JP2011112490A - Magnetization measuring device and measurement rod thereof - Google Patents

Magnetization measuring device and measurement rod thereof Download PDF

Info

Publication number
JP2011112490A
JP2011112490A JP2009268792A JP2009268792A JP2011112490A JP 2011112490 A JP2011112490 A JP 2011112490A JP 2009268792 A JP2009268792 A JP 2009268792A JP 2009268792 A JP2009268792 A JP 2009268792A JP 2011112490 A JP2011112490 A JP 2011112490A
Authority
JP
Japan
Prior art keywords
sample
electrodes
magnetization measuring
measuring apparatus
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268792A
Other languages
Japanese (ja)
Other versions
JP5436166B2 (en
Inventor
Junichi Takeya
純一 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009268792A priority Critical patent/JP5436166B2/en
Publication of JP2011112490A publication Critical patent/JP2011112490A/en
Application granted granted Critical
Publication of JP5436166B2 publication Critical patent/JP5436166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform measurement while controlling a carrier concentration by a magnetization measuring device. <P>SOLUTION: In the magnetization measuring device 1 provided with temperature adjusting means 10 and 16, magnetic field generating means 8 and 13, and a magnetic sensor 14, and measuring magnetic susceptibility of a sample, the device includes a pair of electrodes 5 and 22 to which voltage is applied, and an electrolytic solution filling the gap between the electrodes 5 and 22, wherein the sample is disposed on one of the electrodes 5 and 22. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、超伝導材料の特性を測る磁化測定装置に関する。   The present invention relates to a magnetization measuring apparatus for measuring the characteristics of a superconducting material.

超伝導材料を求めて種々の材料を作成し、作成した材料の磁化率や電気抵抗等が測定されている(特許文献1参照)。一般に、酸化物高温超伝導体は、所定の範囲のキャリア濃度において超伝導状態が実現される。このため、ある材料についてキャリア濃度が段階的に異なる試料を複数作成し、キャリア濃度が異なる各試料についてそれぞれ磁化率等の測定を行うことによって、その材料に好適なキャリア濃度が探求されている。   Various materials are prepared in search of a superconducting material, and the magnetic susceptibility, electrical resistance, and the like of the prepared materials are measured (see Patent Document 1). In general, a high-temperature oxide superconductor realizes a superconducting state in a predetermined range of carrier concentration. For this reason, by preparing a plurality of samples having different carrier concentrations stepwise for a certain material and measuring the magnetic susceptibility or the like for each sample having a different carrier concentration, a carrier concentration suitable for the material is sought.

特開2007−123194号公報JP 2007-123194 A

従来、磁化率測定に用いる試料の作成には、ケミカル処理による元素置換法が採用されていたため、キャリア濃度が段階的に異なる複数の試料の作成は非常に手間がかかるという問題があった。   Conventionally, the element substitution method by chemical treatment has been adopted for the preparation of a sample used for magnetic susceptibility measurement. Therefore, there has been a problem that it takes a lot of labor to prepare a plurality of samples having different carrier concentrations in stages.

(1)本発明は、温度調節手段、磁場発生手段、および磁気センサを備えて試料の磁化率を測る磁化測定装置に適用され、電圧が印加される一対の電極と、電極間を満たす電解質溶液とを有し、試料が電極の一方に配されていることを特徴とする。
(2)本発明は、液体ヘリウムによる冷却手段、超伝導磁石、磁場発生手段、温度調節手段、および磁場調節手段を有し、SQUID素子を検出器として試料の磁化率を測る磁化測定装置の測定用ロッドに適用される。そして、電圧が印加される一対の電極と、電極間を満たす電解質溶液とを有し、試料が電極の一方に配されていることを特徴とする。
(1) The present invention is applied to a magnetization measuring device that includes a temperature adjusting means, a magnetic field generating means, and a magnetic sensor and measures the magnetic susceptibility of a sample, and a pair of electrodes to which a voltage is applied and an electrolyte solution that fills between the electrodes And the sample is disposed on one of the electrodes.
(2) The present invention is a measurement of a magnetization measuring apparatus having a cooling means with liquid helium, a superconducting magnet, a magnetic field generating means, a temperature adjusting means, and a magnetic field adjusting means, and measuring the magnetic susceptibility of a sample using a SQUID element as a detector Applicable to rods. And it has a pair of electrodes to which a voltage is applied and an electrolyte solution that fills between the electrodes, and the sample is arranged on one of the electrodes.

本発明によれば、一つの試料に対してキャリア濃度を制御しながら磁化測定し得る。   According to the present invention, magnetization can be measured for one sample while controlling the carrier concentration.

本発明の一実施の形態による磁化測定装置を説明する図である。It is a figure explaining the magnetization measuring apparatus by one embodiment of this invention. 測定用ロッドを拡大した断面図である。It is sectional drawing to which the rod for measurement was expanded. 測定処理の一例を説明するフローチャートである。It is a flowchart explaining an example of a measurement process. 他の測定処理の一例を説明するフローチャートである。It is a flowchart explaining an example of another measurement process. 別の測定処理の一例を説明するフローチャートである。It is a flowchart explaining an example of another measurement process. 測定結果を例示する図である。It is a figure which illustrates a measurement result.

以下、図面を参照して本発明を実施するための形態について説明する。図1は、本発明の一実施の形態による磁化測定装置を説明する図である。図1において、磁化測定装置1は、公知のMPMS(Magnetic Property Measurement Systems:磁化測定装置,米国カンタムデザイン社製)の測定用ロッドを本実施形態による測定用ロッド5に置き換えた上で、後述するコネクタ6、電圧計11および電圧源12を付加した構成を有する。測定用ロッド5は、磁化測定装置1に試料を装着するための部材である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a magnetization measuring apparatus according to an embodiment of the present invention. In FIG. 1, a magnetization measuring apparatus 1 is described later after replacing a measuring rod of a known MPMS (Magnetic Property Measurement Systems: magnetization measuring apparatus, manufactured by Quantum Design, USA) with a measuring rod 5 according to the present embodiment. The connector 6, the voltmeter 11 and the voltage source 12 are added. The measuring rod 5 is a member for mounting a sample on the magnetization measuring apparatus 1.

磁化測定装置1は、液体ヘリウムで超伝導磁石13とSQUID素子14を冷却しながら試料の温度や磁場を制御して、試料の磁化率、磁化曲線、およびマイスナー効果の測定等を行う装置である。冷却用の液体ヘリウムで満たされる容器2に試料挿入用の開口3が設けられており、測定対象の磁性試料(高温超伝導体)を装着した測定用ロッド5を該開口3から出し入れするように構成されている。そして、挿入された測定用ロッド5に装着した試料によって発生する微小磁場を、超伝導体のジョセフソン効果を応用したSQUID素子14で検出する。   The magnetization measuring device 1 is a device that controls the temperature and magnetic field of a sample while cooling the superconducting magnet 13 and the SQUID element 14 with liquid helium, and measures the magnetic susceptibility, magnetization curve, and Meissner effect of the sample. . An opening 3 for inserting a sample is provided in a container 2 filled with liquid helium for cooling, and a measuring rod 5 fitted with a magnetic sample (high temperature superconductor) to be measured is inserted into and removed from the opening 3. It is configured. Then, the micro magnetic field generated by the sample attached to the inserted measuring rod 5 is detected by the SQUID element 14 to which the Josephson effect of the superconductor is applied.

磁化測定装置1は、上述した測定用ロッド5、コネクタ6、電圧計11、電圧源12、容器2、超伝導磁石13およびSQUID素子14の他に、磁場計測部7と、磁場調節部8と、温度計測部9と、温度調節部10と、制御装置4と、ヒータ16とを有する。磁場調節部8は、制御装置4からの指示に応じた電流を超伝導磁石13に流すことにより、測定用ロッド5の先端部が位置する試料空間15に磁場を発生させる。磁場計測部7は、磁場調節部8によって発生されている磁場を計測し、計測結果を制御装置4へ送出する。具体的には、磁場調節部8が上記超伝導磁石13に流している電流値に所定の係数を掛けることにより、発生されている磁場を算出する。   In addition to the measurement rod 5, the connector 6, the voltmeter 11, the voltage source 12, the container 2, the superconducting magnet 13, and the SQUID element 14, the magnetization measuring device 1 includes a magnetic field measuring unit 7, a magnetic field adjusting unit 8, The temperature measuring unit 9, the temperature adjusting unit 10, the control device 4, and the heater 16 are included. The magnetic field adjustment unit 8 generates a magnetic field in the sample space 15 in which the tip of the measuring rod 5 is located by flowing a current according to an instruction from the control device 4 to the superconducting magnet 13. The magnetic field measurement unit 7 measures the magnetic field generated by the magnetic field adjustment unit 8 and sends the measurement result to the control device 4. Specifically, the generated magnetic field is calculated by multiplying the current value flowing through the superconducting magnet 13 by the magnetic field adjusting unit 8 by a predetermined coefficient.

温度調節部10は、制御装置4からの指示に応じた電流をヒータ16に流すことにより、試料空間15を液体ヘリウムの温度より高い所定温度に調節する。温度計測部9は、温度センサ(不図示)の検出信号に基づいて試料空間15の温度を計測し、計測結果を制御装置4へ送出する。電圧源12は、制御装置4からの指示に応じた直流電圧を発生し、測定用ロッド5の試料に印加する電圧を供給する。電圧計11は、試料に印加されている電圧を計測し、計測結果を制御装置4へ送る。コネクタ6は、測定用ロッド5と電圧源12とを接続する。   The temperature adjustment unit 10 adjusts the sample space 15 to a predetermined temperature higher than the temperature of liquid helium by flowing a current according to an instruction from the control device 4 to the heater 16. The temperature measurement unit 9 measures the temperature of the sample space 15 based on a detection signal from a temperature sensor (not shown), and sends the measurement result to the control device 4. The voltage source 12 generates a DC voltage according to an instruction from the control device 4 and supplies a voltage to be applied to the sample of the measuring rod 5. The voltmeter 11 measures the voltage applied to the sample and sends the measurement result to the control device 4. The connector 6 connects the measuring rod 5 and the voltage source 12.

制御装置4は、たとえばパーソナルコンピュータによって構成される。制御装置4は、磁化測定プログラムに基づいて試料に印加する電圧、試料空間15の温度、および試料空間15の磁場を制御しながら、測定用ロッド5に装着され容器2内に挿入された試料による微小磁場を検出し、この検出信号を入力して測定処理を行う。   The control device 4 is constituted by a personal computer, for example. The control device 4 controls the voltage applied to the sample, the temperature of the sample space 15, and the magnetic field of the sample space 15 based on the magnetization measurement program, while the sample is attached to the measurement rod 5 and inserted into the container 2. A minute magnetic field is detected, and this detection signal is input to perform measurement processing.

図2は、試料空間15に位置する測定用ロッド5の先端部を拡大した断面図である。図2において、測定用ロッド5への配線材23aおよび配線材23bは、それぞれコネクタ6を介して電圧源12(図1)と接続されている。円筒状の測定用ロッド5は、たとえば真鍮製の中空心棒によって構成される。長さは約1m、外形は約4mmである。測定用ロッド5の外周部にセパレータ21を巻き、セパレータ21の上から試料を付着させた薄膜状の導電体22を巻く。本実施形態では、シガレットペーパーでセパレータ21を構成し、カーボンテープの粘着面に粉状の試料をまぶして導電体22とし、測定用ロッド5の外周とカーボンテープとの間にセパレータ21を挟んでカーボンテープの粘着面側(すなわち試料を付着させた面)をセパレータ21側にして筒状に巻く。導電体22の幅は約1cm、測定用ロッド5の外周と導電体22との間隔は約1mmである。   FIG. 2 is an enlarged cross-sectional view of the tip of the measuring rod 5 located in the sample space 15. In FIG. 2, the wiring material 23 a and the wiring material 23 b to the measuring rod 5 are connected to the voltage source 12 (FIG. 1) via the connector 6. The cylindrical measuring rod 5 is constituted by a hollow mandrel made of brass, for example. The length is about 1m and the outer shape is about 4mm. A separator 21 is wound around the outer periphery of the measuring rod 5, and a thin-film conductor 22 with a sample attached thereto is wound around the separator 21. In this embodiment, the separator 21 is made of cigarette paper, and a powder sample is applied to the adhesive surface of the carbon tape to form a conductor 22, and the separator 21 is sandwiched between the outer periphery of the measuring rod 5 and the carbon tape. The carbon tape is wound in a cylindrical shape with the adhesive surface side (that is, the surface to which the sample is attached) facing the separator 21 side. The width of the conductor 22 is about 1 cm, and the distance between the outer circumference of the measuring rod 5 and the conductor 22 is about 1 mm.

試料は、たとえば、銅酸化物などの結晶を乳鉢上で粉砕し、平均粒径約10μmにしたものを用いる。粒径は不揃いでよいが、小さい方が好ましい。また、測定用ロッド5の外周部と導電体22との間の隙間に電解質溶液(たとえば、LiClO4のポリカーボネート溶液)をしみ込ませる。電解質溶液が毛細管現象によってしみ込み、該溶液が測定用ロッド5の外表面と導電体22の粘着面側との間の隙間に保持される。なお、セパレータ21は、電解質溶液内で電離したイオンを通すが粉状試料は通さない。   As the sample, for example, a crystal made of copper oxide or the like crushed in a mortar to have an average particle diameter of about 10 μm is used. The particle size may be uneven, but a smaller one is preferred. Further, an electrolyte solution (for example, a LiClO4 polycarbonate solution) is soaked in the gap between the outer periphery of the measuring rod 5 and the conductor 22. The electrolyte solution penetrates by capillary action, and the solution is held in the gap between the outer surface of the measuring rod 5 and the adhesive surface side of the conductor 22. The separator 21 passes ions ionized in the electrolyte solution, but does not pass a powder sample.

導電体22と測定用ロッド5とでそれぞれ電極を構成し、両者間に電圧を印加する。具体的には、導電体22に配線材23bを接続し、測定用ロッド5内を経由した配線材23bの他端を、コネクタ6を介して電圧源12(図1)の負極端子と接続する。また、測定用ロッド5に配線材23aを接続し、配線材23aの他端はコネクタ6を介して電圧源12(図1)の正極端子と接続する。   The conductor 22 and the measuring rod 5 constitute electrodes, respectively, and a voltage is applied between them. Specifically, the wiring member 23 b is connected to the conductor 22, and the other end of the wiring member 23 b that passes through the measurement rod 5 is connected to the negative terminal of the voltage source 12 (FIG. 1) via the connector 6. . Further, the wiring member 23a is connected to the measuring rod 5, and the other end of the wiring member 23a is connected to the positive terminal of the voltage source 12 (FIG. 1) via the connector 6.

測定用ロッド5の上部(コネクタ6側)においてシール材25を設け、測定用ロッド5の上部から内側への外部のガスや水分の侵入を防止する。また、上述した導電体22を覆うように防護ケース24をかぶせ、ケース24内にヘリウムガスを充填させた上で該ケース24と測定用ロッド5との隙間を覆うことにより、試料空間15への外部のガスや水分の侵入を防止する。ヘリウムガスを充填するのは、ケース内の水分を排除するためである。   A sealing material 25 is provided on the upper portion of the measuring rod 5 (on the connector 6 side) to prevent intrusion of external gas and moisture from the upper portion of the measuring rod 5 to the inside. Further, the protective case 24 is covered so as to cover the conductor 22 described above, and the case 24 is filled with helium gas, and then the gap between the case 24 and the measuring rod 5 is covered, so that the sample space 15 is covered. Prevent ingress of external gases and moisture. The reason why helium gas is filled is to eliminate moisture in the case.

上述したように、上記電解質溶液中に存在するイオンはセパレータ21のような濾材を通して移動自在である。電極(導電体22および測定用ロッド5)間に電圧を印加することで、粉状試料の表面にイオンが吸着する。吸着するイオンの量が印加電圧に依存することから、印加電圧を変化させることによって粉状試料に付着するイオン濃度を制御できる。すなわち、磁化測定装置1に装着されている試料のキャリア濃度を制御できる。   As described above, ions existing in the electrolyte solution can move through the filter medium such as the separator 21. By applying a voltage between the electrodes (conductor 22 and measuring rod 5), ions are adsorbed on the surface of the powder sample. Since the amount of ions adsorbed depends on the applied voltage, the concentration of ions attached to the powder sample can be controlled by changing the applied voltage. That is, the carrier concentration of the sample mounted on the magnetization measuring apparatus 1 can be controlled.

本実施形態では、上述のように印加電圧を変えてキャリア量を制御する電界誘起制御手法と磁化測定とを組み合わせ、試料を交換することなしに適宜キャリア濃度を異ならせて磁化測定を行う。   In the present embodiment, as described above, the magnetic field measurement is performed by combining the electric field induction control method for controlling the carrier amount by changing the applied voltage and the magnetization measurement, and appropriately changing the carrier concentration without exchanging the sample.

<キャリア濃度を維持して磁化率の温度依存性を測る>
図3は、本実施形態による測定処理の一例を説明するフローチャートである。制御装置4は、所定のキャリア濃度において磁化率の温度変化を測定する場合、図3に例示する処理を行うプログラムを起動させる。図3のステップS10において、制御装置4は、温度範囲がプログラムされているか否かを判定する。制御装置4は、測定する温度範囲がセットされている場合にステップS10を肯定判定してステップS20へ進む。制御装置4は、測定する温度範囲がセットされていない場合には、温度範囲のセットを促すメッセージを不図示のモニタに表示させて判定処理を繰り返す。
<Measure temperature dependence of magnetic susceptibility while maintaining carrier concentration>
FIG. 3 is a flowchart for explaining an example of the measurement process according to the present embodiment. When measuring the temperature change of the magnetic susceptibility at a predetermined carrier concentration, the control device 4 activates a program for performing the process illustrated in FIG. In step S10 of FIG. 3, the control device 4 determines whether or not the temperature range is programmed. When the temperature range to be measured is set, the control device 4 makes a positive determination in step S10 and proceeds to step S20. When the temperature range to be measured is not set, the control device 4 displays a message for prompting the setting of the temperature range on a monitor (not shown) and repeats the determination process.

ステップS20において、制御装置4は電圧源12へ指示を送り、上記電極間、すなわち試料に対する印加電圧を所定値にセットさせてステップS30へ進む。これにより、試料のキャリア濃度が印加電圧に対応する濃度に維持される。   In step S20, the control device 4 sends an instruction to the voltage source 12, sets the applied voltage between the electrodes, that is, the sample to a predetermined value, and proceeds to step S30. Thereby, the carrier concentration of the sample is maintained at a concentration corresponding to the applied voltage.

ステップS30において、制御装置4は温度調節部10へ指示を送り、試料空間15の温度をプログラミングされている温度にセットさせてステップS40へ進む。ステップS40において、制御装置4は、磁場調節部8および磁場計測部7へ指示を送り、磁化率を測定させてステップS50へ進む。   In step S30, the control device 4 sends an instruction to the temperature adjusting unit 10, sets the temperature of the sample space 15 to the programmed temperature, and proceeds to step S40. In step S40, the control device 4 sends an instruction to the magnetic field adjustment unit 8 and the magnetic field measurement unit 7, measures the magnetic susceptibility, and proceeds to step S50.

ステップS50において、制御装置4は、全温度範囲において測定を終了したか否かを判定する。制御装置4は、上記プログラムされている温度範囲での測定を終了している場合にステップS50を肯定判定して図3による処理を終了する。制御装置4は、上記プログラムされている温度範囲での測定を終了していない場合には、ステップS50を否定判定してステップS30へ戻る。ステップS30へ戻る場合は、次の温度に設定して上述した処理を繰り返す。   In step S50, the control device 4 determines whether or not the measurement has been completed in the entire temperature range. When the measurement in the programmed temperature range is finished, the control device 4 makes a positive determination in step S50 and finishes the process shown in FIG. If the measurement in the programmed temperature range is not finished, the control device 4 makes a negative determination in step S50 and returns to step S30. When returning to step S30, it sets to the next temperature and repeats the process mentioned above.

<温度を維持して磁化率のキャリア濃度依存性を測る>
図4は、本実施形態による他の測定処理の一例を説明するフローチャートである。制御装置4は、所定の温度において磁化率のキャリア濃度依存性を測定する場合、図4に例示する処理を行うプログラムを起動させる。図4のステップS110において、制御装置4は、電圧範囲がプログラムされているか否かを判定する。制御装置4は、測定するキャリア濃度範囲(すなわち印加する電圧範囲)がセットされている場合にステップS110を肯定判定してステップS120へ進む。制御装置4は、測定するキャリア濃度範囲(すなわち印加する電圧範囲)がセットされていない場合には、電圧範囲のセットを促すメッセージを不図示のモニタに表示させて判定処理を繰り返す。
<Measure the carrier concentration dependence of magnetic susceptibility while maintaining temperature>
FIG. 4 is a flowchart illustrating an example of another measurement process according to this embodiment. When measuring the carrier concentration dependence of the magnetic susceptibility at a predetermined temperature, the control device 4 activates a program for performing the process illustrated in FIG. In step S110 of FIG. 4, the control device 4 determines whether or not the voltage range is programmed. When the carrier concentration range to be measured (that is, the voltage range to be applied) is set, the control device 4 makes a positive determination in step S110 and proceeds to step S120. When the carrier concentration range to be measured (that is, the voltage range to be applied) is not set, the control device 4 displays a message prompting the setting of the voltage range on a monitor (not shown) and repeats the determination process.

ステップS120において、制御装置4は温度調節部10へ指示を送り、試料空間15を所定の温度にセットさせてステップS130へ進む。これにより、試料が所定の温度に維持される。   In step S120, the control device 4 sends an instruction to the temperature adjustment unit 10, sets the sample space 15 to a predetermined temperature, and proceeds to step S130. Thereby, the sample is maintained at a predetermined temperature.

ステップS130において、制御装置4は電圧源12へ指示を送り、試料に対する印加電圧をプログラミングされている電圧値にセットさせてステップS140へ進む。ステップS140において、制御装置4は、磁場調節部8および磁場計測部7へ指示を送り、磁化率を測定させてステップS150へ進む。   In step S130, the control device 4 sends an instruction to the voltage source 12, sets the voltage applied to the sample to the programmed voltage value, and proceeds to step S140. In step S140, the control device 4 sends an instruction to the magnetic field adjustment unit 8 and the magnetic field measurement unit 7, measures the magnetic susceptibility, and proceeds to step S150.

ステップS150において、制御装置4は、全電圧範囲において測定を終了したか否かを判定する。制御装置4は、上記プログラムされている電圧範囲での測定を終了している場合にステップS150を肯定判定して図4による処理を終了する。制御装置4は、上記プログラムされている電圧範囲での測定を終了していない場合には、ステップS150を否定判定してステップS130へ戻る。ステップS130へ戻る場合は、次の印加電圧に設定して上述した処理を繰り返す。   In step S150, the control device 4 determines whether or not the measurement has been completed in the entire voltage range. When the measurement in the programmed voltage range is finished, the control device 4 makes an affirmative decision in step S150 and finishes the process shown in FIG. If the measurement in the programmed voltage range is not completed, the control device 4 makes a negative determination in step S150 and returns to step S130. When returning to step S130, it sets to the next applied voltage and repeats the process mentioned above.

<磁化率の温度依存性を、キャリア濃度を変えながら測る>
図5は、本実施形態によるさらに別の測定処理の一例を説明するフローチャートである。制御装置4は、磁化率の温度依存性をキャリア濃度を変えながら測定する場合、図5に例示する処理を行うプログラムを起動させる。図5のステップS10Aにおいて、制御装置4は、温度範囲および電圧範囲がプログラムされているか否かを判定する。制御装置4は、測定する温度範囲がセットされており、かつ測定するキャリア濃度範囲(すなわち印加する電圧範囲)がセットされている場合にステップS10Aを肯定判定してステップS130へ進む。制御装置4は、測定する温度範囲または測定するキャリア濃度範囲(すなわち印加する電圧範囲)がセットされていない場合には、セットを促すメッセージを不図示のモニタに表示させて判定処理を繰り返す。
<Measure temperature dependence of magnetic susceptibility while changing carrier concentration>
FIG. 5 is a flowchart illustrating an example of still another measurement process according to the present embodiment. When the temperature dependence of the magnetic susceptibility is measured while changing the carrier concentration, the control device 4 activates a program for performing the process illustrated in FIG. In step S10A of FIG. 5, the control device 4 determines whether the temperature range and the voltage range are programmed. When the temperature range to be measured is set and the carrier concentration range to be measured (that is, the voltage range to be applied) is set, the control device 4 makes a positive determination in step S10A and proceeds to step S130. When the temperature range to be measured or the carrier concentration range to be measured (that is, the voltage range to be applied) is not set, the control device 4 displays a message for prompting the setting on a monitor (not shown) and repeats the determination process.

ステップS130において、制御装置4は電圧源12へ指示を送り、試料に対する印加電圧をプログラミングされている電圧値にセットさせてステップS30へ進む。   In step S130, the control device 4 sends an instruction to the voltage source 12, sets the voltage applied to the sample to the programmed voltage value, and proceeds to step S30.

ステップS30において、制御装置4は温度調節部10へ指示を送り、試料空間15の温度をプログラミングされている温度にセットさせてステップS40へ進む。ステップS40において、制御装置4は、磁場調節部8および磁場計測部7へ指示を送り、磁化率を測定させてステップS50へ進む。   In step S30, the control device 4 sends an instruction to the temperature adjusting unit 10, sets the temperature of the sample space 15 to the programmed temperature, and proceeds to step S40. In step S40, the control device 4 sends an instruction to the magnetic field adjustment unit 8 and the magnetic field measurement unit 7, measures the magnetic susceptibility, and proceeds to step S50.

ステップS50において、制御装置4は、全温度範囲において測定を終了したか否かを判定する。制御装置4は、上記プログラムされている温度範囲での測定を終了している場合にステップS50を肯定判定してステップS60へ進む。制御装置4は、上記プログラムされている温度範囲での測定を終了していない場合には、ステップS50を否定判定してステップS30へ戻る。ステップS30へ戻る場合は、次の温度に設定して上述した処理を繰り返す。   In step S50, the control device 4 determines whether or not the measurement has been completed in the entire temperature range. When the measurement in the programmed temperature range is finished, the control device 4 makes a positive determination in step S50 and proceeds to step S60. If the measurement in the programmed temperature range is not finished, the control device 4 makes a negative determination in step S50 and returns to step S30. When returning to step S30, it sets to the next temperature and repeats the process mentioned above.

ステップS60において、制御装置4は、全電圧範囲において測定を終了したか否かを判定する。制御装置4は、上記プログラムされている電圧範囲での測定を終了している場合にステップS60を肯定判定して図5による処理を終了する。制御装置4は、上記プログラムされている電圧範囲での測定を終了していない場合には、ステップS60を否定判定してステップS130へ戻る。ステップS130へ戻る場合は、次の印加電圧に設定して上述した処理を繰り返す。   In step S60, the control device 4 determines whether or not the measurement has been completed in the entire voltage range. When the measurement in the programmed voltage range is finished, the control device 4 makes a positive determination in step S60 and finishes the process shown in FIG. If the measurement in the programmed voltage range is not completed, the control device 4 makes a negative determination in step S60 and returns to step S130. When returning to step S130, it sets to the next applied voltage and repeats the process mentioned above.

図6は、磁化測定装置1による測定結果を例示する図である。横軸は試料の温度を表し、縦軸は磁化率を表す。一般に、超伝導転移が生じると磁化率がステップ状に変動する。超伝導材料としての新しい物質開発において、このような電子相転移が生じるキャリア濃度を特定してからそのキャリア濃度で超伝導材料を作成すれば、電子相転移が生じるか否かが不明のままでキャリア濃度が段階的に異なる幾多の材料を作成する場合に比べて、労力の削減や時間の短縮に極めて有効である。   FIG. 6 is a diagram illustrating a measurement result obtained by the magnetization measuring apparatus 1. The horizontal axis represents the temperature of the sample, and the vertical axis represents the magnetic susceptibility. In general, when a superconducting transition occurs, the magnetic susceptibility fluctuates stepwise. In the development of new materials as superconducting materials, it is unclear whether or not electronic phase transitions will occur if a superconducting material is created at that carrier concentration after identifying the carrier concentration at which such electronic phase transitions occur. Compared with the case where many materials having different carrier concentrations are produced step by step, it is extremely effective in reducing labor and time.

以上説明した実施形態によれば、次の作用効果が得られる。
(1)磁化測定する試料のキャリア濃度を電界誘起制御するように構成したので、磁化測定装置1にセットした試料を交換することなしに、キャリア濃度が異なる試料に対する磁化測定が可能になる。また、ケミカル処理を行う場合と異なり、結晶構造の乱れの影響が含まれることがないので、複雑な電子相転移が現れることもない。
According to the embodiment described above, the following operational effects can be obtained.
(1) Since the configuration is such that the carrier concentration of a sample to be measured for magnetization is controlled by electric field induction, the magnetization measurement for samples having different carrier concentrations can be performed without replacing the sample set in the magnetization measuring apparatus 1. Further, unlike the case where chemical treatment is performed, the influence of the disorder of the crystal structure is not included, so that a complicated electronic phase transition does not appear.

(2)測定対象試料を粉砕して粉状にしたので、試料の比表面積が広くなる。これにより、磁化測定における感度が高まるので、試料の使用量が少量に抑えられる。
(3)導電体22の粘着面に粉状にした試料を付着させたので、試料が遊離するのを防止できる。
(2) Since the sample to be measured is pulverized and powdered, the specific surface area of the sample is increased. Thereby, since the sensitivity in magnetization measurement increases, the usage-amount of a sample is restrained to a small quantity.
(3) Since the powdered sample is attached to the adhesive surface of the conductor 22, it is possible to prevent the sample from being liberated.

(4)電極間を狭くすることによって毛細管現象を引き起こし、電解質溶液が電極間に留まるように構成したので、電解質溶液を少量に抑えることができる。
(5)電極間にセパレータ21を挟んだので、狭くした電極間の短絡防止に役立つ。
(4) Since the capillary phenomenon is caused by narrowing the space between the electrodes and the electrolyte solution stays between the electrodes, the electrolyte solution can be suppressed to a small amount.
(5) Since the separator 21 is sandwiched between the electrodes, it helps to prevent a short circuit between the narrowed electrodes.

(6)棒状の金属性の測定用ロッド5の表面の周りを環状の導電体22で覆う構成にしたので、平行平板電極で構成する場合に比べて狭い試料空間15に適用できる。
(7)上記(1)〜(6)を有する測定用ロッド5を、市販され広く使用されているMPMSの標準の測定用ロッドと同様のサイズで構成し、標準の測定用ロッドに代えて装着可能な構成にしたので、磁化測定装置全体を新たに設計・製作する場合に比べて安価に構成できる。
(6) Since the circumference of the surface of the rod-like metallic measuring rod 5 is covered with the annular conductor 22, it can be applied to a narrow sample space 15 as compared with the case where it is constituted by parallel plate electrodes.
(7) The measuring rod 5 having the above (1) to (6) is configured in the same size as the standard measuring rod of MPMS that is commercially available and widely used, and is mounted instead of the standard measuring rod. Since the configuration is possible, the entire magnetization measuring device can be configured at a lower cost than when newly designed and manufactured.

(変形例1)
電解質溶液として、たとえばリチウムイオン二次電池に用いられるイオン液体(特開2009−21060号公報参照)を用いるとさらに好適である。この理由は、電気二重層を発生させることによって電荷が集中する部分を作り出せるからである。すなわち、電極間に電圧を加えるとイオン液体でイオンの移動が起こり、イオン液体と粉状試料および導電体22間の界面に陽陰イオンが蓄積された両電荷層(電気二重層)が現れる。この電気二重層の距離は約1nmと近接しているため、低い電圧を印加した場合でも大きな電界が得られることから、効率よくキャリア濃度を変化させることができる。
(Modification 1)
As the electrolyte solution, it is more preferable to use, for example, an ionic liquid used in a lithium ion secondary battery (see JP 2009-21060). The reason for this is that a portion where charges are concentrated can be created by generating an electric double layer. That is, when a voltage is applied between the electrodes, ion movement occurs in the ionic liquid, and both charge layers (electric double layers) in which positive and negative ions are accumulated appear at the interface between the ionic liquid, the powder sample, and the conductor 22. Since the distance of this electric double layer is close to about 1 nm, a large electric field can be obtained even when a low voltage is applied, so that the carrier concentration can be changed efficiently.

(変形例2)
図3において温度を変化させる方向は、低温側から高温側へ変化させても、高温側から低温側へ変化させてもよい。また、両方向から変化させる場合の測定をそれぞれ行い、両測定結果を照合するようにしてもよい。図5の場合においても同様である。
(Modification 2)
In FIG. 3, the direction in which the temperature is changed may be changed from the low temperature side to the high temperature side, or may be changed from the high temperature side to the low temperature side. Alternatively, measurement may be performed when changing from both directions, and the results of both measurements may be collated. The same applies to the case of FIG.

(変形例3)
図4において印加電圧を変化させる方向は、低電圧側から高電圧側へ変化させても、高電圧側から低電圧側へ変化させてもよい。また、両方向から変化させる場合の測定をそれぞれ行い、両測定結果を照合するようにしてもよい。図5の場合においても同様である。
(Modification 3)
In FIG. 4, the direction in which the applied voltage is changed may be changed from the low voltage side to the high voltage side, or may be changed from the high voltage side to the low voltage side. Alternatively, measurement may be performed when changing from both directions, and the results of both measurements may be collated. The same applies to the case of FIG.

試料空間15の温度を変化させる場合において、イオン液体などの電解質溶液が固化すると印加電圧を変えてもキャリア濃度が変わらなくなる。このため、電解質溶液が固化する温度より低い温度でキャリア濃度を変化させたい場合は、一旦試料空間15の温度を上げて電解質溶液を融解させてから印加電圧を変化させる。そして、電圧変更後に試料空間15の温度を元の温度まで下げるという処理を繰り返す。   When the temperature of the sample space 15 is changed, when the electrolyte solution such as an ionic liquid is solidified, the carrier concentration does not change even if the applied voltage is changed. For this reason, when it is desired to change the carrier concentration at a temperature lower than the temperature at which the electrolyte solution solidifies, the applied voltage is changed after the temperature of the sample space 15 is raised to melt the electrolyte solution. Then, the process of lowering the temperature of the sample space 15 to the original temperature after the voltage change is repeated.

(変形例4)
電極の構成として、測定用ロッド5の周りを導電体22で環状に覆う構成例を説明したが、試料空間15に挿入可能であれば、上記実施形態の電極を平板状のものに置き代えてもよい。平板電極の場合は、極板間にセパレータを挟んだ平板電極を電解質溶液に浸す。なお、毛細管現象によって両極板間に電解質溶液をしみ込ませ、保持させるようにしてよいのはいうまでもない。
(Modification 4)
As an example of the electrode configuration, the configuration example in which the circumference of the measuring rod 5 is annularly covered with the conductor 22 has been described. However, if the electrode can be inserted into the sample space 15, the electrode of the above embodiment is replaced with a flat plate. Also good. In the case of a plate electrode, a plate electrode with a separator sandwiched between electrode plates is immersed in the electrolyte solution. Needless to say, the electrolyte solution may be soaked and held between the two electrodes by capillary action.

(変形例5)
セパレータ21としてシガレットペーパーを用い、毛細管現象によって電解質溶液を測定用ロッド5の外表面と導電体22との隙間に保持する例を説明した。この代わりに、一般の電池に用いられるセパレータのように、イオン透過性と電解質溶液の保持性の双方を備えたものを用いることもできる。
(Modification 5)
An example in which cigarette paper is used as the separator 21 and the electrolyte solution is held in the gap between the outer surface of the measuring rod 5 and the conductor 22 by capillary action has been described. Instead, a separator having both ion permeability and electrolyte solution retention, such as a separator used in a general battery, can be used.

以上の説明はあくまで一例であり、上記の実施形態の構成に何ら限定されるものではない。測定用ロッド5のサイズや構成等、導電体22のサイズや構成等、および電解質溶液の種類については、上述した構成の通りでなくても構わない。また、上記実施形態では磁性試料を負極側に配する例を説明したが、正極側に配する構成にすることもできる。   The above description is merely an example, and is not limited to the configuration of the above embodiment. The size and configuration of the measuring rod 5, the size and configuration of the conductor 22, and the type of the electrolyte solution may not be as described above. Moreover, although the example which distribute | arranges a magnetic sample to the negative electrode side was demonstrated in the said embodiment, it can also be set as the structure distribute | arranged to the positive electrode side.

1…磁化測定装置
2…容器
3…開口
4…制御装置
5…測定用ロッド
6…コネクタ
7…磁場計測部
8…磁場調節部
9…温度計測部
10…温度調節部
11…電圧計
12…電圧源
13…超伝導磁石
14…SQUID素子
16…ヒータ
21…セパレータ
22…導電体
23a,23b…配線材
24…ケース
25…シール材
DESCRIPTION OF SYMBOLS 1 ... Magnetization measuring apparatus 2 ... Container 3 ... Opening 4 ... Control apparatus 5 ... Measuring rod 6 ... Connector 7 ... Magnetic field measurement part 8 ... Magnetic field adjustment part 9 ... Temperature measurement part 10 ... Temperature adjustment part 11 ... Voltmeter 12 ... Voltage Source 13 ... Superconducting magnet 14 ... SQUID element 16 ... Heater 21 ... Separator 22 ... Conductors 23a, 23b ... Wiring material 24 ... Case 25 ... Sealing material

Claims (8)

温度調節手段、磁場発生手段、および磁気センサを備えて試料の磁化率を測る磁化測定装置において、
電圧が印加される一対の電極と、
前記電極間を満たす電解質溶液とを有し、
前記試料が前記電極の一方に配されていることを特徴とする磁化測定装置。
In a magnetization measuring apparatus that includes a temperature adjusting means, a magnetic field generating means, and a magnetic sensor and measures the magnetic susceptibility of a sample,
A pair of electrodes to which a voltage is applied;
An electrolyte solution filling between the electrodes,
A magnetization measuring apparatus, wherein the sample is disposed on one of the electrodes.
請求項1に記載の磁化測定装置において、
前記電極は直流電圧が印加され、
前記試料は前記電極の正極側または負極側に配されるとともに前記電解質溶液に浸されていることを特徴とする磁化測定装置。
The magnetization measuring apparatus according to claim 1,
The electrode is applied with a DC voltage,
The sample is arranged on the positive electrode side or the negative electrode side of the electrode and immersed in the electrolyte solution.
請求項2に記載の磁化測定装置において、
前記試料は粉状にされていることを特徴とする磁化測定装置。
The magnetization measuring apparatus according to claim 2, wherein
The magnetization measuring apparatus, wherein the sample is powdered.
請求項3に記載の磁化測定装置において、
前記粉状の試料は、前記一方の電極の表面に付着されていることを特徴とする磁化測定装置。
The magnetization measuring apparatus according to claim 3.
The powder measurement sample is attached to a surface of the one electrode.
請求項2〜4のいずれか一項に記載の磁化測定装置において、
前記一対の電極の間隔は、両電極間に前記電解質溶液を毛細管現象で保持する間隔であることを特徴とする磁化測定装置。
In the magnetization measuring device according to any one of claims 2 to 4,
The distance between the pair of electrodes is a distance for holding the electrolyte solution between the electrodes by capillary action.
請求項2〜5のいずれか一項に記載の磁化測定装置において、
前記一対の電極間にセパレータを挟むことを特徴とする磁化測定装置。
In the magnetization measuring device according to any one of claims 2 to 5,
A magnetization measuring apparatus, wherein a separator is sandwiched between the pair of electrodes.
請求項1〜6のいずれか一項に記載の磁化測定装置において、
前記電解質溶液はイオン液体電解質であることを特徴とする磁化測定装置。
In the magnetization measuring device according to any one of claims 1 to 6,
The magnetization measuring apparatus, wherein the electrolyte solution is an ionic liquid electrolyte.
液体ヘリウムによる冷却手段、超伝導磁石、磁場発生手段、温度調節手段、および磁場調節手段を有し、SQUID素子を検出器として試料の磁化率を測る磁化測定装置の測定用ロッドであって、
電圧が印加される一対の電極と、
前記電極間を満たす電解質溶液とを有し、
前記試料が前記電極の一方に配されていることを特徴とする磁化測定装置の測定用ロッド。
A measuring rod of a magnetization measuring apparatus that has a cooling means with liquid helium, a superconducting magnet, a magnetic field generating means, a temperature adjusting means, and a magnetic field adjusting means, and measures the magnetic susceptibility of a sample using a SQUID element as a detector,
A pair of electrodes to which a voltage is applied;
An electrolyte solution filling between the electrodes,
The measurement rod of a magnetization measuring apparatus, wherein the sample is disposed on one of the electrodes.
JP2009268792A 2009-11-26 2009-11-26 Magnetization measuring apparatus and measuring rod Expired - Fee Related JP5436166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268792A JP5436166B2 (en) 2009-11-26 2009-11-26 Magnetization measuring apparatus and measuring rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268792A JP5436166B2 (en) 2009-11-26 2009-11-26 Magnetization measuring apparatus and measuring rod

Publications (2)

Publication Number Publication Date
JP2011112490A true JP2011112490A (en) 2011-06-09
JP5436166B2 JP5436166B2 (en) 2014-03-05

Family

ID=44234933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268792A Expired - Fee Related JP5436166B2 (en) 2009-11-26 2009-11-26 Magnetization measuring apparatus and measuring rod

Country Status (1)

Country Link
JP (1) JP5436166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049225A (en) * 2014-06-24 2014-09-17 无锡市崇安区科技创业服务中心 Automatic magnetic powder magnetization degree measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500595A (en) * 1988-04-08 1991-02-07 マサチューセッツ・インステチュート・オブ・テクノロジー Electrochemically controlled superconductivity
JP2003156550A (en) * 2001-11-19 2003-05-30 National Institute Of Advanced Industrial & Technology Measuring apparatus of electric resistance in magnetic field using mpms magnetization measuring apparatus and hall effect
WO2005071766A1 (en) * 2004-01-26 2005-08-04 National Institute Of Advanced Industrial Science And Technology Helium-3 refrigerating machine-using magnetization measuring system
WO2009087793A1 (en) * 2008-01-11 2009-07-16 National Institute Of Japan Science And Technology Agency Field-effect transistor, field-effect transistor manufacturing method, intermediate and secondary intermediate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500595A (en) * 1988-04-08 1991-02-07 マサチューセッツ・インステチュート・オブ・テクノロジー Electrochemically controlled superconductivity
JP2003156550A (en) * 2001-11-19 2003-05-30 National Institute Of Advanced Industrial & Technology Measuring apparatus of electric resistance in magnetic field using mpms magnetization measuring apparatus and hall effect
WO2005071766A1 (en) * 2004-01-26 2005-08-04 National Institute Of Advanced Industrial Science And Technology Helium-3 refrigerating machine-using magnetization measuring system
WO2009087793A1 (en) * 2008-01-11 2009-07-16 National Institute Of Japan Science And Technology Agency Field-effect transistor, field-effect transistor manufacturing method, intermediate and secondary intermediate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049225A (en) * 2014-06-24 2014-09-17 无锡市崇安区科技创业服务中心 Automatic magnetic powder magnetization degree measuring device

Also Published As

Publication number Publication date
JP5436166B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Nickol et al. GITT analysis of lithium insertion cathodes for determining the lithium diffusion coefficient at low temperature: challenges and pitfalls
La Mantia et al. Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries
Tanabe et al. Spin-motive force due to a gyrating magnetic vortex
US20140028305A1 (en) Hall measurement system with rotary magnet
Bernard et al. Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes
Drvarič Talian et al. The pitfalls and opportunities of impedance spectroscopy of lithium sulfur batteries
Niemöller et al. Monitoring local redox processes in LiNi0. 5Mn1. 5O4 battery cathode material by in operando EPR spectroscopy
Kallay et al. Reversible charging of the ice–water interface: I. Measurement of the surface potential
Liu et al. Space charge injection behaviors and dielectric characteristics of nano-modified transformer oil using different surface condition electrodes
Hoyt et al. Electrochemical impedance spectroscopy of flowing electrosorptive slurry electrodes
Anderson et al. Carbon nanoelectrodes for single-cell probing
Müller et al. Operando Radiography and Multimodal Analysis of Lithium–Sulfur Pouch Cells—Electrolyte Dependent Morphology Evolution at the Cathode
JP5436166B2 (en) Magnetization measuring apparatus and measuring rod
JP2938514B2 (en) Gas sensor
Williams et al. Experimental observations of multiple modes of filamentary structures in the magnetized dusty plasma experiment (MDPX) device
Traußnig et al. Magnetization of Fe‐oxide based nanocomposite tuned by surface charging
JP2010230355A (en) Analysis system, electrochemical cell for analysis, and analysis method
US20100315078A1 (en) Method for evaluating electrode material, method for producing electrode, and apparatus for producing electrode
Sawada Space-charge polarization of a dilute electrolytic cell in the presence of diffuse double layers
Bardin et al. Measurement of weak magnetic field of corrosion current of isolated corrosion center
Li et al. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap
Cabelguen et al. Rational analysis of layered oxide power performance limitations in a lithium battery application
Ma et al. Current characteristic signals of aqueous solution transferring through microfluidic channel under non-continuous DC electric field
Plett et al. Ionic conductivity of a single porous MnO 2 mesorod at controlled oxidation states
CN104849594B (en) Ionic liquid Electric transport properties high precision measuring device and the method with its measurement magneto-resistance effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees