JP2011117795A - Method and device for measuring surface properties - Google Patents

Method and device for measuring surface properties Download PDF

Info

Publication number
JP2011117795A
JP2011117795A JP2009274479A JP2009274479A JP2011117795A JP 2011117795 A JP2011117795 A JP 2011117795A JP 2009274479 A JP2009274479 A JP 2009274479A JP 2009274479 A JP2009274479 A JP 2009274479A JP 2011117795 A JP2011117795 A JP 2011117795A
Authority
JP
Japan
Prior art keywords
inner peripheral
peripheral surface
reflected
mirror
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009274479A
Other languages
Japanese (ja)
Inventor
Kazuhisa Shibata
和久 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARC Harima Co Ltd
Original Assignee
ARC Harima Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARC Harima Co Ltd filed Critical ARC Harima Co Ltd
Priority to JP2009274479A priority Critical patent/JP2011117795A/en
Publication of JP2011117795A publication Critical patent/JP2011117795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively and readily measure the surface roughness of a recessed section or a hollow section of a non-flat article, in particular, the surface roughness of an inner peripheral surface of the recessed section or an inner peripheral surface of the hollow section, in a noncontact manner and with high accuracy. <P>SOLUTION: A pattern is irradiated by a pattern forming device 11, reflected by a half mirror 13, further reflected by a mirror, and vertically projected to the inner peripheral surface of the recessed section or the inner peripheral surface of the hollow section of the non-flat article as an object 2 to be measured, and the reflected pattern is reflected by the mirror 14, and transmitted across the half mirror 13, and its image is picked up by an image pick-up section 3 (digital camera, and the like). Data of the obtained image signal is processed by a computer 3 to thereby measure and evaluate the surface property of a surface 22 to be measured. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、非平板物体の凹部内周面あるいは中空部内周面の表面粗さを測定する表面性状測定方法および表面性状測定装置に関する。   The present invention relates to a surface texture measuring method and a surface texture measuring apparatus for measuring the surface roughness of a concave inner surface or a hollow inner surface of a non-flat object.

鏡面に近い平滑な面の表面性状を測定し評価する装置として、パターンの反射像をカメラで撮影し、映像信号をコンピューターでデータ処理して表面性状を非接触で定量的に測定するものが従来から知られている(例えば、特許文献1、2参照。)。   As a device that measures and evaluates the surface properties of a smooth surface close to a mirror surface, a device that takes a reflected image of a pattern with a camera, processes the video signal with a computer, and measures the surface properties quantitatively without contact. (For example, refer to Patent Documents 1 and 2).

特開2001−99632号公報JP 2001-99632 A 特開2006−84452号公報JP 2006-84452 A

しかしながら、パターンの反射像もしくは虚像をカメラで撮影して、映像信号をコンピュータでデータ処理することにより表面性状を測定する上記従来の装置は、パターンは測定対象面の垂線に対し斜めに所定角度で投射し、同角度で反対側へ反射させるものであって、研磨鋼板等のような平板状の物体の平坦な表面を測定するのには適しているが、例えば金型、円筒等の非平板物体の凹部や中空部の内側を測定するのには適していない。そのような非平板物体の凹部や中空部の内側を測定しようとしても、測定対象面の周辺が狭いと、パターンの投射および反射のための光路等を確保できない。   However, in the above-described conventional apparatus for measuring the surface properties by taking a reflected image or virtual image of a pattern with a camera and processing the video signal with a computer, the pattern is inclined at a predetermined angle with respect to the normal to the surface to be measured. Projecting and reflecting to the opposite side at the same angle, which is suitable for measuring the flat surface of a flat object such as a polished steel plate, but is not a flat plate such as a mold or cylinder It is not suitable for measuring the inside of a concave portion or hollow portion of an object. Even if an attempt is made to measure the inside of such a concave portion or hollow portion of a non-flat object, if the periphery of the measurement target surface is narrow, an optical path or the like for pattern projection and reflection cannot be secured.

本発明は、非平板物体の凹部あるいは中空部の表面粗さ、特に凹部内周面あるいは中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定できる表面性状測定方法および表面性状測定装置を提供することを目的とする。   The present invention is a surface that can measure the surface roughness of a recess or hollow part of a non-flat object, particularly the surface roughness of the inner peripheral surface of the recess or the inner peripheral surface of the hollow part, in a non-contact manner, quantitatively, accurately, and simply. An object is to provide a property measuring method and a surface property measuring apparatus.

本発明の表面性状測定方法は、例えば金型や円筒等の非平板物体の凹部内周面あるいは中空部内周面の表面粗さを測定するもので、光学的明暗の2次元分布形状を示すパターンを非平板物体の凹部あるいは中空部の縦軸に略直交する方向へ照射し、ハーフミラーで凹部の底面あるいは中空部の底面に向けて反射させ、さらにミラーで反射させて測定対象面である凹部内周面あるいは中空部内周面に略垂直に投射し、凹部内周面あるいは中空部内周面で反射したパターンを、ミラーで反射させ、さらにハーフミラーを透過させて撮像素子で撮影し、撮像素子により得られた映像信号をコンピューターでデータ処理することにより凹部内周面あるいは中空部内周面の表面粗さを評価することを特徴とする。   The surface texture measuring method of the present invention is a method for measuring the surface roughness of a concave inner surface or a hollow inner surface of a non-flat object such as a mold or a cylinder, and is a pattern showing a two-dimensional optical bright / dark distribution shape. Is irradiated in a direction substantially perpendicular to the vertical axis of the concave portion or hollow portion of the non-flat object, reflected by the half mirror toward the bottom surface of the concave portion or the bottom surface of the hollow portion, and further reflected by the mirror to be the concave portion that is the measurement target surface The pattern projected on the inner peripheral surface or the inner peripheral surface of the hollow portion substantially perpendicularly and reflected by the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion is reflected by the mirror, and is further transmitted through the half mirror and photographed by the image sensor. The surface roughness of the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion is evaluated by data processing of the video signal obtained by the above in a computer.

この方法では、測定対象物である非平板物体は、その凹部内周面あるいは中空部内周面の測定対象面がパターンに対し略平行となるように配置する。そして、パターンをハーフミラーで反射させ、さらにミラーで反射させて測定対象面に略垂直に投射する。このとき、測定対象面に投影されミラーで反射したパターンの反射像は、パターンを配置した面に対し略垂直に現れる。この反射像を、ハーフミラーを透過させて、非平板物体の凹部あるいは中空部の開放側から撮像素子によって撮影する。そして、その映像信号をコンピューターでデータ処理することにより測定対象面の表面粗さを評価する。この場合、パターン投射および反射のための光路を確保することが容易で、例えば金型や円筒等の非平板物体の凹部内周面や中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定できる。この場合のコンピューターによる処理は、例えば、映像信号から輝度分布を求め、輝度分布の標準偏差を算出して、輝度分布の標準偏差に基づいて測定対象面の表面粗さを評価するというものであってよい。   In this method, the non-flat object that is the measurement object is arranged so that the measurement target surface of the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion is substantially parallel to the pattern. Then, the pattern is reflected by the half mirror, further reflected by the mirror, and projected onto the surface to be measured substantially perpendicularly. At this time, the reflected image of the pattern projected on the measurement target surface and reflected by the mirror appears substantially perpendicular to the surface on which the pattern is arranged. This reflected image is photographed by the imaging element from the open side of the concave portion or hollow portion of the non-flat object through the half mirror. Then, the video signal is processed by a computer to evaluate the surface roughness of the measurement target surface. In this case, it is easy to secure an optical path for pattern projection and reflection. For example, the surface roughness of the inner peripheral surface of a concave portion or the inner peripheral surface of a hollow portion of a non-flat object such as a mold or a cylinder is determined without contact. Therefore, it is possible to measure accurately and easily. The computer processing in this case is, for example, obtaining a luminance distribution from the video signal, calculating a standard deviation of the luminance distribution, and evaluating the surface roughness of the measurement target surface based on the standard deviation of the luminance distribution. It's okay.

そして、この表面性状測定方法では、測定対象物である非平板物体を測定対象面がパターンに対し略平行となるように配置し、パターンをハーフミラーで反射させ、さらにミラーで反射させて測定対象面に垂直に投射させ、測定対象面で反射し、さらに前記ミラーで反射した像を測定対象面に平行な方向から撮像素子によって撮影するようにできる。   In this surface texture measurement method, a non-flat object, which is a measurement object, is arranged so that the measurement object surface is substantially parallel to the pattern, the pattern is reflected by a half mirror, and further reflected by a mirror. The image projected onto the surface perpendicularly, reflected on the measurement target surface, and further reflected on the mirror can be taken by the image sensor from a direction parallel to the measurement target surface.

こうすることで、パターンをハーフミラーで反射させ、さらにミラーで反射させて測定対象面に投射する投射光学系の光軸と、測定対象面で反射したパターンを、ミラーで反射させ、さらにハーフミラーを透過させて撮像素子上に結像させる撮像光学系の光軸とが、ハーフミラーと測定対象面との間で同軸となる。このとき、測定対象面に投影されミラーで反射したパターンの反射像は、パターンを配置した面に対し略垂直に現れる。この反射像を、ハーフミラーを透過させて、非平板物体の凹部あるいは中空部の開放側から撮像素子によって撮影する。そして、その映像信号をコンピューターでデータ処理することにより測定対象面の表面粗さを評価する。この場合、パターン投射および反射のための光路を確保することが容易で、例えば金型や円筒等の非平板物体の凹部内周面や中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定できる。そして、特に、投射光学系の光軸と撮像光学系の光軸とがハーフミラーと測定対象面との間で同軸であるため、光路の確保が一層容易となり、凹部や中空部の深い所でも容易に測定できる。   By doing this, the optical axis of the projection optical system that reflects the pattern with the half mirror, and further reflects with the mirror and projects it onto the surface to be measured, and the pattern reflected by the surface to be measured are reflected with the mirror, and further the half mirror The optical axis of the imaging optical system that transmits the light and forms an image on the imaging element is coaxial between the half mirror and the measurement target surface. At this time, the reflected image of the pattern projected on the measurement target surface and reflected by the mirror appears substantially perpendicular to the surface on which the pattern is arranged. This reflected image is photographed by the imaging element from the open side of the concave portion or hollow portion of the non-flat object through the half mirror. Then, the video signal is processed by a computer to evaluate the surface roughness of the measurement target surface. In this case, it is easy to secure an optical path for pattern projection and reflection. For example, the surface roughness of the inner peripheral surface of a concave portion or the inner peripheral surface of a hollow portion of a non-flat object such as a mold or a cylinder is determined without contact. Therefore, it is possible to measure accurately and easily. In particular, since the optical axis of the projection optical system and the optical axis of the imaging optical system are coaxial between the half mirror and the measurement target surface, it becomes easier to secure the optical path, even in a deep part of a recess or a hollow part. Easy to measure.

この表面性状測定方法では、測定対象面を介して反射するパターン像に撮像素子の焦点を合わせ、測定対象面上に投射したパターンを虚像面に結像させて撮影するようにするのがよい。   In this surface property measurement method, it is preferable that the image sensor is focused on the pattern image reflected through the measurement target surface, and the pattern projected on the measurement target surface is imaged on the virtual image plane and photographed.

また、この表面性状測定方法では、ミラーの撮像素子に対する角度を変更することにより、凹部内周面あるいは中空部内周面における測定領域を移動させるようにすることができ、そうすることで、測定対象面が凹部あるいは中空部の縦軸を含む面に対して傾斜していても表面粗さを容易に測定することができる。   In addition, in this surface texture measurement method, by changing the angle of the mirror with respect to the image sensor, the measurement area on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion can be moved. Even if the surface is inclined with respect to the surface including the longitudinal axis of the concave portion or the hollow portion, the surface roughness can be easily measured.

また、この表面性状測定方法では、ミラーを凹部あるいは中空部の縦軸を中心に回転させることにより、凹部内周面あるいは中空部内周面における測定領域を移動させるようにすることができ、そうすることで、凹部内周面あるいは中空部内周面の表面粗さを全周にわたって測定できる。   Further, in this surface property measurement method, the mirror can be rotated about the longitudinal axis of the concave portion or the hollow portion to move the measurement area on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion. Thus, the surface roughness of the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion can be measured over the entire periphery.

また、本発明の表面性状測定装置は、例えば金型や円筒等の非平板物体の凹部あるいは中空部の表面粗さを測定するものであって、光学的明暗の2次元分布形状を示す縞状等のパターンを前記非平板物体の凹部あるいは中空部の縦軸に略直交する方向へ照射し、ハーフミラーで凹部の底面あるいは中空部の底面に向けて反射させ、さらにミラーで反射させて測定対象面である非平板物体の凹部内周面あるいは中空部内周面に垂直に投射する投射光学系と、投射部により投射されて凹部内周面あるいは中空部内周面で反射したパターンを、ミラーで反射させ、さらにハーフミラーを透過させて撮像素子で撮影する撮像光学系とからなり、撮像素子により得られた映像信号をコンピューターでデータ処理することにより凹部内側周面あるいは中空部内周面の表面粗さを評価することを特徴とする。   Further, the surface texture measuring device of the present invention measures the surface roughness of a concave portion or a hollow portion of a non-flat object such as a mold or a cylinder, and has a striped shape showing a two-dimensional distribution shape of optical brightness. Is irradiated in a direction substantially perpendicular to the longitudinal axis of the concave portion or hollow portion of the non-flat object, reflected by the half mirror toward the bottom surface of the concave portion or the hollow portion, and further reflected by the mirror to be measured. The projection optical system that projects perpendicularly to the inner peripheral surface of the concave part or hollow part of the non-flat object that is a surface, and the pattern that is projected by the projection part and reflected by the inner peripheral surface of the concave part or hollow part is reflected by the mirror In addition, the image pickup optical system that passes through the half mirror and shoots with the image pickup device is used. The image signal obtained by the image pickup device is processed by a computer to process the data on the inner peripheral surface of the recess or hollow. And evaluating the surface roughness of the inner circumferential surface.

この装置は、測定対象物である非平板物体を、その凹部内周面あるいは中空部内周面の測定対象面がパターンに対し略平行となるように配置した状態で、投射光学系により、パターンをハーフミラーで反射させ、さらにミラーで反射させて測定対象面に略垂直に投射する。そして、測定対象面に投影されミラーで反射した反射像を、ハーフミラーを透過させて、非平板物体の凹部あるいは中空部の開放側から撮像光学系の撮像素子によって撮影し、映像信号をコンピューターでデータ処理することにより測定対象面の表面粗さを評価する。この場合、パターン投射および反射のための光路を確保することが容易で、例えば金型や円筒等の非平板物体の凹部内周面や中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定できる。この場合のコンピューターによる処理は、例えば、映像信号から輝度分布を求め、輝度分布の標準偏差を算出して、輝度分布の標準偏差に基づいて測定対象面の表面粗さを評価するというものであってよい。   In this apparatus, a non-flat object, which is a measurement object, is arranged with a projection optical system in a state where the measurement target surface of the inner peripheral surface of the recess or the inner peripheral surface of the hollow part is substantially parallel to the pattern. The light is reflected by a half mirror, further reflected by a mirror, and projected substantially perpendicularly onto the surface to be measured. Then, the reflection image projected on the measurement target surface and reflected by the mirror is transmitted through the half mirror, and is photographed by the imaging element of the imaging optical system from the open side of the concave portion or the hollow portion of the non-flat object, and the video signal is captured by the computer. The surface roughness of the measurement target surface is evaluated by data processing. In this case, it is easy to secure an optical path for pattern projection and reflection. For example, the surface roughness of the inner peripheral surface of a concave portion or the inner peripheral surface of a hollow portion of a non-flat object such as a mold or a cylinder is determined without contact. Therefore, it is possible to measure accurately and easily. The computer processing in this case is, for example, obtaining a luminance distribution from the video signal, calculating a standard deviation of the luminance distribution, and evaluating the surface roughness of the measurement target surface based on the standard deviation of the luminance distribution. It's okay.

そして、この表面性状測定装置は、投射光学系の光軸と、撮像光学系の光軸とが、ハーフミラーと測定対象面との間で同軸であるようにすることができる。   And this surface property measuring apparatus can make the optical axis of a projection optical system, and the optical axis of an imaging optical system coaxial with a half mirror and a measurement object surface.

この場合、測定対象物である非平板物体は、その測定対象面である凹部内周面あるいは中空部内周面がパターンに対し略平行となるように配置する。そして、パターンをハーフミラーで反射させ、さらにミラーで反射させて測定対象面に垂直に投射させ、測定対象面で反射し、さらに前記ミラーで反射した像を測定対象面に平行な方向から撮像素子によって撮影する。このとき、測定対象面に投影されミラーで反射したパターンの反射像は、パターンを配置した面に対し略垂直に現れる。この反射像を、ハーフミラーを透過させて、非平板物体の凹部あるいは中空部の開放側から撮像素子によって撮影し、映像信号をコンピューターでデータ処理することにより測定対象面の表面粗さを評価する。この場合、パターン投射および反射のための光路を確保することが容易で、例えば金型や円筒等の非平板物体の凹部内周面や中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定できる。そして、特に、投射光学系の光軸と撮像光学系の光軸とがハーフミラーと測定対象面との間で同軸であるため、光路の確保が一層容易となり、凹部や中空部の深い所でも容易に測定できる。   In this case, the non-flat object that is the measurement object is arranged so that the inner peripheral surface of the recess or the inner peripheral surface of the hollow part that is the measurement target surface is substantially parallel to the pattern. Then, the pattern is reflected by the half mirror, further reflected by the mirror, projected perpendicularly to the measurement target surface, reflected by the measurement target surface, and further the image reflected by the mirror is taken from the direction parallel to the measurement target surface. Shoot by. At this time, the reflected image of the pattern projected on the measurement target surface and reflected by the mirror appears substantially perpendicular to the surface on which the pattern is arranged. The reflected image is transmitted through a half mirror, photographed by an image sensor from the open side of a concave or hollow portion of a non-planar object, and the surface roughness of the measurement target surface is evaluated by processing the video signal with a computer. . In this case, it is easy to secure an optical path for pattern projection and reflection. For example, the surface roughness of the inner peripheral surface of a concave portion or the inner peripheral surface of a hollow portion of a non-flat object such as a mold or a cylinder is determined without contact. Therefore, it is possible to measure accurately and easily. In particular, since the optical axis of the projection optical system and the optical axis of the imaging optical system are coaxial between the half mirror and the measurement target surface, it becomes easier to secure the optical path, even in a deep part of a recess or a hollow part. Easy to measure.

また、この表面性状測定装置において、ミラーは、撮像素子に対する角度を変更可能であるようにすることができる。そうすることで、ミラーの撮像素子に対する角度の変更により、凹部内周面あるいは中空部内周面における測定領域を移動させることができるようになり、測定対象面が凹部あるいは中空部の縦軸を含む面に対して傾斜していても表面粗さも容易に測定できる。   Moreover, in this surface texture measuring apparatus, the mirror can change the angle with respect to the image sensor. By doing so, it becomes possible to move the measurement region on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion by changing the angle of the mirror with respect to the imaging element, and the measurement target surface includes the vertical axis of the concave portion or the hollow portion. Even if it is inclined with respect to the surface, the surface roughness can be easily measured.

また、この表面性状測定装置において、ミラーは、凹部あるいは中空部の縦軸を中心に回転可能であるようにすることができる。そうすることで、ミラーを凹部あるいは中空部の縦軸を中心に回転させることにより、凹部内周面あるいは中空部内周面における測定領域を移動させることができるようになり、凹部内周面あるいは中空部内周面の表面粗さを全周にわたって測定できる。   In this surface texture measuring apparatus, the mirror can be rotated about the longitudinal axis of the concave portion or the hollow portion. By doing so, it becomes possible to move the measurement area on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion by rotating the mirror around the longitudinal axis of the concave portion or the hollow portion. The surface roughness of the inner peripheral surface can be measured over the entire circumference.

この表面性状測定装置において、照射部は、例えば、コンピューターにより制御可能なパターンを形成するディスプレーを備えたものであってよい。   In this surface texture measuring apparatus, the irradiation unit may be provided with a display that forms a pattern controllable by a computer, for example.

その場合、例えば液晶等のディスプレーに形成されたパターンのコントラストを結像系の要素として利用することで、コンピューターにより、測定対象面の面粗さや仕上げ方向等に応じて、パターンの形状、方向性、ピッチ等を調整し、最適なパターンとすることができる。   In that case, for example, by using the contrast of the pattern formed on a display such as a liquid crystal as an element of the imaging system, the shape and directionality of the pattern can be determined by the computer according to the surface roughness, finishing direction, etc. By adjusting the pitch and the like, an optimum pattern can be obtained.

パターンを形成するディスプレーは、液晶ディスプレー以外に、プラズマ、有機・無機ELその他のディスプレーであってよい。また、投影部は、スリット板に後ろから光源の光を当ててスリットパターンを投射するのであってもよく、印刷パターンに照明を当ててその反射像を投射するものであってもよい。   The display for forming the pattern may be a display other than a liquid crystal display, such as plasma, organic / inorganic EL, or the like. The projection unit may project the slit pattern by applying light from the light source to the slit plate from behind, or may project the reflected image by illuminating the print pattern.

以上の説明から明らかなように、本発明によれば、非平板物体の凹部内周面あるいは中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定することができる。とくに鏡面に近い1n(ナノ)〜100nの面の表面粗さの測定も可能になる。   As is clear from the above description, according to the present invention, the surface roughness of the inner peripheral surface of the concave portion or the inner peripheral surface of the non-flat object is measured in a non-contact, quantitative, accurate and simple manner. be able to. In particular, it is possible to measure the surface roughness of 1n (nano) to 100n near the mirror surface.

本発明の実施形態の一例に係る表面性状測定システムの概略図である。It is the schematic of the surface property measuring system which concerns on an example of embodiment of this invention.

図1は本発明の実施形態の一例を示している。この実施形態は、例えば金型や円筒等の非平板物体の凹部内周面あるいは中空部内周面の表面性状を測定・評価するものである。図において、1は表面性状測定装置と、2は測定対象物、3はコンピューターを示している。   FIG. 1 shows an example of an embodiment of the present invention. In this embodiment, for example, the surface properties of the inner peripheral surface of a concave portion or the inner peripheral surface of a hollow portion of a non-flat object such as a mold or a cylinder are measured and evaluated. In the figure, 1 is a surface texture measuring device, 2 is an object to be measured, and 3 is a computer.

表面性状測定装置1は、縞状パターン等の光学的明暗の2次元分布形状のパターンを形成し照射するパターン形成装置11と、パターンの反射像を撮影する撮影装置12と、ハーフミラー13と、ミラー14とからなるもので、パターン形成装置11により、光学的明暗の2次元分布形状を示すパターンを、測定対象物2である非平板物体の凹部あるいは中空部の縦軸に略直交する方向へ照射し、ハーフミラー13で、凹部あるいは中空部の底面21に向けて反射させ、さらにミラー14で反射させて測定対象物2(非平板物体)の測定対象面22(凹部内周面あるいは中空部内周面)に略垂直(図では90度の角度で投射されている。)に投射し、測定対称面22(凹部内周面あるいは中空部内周面)で反射したパターンを、ミラー14で反射させ、ハーフミラー13を透過させて撮像素子で撮影するよう構成されている。   The surface texture measuring device 1 includes a pattern forming device 11 that forms and irradiates a two-dimensional distribution pattern of optical brightness such as a striped pattern, an imaging device 12 that captures a reflected image of the pattern, a half mirror 13, The pattern forming device 11 is used to form a pattern showing a two-dimensional optical bright and dark distribution shape in a direction substantially orthogonal to the vertical axis of the concave portion or hollow portion of the non-flat object that is the measurement object 2. Irradiated, reflected by the half mirror 13 toward the bottom surface 21 of the recess or hollow part, and further reflected by the mirror 14 to measure the measurement object surface 22 (non-flat object) of the measurement object 2 (non-flat object) The pattern projected on the surface substantially perpendicular to the circumferential surface (projected at an angle of 90 degrees in the figure) and reflected by the measurement symmetry surface 22 (inner circumferential surface of the recess or inner circumferential surface of the hollow portion) is reflected by the mirror 14. Was Isa is configured to shoot by the image pickup device by transmitting the half mirror 13.

撮影装置12は、撮像素子として例えばCCD、CMOS、デジタルカメラ等のエリアイメージセンサを備えたものである。   The imaging device 12 includes an area image sensor such as a CCD, CMOS, or digital camera as an image sensor.

図1に示すように、測定対象物2(非平板物体)は、測定対象面21(凹部内周面あるいは中空部内周面)が、パターン形成装置11が形成するパターンに対し平行となるように配置する(図の例では、パターンが垂直方向の配置で、測定対象面が垂直方向の配置である。)。そして、光学的明暗の2次元分布形状を示すパターンを測定対象物2(非平板物体)の凹部あるいは中空部の縦軸に略直交する方向へ照射し、ハーフミラー13で反射させ、さらにミラー14で反射させて測定対象面22(凹部内周面あるいは中空部内周面)に略垂直に投射する。   As shown in FIG. 1, the measurement object 2 (non-flat object) is such that the measurement object surface 21 (the inner surface of the recess or the inner surface of the hollow portion) is parallel to the pattern formed by the pattern forming device 11. (In the example of the figure, the pattern is arranged in the vertical direction, and the measurement target surface is arranged in the vertical direction.) Then, a pattern showing a two-dimensional distribution pattern of optical brightness is irradiated in a direction substantially perpendicular to the longitudinal axis of the concave portion or hollow portion of the measurement object 2 (non-flat object), reflected by the half mirror 13, and further reflected by the mirror 14. And is projected substantially perpendicularly onto the measurement target surface 22 (the inner surface of the recess or the inner surface of the hollow portion).

図の例では、パターンは測定対象物2である非平板物体の凹部あるいは中空部の縦軸に直交する方向(水平方向)へ照射されている。そして、ハーフミラー13は水平方向に対し45度の角度で配置され、ミラー14も水平方向に対し45度の角度で配置されて、ハーフミラー13で反射し、更にミラー14で反射したパターン像が90度の角度で測定対象面22に投射されている。   In the example of the figure, the pattern is irradiated in a direction (horizontal direction) orthogonal to the vertical axis of the concave portion or hollow portion of the non-flat object that is the measurement object 2. The half mirror 13 is arranged at an angle of 45 degrees with respect to the horizontal direction, the mirror 14 is also arranged at an angle of 45 degrees with respect to the horizontal direction, and the pattern image reflected by the half mirror 13 and further reflected by the mirror 14 is obtained. It is projected onto the measurement target surface 22 at an angle of 90 degrees.

このとき、測定対象面22に投影されたパターンの反射像は、ミラー14を介して、パターンを配置した面に対し垂直に現れる。この反射像を、ハーフミラー13を透過させて、測定対象物2(非平板物体)の凹部あるいは中空部の開放側から撮影装置12の撮像素子によって撮影する。   At this time, the reflected image of the pattern projected onto the measurement target surface 22 appears perpendicular to the surface on which the pattern is arranged via the mirror 14. The reflected image is transmitted through the half mirror 13 and is imaged by the imaging device of the imaging device 12 from the open side of the concave portion or the hollow portion of the measuring object 2 (non-flat object).

この場合、パターンをハーフミラー13で反射させ、更にミラー14で反射させて測定対象面22に投射する投射光学系の光軸と、測定対象面22で反射したパターンを撮像素子上に結像させる撮像光学系の光軸とは、ハーフミラー13と測定対象面22との間で同軸である。   In this case, the pattern is reflected by the half mirror 13, and further reflected by the mirror 14 and projected onto the measurement target surface 22, and the pattern reflected by the measurement target surface 22 is imaged on the image sensor. The optical axis of the imaging optical system is coaxial between the half mirror 13 and the measurement target surface 22.

撮影に際しては、図示の方法では、撮影装置12(撮像素子)の焦点を、測定対象面22で反射するパターンが像を結ぶ虚像面4に合わせ、虚像面4上に結像したパターン像をミラー14で反射させ、ハーフミラー13を透過させて、測定対象物2(非平板物体)の凹部あるいは中空部の開放側から撮影装置12の撮像素子によって撮影する。   At the time of photographing, in the illustrated method, the focus of the photographing device 12 (imaging device) is adjusted to the virtual image surface 4 in which the pattern reflected by the measurement target surface 22 forms an image, and the pattern image formed on the virtual image surface 4 is mirrored. The image is reflected by 14, transmitted through the half mirror 13, and imaged by the imaging element of the imaging device 12 from the open side of the concave portion or the hollow portion of the measurement object 2 (non-flat object).

焦点合わせは、撮像素子の焦点距離は固定しておいて、表面性状測定装置1自体の位置か、測定対象物2を載せる台の位置のいずれかまたは両方を調整してミラー14と測定対象面22との距離を調整することによって行うのがよい。そうすることで、簡便に焦点合わせを行うことができる。   In focusing, the focal length of the image sensor is fixed, and either the position of the surface texture measuring device 1 itself or the position of the table on which the measuring object 2 is placed is adjusted to adjust the mirror 14 and the measuring object surface. This is preferably done by adjusting the distance to 22. By doing so, focusing can be performed easily.

そして、撮像素子により得られた映像信号をコンピューター3でデータ処理することにより、測定対象面22の表面性状を測定・評価する。   Then, the video signal obtained by the imaging device is subjected to data processing by the computer 3 to measure and evaluate the surface property of the measurement target surface 22.

ミラー14は、撮影装置12(撮像素子)に対する角度を変更可能とするのがよい。ミラー14の撮影装置12(撮像素子)に対する角度を変更することにより、凹部内周面あるいは中空部内周面における測定領域を移動させるようにすることができ、そうすることで、測定対象面が凹部あるいは中空部の縦軸を含む面に対して傾斜していても表面粗さを容易に測定することができる。   It is preferable that the mirror 14 can change the angle with respect to the imaging device 12 (imaging device). By changing the angle of the mirror 14 with respect to the imaging device 12 (imaging device), it is possible to move the measurement region on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion. Or even if it inclines with respect to the surface containing the vertical axis | shaft of a hollow part, surface roughness can be measured easily.

この場合のコンピューターによる処理は、例えば、映像信号から輝度分布を求め、輝度分布の標準偏差を算出して、輝度分布の標準偏差に基づいて表面粗さを評価するというものであってよい。輝度値分布の標準偏差と表面凹凸による表面傾斜角分布の標準偏差の間に比較的線形な相関があり、輝度分布の標準偏差によって表面粗さを評価することが可能である。その他、測定対象面、レンズ系、撮像素子を要素として構成される結像系の像のボケ具合、ゆがみ、コントラスト、明るさなどの特性を総合して表面性状を測定・評価する様々な方法が利用可能である。   The processing by the computer in this case may be, for example, obtaining a luminance distribution from the video signal, calculating a standard deviation of the luminance distribution, and evaluating the surface roughness based on the standard deviation of the luminance distribution. There is a relatively linear correlation between the standard deviation of the luminance value distribution and the standard deviation of the surface inclination angle distribution due to surface irregularities, and the surface roughness can be evaluated by the standard deviation of the luminance distribution. In addition, there are various methods for measuring and evaluating surface properties by combining characteristics such as the degree of blurring, distortion, contrast, and brightness of the image of the imaging system composed of the measurement target surface, lens system, and image sensor. Is available.

パターン形成装置11としては、コンピューターにより制御可能なパターンを形成する液晶ディスプレーを使用することができる。その場合、液晶ディスプレーに形成されたパターンのコントラストを結像系の要素として利用することで、コンピューターにより、測定対象面22の面粗さや仕上げ方向等に応じて、パターンの形状、方向性、ピッチ等を調整することができ、最適なパターンを形成することができる。   As the pattern forming apparatus 11, a liquid crystal display that forms a pattern controllable by a computer can be used. In that case, by using the contrast of the pattern formed on the liquid crystal display as an element of the imaging system, the shape, directionality, and pitch of the pattern are determined by the computer according to the surface roughness, finishing direction, etc. of the measurement target surface 22. Etc. can be adjusted, and an optimum pattern can be formed.

また、パターン形成装置11には、液晶ディスプレー以外に、プラズマ、有機・無機ELその他のディスプレーを使用してもよい。その他、スリット板に後ろから光源の光を当ててスリットパターンを投射するものであってもよく、印刷したパターンに照明を当ててその反射像を投射するものであってもよい。   In addition to the liquid crystal display, plasma, organic / inorganic EL or other displays may be used for the pattern forming apparatus 11. In addition, the slit pattern may be projected by applying light from the light source to the slit plate from behind, or the reflected image may be projected by illuminating the printed pattern.

この実施形態によれば、凹部あるいは中空部の内側であっても、ミラー14が入りさえすればパターン投射および反射のための光路を確保でき、例えば金型や円筒等の非平板物体の凹部内周面や中空部内周面の表面粗さを、非接触で、定量的に、精度良く、且つ簡便に測定できる。特に、投射光学系の光軸と撮像光学系の光軸とがハーフミラーと測定対象面との間で同軸であると、光路の確保が容易で、凹部や中空部の深い所でも容易に測定できる。ただし、投射光学系の光軸と撮像光学系の光軸とがハーフミラー13とミラー14との間で厳密に同軸であることは必ずしも必要でない。   According to this embodiment, an optical path for pattern projection and reflection can be ensured as long as the mirror 14 is inserted, even inside the recess or hollow portion. For example, in the recess of a non-flat object such as a mold or a cylinder. The surface roughness of the peripheral surface and the inner peripheral surface of the hollow part can be measured in a non-contact, quantitative, accurate and simple manner. In particular, when the optical axis of the projection optical system and the optical axis of the imaging optical system are coaxial between the half mirror and the measurement target surface, it is easy to secure an optical path, and measurement is easy even in a deep part of a recess or hollow part. it can. However, it is not always necessary that the optical axis of the projection optical system and the optical axis of the imaging optical system are strictly coaxial between the half mirror 13 and the mirror 14.

ミラー14は、撮影装置12(撮像素子)に対する角度を変更可能であるようにするのがよい。そうすることで、凹部内周面あるいは中空部内周面における測定領域を移動させることができるようになり、測定対象面22が凹部あるいは中空部の縦軸を含む面に対して傾斜していても表面粗さを容易に測定できる。   It is preferable that the mirror 14 can change the angle with respect to the imaging device 12 (imaging device). By doing so, it becomes possible to move the measurement region on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion, and even if the measurement target surface 22 is inclined with respect to the surface including the vertical axis of the concave portion or the hollow portion. The surface roughness can be easily measured.

また、ミラー14は、凹部あるいは中空部の縦軸を中心に回転可能であるようにするのがよい。そうすることで、凹部内周面あるいは中空部内周面における測定領域を移動させるようにすることができ、凹部内周面あるいは中空部内周面の表面粗さを全周にわたって測定できる。   The mirror 14 is preferably rotatable about the longitudinal axis of the concave portion or hollow portion. By doing so, the measurement area | region in a recessed part inner peripheral surface or a hollow part inner peripheral surface can be moved, and the surface roughness of a recessed part inner peripheral surface or a hollow part inner peripheral surface can be measured over a perimeter.

1 表面性状測定装置
11 パターン形成装置
12 撮影装置
13 ハーフミラー
14 ミラー
2 測定対象物
21 底面
22 測定対象面
3 コンピューター
4 虚像面
DESCRIPTION OF SYMBOLS 1 Surface texture measuring apparatus 11 Pattern formation apparatus 12 Imaging device 13 Half mirror 14 Mirror 2 Measurement object 21 Bottom surface 22 Measurement object surface 3 Computer 4 Virtual image surface

Claims (10)

非平板物体の凹部内周面あるいは中空部内周面の表面粗さを測定する表面性状測定方法であって、
光学的明暗の2次元分布形状を示すパターンを前記非平板物体の凹部あるいは中空部の縦軸に略直交する方向へ照射し、ハーフミラーで前記凹部の底面あるいは中空部の底面に向けて反射させ、さらにミラーで反射させて測定対象面である前記凹部内周面あるいは中空部内周面に略垂直に投射し、
前記凹部内周面あるいは中空部内周面で反射したパターンを、前記ミラーで反射させ、さらに前記ハーフミラーを透過させて撮像素子で撮影し、
前記撮像素子により得られた映像信号をコンピューターでデータ処理することにより前記凹部内周面あるいは中空部内周面の表面粗さを評価することを特徴とする表面性状測定方法。
A surface property measurement method for measuring the surface roughness of the inner peripheral surface of the recess or the inner peripheral surface of the hollow part of the non-flat object,
A pattern showing a two-dimensional distribution shape of optical brightness is irradiated in a direction substantially perpendicular to the longitudinal axis of the concave portion or hollow portion of the non-flat object, and reflected by the half mirror toward the bottom surface of the concave portion or the hollow portion. Further, it is reflected by a mirror and projected substantially perpendicularly to the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion, which is the measurement target surface,
The pattern reflected on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion is reflected by the mirror, and further, the half mirror is transmitted and photographed by the imaging device,
A surface property measuring method characterized by evaluating the surface roughness of the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion by performing data processing on a video signal obtained by the image pickup device with a computer.
測定対象物である非平板物体を測定対象面がパターンに対し略平行となるように配置し、前記パターンを前記ハーフミラーで反射させ、さらに前記ミラーで反射させて測定対象面に垂直に投射させ、測定対象面で反射し、さらに前記ミラーで反射した像を測定対象面に平行な方向から前記撮像素子によって撮影することを特徴とする請求項1記載の表面性状測定方法。 A non-flat object that is a measurement object is arranged so that the measurement target surface is substantially parallel to the pattern, and the pattern is reflected by the half mirror, and further reflected by the mirror and projected perpendicularly to the measurement target surface. 2. The surface property measuring method according to claim 1, wherein an image reflected by the measurement target surface and further reflected by the mirror is photographed by the image sensor from a direction parallel to the measurement target surface. 測定対象面を介して反射するパターン像に撮像素子の焦点を合わせ、測定対象面上に投射したパターンを虚像面に結像させて撮影することを特徴とする請求項1または2記載の表面性状測定方法。 3. The surface property according to claim 1, wherein the image sensor is focused on a pattern image reflected through the measurement target surface, and a pattern projected on the measurement target surface is imaged on a virtual image surface and photographed. Measuring method. 前記ミラーの前記撮像素子に対する角度を変更することにより、前記凹部内周面あるいは中空部内周面における測定領域を移動させることを特徴とする請求項2または3記載の表面性状測定方法。 The surface property measurement method according to claim 2 or 3, wherein a measurement region on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion is moved by changing an angle of the mirror with respect to the imaging element. 前記ミラーを前記凹部あるいは中空部の縦軸を中心に回転させることにより、前記凹部内周面あるいは中空部内周面における測定領域を移動させることを特徴とする請求項2、3または4記載の表面性状測定方法。 5. The surface according to claim 2, 3 or 4, wherein the measurement region on the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion is moved by rotating the mirror about the longitudinal axis of the concave portion or the hollow portion. Property measurement method. 非平板物体の凹部内周面あるいは中空部内周面の表面粗さを測定する表面性状測定装置であって、
光学的明暗の2次元分布形状を示すパターンを前記非平板物体の凹部あるいは中空部の縦軸に略直交する方向へ照射し、ハーフミラーで前記凹部の底面あるいは中空部の底面に向けて反射させ、さらにミラーで反射させて測定対象面である前記非平板物体の凹部内周面あるいは中空部内周面に垂直に投射する投射光学系と、
該投射部により投射されて前記凹部内周面あるいは中空部内周面で反射したパターンを、前記ミラーで反射させ、さらに前記ハーフミラーを透過させて撮像素子で撮影する撮像光学系とからなり、
前記撮像素子により得られた映像信号をコンピューターでデータ処理することにより前記凹部内側周面あるいは中空部内周面の表面粗さを評価することを特徴とする表面性状測定装置。
A surface texture measuring device for measuring the surface roughness of the inner peripheral surface of a concave portion or the inner peripheral surface of a hollow portion of a non-flat object,
A pattern showing a two-dimensional distribution shape of optical brightness is irradiated in a direction substantially perpendicular to the longitudinal axis of the concave portion or hollow portion of the non-flat object, and reflected by the half mirror toward the bottom surface of the concave portion or the hollow portion. Further, a projection optical system for projecting perpendicularly to the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion of the non-flat object that is the measurement target surface by being reflected by a mirror,
A pattern projected by the projection unit and reflected from the inner peripheral surface of the recess or the inner peripheral surface of the hollow portion is reflected by the mirror, and further includes an imaging optical system that transmits through the half mirror and captures an image by the imaging device.
A surface texture measuring apparatus characterized by evaluating the surface roughness of the inner peripheral surface of the concave portion or the inner peripheral surface of the hollow portion by performing data processing on a video signal obtained by the imaging device with a computer.
前記投射光学系の光軸と、前記撮像光学系の光軸とが、ハーフミラーと測定対象面との間で同軸であることを特徴とする請求項6記載の表面性状測定装置。 7. The surface property measuring apparatus according to claim 6, wherein the optical axis of the projection optical system and the optical axis of the imaging optical system are coaxial between the half mirror and the measurement target surface. 前記ミラーは、前記撮像素子に対する角度を変更可能であることを特徴とする請求項7記載の表面性状測定装置。 The surface texture measuring device according to claim 7, wherein the mirror is capable of changing an angle with respect to the image sensor. 前記ミラーは、前記凹部あるいは中空部の縦軸を中心に回転可能であることを特徴とする請求項7記載の表面性状測定装置。 The surface texture measuring apparatus according to claim 7, wherein the mirror is rotatable about a longitudinal axis of the concave portion or the hollow portion. 前記照射部は、コンピューターにより制御可能なパターンを形成するディスプレーにより構成されていることを特徴とする請求項6〜9のいずれか1項記載の表面性状測定装置。 The surface property measuring apparatus according to claim 6, wherein the irradiation unit includes a display that forms a pattern controllable by a computer.
JP2009274479A 2009-12-02 2009-12-02 Method and device for measuring surface properties Pending JP2011117795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274479A JP2011117795A (en) 2009-12-02 2009-12-02 Method and device for measuring surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274479A JP2011117795A (en) 2009-12-02 2009-12-02 Method and device for measuring surface properties

Publications (1)

Publication Number Publication Date
JP2011117795A true JP2011117795A (en) 2011-06-16

Family

ID=44283305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274479A Pending JP2011117795A (en) 2009-12-02 2009-12-02 Method and device for measuring surface properties

Country Status (1)

Country Link
JP (1) JP2011117795A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180291A (en) * 1991-08-07 1994-06-28 Meiwa Denki Kogyo Kk Method and apparatus for inspecting inner surface of cylinder
JP2000111490A (en) * 1998-10-05 2000-04-21 Toyota Motor Corp Detection apparatus for coating face
JP2001027517A (en) * 1999-07-14 2001-01-30 Opton Co Ltd Noncontact shape measuring method
JP2001264017A (en) * 2000-03-23 2001-09-26 Fuji Xerox Co Ltd Three-dimensional image photographing apparatus
JP2002039724A (en) * 2000-07-24 2002-02-06 Yasunaga Corp Internal hole surface inspecting device
JP2003329428A (en) * 2002-05-16 2003-11-19 Sumitomo Chem Co Ltd Device and method for surface inspection
JP2006504095A (en) * 2002-10-22 2006-02-02 コーニング トローペル コーポレイション Two-wavelength confocal interferometer for measuring multiple surfaces
JP2009115734A (en) * 2007-11-09 2009-05-28 Nippon Densan Corp Surface shape measurement method and surface shape measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180291A (en) * 1991-08-07 1994-06-28 Meiwa Denki Kogyo Kk Method and apparatus for inspecting inner surface of cylinder
JP2000111490A (en) * 1998-10-05 2000-04-21 Toyota Motor Corp Detection apparatus for coating face
JP2001027517A (en) * 1999-07-14 2001-01-30 Opton Co Ltd Noncontact shape measuring method
JP2001264017A (en) * 2000-03-23 2001-09-26 Fuji Xerox Co Ltd Three-dimensional image photographing apparatus
JP2002039724A (en) * 2000-07-24 2002-02-06 Yasunaga Corp Internal hole surface inspecting device
JP2003329428A (en) * 2002-05-16 2003-11-19 Sumitomo Chem Co Ltd Device and method for surface inspection
JP2006504095A (en) * 2002-10-22 2006-02-02 コーニング トローペル コーポレイション Two-wavelength confocal interferometer for measuring multiple surfaces
JP2009115734A (en) * 2007-11-09 2009-05-28 Nippon Densan Corp Surface shape measurement method and surface shape measuring device

Similar Documents

Publication Publication Date Title
JP6040930B2 (en) Surface defect detection method and surface defect detection apparatus
CN110441323B (en) Product surface polishing method and system
CN107683401B (en) Shape measuring apparatus and process for measuring shape
JP4706356B2 (en) Screw shape measuring device
TW201250201A (en) Tire surface shape measuring device and tire surface shape measuring method
KR20110010749A (en) Observation device and observation method
JP6881596B2 (en) Information processing device
JP6387381B2 (en) Autofocus system, method and image inspection apparatus
JP5686585B2 (en) Lens sheet defect inspection apparatus, defect inspection method, and manufacturing apparatus
JP2014235066A (en) Surface shape measurement device
JP2014240766A (en) Surface inspection method and device
JP6149990B2 (en) Surface defect detection method and surface defect detection apparatus
TWI597472B (en) Method and device for measuring the height of protrusions and even protrusions on the surface of articles
JP5042503B2 (en) Defect detection method
JP2012107952A (en) Optical unevenness inspection device
JP2011117793A (en) Method and device for measuring surface properties
JP5557586B2 (en) Surface texture measuring device and surface texture measuring method
KR102037395B1 (en) Transmissive optical inspection device and method of detecting film defect using the same
JP2011117795A (en) Method and device for measuring surface properties
WO2009097193A4 (en) Table gauge
CN105209977A (en) Exposure device
JP6508763B2 (en) Surface inspection device
WO2020121784A1 (en) Workpiece inspection device and workpiece inspection method
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP4258401B2 (en) Surface defect inspection system for uneven surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121031

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130816

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Effective date: 20140128

Free format text: JAPANESE INTERMEDIATE CODE: A02