JP2011117009A - Steel having excellent rolling fatigue life - Google Patents

Steel having excellent rolling fatigue life Download PDF

Info

Publication number
JP2011117009A
JP2011117009A JP2009272598A JP2009272598A JP2011117009A JP 2011117009 A JP2011117009 A JP 2011117009A JP 2009272598 A JP2009272598 A JP 2009272598A JP 2009272598 A JP2009272598 A JP 2009272598A JP 2011117009 A JP2011117009 A JP 2011117009A
Authority
JP
Japan
Prior art keywords
less
fatigue life
rolling fatigue
based nitrogen
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009272598A
Other languages
Japanese (ja)
Other versions
JP5406687B2 (en
Inventor
Masaki Kaizuka
正樹 貝塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009272598A priority Critical patent/JP5406687B2/en
Publication of JP2011117009A publication Critical patent/JP2011117009A/en
Application granted granted Critical
Publication of JP5406687B2 publication Critical patent/JP5406687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel whose rolling fatigue life can be further improved without deteriorating its manufacturability. <P>SOLUTION: The steel contains each 0.65 to 1.30% C, 0.05 to 1.00% Si, 0.1 to 2.00% Mn, &le;0.050% (not including 0%) P, &le;0.050% (not including 0%) S, 0.15 to 2.00% Cr, 0.010 to 0.100% Al, &le;0.025% (not including 0%) N, &le;0.015% (not including 0%) Ti and &le;0.0025% (not including 0%) O, and the balance iron with inevitable impurities, wherein the average circle-equivalent diameter of Al based nitrogen compounds dispersed into the steel is 25 to 200 nm, and further, the piece density of the Al based nitrogen compounds with a circle-equivalent diameter of 25 to 200 nm is 1.1 to 6.0 pieces/&mu;m<SP>2</SP>. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、自動車や各種産業機械等に使用される軸受部品や機械構造用部品に適用される鋼材に関するものであり、特に上記各種部材として用いたときに優れた転動疲労寿命を発揮する鋼材に関するものである。   The present invention relates to a steel material applied to bearing parts and machine structural parts used in automobiles, various industrial machines, etc., and in particular, a steel material that exhibits excellent rolling fatigue life when used as the various members. It is about.

軸受やクランクシャフト等の部品は、機械類の回転部や摺動部を支持する重要な部品であり、接触面圧が相当高く、また外力が変動することもあり、使用される環境が過酷である場合が多く、その素材である鋼材には、優れた耐久性が要求される。   Parts such as bearings and crankshafts are important parts that support the rotating parts and sliding parts of machinery, and the contact surface pressure is considerably high and the external force may fluctuate. In many cases, excellent durability is required for the steel material.

近年、こうした要求は機械類の高性能化や軽量化が進められるに伴い、年々厳しいものとなっている。軸部品の耐久性向上には、潤滑性に関する技術の改善も重要であるが、鋼材が転動疲労特性に優れていることが特に重要な要件となる。   In recent years, these requirements have become stricter year by year as the performance and weight of machinery have been improved. In order to improve the durability of shaft parts, it is important to improve the technology related to lubricity, but it is particularly important that the steel material has excellent rolling fatigue characteristics.

軸受に用いられる鋼材としては、従来からJIS G 4805(1999)に規定されるSUJ2等の高炭素クロム軸受鋼が、自動車や各種産業機械等の種々の分野で用いられている軸受の材料として使用されている。しかし軸受は、接触面圧が非常に高い玉軸受やころ軸受等の内・外輪や転動体等、過酷な環境で用いられるため、非常に微細な欠陥(介在物等)から疲労破壊が生じ易いといった問題がある。この問題に対し、転動疲労寿命そのものを高めて上記保守の回数を低減させるべく、軸受用鋼材の改善が試みられている。   As steel materials used for bearings, high-carbon chromium bearing steels such as SUJ2 as defined in JIS G 4805 (1999) have been used as bearing materials that have been used in various fields such as automobiles and various industrial machines. Has been. However, since bearings are used in harsh environments such as inner and outer rings and rolling elements such as ball bearings and roller bearings with extremely high contact surface pressure, fatigue failure is likely to occur due to very fine defects (inclusions, etc.). There is a problem. In order to solve this problem, attempts have been made to improve the steel for bearings in order to increase the rolling fatigue life itself and reduce the number of maintenance operations.

例えば特許文献1には、軸受材料において、TiおよびAlの含有量を規定すると共に、球状化焼鈍後に加熱処理を行なうことによって、微細なTi炭化物、Ti炭窒化物、Al窒化物などの量を制御し、旧オーステナイト結晶粒(旧γ結晶粒)を微細化することによって、転動疲労寿命を向上させることが提案されている。   For example, in Patent Document 1, the content of Ti and Al in the bearing material is specified, and the amount of fine Ti carbide, Ti carbonitride, Al nitride, etc. is determined by performing heat treatment after spheroidizing annealing. It has been proposed to improve the rolling fatigue life by controlling and refining the prior austenite crystal grains (former γ crystal grains).

しかしながら、上記の技術では、Ti含有量が0.26%以上と非常に高くなっており、高コストとなるばかりか、加工性が低下するという問題がある。また、鋳造時に粗大なTiNが生成しやすく、この析出物の生成によって疲労寿命にバラツキが生じることがある。一方、Alの含有量についても0.11%以上となっており、鋳造時および圧延時に生成するAl系窒素化合物によって、割れや傷の発生等があり、製造性が悪くなるという問題がある。   However, in the above technique, the Ti content is very high at 0.26% or more, and there is a problem that not only the cost is increased but also the workability is lowered. In addition, coarse TiN is likely to be generated during casting, and the fatigue life may vary due to the formation of this precipitate. On the other hand, the Al content is also 0.11% or more, and the Al-based nitrogen compound produced during casting and rolling may cause cracks and scratches, resulting in poor productivity.

特許第3591236号公報Japanese Patent No. 3591236

本発明はこの様な事情に鑑みてなされたものであって、その目的は、製造性を悪化させることなく、転動疲労寿命を更に向上させることのできる鋼材を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the steel materials which can further improve a rolling fatigue life, without deteriorating manufacturability.

上記目的を達成することのできた本発明に係る鋼材とは、C:0.65〜1.30%(質量%の意味、以下同じ)、Si:0.05〜1.00%、Mn:0.1〜2.00%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Cr:0.15〜2.00%、Al:0.010〜0.100%、N:0.025%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を夫々含み、残部が鉄および不可避不純物からなり、鋼中に分散するAl系窒素化合物の平均円相当直径が25〜200nmであると共に、円相当直径が25〜200nmのAl系窒素化合物の個数密度が1.1個/μm2以上、6.0個/μm2以下である点に要旨を有するものである。 The steel materials according to the present invention that have achieved the above-mentioned object are: C: 0.65 to 1.30% (meaning of mass%, the same applies hereinafter), Si: 0.05 to 1.00%, Mn: 0 0.1 to 2.00%, P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%), Cr: 0.15 to 2.00%, Al : 0.010 to 0.100%, N: 0.025% or less (not including 0%), Ti: 0.015% or less (not including 0%), and O: 0.0025% or less (0% Each of which is composed of iron and inevitable impurities, and the Al-based nitrogen compound dispersed in the steel has an average equivalent circle diameter of 25 to 200 nm and an equivalent circle diameter of 25 to 200 nm. the number density of the compound is 1.1 pieces / [mu] m 2 or more, have a summary to the point at 6.0 pieces / [mu] m 2 or less Is shall.

尚、上記「円相当直径」とは、Al系窒素化合物の大きさに着目して、その面積が等しくなるように想定した円の直径を求めたもので、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)の観察面上で認められるAl系窒素化合物のものである。また、本発明で対象とするAl系窒素化合物は、AlNは勿論のこと、Mn,Cr,S,Si等の元素を一部(合計含有量が30%程度まで)に含有するものも含む趣旨である。   The above “equivalent circle diameter” refers to the diameter of a circle that is assumed to have the same area by paying attention to the size of the Al-based nitrogen compound, and is a transmission electron microscope (TEM) or scanning. Of an Al-based nitrogen compound observed on the observation surface of a scanning electron microscope (SEM). In addition, the Al-based nitrogen compounds targeted in the present invention include not only AlN, but also those containing a part of elements such as Mn, Cr, S and Si (total content up to about 30%). It is.

本発明の鋼材においては、旧オーステナイトの平均結晶粒度番号が11.5以下であることが好ましく、こうした要件を満足することによって、転動疲労寿命が更に優れたものとなる。   In the steel material of the present invention, the prior austenite preferably has an average grain size number of 11.5 or less, and by satisfying these requirements, the rolling fatigue life is further improved.

また、本発明の鋼材には、必要によって、更に他の元素として、(a)Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上、(b)Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上、(c)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上、(d)Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上、等を含有させることも有用であり、含有される成分に応じて鋼材の特性が更に改善される。   Further, in the steel material of the present invention, if necessary, as another element, (a) Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%) And Mo: one or more selected from the group consisting of 0.25% or less (not including 0%), (b) Nb: 0.5% or less (not including 0%), V: 0.5% 1 or more selected from the group consisting of the following (excluding 0%) and B: 0.005% or less (not including 0%), (c) Ca: 0.05% or less (not including 0%) ), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.02% or less (not including 0%), and Zr: 0 .One or more selected from the group consisting of 2% or less (not including 0%), (d) Pb: 0.5% or less (not including 0%), Bi It is also useful to contain one or more selected from the group consisting of 0.5% or less (excluding 0%) and Te: 0.1% or less (not including 0%), etc. The properties of the steel material are further improved depending on the components to be added.

本発明によれば、化学成分組成を適切に調整すると共に、適度な大きさのAl系窒素化合物を鋼材内に適切に分散させることによって、転動疲労寿命を更に向上させた鋼材が製造性良く実現できるので、こうした鋼材を軸受等に適用したときには、過酷な環境で用いられても優れた転動疲労寿命を発揮できるものとなる。   According to the present invention, a steel material that further improves the rolling fatigue life by appropriately adjusting the chemical component composition and appropriately dispersing an appropriately sized Al-based nitrogen compound in the steel material has good manufacturability. Therefore, when such a steel material is applied to a bearing or the like, an excellent rolling fatigue life can be exhibited even when used in a harsh environment.

Al系窒素化合物の個数密度と疲労寿命L10の関係を示すグラフである。Is a graph showing the relationship between the number density and fatigue life L 10 of the Al-based nitrogen compounds. Al系窒素化合物の個数密度と大きさの関係を示すグラフである。It is a graph which shows the number density and magnitude | size relationship of Al type nitrogen compound. 旧γ結晶粒度番号と疲労寿命L10の関係を示すグラフである。It is a graph showing the relationship between fatigue life L 10 the old γ grain size number. 一次冷却速度とAl系窒素化合物の大きさの関係を示すグラフである。It is a graph which shows the relationship between a primary cooling rate and the magnitude | size of an Al type nitrogen compound.

本発明者らは、製造性を悪化させることなく、転動疲労特性(転動疲労寿命)に優れた鋼材の実現を目指して、様々な角度から検討した。そして、鋼材の転動疲労寿命を向上させる上では、下記(A)〜(D)の要件を満足させることが有効であるとの知見が得られた。   The present inventors have studied from various angles with the aim of realizing a steel material excellent in rolling fatigue characteristics (rolling fatigue life) without deteriorating manufacturability. And in order to improve the rolling fatigue life of steel materials, the knowledge that it was effective to satisfy the following requirements (A) to (D) was obtained.

(A)Al含有量が少ない割には、微細なAl系窒素化合物を多量に分散させ、その分散強化によって、亀裂の発生・伝播を抑制し、良好な転動疲労寿命が得ることができること、
(B)鋳造および圧延時での割れを抑制するためには、Al系窒素化合物の量(個数密度)と大きさを規定する必要があること、
(C)微細なAl系窒素化合物における分散度合い(個数密度)を達成するためには、鋼中のAlやNの含有量を厳密に制御することが重要であること、および鋼材の製造工程において、熱間圧延後にAl系窒素化合物の析出温度範囲である850〜650℃の温度範囲を除冷した後、冷却速度を速めることが有用であること、
(D)旧オーステナイト(旧γ)の結晶粒が微細過ぎると、焼入れ性が低下するため、不完全焼入れ相が生成しやすくなり、転動疲労寿命が低下する傾向にあること。
(A) Although the Al content is small, a large amount of fine Al-based nitrogen compound is dispersed, and by the dispersion strengthening, crack generation / propagation can be suppressed, and a good rolling fatigue life can be obtained.
(B) In order to suppress cracking during casting and rolling, it is necessary to regulate the amount (number density) and size of the Al-based nitrogen compound,
(C) In order to achieve the degree of dispersion (number density) in fine Al-based nitrogen compounds, it is important to strictly control the content of Al and N in the steel, and in the manufacturing process of steel It is useful to increase the cooling rate after removing the temperature range of 850 to 650 ° C., which is the precipitation temperature range of the Al-based nitrogen compound after hot rolling,
(D) If the crystal grains of the prior austenite (former γ) are too fine, the hardenability is lowered, so that an incompletely quenched phase is likely to be generated, and the rolling fatigue life tends to be reduced.

本発明者らは、上記知見に基づき、鋼材の転動疲労寿命を向上させるべく、更に鋭意研究を重ねた。その結果、鋼材中のAlやN含有量を厳密に規定すると共に、その製造条件を制御し、焼入れ・焼戻し後に鋼中に分散するAl系窒素化合物の平均円相当直径が25〜200nmであると共に、円相当直径が25〜200nmのAl系窒素化合物の個数密度が1.1個/μm2以上、6.0個/μm2以下となるようにすれば、鋼材の転動疲労寿命を著しく向上できることを見出し、本発明を完成した。 Based on the above findings, the present inventors have further conducted intensive studies to improve the rolling fatigue life of steel materials. As a result, the Al and N contents in the steel material are strictly defined, the production conditions are controlled, and the average equivalent circle diameter of the Al-based nitrogen compound dispersed in the steel after quenching and tempering is 25 to 200 nm. If the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 nm is 1.1 / μm 2 or more and 6.0 / μm 2 or less, the rolling fatigue life of the steel material is remarkably improved. The present invention has been completed by finding out what can be done.

本発明の鋼材では、円相当直径が25〜200mのAl系窒素化合物の個数密度を適切に制御することが重要な要件となるが、その分散強化によって、亀裂の発生・伝播を抑制し、良好な転動疲労寿命を達成するものである。そのためには、Al系窒素化合物の大きさも適切に制御する必要があり、この大きさ(平均円相当直径)が25nmよりも小さくなったり、200nmよりも大きくなると、分散強化の効果を発揮することができなくなる。このAl系窒素化合物の大きさは、好ましくは40nm以上(より好ましくは50nm以上)であり、好ましくは150nm以下(より好ましくは125nm以下)である。   In the steel material of the present invention, it is an important requirement to appropriately control the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 m, but the dispersion strengthening suppresses the generation and propagation of cracks, and is good A long rolling fatigue life is achieved. For that purpose, it is necessary to appropriately control the size of the Al-based nitrogen compound, and when this size (average circle equivalent diameter) is smaller than 25 nm or larger than 200 nm, the effect of dispersion strengthening is exhibited. Can not be. The size of the Al-based nitrogen compound is preferably 40 nm or more (more preferably 50 nm or more), preferably 150 nm or less (more preferably 125 nm or less).

円相当直径が25〜200mのAl系窒素化合物の個数密度が1.1個/μm2未満では、分散強化による転動疲労寿命向上効果が有効に発揮されなくなり、6.0個/μm2を超えると、結晶粒が粗大化し、不完全焼入れ相(例えば、微細パーライトやベイナイト相)が生成し、転動疲労寿命が低下することになる。Al系窒素化合物の個数密度は、好ましくは1.5個/μm2以上(より好ましくは2.0個/μm2以上)であり、好ましくは5.0個/μm2以下(より好ましくは4.0個/μm2以下)である。 If the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 m is less than 1.1 / μm 2 , the rolling fatigue life improving effect due to dispersion strengthening cannot be effectively exhibited, and 6.0 / μm 2 is reduced. If exceeding, the crystal grains become coarse, an incompletely quenched phase (for example, fine pearlite or bainite phase) is generated, and the rolling fatigue life is reduced. The number density of the Al-based nitrogen compound is preferably 1.5 / μm 2 or more (more preferably 2.0 / μm 2 or more), preferably 5.0 / μm 2 or less (more preferably 4). 0.0 pieces / μm 2 or less).

本発明の鋼材においては、旧オーステナイト(旧γ)の結晶粒も制御することが有効である。旧γの結晶粒度番号が大きいほど(結晶粒が小さいほど)、硬さが向上し、亀裂伝播特性が向上することになるが、結晶粒度番号が大きくなり過ぎると(結晶粒が小さくなり過ぎると)、焼入れ性が低下して不完全焼入れ相が生成しやすくなり、却って転動疲労寿命が低下することになる。こうしたことから、旧γの結晶粒度番号は11.5以下とすることが好ましく、より好ましくは11.0以下(更に好ましくは10.5以下)とするのが良い。   In the steel material of the present invention, it is effective to control crystal grains of prior austenite (former γ). The larger the grain size number of the former γ (the smaller the crystal grain), the better the hardness and the crack propagation characteristics, but if the grain size number becomes too large (if the crystal grain becomes too small) ), Hardenability is reduced, and an incompletely hardened phase is likely to be formed. On the contrary, the rolling fatigue life is reduced. Therefore, the grain size number of the old γ is preferably 11.5 or less, more preferably 11.0 or less (more preferably 10.5 or less).

本発明の鋼材は、上記したAlやNの含有量を含め、その化学成分組成(C、Si、Mn、P、S、Cr、Al、N、Ti、O)も適切に調整する必要があるが、これらの成分の範囲限定理由は下記の通りである。   In the steel material of the present invention, the chemical component composition (C, Si, Mn, P, S, Cr, Al, N, Ti, O) including the above-described Al and N contents needs to be appropriately adjusted. However, the reasons for limiting the ranges of these components are as follows.

[C::0.65〜1.30%]
Cは、焼入硬さを増大させ、室温、高温における強度を維持して耐摩耗性を付与するために必須の元素である。こうした効果を発揮させるためには、Cは0.65%以上含有させなければならず、好ましくは0.8%以上(より好ましくは0.95%以上)含有させることが望ましい。しかしながら、C含有量が多くなり過ぎると巨大炭化物が生成し易くなり、転動疲労特性に却って悪影響を及ぼす様になるので、C含有量は1.30%以下、好ましくは1.2%以下(より好ましくは1.1%以下)に抑えるべきである。
[C :: 0.65 to 1.30%]
C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. In order to exert such an effect, C must be contained in an amount of 0.65% or more, preferably 0.8% or more (more preferably 0.95% or more). However, if the C content is excessively large, giant carbides are likely to be generated and adversely affect the rolling fatigue characteristics. Therefore, the C content is 1.30% or less, preferably 1.2% or less ( More preferably, it should be suppressed to 1.1% or less.

[Si:0.05〜1.00%]
Siは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Siは0.05%以上含有させる必要があり、好ましくは0.1%以上(より好ましくは0.15%以上)含有させることが望ましい。しかしながら、Si含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Si含有量は1.00%以下、好ましくは0.9%以下(より好ましくは0.8%以下)に抑えるべきである。
[Si: 0.05-1.00%]
Si is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such effects, it is necessary to contain Si by 0.05% or more, preferably 0.1% or more (more preferably 0.15% or more). However, since the workability and machinability are remarkably lowered when the Si content is excessively large, the Si content is 1.00% or less, preferably 0.9% or less (more preferably 0.8% or less). Should be suppressed.

[Mn:0.1〜2.00%]
Mnは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Mnは0.1%以上含有させる必要があり、好ましくは0.15%以上(より好ましくは0.2%以上)含有させることが望ましい。しかしながら、Mn含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Mn含有量は2.00%以下、好ましくは1.6%以下(より好ましくは1.2%以下)に抑えるべきである。
[Mn: 0.1 to 2.00%]
Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such an effect, it is necessary to contain Mn in an amount of 0.1% or more, preferably 0.15% or more (more preferably 0.2% or more). However, if the Mn content becomes too large, the workability and machinability are remarkably lowered, so the Mn content is 2.00% or less, preferably 1.6% or less (more preferably 1.2% or less). Should be suppressed.

[P:0.050%以下(0%を含まない)]
Pは、不可避的に不純物として含有する元素であるが、粒界に偏析し、加工性を低下させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、P含有量は、0.050%以下とした。好ましくは0.04%以下(より好ましくは0.03%以下)に低減するのが良い。
[P: 0.050% or less (excluding 0%)]
P is an element inevitably contained as an impurity, but it is desirable to reduce it as much as possible because it segregates at the grain boundary and lowers the workability, but extremely reducing causes an increase in steelmaking cost. . For these reasons, the P content is set to 0.050% or less. Preferably, it is good to reduce to 0.04% or less (more preferably 0.03% or less).

[S:0.050%以下(0%を含まない)]
Sは、不可避的に不純物として含有する元素であるが、MnSとして析出し、転動疲労寿命を低下させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、S含有量は、0.050%以下とした。好ましくは0.04%以下(より好ましくは0.03%以下)に低減するのが良い。
[S: 0.050% or less (excluding 0%)]
S is an element that is inevitably contained as an impurity, but precipitates as MnS, and it is desirable to reduce it as much as possible in order to reduce the rolling fatigue life. However, extreme reduction leads to an increase in steelmaking costs. Become. For these reasons, the S content is set to 0.050% or less. Preferably, it is good to reduce to 0.04% or less (more preferably 0.03% or less).

[Cr:0.15〜2.00%]
Crは、Cと結びついて炭化物を形成し、耐摩耗性を付与すると共に、焼入性の向上に寄与する元素である。この様な効果を発揮させるには、Cr含有量は0.15%以上とする必要がある。好ましくは0.5%以上(より好ましくは0.9%以上)である。しかし、Cr含有量が過剰になると、粗大な炭化物が生成し、転動疲労寿命が却って低下する。従ってCr量は2.00%以下とする。好ましくは1.8%以下(より好ましくは1.6%以下)である。
[Cr: 0.15-2.00%]
Cr is an element that combines with C to form carbides, imparts wear resistance, and contributes to improving hardenability. In order to exert such an effect, the Cr content needs to be 0.15% or more. Preferably it is 0.5% or more (more preferably 0.9% or more). However, when the Cr content is excessive, coarse carbides are generated and the rolling fatigue life is decreased. Accordingly, the Cr content is 2.00% or less. Preferably it is 1.8% or less (more preferably 1.6% or less).

[Al:0.010〜0.100%]
Alは、本発明の鋼材において重要な役目を果たす元素であり、Nと結合することによって、Al系窒素化合物として鋼中に微細に分散し、鋼材の転動疲労寿命を向上させる上で重要な元素である。微細なAl系窒素化合物を生成させるためには、少なくとも0.010%以上含有させる必要がある。しかしながら、Al含有量が過剰になって0.100%を超えると、析出するAl系窒素化合物の大きさおよび個数が増加し、鋳造や圧延時に割れや傷が生じやすくなる。また、結晶粒が細かくなり過ぎるため、焼入れ性が低下し、大型部品に適用できず、且つ転動疲労寿命が低下することになる。尚、Al含有量の好ましい下限は、0.013%(より好ましくは0.015%以上)であり、好ましい上限は0.08%(より好ましくは0.05%以下)である。
[Al: 0.010-0.100%]
Al is an element that plays an important role in the steel material of the present invention, and when it is combined with N, it is finely dispersed in the steel as an Al-based nitrogen compound, and is important for improving the rolling fatigue life of the steel material. It is an element. In order to produce a fine Al-based nitrogen compound, it is necessary to contain at least 0.010% or more. However, if the Al content becomes excessive and exceeds 0.100%, the size and number of Al-based nitrogen compounds that are precipitated increase, and cracks and scratches are likely to occur during casting and rolling. Further, since the crystal grains become too fine, the hardenability is lowered, cannot be applied to a large part, and the rolling fatigue life is lowered. The preferable lower limit of the Al content is 0.013% (more preferably 0.015% or more), and the preferable upper limit is 0.08% (more preferably 0.05% or less).

[N:0.025%以下(0%を含まない)]
Nは上記Alと同様に、本発明の鋼材において重要な役目を果たす元素であり、Al系窒素化合物の微細分散による転動疲労寿命向上効果を発揮させる上で重要な元素である。しかしながら、N含有量が過剰になって0.025%を超えると、析出するAl系窒素化合物の大きさおよび個数密度が増加し、鋳造や圧延時に割れ傷が生じやすくなる。また、結晶粒が細かくなり過ぎるため、焼入れ性が低下し、大型部品に適用できず、且つ転動疲労寿命が低下することになる。N含有量の下限は、Al系窒素化合物を所定量析出できる限り特に限定されず、圧延後の冷却速度や、Nと結合する元素(Ti,V,Nb,B,Zr,Te等)の量およびAl含有量に応じて適宜設定すれば良い。例えば、N含有量が0.0035%以上になると、所定量のAl系窒素化合物を析出させることができる。尚、N含有量の好ましい下限は、0.004%(より好ましくは0.006%以上)であり、好ましい上限は0.020%(より好ましくは0.022%以下)である。
[N: 0.025% or less (excluding 0%)]
N, like Al, is an element that plays an important role in the steel material of the present invention, and is an important element for exerting an effect of improving the rolling fatigue life due to fine dispersion of an Al-based nitrogen compound. However, when the N content becomes excessive and exceeds 0.025%, the size and number density of the Al-based nitrogen compound to be precipitated increase, and cracks are likely to occur during casting and rolling. Further, since the crystal grains become too fine, the hardenability is lowered, cannot be applied to a large part, and the rolling fatigue life is lowered. The lower limit of the N content is not particularly limited as long as a predetermined amount of Al-based nitrogen compound can be precipitated, and the cooling rate after rolling and the amount of elements (Ti, V, Nb, B, Zr, Te, etc.) that bind to N are reduced. And what is necessary is just to set suitably according to Al content. For example, when the N content is 0.0035% or more, a predetermined amount of an Al-based nitrogen compound can be precipitated. In addition, the minimum with preferable N content is 0.004% (more preferably 0.006% or more), and a preferable upper limit is 0.020% (more preferably 0.022% or less).

[Ti:0.015%以下(0%を含まない)]
Tiは、鋼中のNと結合してTiNを生成し、転動疲労特性に悪影響を及ぼすばかりでなく、冷間加工性や熱間加工性も害する有害元素であり、極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、Ti含有量は0.015%以下とする必要がある。尚、Ti含有量の好ましい上限は0.01%(より好ましくは0.005%以下)である。
[Ti: 0.015% or less (excluding 0%)]
Ti combines with N in steel to produce TiN, which not only adversely affects rolling fatigue properties but also harms cold workability and hot workability, and it is desirable to reduce it as much as possible. However, an extreme reduction leads to an increase in steelmaking costs. For these reasons, the Ti content needs to be 0.015% or less. In addition, the upper limit with preferable Ti content is 0.01% (more preferably 0.005% or less).

[O:0.0025%以下(0%を含まない)]
Oは、鋼中の不純物の形態に大きな影響を及ぼし、転動疲労特性に悪影響を及ぼすAl23やSiO2等の介在物を形成するため、極力低減することが好ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、O含有量は0.0025%以下とする必要がある。尚、O含有量の好ましい上限は0.002%(より好ましくは0.0015%以下)である。
[O: 0.0025% or less (excluding 0%)]
O has a large effect on the form of impurities in steel and forms inclusions such as Al 2 O 3 and SiO 2 that adversely affect rolling fatigue characteristics. Doing so will increase the steelmaking cost. For these reasons, the O content needs to be 0.0025% or less. In addition, the upper limit with preferable O content is 0.002% (more preferably 0.0015% or less).

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。尚、転動疲労寿命を高めるため、下記元素を規定範囲内で積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities. As the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. In order to increase the rolling fatigue life, the following elements can be positively contained within a specified range.

[Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上]
Cu、NiおよびMoは、いずれも母相の焼入性向上元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素である。これらの効果は、いずれも0.03%以上含有させることによって有効に発揮される。しかしながら、いずれの含有量も0.25%を超えると加工性が劣化することになる。
[Selected from the group consisting of Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), and Mo: 0.25% or less (not including 0%) One or more types]
Cu, Ni, and Mo are all elements that act as a hardenability improving element of the parent phase and contribute to improving rolling fatigue characteristics by increasing hardness. All of these effects are effectively exhibited by containing 0.03% or more. However, if any content exceeds 0.25%, the workability deteriorates.

[Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上]
Nb、VおよびBは、いずれもNと結合することで、窒素化合物を形成して、結晶粒の整粒化し、転動疲労寿命を向上させる上で有効な元素である。しかしながら、NbまたはVで0.5%を超えると、Bで0.005%を超えると、結晶粒が微細化し、不完全焼入れ相が生成しやすくなる。尚、より好ましい上限はNbおよびVで0.3%(更に好ましくは0.1%以下)、Bで0.003%(更に好ましくは0.001%以下)である。
[Nb: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%) and B: 0.005% or less (not including 0%) One or more types]
Nb, V, and B are all effective elements for bonding with N to form a nitrogen compound to adjust the grain size and improve the rolling fatigue life. However, when Nb or V exceeds 0.5% and B exceeds 0.005%, the crystal grains become finer, and an incompletely quenched phase tends to be generated. A more preferable upper limit is 0.3% (more preferably 0.1% or less) for Nb and V, and 0.003% (more preferably 0.001% or less) for B.

[Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上]
Ca、REM(希土類元素)、Mg、LiおよびZrは、いずれも酸化物系介在物を球状化させ、転動疲労寿命向上に寄与する元素である。これらの効果は、CaまたはREMで0.0005%以上、Mg、LiまたはZrで0.0001%以上含有させることによって有効に発揮される。しかしながら、過剰に含有させても効果が飽和し、含有量に見合う効果が期待できず不経済となるので、夫々上記範囲内とするべきである。尚、より好ましい上限は、CaまたはREMで0.03%(更に好ましくは0.01%以下)、MgまたはLiで0.01%(更に好ましくは0.005%以下)、Zrで0.15%(更に好ましくは0.10%以下)である。
[Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.0. 02% or less (not including 0%) and Zr: one or more selected from the group consisting of 0.2% or less (not including 0%)]
Ca, REM (rare earth element), Mg, Li, and Zr are all elements that spheroidize oxide inclusions and contribute to improving the rolling fatigue life. These effects are effectively exhibited by containing 0.0005% or more in Ca or REM and 0.0001% or more in Mg, Li or Zr. However, even if it is contained excessively, the effect is saturated, and an effect commensurate with the content cannot be expected, which is uneconomical. A more preferable upper limit is 0.03% (more preferably 0.01% or less) for Ca or REM, 0.01% (more preferably 0.005% or less) for Mg or Li, and 0.15 for Zr. % (More preferably 0.10% or less).

[Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上]
Pb、BiおよびTeは、いずれも被削性向上元素である。これらの効果は、Pb、Biで0.01%以上、Teで0.0001%以上含有させることによって有効に発揮される。しかし、Pb、Biの含有量が0.5%を超えるか、Teの含有量が0.1%を超えると、圧延傷の発生等、製造上の問題が生じることになる。尚、より好ましい上限はPbおよびBiで0.3%(更に好ましくは0.2%以下)、Teで0.075%(更に好ましくは0.05%以下)である。
[Pb: selected from the group consisting of 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), and Te: 0.1% or less (not including 0%) One or more types]
Pb, Bi, and Te are all machinability improving elements. These effects are effectively exhibited by containing 0.01% or more of Pb and Bi and 0.0001% or more of Te. However, if the content of Pb and Bi exceeds 0.5% or the content of Te exceeds 0.1%, production problems such as generation of rolling flaws occur. A more preferable upper limit is 0.3% (more preferably 0.2% or less) for Pb and Bi, and 0.075% (more preferably 0.05% or less) for Te.

本発明の鋼材において、焼入れ・焼戻し後に鋼中に微細なAl系窒素化合物を分散させるためには、鋼材の製造工程において、上記成分組成を満たす鋳片を用い、圧延後の冷却速度を制御することが重要である。圧延後の冷却過程で析出するAl系窒素化合物は、その後の球状化焼鈍、部品加工、焼入れ・焼戻し過程を経ても同様の状態で残存したままである。そのため、Al系窒素化合物の析出温度範囲である850〜650℃までの温度範囲を、一次冷却速度(平均冷却速度)で0.10〜0.90℃/秒の範囲とし、650℃未満から室温(25℃)までの二次冷却速度(平均冷却速度)を1℃/秒以上で冷却することで、焼入れ・焼戻し後の鋼中でもAl系窒素化合物の平均円相当直径を25〜200nmにすると共に、円相当直径で25〜200nmのAl系窒素化合物を1.1個/μm2以上、6.0個/μm2以下分散させることができる。 In the steel material of the present invention, in order to disperse the fine Al-based nitrogen compound in the steel after quenching and tempering, a slab satisfying the above component composition is used in the steel material production process, and the cooling rate after rolling is controlled. This is very important. The Al-based nitrogen compound that precipitates in the cooling process after rolling remains in the same state even after the subsequent spheroidizing annealing, parts processing, quenching / tempering process. Therefore, the temperature range from 850 to 650 ° C., which is the precipitation temperature range of the Al-based nitrogen compound, is set to a range of 0.10 to 0.90 ° C./second in terms of primary cooling rate (average cooling rate), from less than 650 ° C. to room temperature. By cooling the secondary cooling rate (average cooling rate) to (25 ° C.) at 1 ° C./second or more, the average equivalent circle diameter of the Al-based nitrogen compound is set to 25 to 200 nm even in the steel after quenching and tempering. The Al-based nitrogen compound having an equivalent circle diameter of 25 to 200 nm can be dispersed in a range of 1.1 / μm 2 or more and 6.0 / μm 2 or less.

上記一次冷却速度が0.10℃/秒未満の冷却では、Al系窒素化合物が粗大化し、0.90℃/秒を超えると、Al系窒素化合物の平均円相当直径が25nm未満となったり、所定の大きさの個数密度が1.1個/μm2未満となり、所望の大きさと個数が得られなくなる。また650℃未満での二次冷却速度を1℃/以上とすることによって、Al系窒素化合物の粗大化を抑制し、その大きさを制御することができる。 When the primary cooling rate is less than 0.10 ° C./second, the Al-based nitrogen compound becomes coarse, and when it exceeds 0.90 ° C./second, the average equivalent circle diameter of the Al-based nitrogen compound is less than 25 nm, The number density of the predetermined size is less than 1.1 / μm 2 , and the desired size and number cannot be obtained. Further, by setting the secondary cooling rate below 650 ° C. to 1 ° C./more, it is possible to suppress the coarsening of the Al-based nitrogen compound and to control its size.

本発明の鋼材は、所定の部品形状にされた後焼入れ・焼戻しされて軸受部品等に製造されるものであるが、鋼材段階の形状についてはこうした製造に適用できるような線状・棒状のいずれも含むものであり、そのサイズも、最終製品に応じて適宜決めることができる。   The steel material of the present invention is manufactured into bearing parts and the like after being quenched and tempered into a predetermined part shape, but the shape of the steel material stage is either linear or rod-like that can be applied to such production. The size can also be appropriately determined according to the final product.

以下、実施例によって本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail by way of examples.However, the present invention is not limited by the following examples as a matter of course, and may be implemented with modifications within a range that can be adapted to the purpose described above and below. Of course, they are all possible and are included in the technical scope of the present invention.

下記表1、2に示す各種化学成分組成の鋼材(試験No.1〜51)を加熱炉またはソーキング炉で1100〜1300℃に加熱した後、900〜1200℃で分塊圧延を実施した。その後、900〜1100℃に加熱した後、圧延(圧延を模した鍛造も含む)して、直径:70mmの丸棒材を作製した。圧延終了後、850〜650℃までを様々な平均冷却速度で冷却すると共に(下記表3、4)、650℃未満から室温(25℃)までを1℃/秒の平均冷却速度で冷却して圧延材または鍛造材を得た。   The steel materials (test Nos. 1 to 51) having various chemical composition compositions shown in Tables 1 and 2 below were heated to 1100 to 1300 ° C in a heating furnace or a soaking furnace, and then subjected to split rolling at 900 to 1200 ° C. Then, after heating to 900-1100 degreeC, it rolled (including the forging imitating rolling), and produced the round bar material of 70 mm in diameter. After rolling, the temperature is cooled from 850 to 650 ° C. at various average cooling rates (Tables 3 and 4 below), and from 650 ° C. to room temperature (25 ° C.) at an average cooling rate of 1 ° C./second. Rolled material or forged material was obtained.

上記圧延材または鍛造材を、795℃(保持時間:6時間)で球状化焼鈍を施した後、切削によって皮削りを行なった。その後、直径:60mm、厚さ:5mmの円盤を切り出し、840℃で30分間加熱後の油焼入れを実施し、160℃で120分間焼戻しを実施した。最終的に仕上げ研磨を施して、表面粗さがRa(算術平均粗さ)で0.04μm以下となる試験片を作製した。   The rolled material or forged material was subjected to spheroidizing annealing at 795 ° C. (holding time: 6 hours), and then subjected to skin cutting. Thereafter, a disk having a diameter of 60 mm and a thickness of 5 mm was cut out and subjected to oil quenching after heating at 840 ° C. for 30 minutes and tempering at 160 ° C. for 120 minutes. Finally, finish polishing was performed to prepare a test piece having a surface roughness Ra (arithmetic average roughness) of 0.04 μm or less.

Figure 2011117009
Figure 2011117009

Figure 2011117009
Figure 2011117009

上記で得られた試験片を用い、下記の条件にてAl系窒素化合物の個数、大きさ、旧オーステナイト(旧γ)の結晶粒(結晶粒度番号)を測定すると共に、疲労寿命、割れの有無を評価した。   Using the test piece obtained above, the number and size of Al-based nitrogen compounds and the crystal grains (grain size number) of prior austenite (former γ) were measured under the following conditions, and the fatigue life and presence or absence of cracks Evaluated.

[Al系窒素化合物の個数、大きさの測定]
Al系窒素化合物の分散状況の確認方法としては、熱処理後の試験片を切断し、この断面を研磨した後、その面にカーボン蒸着を行い、FE−TEM(電界放出型透過型電子顕微鏡)によりレプリカ観察を実施した。この際、TEMのEDX(エネルギー分散型X線検出器)によりAl、Nを含むAl系窒素化合物の成分を特定し、30000倍の倍率にてその視野の観察を行なった。このとき、1視野を16.8μm2とし、任意の3視野について観察し(合計50.4μm2)、粒子解析ソフト[「粒子解析III for Windows. Version3.00 SUMITOMO METAL TECHNOLOGY」(商品名)]を用い、その大きさ(平均円相当直径)、および円相当直径が25〜200nmのAl系窒素化合物の個数(個数はμm2当りに換算:個数密度)を求めた。
[Measurement of number and size of Al-based nitrogen compounds]
As a method for confirming the dispersion state of the Al-based nitrogen compound, the test piece after the heat treatment was cut, this section was polished, carbon was then deposited on the surface, and FE-TEM (field emission transmission electron microscope) was used. Replica observation was performed. At this time, components of an Al-based nitrogen compound containing Al and N were specified by TEM EDX (energy dispersive X-ray detector), and the field of view was observed at a magnification of 30000 times. At this time, 1 field of view was set to 16.8 μm 2, and arbitrary 3 fields of view were observed (total 50.4 μm 2 ), and particle analysis software [“Particle Analysis III for Windows. Version 3.00 SUMITOMO METAL TECHNOLOGY” (trade name)] Was used to determine the size (average circle equivalent diameter) and the number of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 nm (number is converted per μm 2 : number density).

[旧オーステナイト(旧γ)の結晶粒(結晶粒度番号)の測定]
熱処理後の試験片を切断し、その断面を研磨した後、旧オーステナイト粒界現出腐食を行ない、表層から150μm深さ位置を4箇所撮影し、JIS G 0551に準じて(標準図に基づく方法)旧オーステナイト粒度測定を実施した。
[Measurement of crystal grains (crystal grain size number) of prior austenite (former γ)]
After cutting the heat-treated test piece and polishing the cross section, the former austenite grain boundary corrosion was performed, and four 150 μm depth positions were photographed from the surface layer, and in accordance with JIS G 0551 (method based on standard diagram) ) Old austenite particle size measurement was carried out.

[疲労寿命の測定]
スラスト型転動疲労試験機にて、繰り返し速度:1500rpm、面圧:5.3GPa、中止回数:2×108回の条件にて、各鋼材(試験片)につき転動疲労試験を各16回ずつ実施し、疲労寿命L10(ワイプル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数)を評価した。このとき、疲労寿命L10(L10寿命)で1.0×107回以上を合格基準とした。
[Measurement of fatigue life]
Using a thrust type rolling fatigue tester, rolling fatigue tests were performed 16 times for each steel material (test piece) under the conditions of repetition rate: 1500 rpm, surface pressure: 5.3 GPa, number of cancellations: 2 × 10 8 times. The fatigue life L 10 (the number of stress repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting on the wiper probability paper) was evaluated. At this time, the fatigue life L 10 (L 10 life) was 1.0 × 10 7 times or more as an acceptance criterion.

[割れの有無の評価]
圧延および鍛造後のサンプル表面を切削し、その表面を目視観察し、3mm以上の傷が認められた場合を割れ有りと判定した。
[Evaluation of cracks]
The surface of the sample after rolling and forging was cut, and the surface was visually observed. When a scratch of 3 mm or more was observed, it was determined that there was a crack.

これらの結果を、製造条件(850〜650℃までの平均冷却速度、二次冷却の有無)と共に、下記表3、4に併記する。   These results are shown in Tables 3 and 4 below together with production conditions (average cooling rate up to 850 to 650 ° C., presence or absence of secondary cooling).

Figure 2011117009
Figure 2011117009

Figure 2011117009
Figure 2011117009

これらの結果から、次のように考察することができる。即ち、試験No.3〜5、8、10、11、14、16〜22、27〜32のものは、本発明で規定する要件(化学成分組成、Al系窒素化合物の大きさ、個数)または好ましい要件(旧γ結晶粒度番号)を満足するものであり、いずれも割れが生じることなく、優れた転動疲労寿命が達成されていることが分かる。   From these results, it can be considered as follows. That is, test no. 3-5, 8, 10, 11, 14, 16-22, 27-32 are the requirements (chemical composition, size and number of Al-based nitrogen compounds) or preferred requirements (old γ) defined in the present invention. It can be seen that excellent rolling fatigue life is achieved without any cracks.

これに対し、試験No.1、2、6、7、9、12、13、15、23〜26、33〜51のものは、本発明で規定する要件のいずれかが外れているため、いずれも転動疲労寿命が低くなっている。   In contrast, test no. 1, 2, 6, 7, 9, 12, 13, 15, 23 to 26, 33 to 51, any of the requirements defined in the present invention is outside, so all have low rolling fatigue life It has become.

試験No.1、6、15、23、26、33、35、37、38のものは、圧延後の冷却条件が適切でないので、Al系窒素化合物の大きさが大きくなり過ぎているものであり(このうち、試験No.23、26、33、37、38のものは、旧γ結晶粒度番号も外れる)、いずれも転動疲労寿命が低くなっている。   Test No. For 1, 6, 15, 23, 26, 33, 35, 37, and 38, the cooling conditions after rolling are not appropriate, so the size of the Al-based nitrogen compound is too large (among these) , Test Nos. 23, 26, 33, 37, and 38 have the old γ grain size number also deviated), and all have a low rolling fatigue life.

試験No.2、7、9、24、25のものは、冷却速度が速いので、試験No.40のものは、Ti含有量が多くなってTiNを形成するので、いずれもAl系窒素化合物の個数が不足するものであり、試験No.34のものは、Al含有量が本発明で規定する範囲よりも多くなっているので、Al系窒素化合物の個数密度および大きさが過剰となっているものであり、いずれも転動疲労寿命が低くなっている。   Test No. Tests Nos. 2, 7, 9, 24, and 25 have a high cooling rate. In No. 40, since the Ti content increases and TiN is formed, the number of Al-based nitrogen compounds is insufficient. In No. 34, since the Al content is larger than the range specified in the present invention, the number density and size of the Al-based nitrogen compound are excessive, and both have rolling fatigue life. It is low.

試験No.12、13のものは、Al系窒素化合物の個数の個数密度が過剰になっており、また好ましい要件である旧γ結晶粒度番号が本発明で規定する範囲を外れるものでありが、いずれも転動疲労寿命が低くなっている。   Test No. In Nos. 12 and 13, the number density of the number of Al-based nitrogen compounds is excessive, and the former γ grain size number, which is a preferable requirement, is outside the range defined in the present invention. The dynamic fatigue life is low.

試験No.36〜39、41〜51のものは、本発明で規定する化学成分組成を外れるものであり(試験No.37、38は上記した要件も外れる)、いずれも転動疲労寿命が低くなっている。   Test No. 36 to 39 and 41 to 51 are those that deviate from the chemical composition defined in the present invention (test Nos. 37 and 38 also deviate from the above requirements), and both have a low rolling fatigue life. .

これらのデータに基づいて、Al系窒素化合物(円相当直径が25〜200のAl系窒素化合物)の個数密度と疲労寿命L10の関係を図1に、Al系窒素化合物の個数密度と大きさ(平均円相当直径)の関係を図2に(以上、化学成分的に本発明で規定する範囲を満足するものをプロット)夫々示すが、Al系窒素化合物の個数密度や大きさを適切に制御することによって、優れた疲労寿命L10(転動疲労寿命)が達成されることが分かる。 Based on these data, FIG. 1 shows the relationship between the number density of an Al-based nitrogen compound (Al-based nitrogen compound having an equivalent circle diameter of 25 to 200) and the fatigue life L 10 . The relationship of (average circle equivalent diameter) is shown in FIG. 2 (the plots satisfying the range defined by the present invention in terms of chemical components), respectively, but the number density and size of Al-based nitrogen compounds are appropriately controlled. It can be seen that an excellent fatigue life L 10 (rolling fatigue life) is achieved.

旧γ結晶粒度番号と疲労寿命L10の関係を図3に示すが、旧γ結晶粒度番号を適切な範囲とすることは、優れた疲労寿命L10(転動疲労寿命)を達成する上で有効な手段であることが分かる。また、一次冷却速度(平均冷却速度)とAl系窒素化合物の大きさ(Al系窒素化合物の平均円相当直径)の関係を図4に示すが、一次冷却速度を適正な範囲に調整することは、Al系窒素化合物の大きさを制御する上で有効であることが分かる。 The relationship between the old γ grain size number and the fatigue life L 10 is shown in FIG. 3. Setting the old γ grain size number to an appropriate range is necessary to achieve an excellent fatigue life L 10 (rolling fatigue life). It turns out that it is an effective means. FIG. 4 shows the relationship between the primary cooling rate (average cooling rate) and the size of the Al-based nitrogen compound (the average equivalent circle diameter of the Al-based nitrogen compound), but adjusting the primary cooling rate to an appropriate range It can be seen that this is effective in controlling the size of the Al-based nitrogen compound.

Claims (6)

C:0.65〜1.30%(質量%の意味、以下同じ)、Si:0.05〜1.00%、Mn:0.1〜2.00%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Cr:0.15〜2.00%、Al:0.010〜0.100%、N:0.025%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を夫々含み、残部が鉄および不可避不純物からなり、鋼中に分散するAl系窒素化合物の平均円相当直径が25〜200nmであると共に、円相当直径が25〜200nmのAl系窒素化合物の個数密度が1.1個/μm2以上、6.0個/μm2以下であることを特徴とする転動疲労寿命に優れた鋼材。 C: 0.65-1.30% (meaning of mass%, the same applies hereinafter), Si: 0.05-1.00%, Mn: 0.1-2.00%, P: 0.050% or less ( 0% not included), S: 0.050% or less (not including 0%), Cr: 0.15 to 2.00%, Al: 0.010 to 0.100%, N: 0.025% The following (not including 0%), Ti: 0.015% or less (not including 0%) and O: 0.0025% or less (not including 0%) are included, and the balance is composed of iron and inevitable impurities. 5. The average equivalent circle diameter of the Al-based nitrogen compound dispersed in the steel is 25 to 200 nm, and the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 nm is 1.1 / μm 2 or more. A steel material excellent in rolling fatigue life characterized by being 0 piece / μm 2 or less. 旧オーステナイトの平均結晶粒度番号が11.5以下である請求項1に記載の転動疲労寿命に優れた鋼材。   The steel material excellent in rolling fatigue life according to claim 1, wherein the prior austenite has an average grain size number of 11.5 or less. 更に他の元素として、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1または2に記載の転動疲労寿命に優れた鋼材。   Further, as other elements, Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%) and Mo: 0.25% or less (not including 0%) The steel material excellent in rolling fatigue life of Claim 1 or 2 containing 1 or more types selected from the group which consists of. 更に他の元素として、Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1〜3のいずれかに記載の転動疲労寿命に優れた鋼材。   Further, as other elements, Nb: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), and B: 0.005% or less (not including 0%) The steel material excellent in rolling fatigue life in any one of Claims 1-3 containing 1 or more types selected from the group which consists of. 更に他の元素として、Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1〜4のいずれかに記載の転動疲労寿命に優れた鋼材。   Further, as other elements, Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%) , Li: not more than 0.02% (not including 0%) and Zr: not less than 0.2% (not including 0%), including at least one selected from the group consisting of Steel material with excellent rolling fatigue life as described in 1. 更に他の元素として、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1〜5のいずれかに記載の転動疲労寿命に優れた鋼材。   Further, as other elements, Pb: 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), and Te: 0.1% or less (not including 0%) The steel material excellent in rolling fatigue life in any one of Claims 1-5 containing 1 or more types selected from the group which consists of.
JP2009272598A 2009-11-30 2009-11-30 Steel material with excellent rolling fatigue life Expired - Fee Related JP5406687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272598A JP5406687B2 (en) 2009-11-30 2009-11-30 Steel material with excellent rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272598A JP5406687B2 (en) 2009-11-30 2009-11-30 Steel material with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JP2011117009A true JP2011117009A (en) 2011-06-16
JP5406687B2 JP5406687B2 (en) 2014-02-05

Family

ID=44282667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272598A Expired - Fee Related JP5406687B2 (en) 2009-11-30 2009-11-30 Steel material with excellent rolling fatigue life

Country Status (1)

Country Link
JP (1) JP5406687B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160675A1 (en) * 2011-05-25 2012-11-29 株式会社神戸製鋼所 Steel with excellent rolling fatigue characteristics
JP2013108171A (en) * 2011-10-25 2013-06-06 Nippon Steel & Sumitomo Metal Corp Spring steel excellent in fatigue resistance characteristics and production method thereof
JP2014019911A (en) * 2012-07-18 2014-02-03 Kobe Steel Ltd Bearing steel material and bearing part with excellent rolling fatigue characteristic
JP2014040626A (en) * 2012-08-21 2014-03-06 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristics and method for manufacturing the same
US10350676B2 (en) 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same
CN112111696A (en) * 2020-09-29 2020-12-22 钢铁研究总院 High-carbon bearing steel with high isotropy and long contact fatigue life and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180897A (en) * 1997-09-04 1999-03-26 Nippon Seiko Kk Rolling bearing
JP2002220638A (en) * 2001-01-26 2002-08-09 Kawasaki Steel Corp Bearing material
JP2007100126A (en) * 2005-09-30 2007-04-19 Ntn Corp Rolling member and ball bearing
JP2007321190A (en) * 2006-05-31 2007-12-13 Jfe Steel Kk Steel having excellent fatigue property and its production method
JP2008088484A (en) * 2006-09-29 2008-04-17 Jfe Steel Kk Steel component for bearing having excellent fatigue property, and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180897A (en) * 1997-09-04 1999-03-26 Nippon Seiko Kk Rolling bearing
JP2002220638A (en) * 2001-01-26 2002-08-09 Kawasaki Steel Corp Bearing material
JP2007100126A (en) * 2005-09-30 2007-04-19 Ntn Corp Rolling member and ball bearing
JP2007321190A (en) * 2006-05-31 2007-12-13 Jfe Steel Kk Steel having excellent fatigue property and its production method
JP2008088484A (en) * 2006-09-29 2008-04-17 Jfe Steel Kk Steel component for bearing having excellent fatigue property, and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160675A1 (en) * 2011-05-25 2012-11-29 株式会社神戸製鋼所 Steel with excellent rolling fatigue characteristics
US9303302B2 (en) 2011-05-25 2016-04-05 Kobe Steel, Ltd. Steel with excellent rolling-contact fatigue properties
JP2013108171A (en) * 2011-10-25 2013-06-06 Nippon Steel & Sumitomo Metal Corp Spring steel excellent in fatigue resistance characteristics and production method thereof
JP2014019911A (en) * 2012-07-18 2014-02-03 Kobe Steel Ltd Bearing steel material and bearing part with excellent rolling fatigue characteristic
JP2014040626A (en) * 2012-08-21 2014-03-06 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristics and method for manufacturing the same
US10350676B2 (en) 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same
CN112111696A (en) * 2020-09-29 2020-12-22 钢铁研究总院 High-carbon bearing steel with high isotropy and long contact fatigue life and manufacturing method thereof

Also Published As

Publication number Publication date
JP5406687B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5425736B2 (en) Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties
WO2012160675A1 (en) Steel with excellent rolling fatigue characteristics
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
JP5094126B2 (en) Rolling and sliding parts and manufacturing method thereof
JP5400590B2 (en) Steel material with excellent rolling fatigue life
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP5406687B2 (en) Steel material with excellent rolling fatigue life
JP6241136B2 (en) Case-hardened steel
JP5400591B2 (en) Bearing steel with excellent cold workability
JP5886119B2 (en) Case-hardened steel
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP2010053429A (en) Gear excellent in high surface-pressure resistance
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
JP5990428B2 (en) Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
WO2018212196A1 (en) Steel and component
JP2006176863A (en) Steel for rolling bearing
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
JP2022170056A (en) steel
JP6172378B2 (en) Case-hardened steel wire
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP6705344B2 (en) Case-hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburization and its manufacturing method
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
TWI448565B (en) Steel with improved rolling fatigue characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees