JP2011115710A - Catalyst for generation of hydrogen and hydrogen generating method - Google Patents

Catalyst for generation of hydrogen and hydrogen generating method Download PDF

Info

Publication number
JP2011115710A
JP2011115710A JP2009274513A JP2009274513A JP2011115710A JP 2011115710 A JP2011115710 A JP 2011115710A JP 2009274513 A JP2009274513 A JP 2009274513A JP 2009274513 A JP2009274513 A JP 2009274513A JP 2011115710 A JP2011115710 A JP 2011115710A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrazine
platinum
catalyst
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009274513A
Other languages
Japanese (ja)
Other versions
JP4982815B2 (en
Inventor
Qiang Xu
強 徐
Sanjay Kumar Sinha
クマール サンジェイ シンハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009274513A priority Critical patent/JP4982815B2/en
Priority to US12/956,106 priority patent/US9028793B2/en
Publication of JP2011115710A publication Critical patent/JP2011115710A/en
Application granted granted Critical
Publication of JP4982815B2 publication Critical patent/JP4982815B2/en
Priority to US14/686,382 priority patent/US9227178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of generating hydrogen utilizing a decomposition reaction of hydrazine which can generate hydrogen with good selectivity and high efficiency. <P>SOLUTION: A catalyst for generation of hydrogen includes a composite metal of platinum and nickel and generates hydrogen through a decomposition reaction of one or more compounds selected from hydrazine and its hydrates. A hydrogen generating method comprises bringing the catalyst into contact with one or more compounds selected from hydrazine and its hydrates. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水素発生用触媒及び水素発生方法に関する。   The present invention relates to a hydrogen generation catalyst and a hydrogen generation method.

燃料電池へ供給される水素ガスの発生方法としては、水を電気分解する方法;金属と酸を反応させる方法;水素化金属に水を反応させる方法;メチルアルコールまたは天然ガスを水蒸気で改質する方法;水素吸蔵合金、活性炭、カーボンナノチューブ、リチウム−窒素系材料等の水素貯蔵材料から水素を放出させる方法等、各種の方法が知られている。しかしながら、これらの方法は、水素を発生させるために大量のエネルギーを必要とすること、使用原料に対する水素発生量が少ないこと、大規模な設備を必要とすること等の欠点がある。このため、これらの方法は、工場規模での水素の生産や実験室で用いる程度の量の水素発生には利用可能であるが、所要量の水素燃料を継続的に供給でき、しかも小型化が要求される、自動車搭載用燃料電池;携帯電話用、パーソナルコンピュータ用等のポータブル燃料電池等の水素供給方法としては不適当である。   Hydrogen gas supplied to the fuel cell can be generated by electrolyzing water; reacting metal with acid; reacting water with metal hydride; reforming methyl alcohol or natural gas with steam Methods: Various methods are known, such as a method of releasing hydrogen from a hydrogen storage material such as a hydrogen storage alloy, activated carbon, carbon nanotube, or lithium-nitrogen material. However, these methods have drawbacks such as requiring a large amount of energy to generate hydrogen, a small amount of hydrogen generation with respect to the raw materials used, and a large-scale facility. For this reason, these methods can be used for production of hydrogen on a factory scale or generation of hydrogen to the extent that it can be used in laboratories. However, the required amount of hydrogen fuel can be continuously supplied and the size can be reduced. It is not suitable as a hydrogen supply method for required fuel cells for automobiles; portable fuel cells for mobile phones, personal computers, and the like.

一方、LiAlH4、NaBH4などの金属水素化合物は、水素化試薬として実験室等で用いられ
ているが、水と接触すると一時的に多量の水素を発生して爆発的現象をもたらすために、取り扱いを慎重にする必要があり、やはり上記した燃料電池の水素供給源としては不適当である。
On the other hand, metal hydrides such as LiAlH 4 and NaBH 4 are used in laboratories as hydrogenation reagents, but when they come into contact with water, a large amount of hydrogen is temporarily generated to cause an explosive phenomenon. It must be handled with care and is also unsuitable as a hydrogen source for the fuel cell described above.

NaBH4等のテトラヒドロホウ酸塩(下記特許文献1、2、非特許文献1、2等参照)や
化学式:NH3BH3で表されるボラン・アンモニア(下記特許文献3、非特許文献3,4等参照)の加水分解反応を利用して水素を放出させる方法も報告されているが、これらの方法は、生成物であるホウ酸化合物の回収・再生の点で問題がある。
Tetrahydroborate such as NaBH 4 (see Patent Documents 1 and 2, Non-Patent Documents 1 and 2 below) and borane / ammonia represented by the chemical formula: NH 3 BH 3 (Patent Document 3 and Non-Patent Documents 3 and 3 below) 4), the method of releasing hydrogen using a hydrolysis reaction has also been reported. However, these methods have problems in terms of recovery and regeneration of a boric acid compound as a product.

ヒドラジン(H2NNH2)は、室温で液体であり、高い水素含有量(12.5 重量 %.)を有するために水素源として有望と考えられており、触媒反応により窒素と水素に分解できることが報告されている。例えば、下記特許文献4には、ヒドラジンおよびその誘導体を、ニッケル、コバルト、鉄、銅、パラジウム、白金等の水素発生触媒能を有する金属と接触させて水素を発生させる方法が開示されている。しかしながら、これらの金属触媒について、ヒドラジンの分解反応における水素発生触媒能を検討したところ、必ずしも十分な水素生成量が得られていない(下記非特許文献5参照)。 Hydrazine (H 2 NNH 2 ) is a liquid at room temperature and has a high hydrogen content (12.5 wt%) and is considered to be a promising hydrogen source. It can be decomposed into nitrogen and hydrogen by catalytic reaction. Has been. For example, Patent Document 4 below discloses a method of generating hydrogen by bringing hydrazine and its derivatives into contact with a metal having a hydrogen generation catalytic ability such as nickel, cobalt, iron, copper, palladium, platinum or the like. However, when these metal catalysts were examined for their ability to catalyze hydrogen generation in the decomposition reaction of hydrazine, a sufficient amount of hydrogen was not necessarily obtained (see Non-Patent Document 5 below).

また、特許文献5には、アンモニアまたはヒドラジンを水素源として用い、これを窒素と水素に分解して燃料電池に供給する分解器を備える水素製造装置が開示されている。しかしながら、特許文献5には、ヒドラジンを分解して水素を発生させる方法については具体的な開示がない。   Patent Document 5 discloses a hydrogen production apparatus including a decomposer that uses ammonia or hydrazine as a hydrogen source, decomposes it into nitrogen and hydrogen, and supplies it to the fuel cell. However, Patent Document 5 does not specifically disclose a method for decomposing hydrazine to generate hydrogen.

特許文献6及び7には、ロジウムをアルミナまたはシリカを含む担体に担持させた触媒とヒドラジン水溶液とを接触させて水素を発生させる方法が開示されている。しかしながら、これらの方法では、ヒドラジンからの水素発生率が低く、十分な水素発生量が得られていない。   Patent Documents 6 and 7 disclose a method of generating hydrogen by bringing a catalyst in which rhodium is supported on a support containing alumina or silica and an aqueous hydrazine solution into contact with each other. However, in these methods, the hydrogen generation rate from hydrazine is low, and a sufficient amount of hydrogen generation is not obtained.

特開2001−19401号公報Japanese Patent Laid-Open No. 2001-19401 特開2002−241102号公報JP 2002-241102 A 特開2006−213563号公報JP 2006-213563 A 特開2004−244251号公報Japanese Patent Laid-Open No. 2004-244251 特開2003−40602号公報JP 2003-40602 A 特開2007−269514号公報JP 2007-269514 A 特開2007−269529号公報JP 2007-269529 A

S. C. Amendola 他、International Journal of Hydrogen Energy, 25 (2000), 969-975.S. C. Amendola et al., International Journal of Hydrogen Energy, 25 (2000), 969-975. ; Z. P. Li他、Journal of Power Source, 126 (2004) 28-33.Z. P. Li et al., Journal of Power Source, 126 (2004) 28-33. M. Chandra, Q. Xu, Journal of Power Sources 156 (2006) 190-194.M. Chandra, Q. Xu, Journal of Power Sources 156 (2006) 190-194. Q. Xu, M. Chandra, Journal of Power Sources 163 (2006) 364-370.Q. Xu, M. Chandra, Journal of Power Sources 163 (2006) 364-370. Sanjay Kumar Singh, Xin-Bo Zhang, Qiang Xu, J. Am. Chem. Soc., 131 (2009) 9894-9895.Sanjay Kumar Singh, Xin-Bo Zhang, Qiang Xu, J. Am. Chem. Soc., 131 (2009) 9894-9895.

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、ヒドラジンの分解反応を利用する水素発生方法において、水素を選択性よく高効率・低コストで発生させることができる方法を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and its main purpose is to generate hydrogen with high selectivity and high efficiency and low cost in a hydrogen generation method utilizing a decomposition reaction of hydrazine. It is to provide a method that can be made to.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、ヒドラジン又はその水和物を水素発生源とする場合に、白金とニッケルの複合金属を触媒とすることによって、従来知られている金属触媒を用いる場合と比較して、非常に高い選択率で効率よく且つ低コストに水素を発生させることが可能となることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, when hydrazine or its hydrate is used as a hydrogen generation source, by using a composite metal of platinum and nickel as a catalyst, the selection is very high compared to the case of using a conventionally known metal catalyst. It has been found that hydrogen can be generated efficiently and at low cost, and the present invention has been completed here.

即ち、本発明は、下記の水素発生用触媒及び水素発生方法を提供するものである。
1. 白金とニッケルの複合金属からなる、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物の分解反応による水素発生用触媒。
2. 白金とニッケルの複合金属が、白金とニッケルの合金、金属間化合物又は固溶体である上記項1に記載の水素発生用触媒。
3. 白金とニッケルの複合金属における白金の含有率が1〜99モル%の範囲である上記項1又は2に記載の水素発生用触媒。
4. 上記項1〜3のいずれかに記載の水素発生用触媒を、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物に接触させることを特徴とする水素発生方法。
5. 上記項4の方法によって発生させた水素を燃料電池の水素源として供給することを特徴とする、燃料電池への水素供給方法。
That is, the present invention provides the following hydrogen generation catalyst and hydrogen generation method.
1. A catalyst for hydrogen generation by a decomposition reaction of at least one compound selected from the group consisting of hydrazine and hydrates thereof, comprising a composite metal of platinum and nickel.
2. Item 2. The hydrogen generating catalyst according to Item 1, wherein the composite metal of platinum and nickel is an alloy of platinum and nickel, an intermetallic compound, or a solid solution.
3. Item 3. The hydrogen generation catalyst according to Item 1 or 2, wherein the platinum content in the composite metal of platinum and nickel is in the range of 1 to 99 mol%.
4). 4. A hydrogen generation method, wherein the hydrogen generation catalyst according to any one of Items 1 to 3 is contacted with at least one compound selected from the group consisting of hydrazine and hydrates thereof.
5. A method for supplying hydrogen to a fuel cell, comprising supplying hydrogen generated by the method of item 4 above as a hydrogen source for the fuel cell.

以下、本発明について具体的に説明する。   The present invention will be specifically described below.

本発明の水素発生方法では、水素発生源として、化学式:H2NNH2で表されるヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物を用いる。ヒドラジン(無水物及び一水和物)は公知化合物であり、室温では液体である。 In the hydrogen generation method of the present invention, at least one compound selected from the group consisting of hydrazine represented by the chemical formula: H 2 NNH 2 and hydrates thereof is used as the hydrogen generation source. Hydrazine (anhydride and monohydrate) is a known compound and is liquid at room temperature.

ヒドラジンの触媒による分解反応としては、一般に、下記式( 1 )で示される水素及
び窒素が生成するヒドラジン完全分解反応、又は 式( 2 ) で示されるアンモニアと窒素が生成するヒドラジン部分分解反応が進行すると考えられている。
In general, a hydrazine-catalyzed decomposition reaction involves a hydrazine complete decomposition reaction in which hydrogen and nitrogen represented by the following formula (1) are generated, or a hydrazine partial decomposition reaction in which ammonia and nitrogen are represented by the formula (2). It is considered to be.

24→ N2 + 2H2 ・・・ (1)
3N24→ N2 + 4NH3 ・・・(2)
上述した非特許文献5には、ロジウム触媒の存在下におけるヒドラジンの分解反応について記載されており、ロジウム金属を触媒とする場合には、式( 1 )で示されるヒドラジン完全分解反応よりも、式( 2 )で示されるヒドラジン部分分解反応が優先的に進行して、多量のアンモニアが生成することが記載されている。また、その他の金属触媒については、白金、ニッケル、銅、鉄等の金属を触媒として用いる場合には、ヒドラジンの分解反応は進行せず、コバルト金属を触媒とする場合には、ヒドラジンの分解反応は進行するが、完全分解反応の他、部分分解反応が進行して、多量のアンモニアが生成する。
N 2 H 4 → N 2 + 2H 2 (1)
3N 2 H 4 → N 2 + 4NH 3 (2)
Non-Patent Document 5 described above describes the decomposition reaction of hydrazine in the presence of a rhodium catalyst. When rhodium metal is used as a catalyst, the hydrazine complete decomposition reaction represented by the formula (1) is more effective. It is described that the hydrazine partial decomposition reaction represented by (2) proceeds preferentially to produce a large amount of ammonia. As for other metal catalysts, when a metal such as platinum, nickel, copper, or iron is used as a catalyst, the hydrazine decomposition reaction does not proceed. When a cobalt metal is used as the catalyst, the hydrazine decomposition reaction. However, in addition to the complete decomposition reaction, the partial decomposition reaction proceeds to produce a large amount of ammonia.

更に、本発明者の研究によれば、白金と銅の複合金属、白金と鉄の複合金属等を触媒とする場合には、完全分解による水素発生反応の選択率の向上は認められないことが明らかとなっている。   Furthermore, according to the research of the present inventors, when a platinum-copper composite metal, a platinum-iron composite metal, or the like is used as a catalyst, an improvement in the selectivity of the hydrogen generation reaction by complete decomposition is not observed. It is clear.

これに対して、本発明で用いる白金とニッケルの複合金属を触媒とする場合には、アンモニアが生成する部分分解反応が抑制され、水素が生成する完全分解反応が選択的に進行する。   On the other hand, when the platinum-nickel composite metal used in the present invention is used as a catalyst, the partial decomposition reaction in which ammonia is generated is suppressed, and the complete decomposition reaction in which hydrogen is generated selectively proceeds.

以下、本発明で用いる白金とニッケルの複合金属触媒及び該触媒を用いる水素発生方法について、具体的に説明する。   Hereinafter, the platinum-nickel composite metal catalyst used in the present invention and the hydrogen generation method using the catalyst will be specifically described.

白金・ニッケル複合金属触媒
本発明の水素発生方法で用いる白金とニッケルの複合金属触媒は、白金とニッケルの混合物ではなく、白金とニッケルが、密接な相互関係にある複合金属であることが必要である。このような複合金属の具体例としては、合金、金属間化合物、固溶体などを例示できる。
Platinum-nickel composite metal catalyst The platinum-nickel composite metal catalyst used in the hydrogen generation method of the present invention is not a mixture of platinum and nickel, but a composite metal in which platinum and nickel are closely related to each other. is there. Specific examples of such composite metals include alloys, intermetallic compounds, and solid solutions.

前述した通り、白金またはニッケル金属を単独で触媒して用いる場合には、ヒドラジンの分解反応は進行しない。また、白金とニッケル金属の単なる混合物についても、ヒドラジンの完全分解反応に対する活性を示さない。   As described above, when platinum or nickel metal is used alone as a catalyst, the decomposition reaction of hydrazine does not proceed. In addition, a simple mixture of platinum and nickel metal does not show activity for the complete decomposition reaction of hydrazine.

これに対して、白金とニッケルを複合化した金属触媒を用いる場合には、驚くべきことに、上記式( 1 )で示されるヒドラジンの完全分解反応が選択性よく進行して、非常に効率良く水素を発生させることができる。   On the other hand, when a metal catalyst in which platinum and nickel are combined is used, surprisingly, the complete decomposition reaction of hydrazine represented by the above formula (1) proceeds with good selectivity and is very efficient. Hydrogen can be generated.

白金とニッケルの複合金属における白金とニッケルの比率については、PtとNiの合計モル数を基準として、Ptの比率が1〜99モル%程度という広い範囲において、ヒドラジンの完全分解反応に対する活性を示す。特に、Ptの比率が3〜75%程度の範囲内においてヒドラジンの完全分解反応による水素発生反応に対する選択性が高くなり、Ptの比率が6〜40モル%程度の範囲において、非常に高い選択率でヒドラジンの完全分解反応が進行して、効率よく水素を発生させることができる。   As for the ratio of platinum to nickel in the composite metal of platinum and nickel, the activity for the complete decomposition reaction of hydrazine is shown in a wide range of Pt ratio of about 1 to 99 mol% based on the total number of moles of Pt and Ni. . In particular, when the Pt ratio is in the range of about 3 to 75%, the selectivity for the hydrogen generation reaction due to the complete decomposition reaction of hydrazine is high. Thus, the complete decomposition reaction of hydrazine proceeds and hydrogen can be generated efficiently.

白金とニッケルの複合金属触媒の製造方法については、特に限定はないが、例えば、白金化合物とニッケル化合物を含む水溶液に還元剤を加えて、白金イオン及びニッケルイオンを還元して金属化することによって、目的とする白金とニッケルの複合金属を得ることができる。そのほか、白金化合物を含む水溶液に還元剤を添加して白金イオンを還元した後、さらに白金化合物を添加して還元する方法や、ニッケル化合物を含む水溶液に還元剤
を添加して、ニッケルイオンを還元した後、さらに白金化合物を加えて還元する方法等も採用できる。特に、白金化合物とニッケル化合物を含む水溶液に還元剤を加えて、白金イオン及びニッケルイオンを還元する方法によれば、均一性に優れた金属触媒を得ることができる。これらの方法で用いる白金化合物及びニッケル化合物については特に限定はないが、溶媒中に可溶性の化合物でれば良く、例えば、白金又はニッケルの塩化物、硝酸塩、硫酸塩などの金属塩や各種金属錯体を用いることができる。
The method for producing a platinum-nickel composite metal catalyst is not particularly limited. For example, a reducing agent is added to an aqueous solution containing a platinum compound and a nickel compound, and platinum ions and nickel ions are reduced to be metallized. The target platinum-nickel composite metal can be obtained. Other methods include reducing a platinum ion by adding a reducing agent to an aqueous solution containing a platinum compound, and then reducing the platinum ion by adding a platinum compound and reducing the nickel ion by adding a reducing agent to an aqueous solution containing a nickel compound. Then, a method of adding a platinum compound for reduction and the like can also be adopted. In particular, according to a method in which a reducing agent is added to an aqueous solution containing a platinum compound and a nickel compound to reduce platinum ions and nickel ions, a metal catalyst having excellent uniformity can be obtained. The platinum compound and nickel compound used in these methods are not particularly limited, but may be any compound that is soluble in a solvent. For example, platinum or nickel chlorides, nitrates, sulfates and other metal salts and various metal complexes Can be used.

これらの白金化合物及びニッケル化合物を還元するために用いる還元剤としては、特に限定はないが、例えば、テトラヒドロホウ酸ナトリウム、ヒドラジン自身など、白金化合物とニッケル化合物を還元できるものであれば特に限定なく利用できる。   The reducing agent used for reducing these platinum compounds and nickel compounds is not particularly limited, but is not particularly limited as long as it can reduce platinum compounds and nickel compounds, such as sodium tetrahydroborate and hydrazine itself. Available.

白金とニッケルの複合金属の大きさについては特に限定はないが、例えば、粒径が1〜100nm程度の超微粒子状態の複合金属が活性が高い点で有利である。尚、この場合の複合金属の粒径は、電子顕微鏡によって測定した値である。   The size of the composite metal of platinum and nickel is not particularly limited. For example, a composite metal in an ultrafine particle state having a particle size of about 1 to 100 nm is advantageous in that the activity is high. In this case, the particle diameter of the composite metal is a value measured by an electron microscope.

白金とニッケルの複合金属には、更に、触媒活性に悪影響のない範囲内において、他の金属が複合化してもよい。   The platinum and nickel composite metal may be further composited with other metals within a range that does not adversely affect the catalytic activity.

白金とニッケルの複合金属は、シリカ、アルミナ、ジルコニア、活性炭などの担体に担持させた担持触媒として用いてもよい。このような担持触媒の製造方法については、特に限定的ではないが、例えば、白金化合物とニッケル化合物を含む溶液中に担体を分散させた状態で、白金化合物とニッケル化合物を還元することによって得ることができる。担持量については特に限定はないが、例えば、白金とニッケルの複合金属と担体の合計量を基準として、該複合金属の量が0.1〜20重量%程度であることが好ましく、0.5〜10重量%程度であることがより好ましく、1〜5重量%程度であることが更に好ましい。   The composite metal of platinum and nickel may be used as a supported catalyst supported on a carrier such as silica, alumina, zirconia, or activated carbon. The method for producing such a supported catalyst is not particularly limited. For example, it can be obtained by reducing the platinum compound and the nickel compound in a state where the carrier is dispersed in a solution containing the platinum compound and the nickel compound. Can do. The amount supported is not particularly limited. For example, the amount of the composite metal is preferably about 0.1 to 20% by weight on the basis of the total amount of the platinum and nickel composite metal and the carrier, More preferably, it is about 10 to 10 weight%, More preferably, it is about 1 to 5 weight%.

水素発生方法
本発明の水素発生方法では、水素発生源としては、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物を用いる。ヒドラジン及びその水和物の種類について特に限定はなく、一般に市販されているものをそのまま使用できる。また、水素発生に悪影響の無い限りその他の成分が同時に含まれていても良い。
Hydrogen Generation Method In the hydrogen generation method of the present invention, at least one compound selected from the group consisting of hydrazine and hydrates thereof is used as the hydrogen generation source. There is no limitation in particular about the kind of hydrazine and its hydrate, What is generally marketed can be used as it is. Further, other components may be included at the same time as long as there is no adverse effect on the hydrogen generation.

これらの化合物の内で、ヒドラジンの無水物(H2NNH2)を原料とする場合には、ヒドラジンに対して12.5重量%の水素が発生するので水素発生効率が高いが、発火性があるために安全性に問題がある。一方、ヒドラジン一水和物(H2NNH2・H2O)を水素発生源と
する場合には、ヒドラジン一水和物に対して7.9重量%の水素が発生するので、無水物を原料とする場合と比較すると水素発生効率は多少劣るが、なお高い水素発生効率を有するものであり、更に、安全性が良好となる。このため、安全性を考慮すると、ヒドラジン一水和物、又はこれを更に水を希釈した水溶液を用いればよい。本発明では、特に、安全性と水素の発生効率の両方を考慮すると、ヒドラジン濃度が40〜60重量%程度の水溶液を用いることが好ましい。
Among these compounds, when anhydrous hydrazine (H 2 NNH 2 ) is used as a raw material, hydrogen generation efficiency is high because 12.5% by weight of hydrogen is generated with respect to hydrazine. Because there is a problem with safety. On the other hand, in the case of hydrazine monohydrate (H 2 NNH 2 · H 2 O) and hydrogen source, since hydrogen is generated by the 7.9% by weight relative to hydrazine monohydrate, an anhydride Although the hydrogen generation efficiency is somewhat inferior to that of the raw material, the hydrogen generation efficiency is still high and the safety is improved. For this reason, in consideration of safety, hydrazine monohydrate or an aqueous solution obtained by further diluting water may be used. In the present invention, it is particularly preferable to use an aqueous solution having a hydrazine concentration of about 40 to 60% by weight in consideration of both safety and hydrogen generation efficiency.

本発明の水素発生方法では、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物を水素発生源として用い、これを上記した白金とニッケルの複合金属からなる触媒に接触させればよい。具体的な方法については特に限定はなく、例えば、反応容器中にヒドラジンと触媒を加えて、混合する方法などを採用できる。また、触媒を充填した反応器にヒドラジン水溶液を導入し、触媒層を通過させる方法も採用できる。   In the hydrogen generation method of the present invention, at least one compound selected from the group consisting of hydrazine and hydrates thereof is used as a hydrogen generation source, and this is brought into contact with the above-described catalyst composed of a composite metal of platinum and nickel. Good. A specific method is not particularly limited, and for example, a method of adding hydrazine and a catalyst in a reaction vessel and mixing them can be employed. Moreover, the method of introduce | transducing a hydrazine aqueous solution to the reactor filled with the catalyst, and letting it pass through a catalyst layer is also employable.

白金とニッケルの複合金属からなる触媒の使用量については、特に限定的ではなく、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物1モルに対して
、白金とニッケルの複合金属の量を0.0001〜10モル程度という広い範囲から選択することが可能である。特に、反応速度、触媒コスト等のバランスを考慮すると、例えば、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物1モルに対して、上記複合金属量を0.01〜0.5モル程度とすることが好ましい。尚、触媒層を通過させる方法では、ヒドラジン又はその水和物溶液の流速と接触時間を考慮して触媒層の触媒量を決めればよい。
The amount of the catalyst composed of the composite metal of platinum and nickel is not particularly limited, and the composite metal of platinum and nickel is used with respect to 1 mol of at least one compound selected from the group consisting of hydrazine and hydrates thereof. Can be selected from a wide range of about 0.0001 to 10 mol. In particular, considering the balance of reaction rate, catalyst cost, and the like, for example, the amount of the composite metal is 0.01 to 0.00 with respect to 1 mol of at least one compound selected from the group consisting of hydrazine and hydrates thereof. It is preferably about 5 moles. In the method of passing through the catalyst layer, the catalyst amount of the catalyst layer may be determined in consideration of the flow rate of hydrazine or its hydrate solution and the contact time.

水素発生反応の反応温度は、特に限定はないが、0℃〜80℃程度とすることが好ましく、10〜50℃程度とすることがより好ましい。   The reaction temperature of the hydrogen generation reaction is not particularly limited, but is preferably about 0 ° C to 80 ° C, and more preferably about 10 to 50 ° C.

反応時の反応系内の圧力や雰囲気については特に限定はなく、適宜選択できる。   There is no limitation in particular about the pressure and atmosphere in the reaction system at the time of reaction, and it can select suitably.

発生した水素の利用方法
本発明方法によれば、ヒドラジンの分解による水素発生反応が選択性よく進行して、効率よく水素を生成させることができる。
Method for Utilizing Generated Hydrogen According to the method of the present invention, hydrogen generation reaction by decomposition of hydrazine proceeds with good selectivity, and hydrogen can be generated efficiently.

発生した水素は、例えば、燃料電池用の燃料として燃料電池に直接供給することができる。特に、本発明の水素発生方法は、室温付近の温度で水素を発生させることができ、しかも水素発生速度、発生量等を制御可能であることから、自動車搭載用燃料電池;携帯電話用、パーソナルコンピュータ用等のポータブル燃料電池等の水素供給方法として有用性が高い方法である。   The generated hydrogen can be directly supplied to the fuel cell as fuel for the fuel cell, for example. In particular, the hydrogen generation method of the present invention can generate hydrogen at a temperature near room temperature, and can control the hydrogen generation rate, generation amount, etc., so that it is a fuel cell for automobiles; This method is highly useful as a hydrogen supply method for computers and other portable fuel cells.

発生した水素については、例えば、水素吸蔵合金を充填した容器内に捕集して貯蔵することが可能である。また、水素吸蔵合金を用い、温度を平衡圧力―温度関係に従って調整することによって、発生した水素の系内圧力を制御することも可能である。   The generated hydrogen can be collected and stored in a container filled with a hydrogen storage alloy, for example. It is also possible to control the internal pressure of the generated hydrogen by using a hydrogen storage alloy and adjusting the temperature according to the equilibrium pressure-temperature relationship.

本発明の水素発生方法によれば、高温に加熱することなく、制御可能な条件下で効率よく水素ガスを発生させることができる。   According to the hydrogen generation method of the present invention, hydrogen gas can be efficiently generated under controllable conditions without heating to a high temperature.

また、本発明の水素発生用触媒は、白金の含有率が低い場合にも高い活性を示すことから、低コストの触媒とすることができる。   Moreover, since the catalyst for hydrogen generation of this invention shows high activity also when the content rate of platinum is low, it can be made a low-cost catalyst.

本発明方法によって発生した水素ガスは、例えば、自動車搭載用燃料電池、ポータブル燃料電池等の燃料として有用性が高いものである。   The hydrogen gas generated by the method of the present invention is highly useful as a fuel for, for example, a fuel cell for automobiles and a portable fuel cell.

実施例1で得られた触媒粒子の透過型電子顕微鏡(TEM)像。The transmission electron microscope (TEM) image of the catalyst particle obtained in Example 1. FIG. 実施例1で得られた触媒粒子の高角度散乱暗視野(走査透過電子顕微鏡)(HAADF−STEM)像及びEDSスペクトル。The high angle scattering dark field (scanning transmission electron microscope) (HAADF-STEM) image and EDS spectrum of the catalyst particle obtained in Example 1. 実施例1、比較例1及び比較例2において測定したヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフ。The graph which shows the relationship between the molar ratio of the discharge gas with respect to the hydrazine monohydrate measured in Example 1, the comparative example 1, and the comparative example 2, and reaction time. 実施例1〜3において測定したヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフ水素放出量と反応時間との関係を示すグラフ。The graph which shows the relationship between the molar amount of discharge | releasing gas with respect to the hydrazine monohydrate measured in Examples 1-3, and reaction time, and the relationship between hydrogen discharge | release amount and reaction time.

以下、実施例及び比較例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1
容量30 mlの二つ口フラスコにNiCl2・6H2O (0.058 g), K2PtCl4 (0.008 g)、臭化ヘキ
サデシルトリメチルアンモニウム (CTAB, 95%)((0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌したのち、NaBH4(0.020 g) 水溶液(1.5 mL)を入れて2分間 激しく反応容器を振とうさせ、Ni0.93Pt0.07ナノ粒子触媒を形成させた。
Example 1
A 30 ml two-necked flask was charged with NiCl 2 · 6H 2 O (0.058 g), K 2 PtCl 4 (0.008 g), hexadecyltrimethylammonium bromide (CTAB, 95%) ((0.105 g), and water ( 2.5 mL) and ultrasonically stirred for 5 minutes, and then a NaBH 4 (0.020 g) aqueous solution (1.5 mL) was added and the reaction vessel was vigorously shaken for 2 minutes to form a Ni 0.93 Pt 0.07 nanoparticle catalyst.

得られたNi0.93Pt0.07ナノ粒子触媒の透過型電子顕微鏡(TEM)像を図1に示す。図1
から明らかなように、該触媒は、粒径5 nm程度の超微粒子であった。
A transmission electron microscope (TEM) image of the obtained Ni 0.93 Pt 0.07 nanoparticle catalyst is shown in FIG. FIG.
As is clear from the above, the catalyst was ultrafine particles having a particle size of about 5 nm.

また、図2に該Ni0.93Pt0.07ナノ粒子触媒の高角度散乱暗視野(走査透過電子顕微鏡)(HAADF−STEM)像を示し、図中のラインに沿って測定したPtとNiのEDSスペクトル強度を図中の右上部に示す。図2に示すEDSスペクトルから明らかなように、PtとNiは同一位置に存在しており、それぞれ個別の金属粒子として存在するのではなく、原子レベルで共存する合金化された状態であることが確認できる。 FIG. 2 shows a high-angle scattering dark field (scanning transmission electron microscope) (HAADF-STEM) image of the Ni 0.93 Pt 0.07 nanoparticle catalyst, and the EDS spectral intensities of Pt and Ni measured along the lines in the figure. Is shown in the upper right part of the figure. As is apparent from the EDS spectrum shown in FIG. 2, Pt and Ni are present at the same position, and are not present as individual metal particles, but are in an alloyed state in which they coexist at the atomic level. I can confirm.

次いで、この二つ口フラスコにシリンジでヒドラジン一水和物(H2NNH2・H2O, 99%)(0.1
mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入った
トラップを通過し、アンモニアを吸収させた後、水素及び窒素のみガスビューレットに導入し、放出量を測定した。攪拌開始5分後に5ml、10分後に9.8ml、20分後に16.5ml、50分後に40ml、100分後に88ml、150分後に123ml、200分後に145mlのガス放出が観測された。
Next, hydrazine monohydrate (H 2 NNH 2H 2 O, 99%) (0.1%) was added to the two -necked flask with a syringe.
mL, 1.97 mmol) was added and stirring was continued at room temperature. The released gas passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. Outgassing of 5 ml 5 minutes after the start of stirring, 9.8 ml after 10 minutes, 16.5 ml after 20 minutes, 40 ml after 50 minutes, 88 ml after 100 minutes, 123 ml after 150 minutes, and 145 ml after 200 minutes was observed.

図3及び図4は、原料として用いたヒドラジン一水和物に対する放出ガスのモル比と反応時間との関係を示すグラフである。また、図3には、後述する比較例1及び比較例2の結果を示し、図4には、後述する実施例1及び2の結果を示す。   3 and 4 are graphs showing the relationship between the molar ratio of the released gas to the hydrazine monohydrate used as a raw material and the reaction time. 3 shows the results of Comparative Examples 1 and 2 described later, and FIG. 4 shows the results of Examples 1 and 2 described later.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して3倍モルであった。このガス放出量は、水素生成選択率100%に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 3 times the mol of hydrazine used as a raw material. This gas release amount corresponds to a hydrogen production selectivity of 100%.

また、上記した方法で発生したガスをそのまま固体高分子型燃料電池に導入して、燃料電池が作動することを確認した。   In addition, it was confirmed that the gas generated by the above-described method was directly introduced into the solid polymer fuel cell to operate the fuel cell.

比較例1
容量30 mlの二つ口フラスコにNiCl2・6H2O (0.072 g)、臭化ヘキサデシルトリメチルアンモニウム(CTAB, 95%)(0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌した後、NaBH4(0.020 g) 水溶液(1.5 mL)を入れ、2分間激しく反応容器を振とうさせ、Niナ
ノ粒子触媒を形成させた。
Comparative Example 1
NiCl 2 · 6H 2 O (0.072 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.105 g), and water (2.5 mL) are placed in a 30 ml two-necked flask and ultrasonicated for 5 minutes. After stirring, an aqueous solution of NaBH 4 (0.020 g) (1.5 mL) was added, and the reaction vessel was vigorously shaken for 2 minutes to form a Ni nanoparticle catalyst.

この二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において120分間攪拌したが、ガス放出は観測されなかった。 The two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, was stirred for 120 minutes at room temperature, outgassing observed It was.

比較例2
容量30 mlの二つ口フラスコにK2PtCl4 (0.038 g)、臭化ヘキサデシルトリメチルアンモニウム(CTAB, 95%)(0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌した後、NaBH4(0.020 g) 水溶液(1.5 mL)を入れ、2分間 激しく反応容器を振とうさせ、Ptナノ粒子触媒を形成させた。
Comparative Example 2
A 30 ml two-necked flask was charged with K 2 PtCl 4 (0.038 g), hexadecyltrimethylammonium bromide (CTAB, 95%) (0.105 g), and water (2.5 mL), and sonicated for 5 minutes. Thereafter, an aqueous NaBH 4 (0.020 g) solution (1.5 mL) was added, and the reaction vessel was vigorously shaken for 2 minutes to form a Pt nanoparticle catalyst.

この二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において120分間攪拌したが、ガス放出は観測されなかった。 The two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, was stirred for 120 minutes at room temperature, outgassing observed It was.

実施例2
容量30 mlの二つ口フラスコにNiCl2・6H2O (0.022 g), K2PtCl4 (0.027 g)、臭化ヘキ
サデシルトリメチルアンモニウム (CTAB, 95%)((0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌したのち、NaBH4(0.020 g) 水溶液(1.5 mL)を入れ、2分間激しく反
応容器を振とうさせ、粒径約5 nmのNi0.59Pt0.41ナノ粒子触媒を形成させた。
Example 2
A 30 ml two-necked flask was charged with NiCl 2 · 6H 2 O (0.022 g), K 2 PtCl 4 (0.027 g), hexadecyltrimethylammonium bromide (CTAB, 95%) ((0.105 g), and water ( 2.5 mL), and ultrasonically stirred for 5 minutes. Then, add NaBH 4 (0.020 g) aqueous solution (1.5 mL), shake the reaction vessel vigorously for 2 minutes, and then introduce Ni 0.59 Pt 0.41 nanoparticles with a particle size of about 5 nm. A catalyst was formed.

この二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入ったトラップを通過し、アンモニアを吸収させたあと、水素及び窒素のみガスビューレットに導入し、放出量を測定した。攪拌開始5分後に3ml、10分後に5.5ml、20分後に11.5ml、50分後に30.5ml、100分後に56ml、150分後に80ml、200分後に96ml、250分後に111.5ml、300分後に122ml、350分後に130mlのガス放出が観測された。 The two-necked flask hydrazine monohydrate in a syringe (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, and stirring was continued at room temperature. The released gas passed through a trap containing 1.0 M hydrochloric acid and absorbed ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 3 ml 5 minutes after the start of stirring, 5.5 ml after 10 minutes, 11.5 ml after 20 minutes, 30.5 ml after 50 minutes, 56 ml after 100 minutes, 80 ml after 150 minutes, 96 ml after 200 minutes, 111.5 ml after 250 minutes, An outgassing of 122 ml was observed after 300 minutes and 130 ml after 350 minutes.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。水素放出量は、原料として用いたヒドラジンに対して2.7倍モルであった。この水素放出量は、水素生成選択率89%に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of hydrogen released was 2.7 times mol of hydrazine used as a raw material. This hydrogen release amount corresponds to a hydrogen production selectivity of 89%.

また、上記した方法で発生したガスをそのまま固体高分子型燃料電池に導入して、燃料電池が作動することを確認した。   In addition, it was confirmed that the gas generated by the above-described method was directly introduced into the solid polymer fuel cell to operate the fuel cell.

実施例3
容量30 mlの二つ口フラスコにNiCl2・6H2O (0.014 g), K2PtCl4 (0.030 g)、臭化ヘキ
サデシルトリメチルアンモニウム (CTAB, 95%)((0.105 g)、及び水(2.5 mL)を入れ、5分間超音波攪拌したのち、NaBH4(0.020 g) 水溶液(1.5 mL)を入れ、2分間激しく反
応容器を振とうさせ、粒径約5 nmのNi0.45Pt0.55ナノ粒子触媒を形成させた。
Example 3
A 30 ml two-necked flask was charged with NiCl 2 · 6H 2 O (0.014 g), K 2 PtCl 4 (0.030 g), hexadecyltrimethylammonium bromide (CTAB, 95%) ((0.105 g), and water ( 2.5 mL), and ultrasonically stirred for 5 minutes, and then added NaBH 4 (0.020 g) aqueous solution (1.5 mL), shaken the reaction vessel vigorously for 2 minutes, and Ni 0.45 Pt 0.55 nanoparticles with a particle size of about 5 nm. A catalyst was formed.

二つ口フラスコにシリンジでヒドラジン一水和物 (H2NNH2・H2O, 99%)(0.1 mL, 1.97 mmol)を入れ、室温において攪拌を続けた。放出ガスは、1.0 M 塩酸の入ったトラップを通過し、アンモニアを吸収させた後、水素及び窒素のみガスビューレットに導入し、放出量を測定した。攪拌開始5分後に3.8ml、10分後に5ml、20分後に8.5ml、50分後に20ml、100分後に40ml、200分後に70ml、300分後に87ml、400分後に95ml、450分後に96mlのガス放出が観測された。 Hydrazine monohydrate syringe double neck flask (H 2 NNH 2 · H 2 O, 99%) (0.1 mL, 1.97 mmol) were charged, and stirring was continued at room temperature. The released gas passed through a trap containing 1.0 M hydrochloric acid to absorb ammonia, and then only hydrogen and nitrogen were introduced into the gas burette, and the released amount was measured. 3.8 ml 5 minutes after the start of stirring, 5 ml after 10 minutes, 8.5 ml after 20 minutes, 20 ml after 50 minutes, 40 ml after 100 minutes, 70 ml after 200 minutes, 87 ml after 300 minutes, 95 ml after 400 minutes, 96 ml after 450 minutes Gas outgassing was observed.

質量分析(MS)を行った結果、放出ガスは水素及び窒素であることが確認できた。ガス放出量は、原料として用いたヒドラジンに対して2.0倍モルであった。このガス放出量は、水素生成選択率62%に相当する。   As a result of mass spectrometry (MS), it was confirmed that the released gas was hydrogen and nitrogen. The amount of gas released was 2.0 times the mol of hydrazine used as a raw material. This gas release amount corresponds to a hydrogen production selectivity of 62%.

また、上記した方法で発生したガスをそのまま固体高分子型燃料電池に導入して、燃料電池が作動することを確認した。   In addition, it was confirmed that the gas generated by the above-described method was directly introduced into the solid polymer fuel cell to operate the fuel cell.

Claims (5)

白金とニッケルの複合金属からなる、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物の分解反応による水素発生用触媒。 A catalyst for hydrogen generation by a decomposition reaction of at least one compound selected from the group consisting of hydrazine and hydrates thereof, comprising a composite metal of platinum and nickel. 白金とニッケルの複合金属が、白金とニッケルの合金、金属間化合物又は固溶体である請求項1に記載の水素発生用触媒。 2. The hydrogen generation catalyst according to claim 1, wherein the composite metal of platinum and nickel is an alloy of platinum and nickel, an intermetallic compound, or a solid solution. 白金とニッケルの複合金属における白金の含有率が1〜99モル%の範囲である請求項1又は2に記載の水素発生用触媒。 The hydrogen generation catalyst according to claim 1 or 2, wherein the platinum content in the composite metal of platinum and nickel is in the range of 1 to 99 mol%. 請求項1〜3のいずれかに記載の水素発生用触媒を、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物に接触させることを特徴とする水素発生方法。 A method for generating hydrogen, comprising contacting the hydrogen generating catalyst according to any one of claims 1 to 3 with at least one compound selected from the group consisting of hydrazine and hydrates thereof. 請求項4の方法によって発生させた水素を燃料電池の水素源として供給することを特徴とする、燃料電池への水素供給方法。 A method for supplying hydrogen to a fuel cell, comprising supplying hydrogen generated by the method of claim 4 as a hydrogen source for the fuel cell.
JP2009274513A 2009-12-02 2009-12-02 Hydrogen generation catalyst and hydrogen generation method Expired - Fee Related JP4982815B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009274513A JP4982815B2 (en) 2009-12-02 2009-12-02 Hydrogen generation catalyst and hydrogen generation method
US12/956,106 US9028793B2 (en) 2009-12-02 2010-11-30 Catalyst for generating hydrogen and method for generating hydrogen
US14/686,382 US9227178B2 (en) 2009-12-02 2015-04-14 Catalyst for generating hydrogen and method for generating hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274513A JP4982815B2 (en) 2009-12-02 2009-12-02 Hydrogen generation catalyst and hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2011115710A true JP2011115710A (en) 2011-06-16
JP4982815B2 JP4982815B2 (en) 2012-07-25

Family

ID=44281691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274513A Expired - Fee Related JP4982815B2 (en) 2009-12-02 2009-12-02 Hydrogen generation catalyst and hydrogen generation method

Country Status (1)

Country Link
JP (1) JP4982815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056289A (en) * 2011-09-07 2013-03-28 National Institute Of Advanced Industrial Science & Technology Catalyst for generating hydrogen and method for generating hydrogen
JP2019093323A (en) * 2017-11-20 2019-06-20 ダイハツ工業株式会社 Hydrazine decomposition catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040602A (en) * 2001-07-30 2003-02-13 Toyota Central Res & Dev Lab Inc Apparatus for producing hydrogen for fuel cell
JP2004244251A (en) * 2003-02-12 2004-09-02 Merit Fuel Cell Kk Hydrogen generator, hydrogen generation method, and fuel cell system using it
WO2006019061A1 (en) * 2004-08-19 2006-02-23 Shinroku Kawasumi Method for driving hydrogen internal combustion engine car
JP2006118022A (en) * 2004-10-25 2006-05-11 Tosoh Corp Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
JP2007269529A (en) * 2006-03-30 2007-10-18 Toyota Tsusho Corp Hydrogen production apparatus
JP2007269514A (en) * 2006-03-30 2007-10-18 Toyota Tsusho Corp Hydrogen production method and hydrogen production apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040602A (en) * 2001-07-30 2003-02-13 Toyota Central Res & Dev Lab Inc Apparatus for producing hydrogen for fuel cell
JP2004244251A (en) * 2003-02-12 2004-09-02 Merit Fuel Cell Kk Hydrogen generator, hydrogen generation method, and fuel cell system using it
WO2006019061A1 (en) * 2004-08-19 2006-02-23 Shinroku Kawasumi Method for driving hydrogen internal combustion engine car
JP2006118022A (en) * 2004-10-25 2006-05-11 Tosoh Corp Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
JP2007269529A (en) * 2006-03-30 2007-10-18 Toyota Tsusho Corp Hydrogen production apparatus
JP2007269514A (en) * 2006-03-30 2007-10-18 Toyota Tsusho Corp Hydrogen production method and hydrogen production apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056289A (en) * 2011-09-07 2013-03-28 National Institute Of Advanced Industrial Science & Technology Catalyst for generating hydrogen and method for generating hydrogen
JP2019093323A (en) * 2017-11-20 2019-06-20 ダイハツ工業株式会社 Hydrazine decomposition catalyst
JP7091056B2 (en) 2017-11-20 2022-06-27 ダイハツ工業株式会社 Manufacturing method of hydrogen side electrode of fuel cell

Also Published As

Publication number Publication date
JP4982815B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US9227178B2 (en) Catalyst for generating hydrogen and method for generating hydrogen
Zhang et al. Facile synthesis of NiPt–CeO2 nanocomposite as an efficient catalyst for hydrogen generation from hydrazine borane
Lu et al. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage
Guo et al. Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride
Günbatar et al. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature
Singh et al. Temperature-induced selectivity enhancement in hydrogen generation from Rh–Ni nanoparticle-catalyzed decomposition of hydrous hydrazine
Wang et al. One-step synthesis of Cu@ FeNi core–shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane
Chen et al. Galvanic replacement synthesis of NiPt/graphene as highly efficient catalysts for hydrogen release from hydrazine and hydrazine borane
Çakanyıldırım et al. Nickel-based bimetallic nanocatalysts in high-extent dehydrogenation of hydrazine borane
Rakap et al. Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution
Jiang et al. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage
Singh et al. Highly-dispersed surfactant-free bimetallic Ni–Pt nanoparticles as high-performance catalyst for hydrogen generation from hydrous hydrazine
Huang et al. Nickel–ceria nanowires embedded in microporous silica: controllable synthesis, formation mechanism, and catalytic applications
Park et al. A highly active and stable palladium catalyst on a gC 3 N 4 support for direct formic acid synthesis under neutral conditions
Caner et al. Atomic layer deposition-SiO2 layers protected PdCoNi nanoparticles supported on TiO2 nanopowders: exceptionally stable nanocatalyst for the dehydrogenation of formic acid
Tong et al. Preparation of monodispersed cobalt–boron spherical nanoparticles and their behavior during the catalytic decomposition of hydrous hydrazine
Fan et al. Cobalt nickel nanoparticles encapsulated within hexagonal boron nitride as stable, catalytic dehydrogenation nanoreactor
Shan et al. Carbon-supported Ni3B nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane
Karatas et al. Catalytic methanolysis and hydrolysis of hydrazine-borane with monodisperse Ru NPs@ nano-CeO2 catalyst for hydrogen generation at room temperature
Netskina et al. Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts
Zhang et al. Facile synthesis of Cu@ CoNi core-shell nanoparticles composites for the catalytic hydrolysis of ammonia borane
Xu et al. Synergistically promoted H2 evolution from dimethylamine-borane and hydrazine monohydrate by simply alloying of Pt/C with Ni
Konopatsky et al. Microstructure and catalytic properties of Fe3O4/BN, Fe3O4 (Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights
JP2007182336A (en) Method of generating hydrogen
JP5751516B2 (en) Hydrogen generation catalyst and hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4982815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees