザが組込まれた半導体レーザモジュール100から出射されるレーザ光が、測定雰囲気中の被測定ガス101を透過して受光器102へ入射される。   As shown in FIG. 8, for example, a gas detection apparatus including a DFB semiconductor laser includes a semiconductor laser module 100, a light receiver 102, and a gas detection unit 103 (see, for example, Patent Document 1). In the gas detection device disclosed in Patent Document 1, laser light emitted from a semiconductor laser module 100 in which a DFB semiconductor laser is incorporated is transmitted through a measured gas 101 in a measurement atmosphere and is incident on a light receiver 102. The

ここで、被測定ガス101は、例えば、図9に示す中心波長λ0の吸収特性Aを有する。半導体レーザモジュール100が備えるDFB半導体レーザは、図9に示すように、中心電流値I0(バイアス電流値)を中心に、振幅Iw、変調周波数f1(例えば10kHz)で変調された駆動電流Idが印加されることにより、中心波長λ0を中心に振幅λw(例えば10pm)、変調周波数f1で振動するレーザ光を被測定ガス101に出射するようになっている。 Here, the gas to be measured 101 has, for example, an absorption characteristic A having a center wavelength λ 0 shown in FIG. As shown in FIG. 9, the DFB semiconductor laser included in the semiconductor laser module 100 has a driving current modulated with an amplitude I w and a modulation frequency f 1 (for example, 10 kHz) around a center current value I 0 (bias current value). By applying I d, laser light that oscillates with an amplitude λ w (for example, 10 pm) and a modulation frequency f 1 around the center wavelength λ 0 is emitted to the gas 101 to be measured.

吸収特性Aは中心波長λ0に極小点を有するため、変調周波数f1で振動するレーザ光は、被測定ガス101を透過することにより、変調周波数f1の2倍の周波数f2(=20kHz)の振動成分を含むこととなる。 Since the absorption characteristic A has a minimum point at the center wavelength λ 0 , the laser light oscillating at the modulation frequency f 1 passes through the gas to be measured 101, and thereby has a frequency f 2 (= 20 kHz) twice the modulation frequency f 1. ) Vibration component.

受光器102の受光素子102aは、被測定ガス101を透過した上述のレーザ光を受光して受光電流に変換するようになっている。ガス検知部103は、受光器102で得られた受光電流を電流電圧変換器104にて電圧信号に変換するようになっている。   The light receiving element 102a of the light receiver 102 receives the above-described laser beam that has passed through the gas 101 to be measured and converts it into a received light current. The gas detection unit 103 converts the light reception current obtained by the light receiver 102 into a voltage signal by the current-voltage converter 104.

さらに、ガス検知部103は、その電圧信号に含まれる変調周波数f1=10kHzの信号成分である基本波電圧信号h1、および、変調周波数f1=10kHzの2倍の周波数f2(=20kHz)の信号成分である2倍波電圧信号h2を基本波信号検出器105および2倍波信号検出器106によりそれぞれ検出するようになっている。そして、基本波2倍波割算部107は、この2倍波電圧信号h2の振幅H2と基本波電圧信号h1の振幅H1との比(H2/H1)をガス濃度に対応する検出値D(=H2/H1)として出力するようになっている。 Further, the gas detection unit 103 includes a fundamental wave voltage signal h 1 that is a signal component of the modulation frequency f 1 = 10 kHz included in the voltage signal, and a frequency f 2 (= 20 kHz) that is twice the modulation frequency f 1 = 10 kHz. ) is adapted to detect respectively the second harmonic voltage signal h 2 is the signal component by the fundamental wave signal detector 105 and the second harmonic signal detector 106. Then, the fundamental wave the second harmonic divider section 107, the ratio of the amplitude H 1 of the second harmonic voltage signal h 2 amplitude H 2 and the fundamental wave voltage signal h 1 (H 2 / H 1 ) in the gas concentration A corresponding detection value D (= H 2 / H 1 ) is output.

特開平11−326199号公報JP 11-326199 A

特許文献1に開示された従来のガス検知装置において、例えば酸素の吸収線(760nm)を検出するためには、GaAs基板とそれにエピタキシャル成長可能な材料からなる発振波長が760nmのDFB半導体レーザを用いることが考えられる。   In the conventional gas detector disclosed in Patent Document 1, in order to detect, for example, an oxygen absorption line (760 nm), a DFB semiconductor laser having an oscillation wavelength of 760 nm made of a GaAs substrate and a material that can be epitaxially grown thereon is used. Can be considered.

しかしながら、このようなGaAs系のDFB半導体レーザは、InP基板とそれにエピタキシャル成長可能な材料からなる発振波長が1.2μm以上のInP系のDFB半導体レーザと比較して、結晶欠陥の発生による半導体結晶の光学的特性の急激な劣化が起こりやすい。それゆえに、GaAs系のDFB半導体レーザをガス検知装置の光源として用いた場合には、信頼性の面で不安があった。   However, such a GaAs-based DFB semiconductor laser has a semiconductor crystal structure caused by generation of crystal defects as compared with an InP-based DFB semiconductor laser having an oscillation wavelength of 1.2 μm or more made of an InP substrate and a material that can be epitaxially grown thereon. Sudden degradation of optical characteristics is likely to occur. Therefore, when a GaAs-based DFB semiconductor laser is used as the light source of the gas detector, there is anxiety in terms of reliability.

本発明は、このような従来の課題を解決するためになされたものであって、吸収線の中心波長が1.2μmより短い検知対象ガスを高い精度で検知するためのレーザ光源およびそれを用いたガス検知装置を提供することを目的とする。   The present invention has been made to solve such a conventional problem, and uses a laser light source for detecting a detection target gas having a center wavelength of an absorption line shorter than 1.2 μm with high accuracy, and the same. An object of the present invention is to provide a gas detection device.

本発明のレーザ光源は、所定の波長幅で波長変調されたレーザ光を出射する半導体発光素子と、前記波長変調されたレーザ光の波長を非線形光学効果により短い波長に変換する波長変換素子と、を備え、前記波長変調されたレーザ光の波長が、前記波長変換素子の変換効率が最大となる波長よりも長波側あるいは短波側のみに含まれる構成を有している。   The laser light source of the present invention includes a semiconductor light emitting element that emits laser light that is wavelength-modulated with a predetermined wavelength width, a wavelength conversion element that converts the wavelength of the wavelength-modulated laser light into a short wavelength by a nonlinear optical effect, And the wavelength of the wavelength-modulated laser light is included only on the long wave side or the short wave side from the wavelength at which the conversion efficiency of the wavelength conversion element is maximized.

この構成により、波長変換素子により短い波長に変換されたレーザ光における変調周波数の2倍の周波数成分の発生を抑制することができるため、InP系の半導体発光素子を用いて、吸収線の中心波長が1.2μmより短い検知対象ガスを検知可能なガス検知装置用のレーザ光源を実現できる。   With this configuration, generation of a frequency component twice the modulation frequency in the laser light converted to a short wavelength by the wavelength conversion element can be suppressed. Therefore, the center wavelength of the absorption line can be obtained using an InP-based semiconductor light emitting element. Can realize a laser light source for a gas detection device capable of detecting a detection target gas shorter than 1.2 μm.

また、本発明のレーザ光源は、前記波長変換素子が、前記波長変調されたレーザ光を第2高調波に変換するSHG素子である構成を有していてもよい。   The laser light source of the present invention may have a configuration in which the wavelength conversion element is an SHG element that converts the wavelength-modulated laser light into a second harmonic.

また、本発明のレーザ光源は、前記半導体発光素子が単一縦モードで発振する構成を有している。
この構成により、検知対象ガスを高い精度で検知するためのガス検知装置用のレーザ光源を実現できる。
The laser light source of the present invention has a configuration in which the semiconductor light emitting element oscillates in a single longitudinal mode.
With this configuration, it is possible to realize a laser light source for a gas detection device for detecting a detection target gas with high accuracy.

本発明のガス検知装置は、検知対象ガスが有する複数の吸収線のうちの1つの吸収線の波長を中心に所定の波長幅で波長変調されたレーザ光を測定雰囲気に出射する光源部と、前記測定雰囲気中を透過した前記波長変調されたレーザ光を測定光として受光し、該測定光に応じた受光信号を出力する受光部と、前記受光信号から検出される前記波長変調の変調周波数の基本波信号および2倍波信号の比に基づいて前記測定雰囲気中に含まれる前記検知対象ガスのガス濃度を算出するガス検知部と、を備えたガス検知装置において、前記光源部が、上記のレーザ光源からなる構成を有している。   The gas detector of the present invention includes a light source unit that emits laser light, which is wavelength-modulated with a predetermined wavelength width around the wavelength of one absorption line of a plurality of absorption lines of the detection target gas, to a measurement atmosphere; A light receiving unit that receives the wavelength-modulated laser light transmitted through the measurement atmosphere as measurement light and outputs a light reception signal corresponding to the measurement light; and a modulation frequency of the wavelength modulation detected from the light reception signal. A gas detection device comprising: a gas detection unit that calculates a gas concentration of the detection target gas contained in the measurement atmosphere based on a ratio of a fundamental wave signal and a second harmonic signal. It has the structure which consists of a laser light source.

この構成により、上記のレーザ光源を備えるため、吸収線の中心波長が1.2μmより短い検知対象ガスを高い精度で検知することができる。   With this configuration, since the laser light source is provided, it is possible to detect the detection target gas whose center wavelength of the absorption line is shorter than 1.2 μm with high accuracy.

本発明は、吸収線の中心波長が1.2μmより短い検知対象ガスを高い精度で検知するためのレーザ光源およびそれを用いたガス検知装置を提供するものである。   The present invention provides a laser light source for detecting a detection target gas having a center wavelength of an absorption line shorter than 1.2 μm with high accuracy and a gas detection device using the laser light source.

本発明の第1の実施形態のレーザ光源の構成を示すブロック図The block diagram which shows the structure of the laser light source of the 1st Embodiment of this invention. 本発明の第1の実施形態のレーザ光源に使用される半導体発光素子の光の導波方向に沿った断面図Sectional drawing along the waveguide direction of the light of the semiconductor light-emitting device used for the laser light source of the 1st Embodiment of this invention 本発明の第1の実施形態のレーザ光源に使用される波長変換素子の斜視図The perspective view of the wavelength conversion element used for the laser light source of the 1st Embodiment of this invention 本発明の第1の実施形態のレーザ光源の構成を示す側面図The side view which shows the structure of the laser light source of the 1st Embodiment of this invention. 本発明の第1の実施形態のレーザ光源の他の構成を示す側面図The side view which shows the other structure of the laser light source of the 1st Embodiment of this invention 波長変換素子の変換効率の波長依存性を示すグラフ、および、波長変換素子の透過光の波形を示す波形図Graph showing wavelength dependence of conversion efficiency of wavelength conversion element, and waveform diagram showing waveform of transmitted light of wavelength conversion element 本発明に係るガス検知装置の構成を示すブロック図The block diagram which shows the structure of the gas detection apparatus which concerns on this invention 従来のガス検知装置の構成を示すブロック図Block diagram showing the configuration of a conventional gas detector 被測定ガスの吸収特性と変調信号との関係を示すグラフGraph showing the relationship between the absorption characteristics of the gas to be measured and the modulation signal

以下、本発明に係るレーザ光源およびそれを用いたガス検知装置の実施形態について、図面を用いて説明する。   Hereinafter, embodiments of a laser light source and a gas detector using the same according to the present invention will be described with reference to the drawings.

(第1の実施形態)
本発明に係るレーザ光源の第1の実施形態を図1〜図6を用いて説明する。図1は本実施形態のレーザ光源1の構成を示すブロック図である。
(First embodiment)
A first embodiment of a laser light source according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a laser light source 1 of the present embodiment.

即ち、図1に示すように、レーザ光源1は、所定の波長幅(変調周波数)で波長変調されたレーザ光を出射する半導体発光素子11と、該波長変調されたレーザ光を生成するための駆動電流Idを半導体発光素子11に印加する発光素子駆動部13と、該波長変調されたレーザ光の波長を非線形光学効果により短い波長に変換する波長変換素子12と、を備える。ここで、駆動電流Idは、中心電流値I0を中心に、振幅Iw、変調周波数f1(例えば10kHz)で変調された電流である。 That is, as shown in FIG. 1, a laser light source 1 includes a semiconductor light emitting element 11 that emits laser light that is wavelength-modulated with a predetermined wavelength width (modulation frequency), and a laser light source that generates the wavelength-modulated laser light. A light emitting element driving unit 13 that applies a driving current I d to the semiconductor light emitting element 11 and a wavelength conversion element 12 that converts the wavelength of the wavelength-modulated laser light into a short wavelength by a nonlinear optical effect are provided. Here, the drive current I d is a current modulated with the amplitude I w and the modulation frequency f 1 (for example, 10 kHz) around the center current value I 0 .

図2は、半導体発光素子11を光の導波方向に沿って切断した断面図である。図2に示すように、半導体発光素子11は、単一縦モードでレーザ発振するDFB半導体レーザであり、例えば、n型InP(インジウム・リン)からなるn型半導体基板111の上に、n型InPクラッド層112、n型InGaAsP(インジウム・ガリウム・砒素・リン)からなるSCH層(光閉じ込め層)113、InGaAsPからなる多重量子井戸層(MQW)を含む活性層114、p型InGaAsPからなるSCH層115、p型InPクラッド層116、InGaAs(インジウム・ガリウム・砒素)からなるコンタクト層117が順次積層されて構成される。   FIG. 2 is a cross-sectional view of the semiconductor light emitting device 11 taken along the light guiding direction. As shown in FIG. 2, the semiconductor light emitting element 11 is a DFB semiconductor laser that oscillates in a single longitudinal mode. For example, an n-type semiconductor substrate 111 made of n-type InP (indium phosphorus) is n-type. InP cladding layer 112, SCH layer (light confinement layer) 113 made of n-type InGaAsP (indium, gallium, arsenic, phosphorus), active layer 114 including a multiple quantum well layer (MQW) made of InGaAsP, and SCH made of p-type InGaAsP A layer 115, a p-type InP cladding layer 116, and a contact layer 117 made of InGaAs (indium gallium arsenide) are sequentially stacked.

さらに、SCH層115とp型InPクラッド層116との間には回折格子118が形成され、コンタクト層117上には上部電極119、n型半導体基板111の下面には下部電極120が蒸着形成されている。   Further, a diffraction grating 118 is formed between the SCH layer 115 and the p-type InP cladding layer 116, an upper electrode 119 is formed on the contact layer 117, and a lower electrode 120 is deposited on the lower surface of the n-type semiconductor substrate 111. ing.

半導体発光素子11は、劈開によって形成され、光共振器を構成する後方端面11aおよび出射端面11bを備えている。活性層114は、後方端面11aから出射端面11bにかけて設けられており、発光素子駆動部13によって駆動電流Idが上部電極119と下部電極120との間に供給されることによってレーザ光を生成し、生成したレーザ光を出射端面11bから出射する構成を有している。なお、出射端面11bには低反射膜が、後方端面11aには高反射膜がそれぞれ形成されていてもよい。 The semiconductor light emitting element 11 is formed by cleavage and includes a rear end face 11a and an emission end face 11b that constitute an optical resonator. The active layer 114 is provided from the rear end surface 11 a to the emission end surface 11 b, and generates a laser beam when the driving current I d is supplied between the upper electrode 119 and the lower electrode 120 by the light emitting element driving unit 13. The generated laser light is emitted from the emission end face 11b. A low reflection film may be formed on the emission end face 11b, and a high reflection film may be formed on the rear end face 11a.

半導体発光素子11から出射されるレーザ光の波長λは、上述の駆動電流Idに応じて変動する。これにより、光源部1は、中心波長λ0を中心に振幅λw(例えば10pm)、変調周波数f1で振動するレーザ光を出力するようになっている。ここで、中心波長λ0は、中心電流値I0が半導体発光素子11に印加された場合の発振波長である。 The wavelength λ of the laser light emitted from the semiconductor light emitting element 11 varies according to the drive current I d described above. As a result, the light source unit 1 outputs laser light that vibrates at the center wavelength λ 0 with the amplitude λ w (for example, 10 pm) and the modulation frequency f 1 . Here, the center wavelength λ 0 is an oscillation wavelength when the center current value I 0 is applied to the semiconductor light emitting element 11.

次に、本実施形態のガス検知装置に使用される波長変換素子12に関して、図面を用いて説明する。波長変換素子12は、分極反転構造が形成されたLiNbO3(リチウムナイオベート)、LiTaO3(リチウムタンタレート)、などの複屈折率を有する非線形光学結晶からなるSHG(Second harmonic generation)素子であり、入射されたレーザ光を第2高調波に変換するようになっている。 Next, the wavelength conversion element 12 used in the gas detection device of the present embodiment will be described with reference to the drawings. The wavelength conversion element 12 is an SHG (Second harmonic generation) element made of a nonlinear optical crystal having a birefringence such as LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), etc., having a domain-inverted structure. The incident laser beam is converted to the second harmonic.

図3は、波長変換素子12の概略構成を示す斜視図である。即ち、波長変換素子12は、例えば、LiNbO3にMgOがドープされた非線形光学結晶からなる基板121と、基板121のZ軸と平行な自発分極の向きを反転させた複数の分極反転部122a、122b、122c、・・・が周期的に形成されてなる周期分極反転構造122と、周期分極反転構造122に沿って延びる光導波路123と、が形成されてなるものである。 FIG. 3 is a perspective view showing a schematic configuration of the wavelength conversion element 12. That is, the wavelength conversion element 12 is, for example, a substrate 121 made of a nonlinear optical crystal MgO is doped LiNbO 3, a plurality of polarization inversion portion 122a that reverses the direction of the Z-axis parallel to the spontaneous polarization of the substrate 121, A periodic polarization inversion structure 122 in which 122b, 122c,... Are periodically formed and an optical waveguide 123 extending along the periodic polarization inversion structure 122 are formed.

ここで、レーザ光源1における上述の半導体発光素子11および波長変換素子12の具体的な配置例を図4に示す。レーザ光源1は、図4に示すように、半導体発光素子11、波長変換素子12と、発光素子駆動部13と、コリメートレンズ14、15と、集光レンズ16と、を含んで構成され、半導体発光素子11の活性層114からの出射光が、波長変換素子12の光導波路123に入射されるようになっている。   Here, a specific arrangement example of the semiconductor light emitting element 11 and the wavelength conversion element 12 in the laser light source 1 is shown in FIG. As shown in FIG. 4, the laser light source 1 includes a semiconductor light emitting element 11, a wavelength conversion element 12, a light emitting element driving unit 13, collimating lenses 14 and 15, and a condenser lens 16. Light emitted from the active layer 114 of the light emitting element 11 enters the optical waveguide 123 of the wavelength conversion element 12.

あるいは、他の配置例として図5に示すように、光源部1が、上記のコリメートレンズ14および集光レンズ16を備えずに、半導体発光素子11の出射端面11bと波長変換素子12の入射端面12aとが接合されることにより、半導体発光素子11の活性層114と波長変換素子12の光導波路123とが直接光結合される構成であってもよい。   Alternatively, as another arrangement example, as illustrated in FIG. 5, the light source unit 1 does not include the collimating lens 14 and the condenser lens 16, and the emission end face 11 b of the semiconductor light emitting element 11 and the incident end face of the wavelength conversion element 12. The active layer 114 of the semiconductor light emitting element 11 and the optical waveguide 123 of the wavelength conversion element 12 may be directly optically coupled to each other by bonding to 12a.

図6は、波長変換素子12の変換効率の波長依存性を示すグラフ、および、波長変換素子12の透過光の波形を示す波形図である。図6の上段のグラフ中の(1)〜(5)は半導体発光素子11から出射されるレーザ光の中心波長λ0を示しており、下段の波形図は上記(1)〜(5)に対応する波形を示している。 FIG. 6 is a graph showing the wavelength dependence of the conversion efficiency of the wavelength conversion element 12 and a waveform diagram showing the waveform of the transmitted light of the wavelength conversion element 12. (1) to (5) in the upper graph of FIG. 6 indicate the center wavelength λ 0 of the laser light emitted from the semiconductor light emitting element 11, and the lower waveform diagrams are the above (1) to (5). The corresponding waveform is shown.

図6の(1)、(5)のように、半導体発光素子11から出射されるレーザ光の中心波長λ0が位相整合波長λpと異なり、かつ、振幅λwが|λp−λ0|×2よりも小さい場合には、該レーザ光は透過前と同相または逆相で波長変換素子12を透過する。 As shown in (1) and (5) of FIG. 6, the center wavelength λ 0 of the laser light emitted from the semiconductor light emitting element 11 is different from the phase matching wavelength λ p and the amplitude λ w is | λ p −λ 0. If it is smaller than | × 2, the laser light passes through the wavelength conversion element 12 in the same phase or opposite phase as before transmission.

図6の(3)のように、半導体発光素子11から出射されるレーザ光の中心波長λ0が位相整合波長λpと一致する場合には、該レーザ光は周波数f2の振動成分を含む光となって波長変換素子12を透過する。 As shown in (3) of FIG. 6, when the center wavelength λ 0 of the laser light emitted from the semiconductor light emitting element 11 coincides with the phase matching wavelength λ p , the laser light includes a vibration component having the frequency f 2. It becomes light and passes through the wavelength conversion element 12.

図6の(2)、(4)のように、半導体発光素子11から出射されるレーザ光の中心波長λ0が位相整合波長λpと異なり、かつ、振幅λwが|λp−λ0|×2よりも大きい場合には、該レーザ光は、透過前と同相または逆相で波長変換素子12を透過するが、周波数f2の振動成分を含むこととなる。 As shown in (2) and (4) of FIG. 6, the center wavelength λ 0 of the laser light emitted from the semiconductor light emitting element 11 is different from the phase matching wavelength λ p and the amplitude λ w is | λ p −λ 0. When larger than | × 2, the laser light is transmitted through the wavelength conversion element 12 in the same phase or opposite phase as before transmission, but includes a vibration component of the frequency f 2 .

ところで、本実施形態のレーザ光源1をガス検知装置の光源として用いる場合には、波長変換素子12を透過後のレーザ光が、変調周波数f1の2倍の周波数f2の振動成分を含むと、検知対象ガスに由来する2倍の周波数f2の振動成分を含む光の検出のS/N比を劣化させてしまうため好ましくない。 By the way, when the laser light source 1 of this embodiment is used as the light source of the gas detection device, the laser light transmitted through the wavelength conversion element 12 includes a vibration component having a frequency f 2 that is twice the modulation frequency f 1. This is not preferable because the S / N ratio of the detection of light including the vibration component having the double frequency f 2 derived from the detection target gas is deteriorated.

従って、図6の(1)、(5)のように、半導体発光素子11から出射され波長変調されたレーザ光の波長が、波長変換素子12の変換効率が最大となる位相整合波長λpよりも長波側あるいは短波側のみに含まれることが好ましい。 Therefore, as shown in (1) and (5) of FIG. 6, the wavelength of the laser light emitted from the semiconductor light emitting element 11 and subjected to wavelength modulation is more than the phase matching wavelength λ p where the conversion efficiency of the wavelength conversion element 12 is maximized. Is preferably included only on the long wave side or the short wave side.

以上説明したように、本実施形態のレーザ光源は、半導体発光素子から出射され波長変調されたレーザ光の波長が、波長変換素子の変換効率が最大となる波長よりも長波側あるいは短波側のみに含まれることにより、変調周波数の2倍の周波数成分の発生を抑制することができる。これにより、本実施形態のレーザ光源は、ガス検知装置用の光源として適用可能である。   As described above, in the laser light source of the present embodiment, the wavelength of the laser light emitted from the semiconductor light emitting element and wavelength-modulated is only on the long wave side or the short wave side from the wavelength at which the conversion efficiency of the wavelength conversion element is maximized. By being included, generation of a frequency component twice the modulation frequency can be suppressed. Thereby, the laser light source of this embodiment is applicable as a light source for gas detection apparatuses.

特に、本実施形態のレーザ光源は、InP系の半導体発光素子と、該半導体発光素子から出射されたレーザ光の波長を短い波長に変換する波長変換素子と、を備えることにより、吸収線の中心波長が1.2μmより短い検知対象ガスを高い精度で検知できるガス検知装置用のレーザ光源として適用可能である。   In particular, the laser light source of the present embodiment includes an InP-based semiconductor light emitting element and a wavelength conversion element that converts the wavelength of the laser light emitted from the semiconductor light emitting element to a short wavelength, whereby the center of the absorption line The present invention can be applied as a laser light source for a gas detection device that can detect a detection target gas having a wavelength shorter than 1.2 μm with high accuracy.

(第2の実施形態)
第1の実施形態のレーザ光源を備えたガス検知装置の実施形態について図7を用いて説明する。図7は本実施形態のガス検知装置の構成を示すブロック図である。
(Second Embodiment)
An embodiment of a gas detection apparatus provided with the laser light source of the first embodiment will be described with reference to FIG. FIG. 7 is a block diagram showing the configuration of the gas detection device of this embodiment.

即ち、図7に示すように、本実施形態のガス検知装置は、検知対象ガスが有する複数の吸収線のうちの1つの吸収線の波長を中心に所定の波長幅(変調周波数f1)で波長変調されたレーザ光を測定雰囲気2に出射する光源部としてのレーザ光源1と、測定雰囲気2中を透過した該波長変調されたレーザ光を測定光として受光し、該測定光に応じた受光信号を出力する受光部3と、を備える。 That is, as shown in FIG. 7, the gas detection apparatus of the present embodiment, at a predetermined wavelength width centered on the wavelength of one absorption line of the plurality of absorption lines included in the detection target gas (modulation frequency f 1) A laser light source 1 as a light source unit that emits wavelength-modulated laser light to the measurement atmosphere 2, and the wavelength-modulated laser light that has passed through the measurement atmosphere 2 is received as measurement light, and received according to the measurement light A light receiving unit 3 for outputting a signal.

また、本実施形態のガス検知装置は、受光部3から出力された受光信号から検出される変調周波数f1の基本波信号および2倍波信号の比に基づいて測定雰囲気2中に含まれる検知対象ガスのガス濃度を算出するガス検知部4と、を備える。 In addition, the gas detection device of the present embodiment is a detection included in the measurement atmosphere 2 based on the ratio of the fundamental wave signal and the second harmonic signal of the modulation frequency f 1 detected from the light reception signal output from the light receiving unit 3. A gas detection unit 4 that calculates the gas concentration of the target gas.

受光部3は、例えばフォトダイオード等の受光素子からなり、不図示のレンズ(光学系)で集光した光を受光し、この受光した光の受光量に応じた受光信号を出力するようになっている。   The light receiving unit 3 is composed of a light receiving element such as a photodiode, for example, receives light collected by a lens (optical system) (not shown), and outputs a light reception signal corresponding to the amount of received light. ing.

ガス検知部4は、受光部3から出力された電流信号である受光信号を電圧信号に変換する電流電圧変換器41と、電流電圧変換器41によって変換された電圧信号に含まれる変調周波数f1の信号成分である基本波電圧信号h1を検出する基本波信号検出器42と、該電圧信号に含まれる変調周波数f1の2倍の周波数f2の信号成分である2倍波電圧信号h2を検出する2倍波信号検出器43と、2倍波信号検出器43によって検出された2倍波電圧信号h2の振幅H2を基本波信号検出器42によって検出された基本波電圧信号h1の振幅H1で割り算して得られる値を測定雰囲気2に含まれる検知対象ガスのガス濃度に対応する検出値D(=H2/H1)として出力する基本波2倍波割算部44と、を備える。 The gas detection unit 4 converts a light reception signal, which is a current signal output from the light reception unit 3, into a voltage signal, and a modulation frequency f 1 included in the voltage signal converted by the current voltage converter 41. A fundamental wave signal detector 42 for detecting a fundamental wave voltage signal h 1 that is a signal component of the second harmonic wave, and a second harmonic voltage signal h that is a signal component of a frequency f 2 that is twice the modulation frequency f 1 included in the voltage signal. a second harmonic signal detector 43 for detecting a 2, the second harmonic signal is detected by the fundamental wave signal detector 42 the amplitude of H 2 were detected second harmonic voltage signal h 2 by the detector 43 the fundamental wave voltage signal Dividing the value obtained by dividing the amplitude H 1 of h 1 into a detection value D (= H 2 / H 1 ) corresponding to the gas concentration of the detection target gas contained in the measurement atmosphere 2, the fundamental wave double wave division is performed. Unit 44.

なお、このような信号操作(割り算)を行うのは、受光部3によって受光された光が測定雰囲気2の透過以外の理由によってもある程度のレベル変動を生じるため、そのレベル変動を除去して正確なガス濃度検出を行うためである。   This signal operation (division) is performed because the light received by the light receiving unit 3 causes a level fluctuation to some extent for reasons other than the transmission through the measurement atmosphere 2. This is for detecting the gas concentration.

電流電圧変換器41は、受光部3から出力された受光信号を電圧信号に変換して増幅する機能を有するプリアンプを備えている。なお、電流電圧変換器41が備えるプリアンプにおいては、基本波電圧信号h1および2倍波電圧信号h2が基本波信号検出器42および2倍波信号検出器43において同等の検出可能なレベルになるように、それぞれの信号に対する増幅度が適切な値に設定されていることが好ましい。 The current-voltage converter 41 includes a preamplifier having a function of converting the received light signal output from the light receiving unit 3 into a voltage signal and amplifying it. In the preamplifier included in the current-voltage converter 41, the fundamental wave signal signal h 1 and the second harmonic wave signal h 2 are at the same detectable level in the fundamental wave signal detector 42 and the second harmonic signal detector 43. Thus, it is preferable that the amplification degree for each signal is set to an appropriate value.

次に、以上のように構成された本実施形態のガス検知装置の動作について説明する。
まず、発光素子駆動部13によって半導体発光素子11の上部電極119と下部電極120との間に、中心電流値I0、振幅Iw、変調周波数f1の駆動電流Idが印加されることにより、活性層114内部が発光状態となる(図4参照)。
Next, the operation of the gas detector of the present embodiment configured as described above will be described.
First, the light emitting element driving unit 13 between the upper electrode 119 and lower electrode 120 of the semiconductor light emitting element 11, the central current value I 0, the amplitude I w, by the drive current I d of the modulation frequency f 1 is applied The inside of the active layer 114 is in a light emitting state (see FIG. 4).

活性層114で生成された光は、活性層114に沿って伝搬し、後方端面11aと出射端面11bで構成された共振器において、駆動電流Idに応じた波長λで発振する。ここで、波長λの中心波長λ0は、中心電流値I0が半導体発光素子11に印加された場合の発振波長である。 The light generated in the active layer 114 propagates along the active layer 114 and oscillates at a wavelength λ corresponding to the drive current I d in the resonator constituted by the rear end face 11a and the emission end face 11b. Here, the center wavelength λ 0 of the wavelength λ is an oscillation wavelength when the center current value I 0 is applied to the semiconductor light emitting element 11.

これにより、中心波長λ0を中心に振幅λw(例えば10pm)、変調周波数f1で振動するレーザ光が半導体発光素子11から波長変換素子12へ出射される。波長変換素子12では、入射されたレーザ光の中心波長λ0および振幅λwがともに半波長化される。半波長化されたレーザ光は測定雰囲気2へ出射される。 As a result, a laser beam oscillating with an amplitude λ w (for example, 10 pm) and a modulation frequency f 1 around the center wavelength λ 0 is emitted from the semiconductor light emitting element 11 to the wavelength conversion element 12. In the wavelength conversion element 12, the center wavelength lambda 0 and the amplitude lambda w of the incident laser beam are both half-wavelength. The half-wave laser beam is emitted to the measurement atmosphere 2.

波長変換素子12から測定雰囲気2へ出射されたレーザ光は、測定雰囲気2を透過して受光部3に受光されて電流信号である受光信号に変換される。受光信号は、ガス検知部4に入力される。   The laser light emitted from the wavelength conversion element 12 to the measurement atmosphere 2 is transmitted through the measurement atmosphere 2 and received by the light receiving unit 3 to be converted into a light reception signal that is a current signal. The received light signal is input to the gas detector 4.

受光信号は、電流電圧変換器41に入力されて電圧信号に変換される。電圧信号はガス検知部4の基本波信号検出器42および2倍波信号検出器43に入力され、基本波電圧信号h1および2倍波電圧信号h2が検出される。基本波2倍波割算部44によって、2倍波電圧信号h2の振幅H2を基本波電圧信号h1の振幅H1で割り算して得られる値が、測定雰囲気2に含まれる検知対象ガスのガス濃度に対応する検出値D(=H2/H1)として出力される。 The received light signal is input to the current-voltage converter 41 and converted into a voltage signal. Voltage signal is input to the fundamental wave signal detector 42 and the second harmonic signal detector 43 of the gas sensing portion 4, the fundamental wave voltage signals h 1 and the second harmonic voltage signal h 2 is detected. The fundamental wave the second harmonic divider section 44, the detection object value obtained by dividing the second harmonic amplitude of H 2 voltage signal h 2 with an amplitude H 1 of the fundamental wave voltage signal h 1 is included in the measurement atmosphere 2 The detection value D (= H 2 / H 1 ) corresponding to the gas concentration of the gas is output.

なお、例えば、検知対象ガスが酸素(吸収線の中心波長が760nm)である場合には、レーザ光の中心波長λ0が1520nmとなるように、半導体発光素子11を構成する各層の組成比、ドープされる不純物の種類および量を調整することにより、酸素のガス濃度を検出することができる。 For example, when the detection target gas is oxygen (the center wavelength of the absorption line is 760 nm), the composition ratio of each layer constituting the semiconductor light emitting element 11 so that the center wavelength λ 0 of the laser light is 1520 nm, The gas concentration of oxygen can be detected by adjusting the type and amount of impurities to be doped.

以上説明したように、本実施形態のガス検知装置は、第1の実施形態のレーザ光源を備えるため、吸収線の中心波長が1.2μmより短い検知対象ガスを高い精度で検知することができる。   As described above, since the gas detection device of the present embodiment includes the laser light source of the first embodiment, it is possible to detect a detection target gas having a center wavelength of the absorption line shorter than 1.2 μm with high accuracy. .

1 レーザ光源(光源部)
2 測定雰囲気
3 受光部
4 ガス検知部
11 半導体発光素子
12 波長変換素子
1 Laser light source (light source)
2 Measurement Atmosphere 3 Light Receiving Unit 4 Gas Detection Unit 11 Semiconductor Light Emitting Element 12 Wavelength Conversion Element

Claims (4)

所定の波長幅で波長変調されたレーザ光を出射する半導体発光素子(11)と、
前記波長変調されたレーザ光の波長を非線形光学効果により短い波長に変換する波長変換素子(12)と、を備え、
前記波長変調されたレーザ光の波長が、前記波長変換素子の変換効率が最大となる波長よりも長波側あるいは短波側のみに含まれることを特徴とするレーザ光源。
A semiconductor light emitting device (11) for emitting laser light that is wavelength-modulated with a predetermined wavelength width;
A wavelength conversion element (12) for converting the wavelength of the wavelength-modulated laser light into a short wavelength by a nonlinear optical effect,
The laser light source characterized in that the wavelength of the wavelength-modulated laser light is included only on the long wave side or the short wave side of the wavelength at which the conversion efficiency of the wavelength conversion element is maximized.
前記波長変換素子が、前記波長変調されたレーザ光を第2高調波に変換するSHG素子である請求項1に記載のレーザ光源。   The laser light source according to claim 1, wherein the wavelength conversion element is an SHG element that converts the wavelength-modulated laser light into a second harmonic. 前記半導体発光素子が単一縦モードで発振する請求項1または請求項2に記載のレーザ光源。   The laser light source according to claim 1, wherein the semiconductor light emitting element oscillates in a single longitudinal mode. 検知対象ガスが有する複数の吸収線のうちの1つの吸収線の波長を中心に所定の波長幅で波長変調されたレーザ光を測定雰囲気(2)に出射する光源部(1)と、
前記測定雰囲気中を透過した前記波長変調されたレーザ光を測定光として受光し、該測定光に応じた受光信号を出力する受光部(3)と、
前記受光信号から検出される前記波長変調の変調周波数の基本波信号および2倍波信号の比に基づいて前記測定雰囲気中に含まれる前記検知対象ガスのガス濃度を算出するガス検知部(4)と、を備えたガス検知装置において、
前記光源部が、請求項1から請求項3のいずれか一項に記載のレーザ光源からなることを特徴とするガス検知装置。
A light source unit (1) for emitting laser light, which is wavelength-modulated with a predetermined wavelength width around the wavelength of one of the plurality of absorption lines of the detection target gas, to the measurement atmosphere (2);
A light receiving unit (3) that receives the wavelength-modulated laser light transmitted through the measurement atmosphere as measurement light and outputs a light reception signal corresponding to the measurement light;
A gas detector (4) for calculating a gas concentration of the detection target gas contained in the measurement atmosphere based on a ratio between a fundamental wave signal and a second harmonic signal of the modulation frequency of the wavelength modulation detected from the light reception signal In a gas detection device comprising:
The gas light source device, wherein the light source unit includes the laser light source according to any one of claims 1 to 3.
JP2009273605A 2009-12-01 2009-12-01 Laser light source and gas detector using the same Expired - Fee Related JP5210290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273605A JP5210290B2 (en) 2009-12-01 2009-12-01 Laser light source and gas detector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273605A JP5210290B2 (en) 2009-12-01 2009-12-01 Laser light source and gas detector using the same

Publications (2)

Publication Number Publication Date
JP2011118045A true JP2011118045A (en) 2011-06-16
JP5210290B2 JP5210290B2 (en) 2013-06-12

Family

ID=44283485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273605A Expired - Fee Related JP5210290B2 (en) 2009-12-01 2009-12-01 Laser light source and gas detector using the same

Country Status (1)

Country Link
JP (1) JP5210290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295243A (en) * 2002-04-04 2003-10-15 Canon Inc Higher harmonic light source unit, method for driving the same, image display device using the same, image forming device, and optical recording device
JP2007193034A (en) * 2006-01-18 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion device and light absorption measuring instrument
JP2007285823A (en) * 2006-04-14 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Light absorption measuring device
JP2008009457A (en) * 2003-08-01 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> Laser light source
WO2009014663A1 (en) * 2007-07-20 2009-01-29 Corning Incorporated Intensity modulation in wavelength converting optical package
JP2011033941A (en) * 2009-08-04 2011-02-17 Nippon Telegr & Teleph Corp <Ntt> Intermediate-infrared light source, and infrared light absorption analyzer using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295243A (en) * 2002-04-04 2003-10-15 Canon Inc Higher harmonic light source unit, method for driving the same, image display device using the same, image forming device, and optical recording device
JP2008009457A (en) * 2003-08-01 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> Laser light source
JP2007193034A (en) * 2006-01-18 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion device and light absorption measuring instrument
JP2007285823A (en) * 2006-04-14 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Light absorption measuring device
WO2009014663A1 (en) * 2007-07-20 2009-01-29 Corning Incorporated Intensity modulation in wavelength converting optical package
JP2010534355A (en) * 2007-07-20 2010-11-04 コーニング インコーポレイテッド Intensity modulation in wavelength-converted optical packages
JP2011033941A (en) * 2009-08-04 2011-02-17 Nippon Telegr & Teleph Corp <Ntt> Intermediate-infrared light source, and infrared light absorption analyzer using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor

Also Published As

Publication number Publication date
JP5210290B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
Uehara et al. Remote detection of methane with a 1.66-μm diode laser
JP2008026397A (en) Light source and gas measuring device
US20100201452A1 (en) Quantum interference device, atomic oscillator, and magnetic sensor
JP2007193034A (en) Wavelength conversion device and light absorption measuring instrument
Kuusela et al. Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs
US20060187976A1 (en) Variable-wavelength semiconductor laser and gas sensor using same
JP4634956B2 (en) Light absorption measuring device
JPWO2012160747A1 (en) Light source device, analysis device, and light generation method
US9417503B2 (en) Light source device and wavelength conversion method
WO2012160746A1 (en) Light source device, analyzer, and light generation method
JP5210290B2 (en) Laser light source and gas detector using the same
JP4834690B2 (en) Wavelength tunable semiconductor laser for gas detector and gas detector
JP2009036578A (en) Light absorption measuring instrument
JP2011169849A (en) Gas detection device
JP2012181554A (en) Mid-infrared light source, and infrared light absorption analyzer using the same
Numai Analysis of signal voltage in a semiconductor ring laser gyro
US7940451B2 (en) Wavelength converter and wavelength conversion apparatus
US7082146B2 (en) Device and method for inspecting wavelength-variable semiconductor laser, and method for inspecting coherent source
JP2011033941A (en) Intermediate-infrared light source, and infrared light absorption analyzer using the same
JP6673774B2 (en) Mid-infrared laser light source and laser spectrometer
JP2011154093A (en) Laser light source and gas detector using the same
JP5514989B2 (en) Optical parametric oscillator
JP2015176072A (en) Mid-infrared laser beam generation device, gas detection device, mid-infrared laser beam generation method, and gas detection method
US20040032884A1 (en) Device and method for inspecting wavelength-variable semiconductor laser, and method for inspecting coherent source
CN114279985B (en) Gas concentration detection system based on frequency-stabilized laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5210290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees