JP2011117266A - Radiation heat transfer control film - Google Patents

Radiation heat transfer control film Download PDF

Info

Publication number
JP2011117266A
JP2011117266A JP2010123707A JP2010123707A JP2011117266A JP 2011117266 A JP2011117266 A JP 2011117266A JP 2010123707 A JP2010123707 A JP 2010123707A JP 2010123707 A JP2010123707 A JP 2010123707A JP 2011117266 A JP2011117266 A JP 2011117266A
Authority
JP
Japan
Prior art keywords
fine particles
heat transfer
transfer control
control film
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010123707A
Other languages
Japanese (ja)
Inventor
Shigenao Maruyama
重直 圓山
Mehdi Baneshi
メディ バネシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2010123707A priority Critical patent/JP2011117266A/en
Publication of JP2011117266A publication Critical patent/JP2011117266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation heat transfer control film which, while maintaining a color tone of a base, can efficiently reflect energy of sunlight, thus can suppress heating of the base by the sunlight, and can reduce a cooling load, for example, in residential buildings and automobiles. <P>SOLUTION: First fine particles 12 having a predetermined particle diameter are distributed in a base material 11 transparent to visible light so as to scatter a near-infrared component of the sunlight. The first fine particles 12 are formed of one or a plurality of types of particles selected from among iron oxide (Fe<SB>2</SB>O<SB>3</SB>), iron pyrite (FeS<SB>2</SB>), chalcopyrite (CuFeS<SB>2</SB>), copper (I) oxide (Cu<SB>2</SB>O), copper (II) oxide (CuO), and metal particles having a diameter of 0.1 to 5 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、輻射伝熱制御膜に関する。   The present invention relates to a radiation heat transfer control film.

住宅や工場等の冷房負荷の低減は、地球温暖化問題に貢献する。冷房負荷低減のため、建築物の外装表面に白色塗料を塗布すると、太陽光のエネルギー吸収を低減し、室内の加熱を防ぐことができる。しかし、屋根材などの色を白色系にすることは、住宅や建物等の外観上、好ましくない場合が多い。また、自動車は暗色系の塗装が好まれることが多いが、それらの外壁は太陽光を吸収し停車時の車内を高温にするばかりではなく、走行中の冷房負荷を増大させ、燃費の悪化を招いていた。   Reducing the cooling load on houses and factories contributes to global warming. When a white paint is applied to the exterior surface of a building to reduce the cooling load, energy absorption of sunlight can be reduced and indoor heating can be prevented. However, it is often undesirable to make the color of the roofing material white based on the appearance of a house, a building, or the like. In addition, dark-colored paint is often preferred for automobiles, but their outer walls not only absorb sunlight and make the interior of the vehicle at a high temperature when stopped, but also increase the cooling load while driving and reduce fuel consumption. I was invited.

このため、従来、太陽光の遮熱コーティングとして、日射反射率が13%以上の着色顔料のみで構成される塗料(例えば、特許文献1参照)や、図9に示すように、粒径0.3μm程度の白色顔料の微粒子51や、粒径1μm程度の顔料の微粒子を、屋根材や外壁などの基盤52に分散させたものが用いられている。   For this reason, conventionally, as a solar thermal barrier coating, a paint composed only of a color pigment having a solar reflectance of 13% or more (see, for example, Patent Document 1), and as shown in FIG. White pigment fine particles 51 of about 3 μm and pigment fine particles of about 1 μm in diameter are dispersed on a base 52 such as a roofing material or an outer wall.

特開2005−90042号公報Japanese Patent Laid-Open No. 2005-90042

しかしながら、特許文献1記載の塗料や、粒径0.3μm程度の白色顔料を分散させたものは、太陽光を良く反射するが、視覚的に白く見えるため、照り返しの眩しさや住宅家屋の美観を損ねるという課題があった。また、粒径1μm程度の顔料を分散させたものは、白熱電球の赤外線のように比較的長波長の赤外線の反射には適しているが、太陽光の近赤外成分の反射特性は良くないという課題があった。さらに、有色基盤52に微粒子51を直接分散させたものは、太陽光の全波長成分が基盤52に含まれている色素等に吸収されるため、微粒子による反射効率が減少し、輻射加熱が増大するという課題もあった。
なお、太陽光に含まれる紫外線は、プラスチックなどの有機材料を劣化させ、強度を低下させる場合が多い。
However, the paint described in Patent Document 1 and the one in which a white pigment having a particle size of about 0.3 μm is dispersed reflect sunlight well, but it looks visually white. There was a problem of losing. In addition, a dispersion of a pigment having a particle size of about 1 μm is suitable for reflecting relatively long-wavelength infrared rays such as the infrared rays of incandescent bulbs, but the reflection characteristics of near-infrared components of sunlight are not good. There was a problem. Further, in the case where the fine particles 51 are directly dispersed on the colored substrate 52, since all the wavelength components of sunlight are absorbed by the pigment contained in the substrate 52, the reflection efficiency by the fine particles is reduced and the radiation heating is increased. There was also a problem to do.
In addition, the ultraviolet rays contained in sunlight often degrade organic materials such as plastics and reduce strength.

本発明は、このような課題に着目してなされたもので、基盤の色調を維持しつつ、太陽光のエネルギーを効率よく反射して太陽光による基盤の加熱を抑制することができ、住宅や自動車等の冷房負荷を低減することができる輻射伝熱制御膜を提供することを目的としている。   The present invention has been made by paying attention to such problems, and while maintaining the color tone of the base, it can efficiently reflect the energy of sunlight and suppress the heating of the base by sunlight. An object of the present invention is to provide a radiation heat transfer control film capable of reducing a cooling load of an automobile or the like.

上記目的を達成するために、本発明に係る輻射伝熱制御膜は、可視光に対して透明な基材と、太陽光の近赤外線成分を散乱可能に、前記基材中に分布した所定の粒径を有する第1微粒子とを有し、前記第1微粒子は、酸化鉄(Fe)、黄鉄鉱(FeS)、黄銅鉱(CuFeS)、酸化銅(I)(CuO)、酸化銅(II)(CuO)、または、粒径が0.1〜5μmの金属粒子のうちの1または複数から成ることを、特徴とする。 In order to achieve the above object, a radiation heat transfer control film according to the present invention comprises a base material transparent to visible light and a predetermined distributed in the base material so as to be able to scatter near infrared components of sunlight. First fine particles having a particle size, wherein the first fine particles are iron oxide (Fe 2 O 3 ), pyrite (FeS 2 ), chalcopyrite (CuFeS 2 ), copper oxide (I) (Cu 2 O). , Copper (II) (CuO), or metal particles having a particle size of 0.1 to 5 μm.

本発明に係る輻射伝熱制御膜は、主に、住宅の屋根材や外壁、自動車の車体などの基盤の上に設けられる。本発明に係る輻射伝熱制御膜は、基材が可視光に対して透明であるため、基盤の色調を維持することができる。また、基材中に分布した第1微粒子により、太陽光のエネルギー量の約40%を占める近赤外線成分を散乱することができるため、近赤外線エネルギーを効率よく反射して太陽光による基盤の加熱を抑制することができる。これにより、夏季などの日射が強い時期に、住宅や自動車等の冷房負荷を低減することができ、冷房効率を高めることができる。また、自動車の場合には、夏季の冷房負荷減少により、燃費の向上が見込まれる。なお、太陽光の近赤外線は、波長が約0.7〜約2.5μmである。可視光線は、波長が約0.36〜約0.7μmである。   The radiant heat transfer control film according to the present invention is mainly provided on a base material such as a roofing material or outer wall of a house, or a car body of an automobile. Since the base material of the radiation heat transfer control film according to the present invention is transparent to visible light, the color tone of the base can be maintained. Moreover, since the near-infrared component which occupies about 40% of the energy amount of sunlight can be scattered by the 1st fine particle distributed in the base material, a near-infrared energy is reflected efficiently and the board | substrate is heated by sunlight. Can be suppressed. Thereby, the cooling load of a house, a car, or the like can be reduced and the cooling efficiency can be increased during periods of strong solar radiation such as summer. In the case of automobiles, fuel consumption is expected to improve due to a reduction in cooling load in summer. In addition, the near infrared ray of sunlight has a wavelength of about 0.7 to about 2.5 μm. Visible light has a wavelength of about 0.36 to about 0.7 μm.

基材は、可視光に対して透明であればいかなるものであってもよく、例えばプラスチックやガラスなどから成っていてもよい。第1微粒子は、可視光成分や波長10μm程度の長波長赤外線に対する散乱効果が小さいことが好ましい。この場合、太陽光の近赤外線成分を反射しつつ、目視的には黒色または灰色など、基盤が暗色であってもその色を保つことができ、可視光反射を抑えて基盤の色調を維持する効果に優れている。また、基盤の放射冷却を阻害しないため、基盤の加熱抑制効果にも優れている。本発明に係る輻射伝熱制御膜は、塗膜から成り、溶媒中に第1微粒子を分布させた塗料を基盤上に塗って形成されてもよい。この場合、従来の各色の塗料で塗装した上に、塗膜をコーティングすることにより、同様の効果を得ることができる。   The substrate may be any material as long as it is transparent to visible light, and may be made of, for example, plastic or glass. The first fine particles preferably have a small scattering effect on visible light components and long-wavelength infrared rays having a wavelength of about 10 μm. In this case, while reflecting the near-infrared component of sunlight, it is possible to maintain the color even if the base is dark, such as black or gray, and maintain the color tone of the base by suppressing visible light reflection. Excellent effect. Moreover, since the radiation cooling of the substrate is not hindered, the substrate is also excellent in heating suppression effect. The radiation heat transfer control film according to the present invention may be formed by coating a base material with a paint in which first fine particles are distributed in a solvent. In this case, the same effect can be obtained by coating with a conventional paint of each color and coating the coating film.

本発明に係る輻射伝熱制御膜で、前記第1微粒子は、粒径が0.03〜0.06μmまたは0.5〜5μmの酸化鉄(Fe)粒子を含んでいてもよく、粒径が0.07〜0.08μmまたは0.3〜0.6μmの黄鉄鉱(FeS)または黄銅鉱(CuFeS)粒子を含んでいてもよく、粒径が0.1〜10μmの酸化銅(I)(CuO)粒子を含んでいてもよく、粒径が0.05〜10μmの酸化銅(II)(CuO)粒子を含んでいてもよい。特に、酸化銅(I)(CuO)粒子を含む場合には粒径が0.2〜3μm、酸化銅(II)(CuO)粒子を含む場合には粒径が0.1〜5μmであることが好ましい。これらの場合、特に、基盤の色調を維持する効果および基盤の加熱抑制効果に優れている。 In the radiation heat transfer control film according to the present invention, the first fine particles may include iron oxide (Fe 2 O 3 ) particles having a particle size of 0.03 to 0.06 μm or 0.5 to 5 μm, It may contain pyrite (FeS 2 ) or chalcopyrite (CuFeS 2 ) particles having a particle size of 0.07 to 0.08 μm or 0.3 to 0.6 μm, and copper oxide having a particle size of 0.1 to 10 μm (I) (Cu 2 O) particles may be included, and copper oxide (II) (CuO) particles having a particle diameter of 0.05 to 10 μm may be included. In particular, when copper oxide (I) (Cu 2 O) particles are included, the particle diameter is 0.2 to 3 μm, and when copper oxide (II) (CuO) particles are included, the particle diameter is 0.1 to 5 μm. Preferably there is. In these cases, the effect of maintaining the color tone of the base and the heating suppression effect of the base are particularly excellent.

さらに、本発明に係る輻射伝熱制御膜で、前記第1微粒子は、粒径が0.1〜5μmの銅、金、銀、アルミニウムまたはニッケルから成る金属粒子を含んでいてもよい。特に、金属粒子は、粒径が0.2〜5.0μmであることが好ましい。また、金属粒子が銅または金の場合、粒径が0.2〜3μmであることが好ましい。これらの場合、特に、基盤の色調を維持する効果および基盤の加熱抑制効果に優れている。   Furthermore, in the radiation heat transfer control film according to the present invention, the first fine particles may include metal particles made of copper, gold, silver, aluminum, or nickel having a particle size of 0.1 to 5 μm. In particular, the metal particles preferably have a particle size of 0.2 to 5.0 μm. Moreover, when a metal particle is copper or gold | metal | money, it is preferable that a particle size is 0.2-3 micrometers. In these cases, the effect of maintaining the color tone of the base and the heating suppression effect of the base are particularly excellent.

本発明に係る輻射伝熱制御膜は、太陽光の紫外線成分を散乱可能に、前記基材中に分布した所定の粒径を有する第2微粒子または所定の径を有する気泡を、有していてもよい。この場合、第2微粒子または気泡により、太陽光の紫外線成分を散乱することができるため、紫外線エネルギーを効率よく反射してプラスチック製の基盤等が紫外線により変質するのを防ぐことができる。これにより、基盤の劣化や強度低下を防止することができ、基盤の寿命を延ばすことができる。このように、第1微粒子と第2微粒子または気泡とを併用することにより、基盤の加熱抑制効果と同時に、基盤の変質防止効果を得ることができる。なお、太陽光の紫外線は、波長が約0.001〜約0.36μmで、太陽光のエネルギー量の約5%を占めている。   The radiation heat transfer control film according to the present invention has second fine particles having a predetermined particle diameter or bubbles having a predetermined diameter distributed in the substrate so as to be able to scatter ultraviolet components of sunlight. Also good. In this case, since the ultraviolet component of sunlight can be scattered by the second fine particles or bubbles, it is possible to efficiently reflect the ultraviolet energy and prevent the plastic substrate or the like from being altered by the ultraviolet rays. As a result, it is possible to prevent the base from being deteriorated and the strength from being lowered, and the life of the base can be extended. In this way, by using the first fine particles and the second fine particles or bubbles in combination, it is possible to obtain an effect of preventing deterioration of the substrate simultaneously with an effect of suppressing the heating of the substrate. In addition, the ultraviolet rays of sunlight have a wavelength of about 0.001 to about 0.36 μm and occupy about 5% of the energy amount of sunlight.

第2微粒子および気泡は、可視光成分や波長10μm程度の長波長赤外線に対する散乱効果が小さいことが好ましい。この場合、可視光反射を抑えて基盤の色調を維持する効果に優れるとともに、基盤の放射冷却を阻害しないため、基盤の加熱抑制効果を高めることができる。第2微粒子は、粒径が0.06〜0.10μmの酸化チタン、粒径が0.6〜1.0μmのアルミナ、粒径が0.06〜0.3μmのジルコニア、または、粒径が0.01〜0.2μmの金属粒子から成り、気泡は、直径が0.05〜0.2μmであることが好ましい。この場合、特に、基盤の変質防止効果に優れている。   The second fine particles and bubbles preferably have a small scattering effect on visible light components and long-wavelength infrared rays having a wavelength of about 10 μm. In this case, the effect of suppressing visible light reflection and maintaining the color tone of the substrate is excellent, and since the radiation cooling of the substrate is not inhibited, the heating suppression effect of the substrate can be enhanced. The second fine particles are titanium oxide having a particle size of 0.06 to 0.10 μm, alumina having a particle size of 0.6 to 1.0 μm, zirconia having a particle size of 0.06 to 0.3 μm, or a particle size of It is composed of metal particles of 0.01 to 0.2 μm, and the bubbles preferably have a diameter of 0.05 to 0.2 μm. In this case, the effect of preventing deterioration of the base is particularly excellent.

本発明によれば、基盤の色調を維持しつつ、太陽光のエネルギーを効率よく反射して太陽光による基盤の加熱を抑制することができ、住宅や自動車等の冷房負荷を低減することができる輻射伝熱制御膜を提供することができる。特に、自動車の場合には、暗色系の塗装が好まれることが多いが、本発明によれば、塗装の黒っぽい色を維持しつつ、夏季の冷房負荷減少により、燃費の向上が見込まれる。また、第2微粒子または気泡を混合することにより、基盤の紫外線劣化を低減し、基盤の変色や、基盤材料の変質やひび割れを防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, while maintaining the color tone of a board | substrate, the energy of sunlight can be reflected efficiently, the heating of the board | substrate by sunlight can be suppressed, and the cooling load of a house, a motor vehicle, etc. can be reduced. A radiation heat transfer control film can be provided. In particular, in the case of automobiles, dark paint is often preferred, but according to the present invention, fuel efficiency is expected to be improved by reducing the cooling load in summer while maintaining the blackish color of the paint. Further, by mixing the second fine particles or bubbles, it is possible to reduce the ultraviolet deterioration of the substrate and prevent the substrate from being discolored, the substrate material from being altered or cracked.

本発明の第1の実施の形態の輻射伝熱制御膜を示す断面図である。It is sectional drawing which shows the radiation heat-transfer control film | membrane of the 1st Embodiment of this invention. 図1に示す輻射伝熱制御膜の第1微粒子を構成する酸化鉄粒子の最適化パラメータの粒径変化を示すグラフである。It is a graph which shows the particle size change of the optimization parameter of the iron oxide particle which comprises the 1st microparticles | fine-particles of the radiation heat transfer control film | membrane shown in FIG. 図1に示す輻射伝熱制御膜の第1微粒子を構成する黄鉄鉱粒子の最適化パラメータの粒径依存性を示すグラフである。It is a graph which shows the particle size dependence of the optimization parameter of the pyrite particle which comprises the 1st microparticles | fine-particles of the radiation heat transfer control film | membrane shown in FIG. 図1に示す輻射伝熱制御膜の第1微粒子を構成する金属粒子を懸濁させた塗膜の最適化パラメータの粒径依存性を示すグラフである。It is a graph which shows the particle size dependence of the optimization parameter of the coating film which suspended the metal particle which comprises the 1st microparticles | fine-particles of the radiation heat transfer control film | membrane shown in FIG. 図1に示す輻射伝熱制御膜の第1微粒子を構成する酸化銅(II)粒子の最適化パラメータの粒径依存性を示すグラフである。It is a graph which shows the particle size dependence of the optimization parameter of the copper (II) oxide particle which comprises the 1st microparticles | fine-particles of the radiation heat transfer control film | membrane shown in FIG. 図1に示す輻射伝熱制御膜の第1微粒子を構成する酸化銅(I)粒子の最適化パラメータの粒径依存性を示すグラフである。It is a graph which shows the particle size dependence of the optimization parameter of the copper (I) oxide particle which comprises the 1st microparticles | fine-particles of the radiation heat transfer control film | membrane shown in FIG. 図1に示す輻射伝熱制御膜の、第1微粒子として最適粒径dp,opt=0.57μmの酸化銅(II)粒子を用いたときの、波長に対する反射率を示すグラフである。It is a graph which shows the reflectance with respect to a wavelength when the copper (II) oxide particle | grains of optimal particle diameter dp , opt = 0.57micrometer are used as 1st microparticles | fine-particles of the radiation heat transfer control film | membrane shown in FIG. 第1微粒子として最適粒径(dp,optimum)の酸化チタン(TiO)、アルミナ(Al)、酸化亜鉛(ZnO)を用いたときの、最適化パラメータRと膜厚パラメータbとの関係を示すグラフである。Optimization parameter R and film thickness parameter b when titanium oxide (TiO 2 ), alumina (Al 2 O 3 ), and zinc oxide (ZnO) having an optimum particle diameter (d p, optimum ) are used as the first fine particles It is a graph which shows the relationship. 従来の微粒子を分散させた基盤を示す断面図である。It is sectional drawing which shows the base | substrate which disperse | distributed the conventional fine particle.

以下、図面に基づき本発明の実施の形態について説明する。
図1乃至図8は、本発明の実施の形態の輻射伝熱制御膜を示している。
図1に示すように、輻射伝熱制御膜10は、基材11と第1微粒子12と第2微粒子13とを有している。なお、輻射伝熱制御膜10は、住宅の屋根材や外壁、自動車の塗膜などの基盤1の上に設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 8 show a radiation heat transfer control film according to an embodiment of the present invention.
As shown in FIG. 1, the radiation heat transfer control film 10 includes a base material 11, first fine particles 12, and second fine particles 13. The radiation heat transfer control film 10 is provided on a base 1 such as a roofing material or outer wall of a house or a coating film of an automobile.

基材11は、可視光に対して透明である。基材11は、例えば、可視光に対して透明なプラスチックやガラス、透明塗料から成っている。基材11は、基盤1が放射する波長10μm程度の長波長赤外線を遮断しないよう、大略10μm〜1mm程度の厚さで形成されている。なお、基材11は、ガラスから成るとき、1μm程度の厚さであってもよい。   The base material 11 is transparent to visible light. The substrate 11 is made of, for example, plastic, glass, or transparent paint that is transparent to visible light. The base material 11 is formed with a thickness of about 10 μm to 1 mm so as not to block long-wavelength infrared light having a wavelength of about 10 μm emitted from the substrate 1. In addition, when the base material 11 consists of glass, the thickness of about 1 micrometer may be sufficient.

第1微粒子12は、例えば、それぞれ所定の粒径を有する酸化鉄(Fe)、黄鉄鉱(FeS)、黄銅鉱(CuFeS)、酸化銅(I)(CuO)、酸化銅(II)(CuO)、または、粒径が0.1〜5μmの金属粒子うちの1または複数から成っている。第1微粒子12は、太陽光の近赤外線成分を散乱可能に、所定の粒子密度で基材11中に分布している。第1微粒子12は、可視光成分や波長10μm程度の長波長赤外線に対する散乱効果が小さい。 The first fine particles 12 are, for example, iron oxide (Fe 2 O 3 ), pyrite (FeS 2 ), chalcopyrite (CuFeS 2 ), copper oxide (I) (Cu 2 O), copper oxide each having a predetermined particle size. (II) (CuO) or one or a plurality of metal particles having a particle diameter of 0.1 to 5 μm. The first fine particles 12 are distributed in the base material 11 at a predetermined particle density so that the near-infrared component of sunlight can be scattered. The first fine particles 12 have a small scattering effect on visible light components and long-wavelength infrared rays having a wavelength of about 10 μm.

第2微粒子13は、例えば、それぞれ所定の粒径を有する酸化チタン、アルミナ、ジルコニア、または、金属粒子から成っている。第2微粒子13は、太陽光の紫外線成分を散乱可能に、所定の粒子密度で基材11中に分布している。第2微粒子13は、可視光成分や波長10μm程度の長波長赤外線に対する散乱効果が小さい。なお、第2微粒子13の代わりに、太陽光の紫外線成分を散乱可能な、所定の径を有する気泡が基材11中に分布していてもよい。   The second fine particles 13 are made of, for example, titanium oxide, alumina, zirconia, or metal particles each having a predetermined particle size. The second fine particles 13 are distributed in the base material 11 at a predetermined particle density so as to be able to scatter ultraviolet components of sunlight. The second fine particles 13 have a small scattering effect on visible light components and long-wavelength infrared rays having a wavelength of about 10 μm. Instead of the second fine particles 13, bubbles having a predetermined diameter capable of scattering the ultraviolet component of sunlight may be distributed in the substrate 11.

基盤1は、黒色などの有色の基盤から成っている。
なお、輻射伝熱制御膜10は、溶媒中に第1微粒子12および第2微粒子13を懸濁させた塗料を基盤1上に塗って形成された塗膜から成っていてもよい。
The base 1 is made of a colored base such as black.
The radiant heat transfer control film 10 may be formed of a coating film formed by coating the base 1 with a paint in which the first fine particles 12 and the second fine particles 13 are suspended in a solvent.

次に、作用について説明する。
輻射伝熱制御膜10は、基材11が可視光に対して透明であり、第1微粒子12および第2微粒子13共に、可視光の散乱効果が小さいため、基盤1の有する色調を維持することができる。また、基材11中に分布した第1微粒子12により、太陽光のエネルギー量の約40%を占める近赤外線成分を散乱することができるため、近赤外線エネルギーを効率よく反射して太陽光による基盤1の加熱を抑制することができる。これにより、夏季などの日射が強い時期に、住宅や自動車等の冷房負荷を低減することができ、冷房効率を高めることができる。また、自動車の場合には、夏季の冷房負荷減少により、燃費の向上が見込まれる。
Next, the operation will be described.
The radiation heat transfer control film 10 maintains the color tone of the substrate 1 because the substrate 11 is transparent to visible light, and the first fine particles 12 and the second fine particles 13 both have a small visible light scattering effect. Can do. Moreover, since the near-infrared component which occupies about 40% of the energy amount of sunlight can be scattered with the 1st microparticles | fine-particles 12 distributed in the base material 11, a near-infrared energy is reflected efficiently and the foundation | substrate by sunlight 1 heating can be suppressed. Thereby, the cooling load of a house, a car, or the like can be reduced and the cooling efficiency can be increased during periods of strong solar radiation such as summer. In the case of automobiles, fuel consumption is expected to improve due to a reduction in cooling load in summer.

この作用を定量的に評価するために最適化パラメータ(Optimization Parameter)Rを導入する。
ここで、ρVISは可視光の反射率、ρNIRは近赤外光の反射率であり、最適化パラメータRが大きいほど、目視的には暗く見えて近赤外光を反射する遮熱塗料としての効果が高い。
In order to quantitatively evaluate this effect, an optimization parameter R is introduced.
Here, ρ VIS is the reflectance of visible light, and ρ NIR is the reflectance of near-infrared light. The larger the optimization parameter R, the darker the visual appearance and the reflection of near-infrared light. The effect is high.

図2は、酸化鉄を第1微粒子12として用いた場合の最適化パラメータRを示している。最適化パラメータは、膜厚パラメータb=(粒子の体積分率fv)×(塗膜の厚さt)によって異なるが、概ね、図2に示すように、最適化パラメータが大きい最適値として、粒径が0.03〜0.06μm、または、0.5〜5μmとなるように調整すると効果が高いことが分かる。0.03〜0.06μmでは可視光の反射率が小さく、0.5〜5μmでは可視光の反射率が若干増加するが、近赤外光の反射率が高い領域となっている。なお、酸化チタンを用いた場合には、最適化パラメータRが最高でも4.3であり、酸化鉄を用いた場合の方が、効果が大きい。   FIG. 2 shows an optimization parameter R when iron oxide is used as the first fine particles 12. The optimization parameter differs depending on the film thickness parameter b = (particle volume fraction fv) × (coating thickness t), but generally, as shown in FIG. It turns out that an effect is high when it adjusts so that a diameter may be set to 0.03-0.06 micrometer or 0.5-5 micrometers. The reflectance of visible light is small at 0.03 to 0.06 μm, and the reflectance of visible light slightly increases at 0.5 to 5 μm, but it is a region where the reflectance of near infrared light is high. When titanium oxide is used, the optimization parameter R is 4.3 at the maximum, and the effect is greater when iron oxide is used.

図3は、黄鉄鉱を第1微粒子12として用いた場合の最適化パラメータRを示している。図3に示すように、最適値は、粒径0.07〜0.08μm、または、0.3〜0.6μmである。この場合も、酸化鉄に比べて遮熱効果が大きいことが分かる。また、酸化鉄は若干赤みを帯びた色になるのに対して、黄鉄鉱は黒色に近くなるので、最適化した黄鉄鉱粒子を酸化鉄に混入させることによって、遮熱性能を維持しながら、より暗い色に調整することが可能である。このため、暗色系の塗装が好まれる自動車等に使用されると効果的である。なお、黄銅鉱も黄鉄鋼と同様の効果を有している。   FIG. 3 shows an optimization parameter R when pyrite is used as the first fine particles 12. As shown in FIG. 3, the optimum value is a particle size of 0.07 to 0.08 μm or 0.3 to 0.6 μm. Also in this case, it can be seen that the heat shielding effect is larger than that of iron oxide. In addition, iron oxide is slightly reddish in color, while pyrite is close to black. By mixing optimized pyrite particles in iron oxide, it is darker while maintaining thermal insulation performance. It is possible to adjust to the color. For this reason, it is effective when used for an automobile or the like in which dark-colored coating is preferred. In addition, chalcopyrite has the same effect as pyrite steel.

図4は、塗膜から成る輻射伝熱制御膜10を形成する溶媒中に、金属微粒子を懸濁させた時の最適化パラメータRの変化を示している。図4に示すように、粒径が0.1〜5μm、その中でも粒径が0.2〜5μmの銅、金、銀、アルミニウム、ニッケルなどの金属粒子で、最適化パラメータが大きいことが分かる。特に、銅と金の微粒子懸濁の遮熱性能が高く、粒径が0.2〜3μmのときに最も優れた遮熱性能が得られる。   FIG. 4 shows changes in the optimization parameter R when the metal fine particles are suspended in the solvent that forms the radiation heat transfer control film 10 made of a coating film. As shown in FIG. 4, it can be seen that the optimization parameters are large for metal particles such as copper, gold, silver, aluminum and nickel having a particle size of 0.1 to 5 μm, of which the particle size is 0.2 to 5 μm. . In particular, the heat shielding performance of the copper and gold fine particle suspension is high, and the best heat shielding performance is obtained when the particle diameter is 0.2 to 3 μm.

図5および図6は、塗膜から成る輻射伝熱制御膜10を形成する溶媒中に、それぞれ酸化銅(II)粒子および酸化銅(I)粒子を懸濁させた時の最適化パラメータRの変化を示している。図5および図6に示すように、最適値は、酸化銅(II)の場合、粒径0.05〜10μm、酸化銅(I)の場合、粒径0.1〜10μmである。特に、酸化銅(II)の場合、粒径0.1〜5μm、酸化銅(I)の場合、粒径0.2〜3μmのときに著しく高い最適化パラメータ値を示し、優れた遮熱効果が得られる。   5 and 6 show the optimization parameter R when the copper (II) oxide particles and the copper (I) particles are suspended in the solvent for forming the radiation heat transfer control film 10 made of a coating film, respectively. It shows a change. As shown in FIGS. 5 and 6, the optimum values are a particle size of 0.05 to 10 μm for copper (II) oxide and a particle size of 0.1 to 10 μm for copper (I) oxide. In particular, in the case of copper oxide (II), the particle size is 0.1 to 5 μm, and in the case of copper oxide (I), the optimization parameter value is extremely high when the particle size is 0.2 to 3 μm. Is obtained.

図7は、第1微粒子12として、最適粒径dp,opt=0.57μmの酸化銅(II)を用いたときの、波長に対する輻射伝熱制御膜10の反射率を示している。図7に示すように、酸化銅(II)を用いた場合、近赤外領域(NIR)よりも可視領域(VIS)での反射率が低く均一であるために、黒色塗膜となる。このため、自動車の塗装のような、基盤1の塗装の黒っぽい色を維持する場合には効果的である。これに対し、酸化鉄や酸化銅(I)は、最適化パラメータRは大きいが、赤色をしているため、基盤1の色によっては適さない場合がある。 FIG. 7 shows the reflectance of the radiation heat transfer control film 10 with respect to the wavelength when copper (II) oxide having an optimum particle diameter d p, opt = 0.57 μm is used as the first fine particles 12. As shown in FIG. 7, when copper (II) oxide is used, a black coating film is obtained because the reflectance in the visible region (VIS) is lower and uniform than in the near infrared region (NIR). For this reason, it is effective when maintaining the blackish color of the coating of the board | substrate 1 like the painting of a motor vehicle. On the other hand, iron oxide and copper oxide (I) have a large optimization parameter R, but are red, and may not be suitable depending on the color of the substrate 1.

表1は、各種粒子および気泡の第1微粒子12としての膜厚パラメータ(b)、最適粒径(dp,opt)、可視光反射率(ρVIS)、近赤外光反射率(ρNIR)、全反射率(TSR)、最適化パラメータ(R)および明るさの指標である明度(Y)を示したものである。 Table 1 shows the film thickness parameters (b), the optimum particle diameter (d p, opt ), the visible light reflectance (ρ VIS ), and the near infrared light reflectance (ρ NIR ) as the first fine particles 12 of various particles and bubbles. ), Total reflectance (TSR), optimization parameter (R), and brightness (Y) as an index of brightness.

表1に示すように、酸化鉄(Fe)、酸化銅(II)(CuO)、黄鉄鉱(FeS)、酸化銅(I)(CuO)、銅(Cu)および金(Au)で、可視光反射率が小さく、近赤外光反射率および最適化パラメータが大きくなっており、基盤1の色調を維持する効果および遮熱効果が高いことがわかる。これらの粒子は、酸化チタン(TiO)粒子の場合に比べて、著しい遮熱性能の向上、および塗膜の可視光に対する低反射率が得られている。特に、酸化銅(II)は、黒色で最適化パラメータも大きいため、自動車の塗装のような、基盤1の塗装の黒っぽい色を維持する場合には効果的である。 As shown in Table 1, iron oxide (Fe 2 O 3 ), copper oxide (II) (CuO), pyrite (FeS 2 ), copper oxide (I) (Cu 2 O), copper (Cu) and gold (Au ) Shows that the visible light reflectance is small, the near-infrared light reflectance and the optimization parameter are large, and the effect of maintaining the color tone of the substrate 1 and the heat shielding effect are high. Compared to the case of titanium oxide (TiO 2 ) particles, these particles have significantly improved heat shielding performance and low reflectance of the coating film against visible light. In particular, since copper (II) oxide is black and has a large optimization parameter, it is effective in maintaining the blackish color of the base 1 paint, such as automobile paint.

塗膜の色分析によると、酸化鉄、酸化銅(I)、銅、金の微粒子は若干赤みを帯びた色調となる。そこで、酸化鉄、酸化銅(I)、銅、金の微粒子に、最適化された黄鉄鉱、黄銅鉱または酸化銅(II)微粒子を混入させることによって、塗膜の色調を黒っぽくしながら遮熱性能を向上させることができる。   According to the color analysis of the coating film, the fine particles of iron oxide, copper (I) oxide, copper, and gold have a slightly reddish color tone. Therefore, by mixing optimized pyrite, chalcopyrite, or copper (II) oxide fine particles into fine particles of iron oxide, copper (I) oxide, copper, and gold, heat shielding performance while making the color of the coating film darker Can be improved.

また、表1に示すように、第1微粒子12が酸化鉄(Fe)、酸化銅(II)(CuO)、黄鉄鉱(FeS)、酸化銅(I)(CuO)、銅(Cu)または金(Au)から成る場合には、図8に示す酸化チタン(TiO)、アルミナ(Al)、酸化亜鉛(ZnO)から成る場合と異なり、最適化パラメータRが最大になるときの膜厚パラメータbが大きい。これは、酸化鉄(Fe)、酸化銅(II)(CuO)、黄鉄鉱(FeS)、酸化銅(I)(CuO)、銅(Cu)または金(Au)の微粒子の混入量が多いほど、すなわち塗膜が厚いほど、最適化パラメータRが大きくなることを示している。 In addition, as shown in Table 1, the first fine particles 12 are iron oxide (Fe 2 O 3 ), copper oxide (II) (CuO), pyrite (FeS 2 ), copper oxide (I) (Cu 2 O), copper Unlike the case of titanium oxide (TiO 2 ), alumina (Al 2 O 3 ), or zinc oxide (ZnO) shown in FIG. 8, the optimization parameter R is the maximum when it is made of (Cu) or gold (Au). The film thickness parameter b is large. This is because of the fine particles of iron oxide (Fe 2 O 3 ), copper oxide (II) (CuO), pyrite (FeS 2 ), copper oxide (I) (Cu 2 O), copper (Cu) or gold (Au). It shows that the optimization parameter R increases as the mixing amount increases, that is, as the coating film becomes thicker.

このため、第1微粒子12として、酸化鉄(Fe)、酸化銅(II)(CuO)、黄鉄鉱(FeS)、酸化銅(I)(CuO)、銅(Cu)または金(Au)を使用する場合、塗膜を厚くすれば遮熱効果を高めることができるが、基盤1の色を損なわないよう、適当な基材11(塗膜)の厚さを設定する必要がある。 Therefore, as the first fine particles 12, iron oxide (Fe 2 O 3 ), copper (II) oxide (CuO), pyrite (FeS 2 ), copper oxide (I) (Cu 2 O), copper (Cu) or gold When (Au) is used, if the coating film is thickened, the heat shielding effect can be enhanced. However, it is necessary to set an appropriate thickness of the substrate 11 (coating film) so as not to impair the color of the substrate 1. is there.

輻射伝熱制御膜10は、第2微粒子13により、太陽光の紫外線成分を散乱することができるため、紫外線エネルギーを効率よく反射してプラスチック製の基盤1等が紫外線により変質するのを防ぐことができる。また、塗膜の紫外線による劣化を抑制することもできる。これにより、塗膜の変色や、基盤1の変質、ひび割れなどの劣化や強度低下を防止することができ、基盤1の寿命を延ばすことができる。このように、輻射伝熱制御膜10は、第1微粒子12と第2微粒子13とを併用することにより、基盤1の加熱抑制効果と同時に、基盤1の変質防止効果を得ることができる。   Since the radiation heat transfer control film 10 can scatter the ultraviolet component of sunlight by the second fine particles 13, it efficiently reflects the ultraviolet energy and prevents the plastic substrate 1 or the like from being altered by the ultraviolet rays. Can do. In addition, deterioration of the coating film due to ultraviolet rays can be suppressed. Thereby, discoloration of the coating film, deterioration of the base 1, deterioration such as cracks, and strength reduction can be prevented, and the life of the base 1 can be extended. As described above, the radiation heat transfer control film 10 can obtain the effect of preventing deterioration of the substrate 1 as well as the effect of suppressing the heating of the substrate 1 by using the first particles 12 and the second particles 13 together.

第2微粒子13として、粒径が0.06〜0.10μmの酸化チタン、粒径が0.6〜1.0μmのアルミナ、粒径が0.06〜0.3μmのジルコニア、または、粒径が0.01〜0.2μmの金属粒子を使用することにより、特に、優れた基盤の変質防止効果が得られる。また、第2微粒子13の代わりに気泡を用いる場合、気泡の直径が0.05〜0.2μmのときに、優れた基盤の変質防止効果を得ることができる。   As the second fine particles 13, titanium oxide having a particle size of 0.06 to 0.10 μm, alumina having a particle size of 0.6 to 1.0 μm, zirconia having a particle size of 0.06 to 0.3 μm, or particle size By using metal particles having a thickness of 0.01 to 0.2 μm, an excellent base material alteration preventing effect can be obtained. Further, when bubbles are used in place of the second fine particles 13, when the diameter of the bubbles is 0.05 to 0.2 μm, an excellent effect of preventing deterioration of the base can be obtained.

輻射伝熱制御膜10は、基材11、第1微粒子12および第2微粒子13が、波長10μm程度の長波長赤外線に対する散乱効果が小さく、長波長輻射の放射による基盤1からの放熱を妨げないため、太陽光による加熱抑制効果および冷房負荷の低減効果をより高めることができる。   In the radiation heat transfer control film 10, the base material 11, the first fine particles 12, and the second fine particles 13 have a small scattering effect on long-wavelength infrared light having a wavelength of about 10 μm, and do not hinder heat radiation from the substrate 1 due to long-wavelength radiation. For this reason, it is possible to further enhance the effect of suppressing heating by sunlight and the effect of reducing the cooling load.

輻射伝熱制御膜10は、第1微粒子12および第2微粒子13の粒径および粒子密度を、太陽光の近赤外線および紫外線を良好に反射しつつ、可視光および長波長赤外線に対しては十分な透過性を持つように制御することにより、基盤1の色調を維持しつつ、優れた基盤1の加熱抑制効果および基盤1の変質防止効果を得ることができる。   The radiation heat transfer control film 10 has a sufficient particle size and particle density for the first fine particles 12 and the second fine particles 13 for visible light and long-wavelength infrared rays while reflecting the near-infrared rays and ultraviolet rays of sunlight well. By controlling so as to have excellent permeability, it is possible to obtain an excellent heating suppression effect of the substrate 1 and an alteration preventing effect of the substrate 1 while maintaining the color tone of the substrate 1.

なお、輻射伝熱制御膜10は、瓦や外装タイルなどのセラミックスの基盤1に使用する場合、粒径および粒子密度を最適化した第1微粒子12および第2微粒子13を、釉薬に混入して焼成することにより、同様な効果を得ることができる。また、粒径および粒子密度を最適化した第1微粒子12および第2微粒子13を透明塗料に分散させ、基盤1上に一定厚さで塗布することにより、同様な効果を得ることもできる。粒径および粒子密度を最適化した第1微粒子12および第2微粒子13を分散させたプラスチックフィルムを基盤1上に融着または接着させることにより、同様な効果を得ることもできる。   When the radiation heat transfer control film 10 is used for a ceramic substrate 1 such as a roof tile or an exterior tile, the first fine particles 12 and the second fine particles 13 having an optimized particle size and particle density are mixed into the glaze. By firing, the same effect can be obtained. Moreover, the same effect can also be acquired by disperse | distributing the 1st microparticles | fine-particles 12 and the 2nd microparticles | fine-particles 13 which optimized the particle size and particle | grain density to the transparent coating material, and apply | coat to the base | substrate 1 by fixed thickness. A similar effect can be obtained by fusing or adhering a plastic film in which the first fine particles 12 and the second fine particles 13 with optimized particle diameter and particle density are dispersed on the substrate 1.

本発明に係る輻射伝熱制御膜は、ファイバーグラス強化プラスチック製の外装板や屋根材、コンクリート製またはセラミック製の瓦屋根材等の外板材、一般建材などの輻射伝熱制御や、自動車の加熱防止等の様々な分野に適用することができる。
また、本発明に係る輻射伝熱制御膜は、太陽光からの加熱防止塗料やコーティング剤、塗装、紫外線によるプラスチックの劣化防止剤として広く用いることができる。
The radiation heat transfer control film according to the present invention is a fiber glass reinforced plastic exterior plate or roofing material, an outer plate material such as a concrete or ceramic tile roofing material, a general building material, etc., or a heating of an automobile. It can be applied to various fields such as prevention.
In addition, the radiation heat transfer control film according to the present invention can be widely used as a heat-preventing paint or coating agent from sunlight, a coating agent, an agent for preventing deterioration of plastic due to ultraviolet rays.

1 基盤
10 輻射伝熱制御膜
11 基材
12 第1微粒子
13 第2微粒子
1 Base 10 Radiation Heat Transfer Control Film 11 Base Material 12 First Fine Particle 13 Second Fine Particle

Claims (7)

可視光に対して透明な基材と、
太陽光の近赤外線成分を散乱可能に、前記基材中に分布した所定の粒径を有する第1微粒子とを有し、
前記第1微粒子は、酸化鉄(Fe)、黄鉄鉱(FeS)、黄銅鉱(CuFeS)、酸化銅(I)(CuO)、酸化銅(II)(CuO)、または、粒径が0.1〜5μmの金属粒子のうちの1または複数から成ることを、
特徴とする輻射伝熱制御膜。
A substrate transparent to visible light;
The first fine particles having a predetermined particle size distributed in the base material so as to be able to scatter the near infrared component of sunlight,
The first fine particles include iron oxide (Fe 2 O 3 ), pyrite (FeS 2 ), chalcopyrite (CuFeS 2 ), copper oxide (I) (Cu 2 O), copper oxide (II) (CuO), or Consisting of one or more of metal particles having a particle size of 0.1-5 μm,
Characteristic radiation heat transfer control film.
前記第1微粒子は、粒径が0.03〜0.06μmまたは0.5〜5μmの酸化鉄(Fe)粒子を含むことを、特徴とする請求項1記載の輻射伝熱制御膜。 2. The radiation heat transfer control film according to claim 1, wherein the first fine particles include iron oxide (Fe 2 O 3 ) particles having a particle diameter of 0.03 to 0.06 μm or 0.5 to 5 μm. . 前記第1微粒子は、粒径が0.07〜0.08μmまたは0.3〜0.6μmの黄鉄鉱(FeS)または黄銅鉱(CuFeS)粒子を含むことを、特徴とする請求項1または2記載の輻射伝熱制御膜。 The first fine particles include pyrite (FeS 2 ) or chalcopyrite (CuFeS 2 ) particles having a particle size of 0.07 to 0.08 μm or 0.3 to 0.6 μm. 2. The radiation heat transfer control film according to 2. 前記第1微粒子は、粒径が0.1〜10μmの酸化銅(I)(CuO)粒子を含むことを、特徴とする請求項1、2または3記載の輻射伝熱制御膜。 4. The radiation heat transfer control film according to claim 1, wherein the first fine particles include copper (I) (Cu 2 O) particles having a particle diameter of 0.1 to 10 μm. 前記第1微粒子は、粒径が0.05〜10μmの酸化銅(II)(CuO)粒子を含むことを、特徴とする請求項1、2、3または4記載の輻射伝熱制御膜。   5. The radiation heat transfer control film according to claim 1, wherein the first fine particles include copper (II) oxide (CuO) particles having a particle diameter of 0.05 to 10 μm. 前記第1微粒子は、粒径が0.1〜5μmの銅、金、銀、アルミニウムまたはニッケルから成る金属粒子を含むことを、特徴とする請求項1、2、3、4または5記載の輻射伝熱制御膜。   6. The radiation according to claim 1, 2, 3, 4 or 5, wherein the first fine particles include metal particles made of copper, gold, silver, aluminum or nickel having a particle diameter of 0.1 to 5 [mu] m. Heat transfer control membrane. 太陽光の紫外線成分を散乱可能に、前記基材中に分布した所定の粒径を有する第2微粒子または所定の径を有する気泡を、有することを特徴とする請求項1、2、3、4、5または6記載の輻射伝熱制御膜。
The second fine particles having a predetermined particle diameter distributed in the base material or bubbles having a predetermined diameter are provided so as to be able to scatter ultraviolet components of sunlight. 5. The radiation heat transfer control film according to 5 or 6.
JP2010123707A 2009-11-02 2010-05-31 Radiation heat transfer control film Pending JP2011117266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123707A JP2011117266A (en) 2009-11-02 2010-05-31 Radiation heat transfer control film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009252232 2009-11-02
JP2009252232 2009-11-02
JP2010123707A JP2011117266A (en) 2009-11-02 2010-05-31 Radiation heat transfer control film

Publications (1)

Publication Number Publication Date
JP2011117266A true JP2011117266A (en) 2011-06-16

Family

ID=44282895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123707A Pending JP2011117266A (en) 2009-11-02 2010-05-31 Radiation heat transfer control film

Country Status (1)

Country Link
JP (1) JP2011117266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208801A (en) * 2013-03-25 2014-11-06 株式会社Nbcメッシュテック Ultraviolet-shielding coating
KR20200132524A (en) * 2019-05-17 2020-11-25 엠에스웨이 주식회사 transparent heat shield film and method of manufacturing the same
WO2021100717A1 (en) * 2019-11-19 2021-05-27 カサイ工業株式会社 Thermal barrier material formed of inorganic material, material set for producing same, material for base layers and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106968A (en) * 1985-11-02 1987-05-18 Yoshio Ichikawa Composition for coating
JPH1180624A (en) * 1997-09-09 1999-03-26 Nisshin Steel Co Ltd Heat reflecting coating composition and coated product
JP2003145661A (en) * 2001-11-07 2003-05-20 Ntt Advanced Technology Corp Glare protecting member
JP2006188653A (en) * 2004-12-10 2006-07-20 Toyo Ink Mfg Co Ltd Near-infrared-absorbing coating agent and near-infrared-absorbing laminate using the same
JP2009170887A (en) * 2007-12-17 2009-07-30 Fujimori Kogyo Co Ltd Electromagnetic wave absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106968A (en) * 1985-11-02 1987-05-18 Yoshio Ichikawa Composition for coating
JPH1180624A (en) * 1997-09-09 1999-03-26 Nisshin Steel Co Ltd Heat reflecting coating composition and coated product
JP2003145661A (en) * 2001-11-07 2003-05-20 Ntt Advanced Technology Corp Glare protecting member
JP2006188653A (en) * 2004-12-10 2006-07-20 Toyo Ink Mfg Co Ltd Near-infrared-absorbing coating agent and near-infrared-absorbing laminate using the same
JP2009170887A (en) * 2007-12-17 2009-07-30 Fujimori Kogyo Co Ltd Electromagnetic wave absorber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208801A (en) * 2013-03-25 2014-11-06 株式会社Nbcメッシュテック Ultraviolet-shielding coating
KR20200132524A (en) * 2019-05-17 2020-11-25 엠에스웨이 주식회사 transparent heat shield film and method of manufacturing the same
KR102230381B1 (en) * 2019-05-17 2021-03-22 엠에스웨이 주식회사 transparent heat shield film and method of manufacturing the same
WO2021100717A1 (en) * 2019-11-19 2021-05-27 カサイ工業株式会社 Thermal barrier material formed of inorganic material, material set for producing same, material for base layers and method for producing same
JPWO2021100717A1 (en) * 2019-11-19 2021-12-02 カサイ工業株式会社 Heat shield material made of inorganic material, material set for manufacturing it, material for base layer and manufacturing method.
JP7318872B2 (en) 2019-11-19 2023-08-01 カサイ工業株式会社 Heat shielding material made of inorganic material, material set for manufacturing same, base layer material and manufacturing method

Similar Documents

Publication Publication Date Title
CN110216924B (en) Composite radiation refrigeration film
JP2010000460A (en) Radiation heat transfer control film
KR100644012B1 (en) Heat shielding sheet material and its manufacturing method
CN1329444C (en) Mother material containing thermal radiation screerning component and thermal radiation screening transparent resin formed material and thermal radiction screening thansparent laminated material
CN1152928C (en) Coating material with reflective properties in two wavelength ranges and absorbent properties in third wavelength range
JP6688973B2 (en) Wavelength converter, wavelength conversion member, and light emitting device
JP4998781B2 (en) UV / NIR light shielding dispersion for windows and UV / NIR light shielding for windows
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
CN101815763A (en) A cooling material
JP2006219662A (en) Heat ray shielding resin sheet material, laminated product of the heat ray shielding resin sheet material, and constructional structure given by using the same
JP2012017651A (en) Energy efficient building surface
RU2581867C2 (en) Energy-protective polymer film
JP2011063741A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP2009162950A (en) Reflecting material and reflector using the same
JP2011117266A (en) Radiation heat transfer control film
JP2011063740A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
PL180236B1 (en) Lacquer coating of low heat emission factor
JP2002331611A (en) Coated metal plate having excellent heat shielding properties
JPH11181969A (en) High reflectivity surface treated plate excellent in pollution resistance
JP2007276205A (en) Coated base material and its manufacturing method
KR102340400B1 (en) Colored radiative cooling device
JP5024211B2 (en) High reflective metal sheet
JPH11240099A (en) Solar heat reflecting surface-treated sheet
CN106905805A (en) A kind of preparation method of luminous multi-functional combined wall coating of lowering the temperature
JP2002264254A (en) Coated metal sheet with superb heat shielding properties and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141107