JP2011112465A - Aircraft position measuring system, response signal discriminating method, and response signal discriminating program for use in the system - Google Patents

Aircraft position measuring system, response signal discriminating method, and response signal discriminating program for use in the system Download PDF

Info

Publication number
JP2011112465A
JP2011112465A JP2009268150A JP2009268150A JP2011112465A JP 2011112465 A JP2011112465 A JP 2011112465A JP 2009268150 A JP2009268150 A JP 2009268150A JP 2009268150 A JP2009268150 A JP 2009268150A JP 2011112465 A JP2011112465 A JP 2011112465A
Authority
JP
Japan
Prior art keywords
mode
response
signal
response signal
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268150A
Other languages
Japanese (ja)
Other versions
JP5463875B2 (en
Inventor
Koichi Ebie
浩一 海老江
Teppei Kondo
天平 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009268150A priority Critical patent/JP5463875B2/en
Publication of JP2011112465A publication Critical patent/JP2011112465A/en
Application granted granted Critical
Publication of JP5463875B2 publication Critical patent/JP5463875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aircraft position measuring system which discriminates between a mode A response and a mode C response only by a signal received by a receiving station. <P>SOLUTION: In a position information processing means (a data processing unit 30), the bit sequence of a response signal received by each of receiving stations 21, 22, ..., 25 is converted to pressure altitude information (a mode C code) by a response signal type discriminating means (a reception information collection unit 31, a signal extraction/record unit 34, a mode C signal conversion unit 35, a mode C signal type determination unit 36, a mode A signal conversion unit 37, and a mode A signal type determination unit 38), and the pressure altitude information is compared with geometrical altitude information. On the basis of the comparison result, it is determined whether the response signal is a mode A response corresponding to the mode A signal, or a mode C response corresponding to the mode C signal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、航空機位置測定システム、該システムに用いられる応答信号判別方法及び応答信号判別プログラムに係り、特に、SSR装置(Secondary Surveillance Radar、二次監視レーダ)から航空機へ発信されたモードA(識別)及びモードC(高度)の質問信号に対応する同航空機の応答信号の種類を判別する場合に用いて好適な航空機位置測定システム、該システムに用いられる応答信号判別方法及び応答信号判別プログラムに関する。   The present invention relates to an aircraft position measurement system, a response signal discrimination method and a response signal discrimination program used in the system, and in particular, mode A (identification) transmitted from an SSR device (Secondary Surveillance Radar) to an aircraft. And an aircraft position measurement system suitable for determining the type of response signal of the aircraft corresponding to the question signal of mode C (altitude), a response signal determination method and a response signal determination program used in the system.

航空管制などを行うための航空機位置測定システムとして、マルチラテレーションシステムが製作されている。マルチラテレーションシステムでは、航空機のトランスポンダから送信される信号(スキッタ信号)が4か所以上の受信局で受信されて、各受信時刻の差に基づいて同航空機の位置が測定される。また、マルチラテレーションシステムの他、特に高度情報を高精度で取得することに特化したHMU(Height Monitoring Unit、高度監視装置)がある。   A multi-lateration system has been manufactured as an aircraft position measurement system for performing air traffic control and the like. In the multilateration system, signals (skitter signals) transmitted from an aircraft transponder are received by four or more receiving stations, and the position of the aircraft is measured based on a difference in each reception time. In addition to the multilateration system, there is an HMU (Height Monitoring Unit) specialized in acquiring altitude information with high accuracy.

図3は、この種の航空機位置測定システムの概略の構成及び同システムが用いられる環境を示す図である。
この航空機位置測定システムは、同図に示すように、受信局1,2,…,5と、データ処理部6とから構成されている。この航空機位置測定システムでは、受信局1,2,…,5は、それぞれ設置位置情報が確定し、航空機13のトランスポンダから送信される信号w1 ,w2 ,…,w5 を受信する。そして、データ処理部6により、各受信局1,2,…,5の設置位置情報及び同各受信局1,2,…,5で信号w1 ,w2 ,…,w5 をそれぞれ受信したときの受信時刻の差情報に基づいて、双曲線測位方式により、航空機13の飛行位置情報が求められる。飛行位置情報は、緯度、経度及び幾何学的高度からなっている。
FIG. 3 is a diagram showing a schematic configuration of this type of aircraft position measurement system and an environment in which the system is used.
As shown in the figure, the aircraft position measurement system includes receiving stations 1, 2,..., 5 and a data processing unit 6. This aircraft position measurement system, the receiving station 1, 2, ..., 5, each installation position information is confirmed, the signal w 1, w 2 are transmitted from the transponder of the aircraft 13, ..., it receives the w 5. Then, the data processing unit 6, each of the receiving stations 1, 2, ..., installation position information and the respective receiving stations 1 and 2 of 5, ..., signal w 1, w 2 5, ..., received w 5, respectively Based on the difference information of the reception time, the flight position information of the aircraft 13 is obtained by the hyperbolic positioning method. The flight position information is composed of latitude, longitude, and geometric altitude.

また、SSR装置11により、図4(a)に示すように、航空機13の識別情報を要求するためのモードA信号(パルス間隔8μs)と同航空機13の高度情報を要求するためのモードC信号(パルス間隔21μs)とを含む質問信号waが同航空機13に向けて発信され、また、図4(b)に示すように、同質問信号waに対する同航空機13による応答信号wbが受信される。また、質問信号waに対する航空機13による応答は、上記信号w1 ,w2 ,…,w5 として受信局1,2,…,5で受信される。応答信号wbは、搬送波を1090MHzとする12ビットのパルス列で構成されている。これにより、最大識別数は4096であり、高度データは、100ft単位で高度−1000ftから126750ftまでコード化される。上記12ビットのパルス列は、パルスA1 (;1000),A2 (;2000),A4 (;4000),B1 (;100),B2 (;200),B4 (;400),C1 (;10),C2 (;20),C4 (;40),D1 (;1),D2 (;2),D4 (;4)から構成され、8進数に対応している。 Further, as shown in FIG. 4A, the mode A signal (pulse interval 8 μs) for requesting the identification information of the aircraft 13 and the mode C signal for requesting the altitude information of the aircraft 13 by the SSR device 11. An interrogation signal wa including (pulse interval 21 μs) is transmitted toward the aircraft 13 and, as shown in FIG. 4B, a response signal wb by the aircraft 13 with respect to the interrogation signal wa is received. In addition, the response by the aircraft 13 to the interrogation signal wa is received by the receiving stations 1, 2 ,..., 5 as the signals w 1 , w 2 ,. The response signal wb is composed of a 12-bit pulse train having a carrier wave of 1090 MHz. Thus, the maximum identification number is 4096, and the altitude data is encoded from altitude −1000 ft to 126750 ft in units of 100 ft. The 12-bit pulse train includes pulses A 1 (; 1000), A 2 (; 2000), A 4 (; 4000), B 1 (; 100), B 2 (; 200), B 4 (; 400), It consists of C 1 (; 10), C 2 (; 20), C 4 (; 40), D 1 (; 1), D 2 (; 2), D 4 (; 4) and corresponds to octal numbers. ing.

上記の航空機位置測定システムの他、この種の関連技術としては、たとえば、特許文献1に記載された航空機騒音監視システムがある。
この監視システムでは、騒音測定局から出力された測定位置を代表するデータに基づいて騒音の測定位置が特定され、マルチラテレーション測位によって算出された航空機の位置との一致/不一致が判定されるか、あるいは、受信局から出力された識別情報の受信時刻と騒音測定局から出力された騒音レベルの測定時刻との一致/不一致が判定される。これにより、複数箇所に設置された騒音測定局から騒音レベルのデータが送信される場合でも、どの騒音測定局から送信された騒音レベルのデータが測位対象となっている航空機に関する騒音レベルであるのかが的確に判定され、複数の騒音測定局を設置して広範囲にわたって航空機の騒音が正確に測定される。
In addition to the aircraft position measurement system described above, as this type of related technology, for example, there is an aircraft noise monitoring system described in Patent Document 1.
In this monitoring system, whether the noise measurement position is identified based on the data representative of the measurement position output from the noise measurement station, and whether the coincidence / non-coincidence with the aircraft position calculated by multilateration positioning is determined. Alternatively, a match / mismatch between the reception time of the identification information output from the receiving station and the measurement time of the noise level output from the noise measurement station is determined. As a result, even if noise level data is transmitted from multiple noise measurement stations installed at multiple locations, the noise level data transmitted from which noise measurement station is the noise level related to the aircraft to be positioned Is accurately determined, and a plurality of noise measurement stations are installed to accurately measure aircraft noise over a wide area.

また、特許文献2に記載されたモードS二次監視レーダでは、モードSトランスポンダ搭載の航空機に向けて質問が送信され、当該質問に対する応答が解読されて航空機が特定される。監視結果の検出レポート作成に必要なモードAコードは、初期捕捉後の複数回のスキャンによって取得されたモードAコードの同一性が得られたとき、以後のモードAコードの質問を行うことなく、その一致したモードAコードが採用され、当該航空機の検出レポートが作成される。これにより、より信頼性の高い検出レポートが生成される。   In the mode S secondary monitoring radar described in Patent Document 2, a question is transmitted to an aircraft equipped with a mode S transponder, and a response to the question is decoded to identify the aircraft. The mode A code necessary for creating the detection report of the monitoring result is obtained without questioning the subsequent mode A code when the identity of the mode A code acquired by a plurality of scans after the initial acquisition is obtained. The matched mode A code is adopted and a detection report for the aircraft is created. Thereby, a more reliable detection report is generated.

また、特許文献3に記載された空港面監視装置では、空港に配置された複数の地上局により、目標が発信する信号が受信され、マルチラテレーションにより、受信信号の到達時間差に基づいて、目標の3次元位置情報が算出されると共に、目標の識別情報が得られる。目標高度監視装置により、3次元位置情報に基づいて、目標が空港上空を低高度で飛行しているか、飛行せず、空港面上に在るかの判定が行われる。統合処理装置により、当該判定結果に基づいて、空港面探知レーダとマルチラテレーションとで算出された目標の位置情報が統合処理され、得られた位置情報に、対応する識別情報が付加される。表示装置により、統合された目標の位置情報と識別情報とが、空港面を表す座標上に表示される。   Moreover, in the airport surface monitoring apparatus described in Patent Document 3, a signal transmitted by the target is received by a plurality of ground stations arranged at the airport, and the target is received based on the arrival time difference of the received signal by multilateration. 3D position information is calculated, and target identification information is obtained. Based on the three-dimensional position information, the target altitude monitoring device determines whether the target is flying over the airport at a low altitude or not flying but on the airport surface. Based on the determination result, the integrated processing device integrates the target position information calculated by the airport surface detection radar and the multilateration, and adds corresponding identification information to the obtained position information. The display device displays the integrated target position information and identification information on coordinates representing the airport surface.

特開2002−365126号公報JP 2002-365126 A 特開2008−026305号公報JP 2008-026305 A 特開2007−333427号公報JP 2007-333427 A

しかしながら、上記関連技術では、次のような課題があった。
すなわち、図3中のSSR装置11では、自身が航空機13に対してモードA信号とモードC信号とを含む質問信号waを送信するので、受信した応答信号wbがモードA応答なのかモードC応答なのかを判別可能であるが、データ処理部6では、受信局1,2,…,5で受信される信号w1 ,w2 ,…,w5 のみでは、モードA応答かモードC応答かが判別不可能であるという課題がある。
However, the related technology has the following problems.
That is, in the SSR device 11 in FIG. 3, the device itself transmits the interrogation signal wa including the mode A signal and the mode C signal to the aircraft 13, so whether the received response signal wb is a mode A response or a mode C response. However, the data processing unit 6 determines whether only the signals w 1 , w 2 ,..., W 5 received by the receiving stations 1, 2 ,. There is a problem that cannot be determined.

また、特許文献1に記載された監視システムでは、広範囲にわたって航空機の騒音が正確に測定されるが、複数の騒音測定局が設けられているなど、この発明とは構成や効果が異なる。   The monitoring system described in Patent Document 1 accurately measures aircraft noise over a wide range, but differs in configuration and effect from the present invention, such as providing a plurality of noise measurement stations.

特許文献2に記載されたモードS二次監視レーダでは、信頼性の高い検出レポートが生成可能であるが、二次監視レーダとしての発明であり、この発明とは構成が異なる。   The mode S secondary monitoring radar described in Patent Document 2 can generate a highly reliable detection report, but it is an invention as a secondary monitoring radar and has a configuration different from that of the present invention.

特許文献3に記載された空港面監視装置では、空港面探知レーダによる空港面監視が、マルチラテレーションの情報が統合されることで補完され、効率的で安全な空港管制が行われるが、地上局で受信された信号に対してモードA応答/モードC応答の判別を行うものではなく、上記の課題は解決されない。   In the airport surface monitoring apparatus described in Patent Document 3, airport surface monitoring by the airport surface detection radar is complemented by integrating multilateration information, and efficient and safe airport control is performed. The mode A response / mode C response is not discriminated with respect to the signal received at the station, and the above problem is not solved.

この発明は、上述の事情に鑑みてなされたもので、各受信局で受信される信号のみで、モードA応答かモードC応答かが判別可能な航空機位置測定システム、該システムに用いられる応答信号判別方法及び応答信号判別プログラムを提供することを目的としている。   The present invention has been made in view of the above-described circumstances. An aircraft position measurement system that can determine whether a mode A response or a mode C response is obtained only by a signal received at each receiving station, and a response signal used in the system It is an object to provide a discrimination method and a response signal discrimination program.

上記課題を解決するために、この発明の第1の構成は、設置位置情報が確定し、航空機から送信される信号を受信する所定数の受信局と、前記各受信局の前記設置位置情報及び前記各受信局で前記信号を受信したときの受信時刻の差情報に基づいて、前記航空機の飛行位置情報を求める位置情報処理手段とを備え、前記航空機の飛行位置情報は、緯度情報、経度情報及び幾何学的高度情報からなる航空機位置測定システムに係り、前記航空機の識別情報を要求するためのモードA信号と該航空機の高度情報を要求するためのモードC信号とを含む質問信号を前記航空機に向けて発信する二次監視レーダが設けられ、前記各受信局は、前記二次監視レーダの前記質問信号に対応する前記航空機の応答信号を受信する構成とされ、前記位置情報処理手段は、前記各受信局で受信された前記応答信号を気圧高度情報に変換すると共に、該気圧高度情報と前記幾何学的高度情報とを比較し、この比較結果に基づいて、前記応答信号が前記モードA信号に対応するモードA応答か前記モードC信号に対応するモードC応答かを判別する応答信号種類判別手段が設けられていることを特徴としている。   In order to solve the above-described problem, the first configuration of the present invention includes a predetermined number of receiving stations for receiving a signal transmitted from an aircraft, with installation position information determined, and the installation position information of each receiving station, Position information processing means for obtaining flight position information of the aircraft based on difference information of reception times when the signals are received at the receiving stations, the flight position information of the aircraft includes latitude information and longitude information. And an interrogation signal including a mode A signal for requesting identification information of the aircraft and a mode C signal for requesting altitude information of the aircraft. A secondary monitoring radar for transmitting to the mobile station, and each receiving station is configured to receive a response signal of the aircraft corresponding to the interrogation signal of the secondary monitoring radar; The means converts the response signal received at each receiving station into barometric altitude information, compares the barometric altitude information with the geometric altitude information, and based on the comparison result, the response signal Response signal type discrimination means for discriminating between a mode A response corresponding to the mode A signal and a mode C response corresponding to the mode C signal is provided.

この発明の第2の構成は、設置位置情報が確定し、航空機から送信される信号を受信する所定数の受信局と、前記各受信局の前記設置位置情報及び前記各受信局で前記信号を受信したときの受信時刻の差情報に基づいて、前記航空機の飛行位置情報を求める位置情報処理手段とを備え、前記航空機の飛行位置情報は、緯度情報、経度情報及び幾何学的高度情報からなる航空機位置測定システムに用いられる応答信号判別方法に係り、前記航空機の識別情報を要求するためのモードA信号と該航空機の高度情報を要求するためのモードC信号とを含む質問信号を前記航空機に向けて発信する二次監視レーダが設けられ、前記各受信局は、前記二次監視レーダの前記質問信号に対応する前記航空機の応答信号を受信する構成とされ、前記位置情報処理手段では、応答信号種類判別手段が、前記各受信局で受信された前記応答信号を気圧高度情報に変換すると共に、該気圧高度情報と前記幾何学的高度情報とを比較し、この比較結果に基づいて、前記応答信号が前記モードA信号に対応するモードA応答か前記モードC信号に対応するモードC応答かを判別する応答信号種類判別処理を行うことを特徴としている。   According to a second configuration of the present invention, the installation position information is fixed and a predetermined number of receiving stations that receive signals transmitted from the aircraft, the installation position information of each receiving station, and the signals at the receiving stations are received. Position information processing means for obtaining flight position information of the aircraft based on difference information of reception times when received, and the flight position information of the aircraft includes latitude information, longitude information, and geometric altitude information The present invention relates to a response signal discrimination method used in an aircraft position measurement system, and provides an interrogation signal including a mode A signal for requesting identification information of the aircraft and a mode C signal for requesting altitude information of the aircraft to the aircraft. A secondary monitoring radar for transmitting to the receiver, and each receiving station is configured to receive a response signal of the aircraft corresponding to the interrogation signal of the secondary monitoring radar, and the position information In the processing means, the response signal type discriminating means converts the response signal received at each receiving station into barometric altitude information, and compares the barometric altitude information with the geometric altitude information. Based on the above, response signal type determination processing is performed to determine whether the response signal is a mode A response corresponding to the mode A signal or a mode C response corresponding to the mode C signal.

この発明の構成によれば、位置情報処理手段により、各受信局で受信される信号に含まれる応答信号のモードA応答/モードC応答の判別を自律的に行うことができる。   According to the configuration of the present invention, the position information processing means can autonomously determine the mode A response / mode C response of the response signal included in the signal received at each receiving station.

この発明の一実施形態である航空機位置測定システムの概略の構成及び同システムが用いられる環境を示す図である。1 is a diagram showing a schematic configuration of an aircraft position measurement system according to an embodiment of the present invention and an environment in which the system is used. 図1の航空機位置測定システムの動作を示す模式図である。It is a schematic diagram which shows operation | movement of the aircraft position measurement system of FIG. 航空機位置測定システムの概略の構成及び同システムが用いられる環境を示す図である。1 is a diagram illustrating a schematic configuration of an aircraft position measurement system and an environment in which the system is used. 質問信号及び応答信号を示す波形図である。It is a wave form diagram which shows a question signal and a response signal.

上記応答信号種類判別手段(受信情報収集部、位置解析部、受信局位置記録部、信号抽出記録部、モードC信号変換部、モードC信号種類判定部、モードA信号変換部、モードA信号種類判定部、モードA/C情報収集相関更新部)が、上記気圧高度情報の値と上記幾何学的高度情報の値との差分が所定の閾値以下のとき、上記応答信号を上記モードC応答として判定する一方、上記差分が上記閾値を超えるとき、上記応答信号を上記モードA応答として判定する構成とされている航空機位置測定システムを実現する。   Response signal type discriminating means (reception information collecting unit, position analyzing unit, receiving station position recording unit, signal extraction recording unit, mode C signal converting unit, mode C signal type determining unit, mode A signal converting unit, mode A signal type When the difference between the value of the atmospheric pressure altitude information and the value of the geometric altitude information is equal to or less than a predetermined threshold, the determination unit, the mode A / C information collection correlation updating unit) sets the response signal as the mode C response. On the other hand, when the difference exceeds the threshold value, an aircraft position measurement system configured to determine the response signal as the mode A response is realized.

上記応答信号種類判別手段は、上記各受信局で受信された上記応答信号を上記モードC応答として扱い、該応答信号のビット列を上記気圧高度情報に対応するモードCコードに変換する気圧高度情報変換手段(モードC信号変換部)と、同気圧高度情報変換手段で変換された上記気圧高度情報のモードCコードと上記幾何学的高度情報とを比較し、上記気圧高度情報の値と上記幾何学的高度情報の値との差分が所定の閾値以下のとき、上記応答信号を上記モードC応答として判定するモードC応答判定手段(モードC信号種類判定部)と、上記各受信局で受信された上記応答信号を上記モードA応答として扱い、該応答信号のビット列を上記識別情報に対応するモードAコードに変換する識別情報変換手段(モードA信号変換部)と、同識別情報変換手段で変換された上記モードAコードのうちの上記モードC応答以外のビット列を上記モードA応答として判定するモードA応答判定手段(モードA信号種類判定部)とを備えている。   The response signal type discriminating means treats the response signal received at each receiving station as the mode C response and converts a bit string of the response signal into a mode C code corresponding to the atmospheric pressure altitude information. A mode C code of the atmospheric pressure altitude information converted by the means (mode C signal converting unit) and the atmospheric pressure altitude information converting means is compared with the geometric altitude information, and the value of the atmospheric pressure altitude information and the geometry When the difference from the value of the target altitude information is equal to or less than a predetermined threshold, the response signal is received by the mode C response determination means (mode C signal type determination unit) that determines the response signal as the mode C response, and the receiving stations. Identification information conversion means (mode A signal conversion unit) for treating the response signal as the mode A response and converting a bit string of the response signal into a mode A code corresponding to the identification information; The bit string other than the mode C reply of the transformed the Mode A code by the multi-address converting means and a determining mode A response determination means (mode A signal type determining section) as the mode A reply.

また、上記応答信号種類判別手段は、上記モードC応答判定手段で判定された上記モードC応答、及び上記モードA応答判定手段で判定された上記モードA応答を記録し、次に上記各受信局で受信された上記応答信号と比較して相関度を求め、該相関度が所定値以上の場合、上記モードC応答及びモードA応答の記録を更新する応答記録更新手段(モードA/C情報収集相関更新部)が設けられている。また、上記応答信号種類判別手段は、上記各受信局で受信された上記応答信号を格納する応答信号格納手段(受信情報収集部)を有している。   The response signal type determining means records the mode C response determined by the mode C response determining means and the mode A response determined by the mode A response determining means, and then records each of the receiving stations. A response record update means (mode A / C information collection) that obtains a correlation degree by comparing with the response signal received in step S3 and updates the record of the mode C response and the mode A response when the correlation degree is equal to or greater than a predetermined value. Correlation update unit) is provided. The response signal type determining means has response signal storage means (reception information collecting unit) for storing the response signals received by the receiving stations.

実施形態Embodiment

図1は、この発明の一実施形態である航空機位置測定システムの概略の構成及び同システムが用いられる環境を示す図である。
この形態の航空機位置測定システムは、同図に示すように、受信局21,22,…,25と、データ処理部30と、SSR装置40とから構成されている。SSR装置40は、航空機41の識別情報を要求するためのモードA信号と同航空機41の高度情報を要求するためのモードC信号とを含む質問信号waを同航空機41に向けて発信すると共に、同航空機41のモードA信号に対応するモードA応答及びモードC信号に対応するモードC応答からなる応答信号wbを受信する。受信局21,22,…,25は、たとえば空港などの所定の場所に設置されて設置位置情報が確定し、航空機41のトランスポンダから送信される信号w21,w22,…,w25を受信する。特に、この実施形態では、受信局21,22,…,25は、SSR装置40の質問信号waに対応する航空機41の上記応答信号wbを含む信号を上記信号w21,w22,…,w25として受信する。
FIG. 1 is a diagram showing a schematic configuration of an aircraft position measurement system according to an embodiment of the present invention and an environment in which the system is used.
As shown in the figure, the aircraft position measurement system of this embodiment includes receiving stations 21, 22,..., 25, a data processing unit 30, and an SSR device 40. The SSR device 40 transmits a question signal wa including a mode A signal for requesting identification information of the aircraft 41 and a mode C signal for requesting altitude information of the aircraft 41 to the aircraft 41, and A response signal wb including a mode A response corresponding to the mode A signal of the aircraft 41 and a mode C response corresponding to the mode C signal is received. The receiving stations 21, 22,..., 25 are installed in a predetermined place such as an airport, for example, and the installation position information is determined, and receive signals w 21 , w 22 ,..., W 25 transmitted from the transponder of the aircraft 41. To do. In particular, in this embodiment, the receiving stations 21, 22,..., 25 receive signals including the response signal wb of the aircraft 41 corresponding to the interrogation signal wa of the SSR device 40 as the signals w 21 , w 22 ,. Receive as 25 .

データ処理部30は、応答信号判別プログラムに基づいて応答信号種類判別手段として機能するコンピュータで構成され、受信情報収集部31と、位置解析部32と、受信局位置記録部33と、信号抽出記録部34と、モードC信号変換部35と、モードC信号種類判定部36と、モードA信号変換部37と、モードA信号種類判定部38と、モードA/C情報収集相関更新部39とから構成されている。受信情報収集部31は、バッファで構成され、各受信局21,22,…,25で受信された信号w21,w22,…,w25を格納する。受信局位置記録部33は、受信局21,22,…,25の各設置位置情報をあらかじめ記録する。位置解析部32は、受信局位置記録部33に記録されている各受信局21,22,…,25の設置位置情報及び同各受信局21,22,…,25で信号w21,w22,…,w25を受信したときの受信時刻の差情報に基づいて、双曲線測位方式により、航空機41の飛行位置情報(緯度情報、経度情報及び幾何学的高度情報)を求める。 The data processing unit 30 is composed of a computer that functions as a response signal type determination unit based on a response signal determination program, and includes a reception information collection unit 31, a position analysis unit 32, a reception station position recording unit 33, and a signal extraction record. Unit 34, mode C signal conversion unit 35, mode C signal type determination unit 36, mode A signal conversion unit 37, mode A signal type determination unit 38, and mode A / C information collection correlation update unit 39 It is configured. The reception information collecting unit 31 is configured by a buffer and stores signals w 21 , w 22 ,..., W 25 received by the receiving stations 21, 22,. The receiving station position recording unit 33 records each installation position information of the receiving stations 21, 22,. The position analysis unit 32 installs information on the installation positions of the reception stations 21, 22,..., 25 recorded in the reception station position recording unit 33 and signals w 21 , w 22 at the reception stations 21, 22,. ,..., W 25 , flight position information (latitude information, longitude information, and geometric altitude information) of the aircraft 41 is obtained by the hyperbolic positioning method based on the reception time difference information.

信号抽出記録部34は、受信情報収集部31に格納された信号w21,w22,…,w25の中からモードAコード及びモードCコードを含む応答信号を抽出して記録する。モードC信号変換部35は、信号抽出記録部34に記録されている応答信号をモードC応答として扱い、同応答信号のビット列を気圧高度情報に対応するモードCコードmcに変換する。モードC信号種類判定部36は、モードC信号変換部35で変換された上記気圧高度情報のモードCコードmcと上記幾何学的高度情報とを比較し、同気圧高度情報の値と同幾何学的高度情報の値との差分が所定の閾値以下のとき、上記応答信号をモードC応答として判定する。 The signal extraction / recording unit 34 extracts and records a response signal including a mode A code and a mode C code from the signals w 21 , w 22 ,..., W 25 stored in the reception information collecting unit 31. The mode C signal conversion unit 35 treats the response signal recorded in the signal extraction / recording unit 34 as a mode C response, and converts the bit string of the response signal into a mode C code mc corresponding to atmospheric pressure altitude information. The mode C signal type determination unit 36 compares the mode C code mc of the atmospheric pressure altitude information converted by the mode C signal conversion unit 35 with the geometric altitude information, and compares the value of the atmospheric pressure altitude information with the same geometry. When the difference from the value of the target altitude information is equal to or less than a predetermined threshold, the response signal is determined as a mode C response.

モードA信号変換部37は、信号抽出記録部34に記録されている応答信号をモードA応答として扱い、同応答信号のビット列を識別情報に対応するモードAコードmaに変換する。モードA信号種類判定部38は、モードA信号変換部37で変換されたモードAコードmaのうちのモードC応答以外のビット列をモードA応答として判定する。モードA/C情報収集相関更新部39は、モードC信号種類判定部36で判定されたモードC応答、及びモードA信号種類判定部38で判定されたモードA応答を記録し、次に各受信局21,22,…,25で受信された信号w21,w22,…,w25中の応答信号(すなわち、信号抽出記録部34で記録されている応答信号)と比較して相関度を求め、相関度が所定値以上の場合、上記モードC応答及びモードA応答の記録を更新する。 The mode A signal conversion unit 37 treats the response signal recorded in the signal extraction recording unit 34 as a mode A response, and converts the bit string of the response signal into a mode A code ma corresponding to the identification information. The mode A signal type determination unit 38 determines a bit string other than the mode C response in the mode A code ma converted by the mode A signal conversion unit 37 as a mode A response. The mode A / C information collection correlation update unit 39 records the mode C response determined by the mode C signal type determination unit 36 and the mode A response determined by the mode A signal type determination unit 38, and then receives each reception. , 25 received by the stations 21, 22,..., 25 are compared with the response signals in the signals w 21 , w 22 ,..., W 25 (that is, the response signals recorded by the signal extraction recording unit 34). If the degree of correlation is greater than or equal to a predetermined value, the record of the mode C response and the mode A response is updated.

図2は、図1の航空機41位置測定システムの動作を示す模式図である。
この図を参照して、この形態の航空機位置測定システムに用いられる応答信号判別方法の処理内容について説明する。
この航空機位置測定システムでは、応答信号格納手段(受信情報収集部31)により、各受信局21,22,…,25で受信された応答信号が格納される(応答信号格納処理)。位置情報処理手段(データ処理部30)では、応答信号種類判別手段(受信情報収集部31、信号抽出記録部34、モードC信号変換部35、モードC信号種類判定部36、モードA信号変換部37、モードA信号種類判定部38)により、各受信局21,22,…,25で受信された応答信号のビット列が気圧高度情報(モードCコード)に変換されると共に、同気圧高度情報と幾何学的高度情報とが比較され、この比較結果に基づいて、上記応答信号がモードA信号に対応するモードA応答か上記モードC信号に対応するモードC応答かが判別される(応答信号種類判別処理)。この応答信号種類判別処理では、気圧高度情報の値と幾何学的高度情報の値との差分が所定の閾値以下のとき、上記応答信号がモードC応答として判定される一方、同差分が同閾値を超えるとき、同応答信号がモードA応答として判定される。
FIG. 2 is a schematic diagram showing the operation of the aircraft 41 position measurement system of FIG.
With reference to this figure, the processing content of the response signal discrimination method used in the aircraft position measurement system of this embodiment will be described.
In this aircraft position measurement system, response signals received by the receiving stations 21, 22,..., 25 are stored by the response signal storage means (reception information collection unit 31) (response signal storage processing). In the position information processing means (data processing section 30), response signal type determination means (reception information collection section 31, signal extraction recording section 34, mode C signal conversion section 35, mode C signal type determination section 36, mode A signal conversion section 37, the mode A signal type determination unit 38) converts the bit string of the response signal received at each of the receiving stations 21, 22,..., 25 into atmospheric pressure altitude information (mode C code), Based on the comparison result, it is determined whether the response signal is a mode A response corresponding to the mode A signal or a mode C response corresponding to the mode C signal (response signal type). Discrimination process). In this response signal type determination process, when the difference between the value of the pressure altitude information and the value of the geometric altitude information is equal to or less than a predetermined threshold, the response signal is determined as a mode C response, while the difference is the same threshold. Is exceeded, the response signal is determined as a mode A response.

この場合、気圧高度情報変換手段(モードC信号変換部35)により、信号抽出記録部34に記録されている応答信号が読み出されて同応答信号がモードC応答として扱われ、同応答信号のビット列が気圧高度情報に対応するモードCコードに変換される(気圧高度情報変換処理)。そして、モードC応答判定手段(モードC信号種類判定部36)により、モードC信号変換部35で変換された気圧高度情報のモードCコードと位置解析部32で求められた幾何学的高度情報とが比較され、同気圧高度情報の値と同幾何学的高度情報の値との差分が所定の閾値以下のとき、上記応答信号がモードC応答として判定される(モードC応答判定処理)。   In this case, the atmospheric pressure altitude information conversion means (mode C signal conversion unit 35) reads out the response signal recorded in the signal extraction recording unit 34 and treats the response signal as a mode C response. The bit string is converted into a mode C code corresponding to the atmospheric pressure altitude information (atmospheric altitude information conversion process). Then, the mode C response determining means (mode C signal type determining unit 36) converts the mode C code of the atmospheric pressure altitude information converted by the mode C signal converting unit 35 and the geometrical altitude information obtained by the position analyzing unit 32. Are compared, and when the difference between the value of the same atmospheric pressure altitude information and the value of the same geometric altitude information is equal to or smaller than a predetermined threshold value, the response signal is determined as a mode C response (mode C response determination process).

また、識別情報変換手段(モードA信号変換部37)により、信号抽出記録部34に記録されている応答信号が読み出されて同応答信号がモードA応答として扱われ、同応答信号のビット列が識別情報に対応するモードAコードに変換される(識別情報変換処理)。 モードA応答判定手段(モードA信号種類判定部38)により、モードA信号変換部37で変換された上記モードAコードのうちのモードC応答以外のビット列がモードA応答として判定される(モードA応答判定処理)。応答記録更新手段(モードA/C情報収集相関更新部39)により、モードC信号種類判定部36で判定されたモードC応答、及びモードA信号種類判定部38で判定されたモードA応答が記録され、信号抽出記録部34に記録されている応答信号と比較されて相関度が求められ、同相関度が所定値以上の場合、モードC応答及びモードA応答の記録が更新される(応答記録更新処理)。   Further, the response information recorded in the signal extraction / recording section 34 is read by the identification information converting means (mode A signal converting section 37), the response signal is treated as a mode A response, and the bit string of the response signal is changed. It is converted into a mode A code corresponding to the identification information (identification information conversion process). The mode A response determination means (mode A signal type determination unit 38) determines a bit string other than the mode C response in the mode A code converted by the mode A signal conversion unit 37 as a mode A response (mode A). Response determination process). The mode C response determined by the mode C signal type determination unit 36 and the mode A response determined by the mode A signal type determination unit 38 are recorded by the response record update means (mode A / C information collection correlation update unit 39). The correlation is obtained by comparing with the response signal recorded in the signal extraction recording unit 34. If the correlation is equal to or higher than a predetermined value, the records of the mode C response and the mode A response are updated (response recording). Update process).

すなわち、図2に示すように、フェーズ[1]では、SSR装置40から、質問信号waとしてモードAの質問信号“A”もしくはモードCの質問信号“C”が、たとえば、“A”,“A”,“C”,“A”,“A”,“C”のパターンで航空機41に送信される。フェーズ[2]では、フェーズ[1]でのSSR装置40の質問信号waに対する航空機41の応答信号が、たとえば、“A”,“A”,“C”,“A”,“A”,“C”のパターンで受信局21,22,…,25で受信される。フェーズ[3]では、応答信号がデータ処理部30中の受信情報収集部31のバッファに格納される。フェーズ[4]では、位置解析部32にて、マルチラテレーション計算(双曲線測位)により、航空機41の位置(緯度、経度、幾何学的高度)が検出される。   That is, as shown in FIG. 2, in the phase [1], the SSR device 40 receives the question signal “A” in mode A or the question signal “C” in mode C as the question signal wa, for example, “A”, “ It is transmitted to the aircraft 41 in the pattern of “A”, “C”, “A”, “A”, “C”. In the phase [2], the response signal of the aircraft 41 to the interrogation signal wa of the SSR device 40 in the phase [1] is, for example, “A”, “A”, “C”, “A”, “A”, “ Received by the receiving stations 21, 22,... In the phase [3], the response signal is stored in the buffer of the reception information collecting unit 31 in the data processing unit 30. In phase [4], the position analysis unit 32 detects the position (latitude, longitude, geometrical altitude) of the aircraft 41 by multilateration calculation (hyperbolic positioning).

フェーズ[5a]では、受信情報収集部31のバッファに格納されている応答信号が信号抽出記録部34により抽出され、モードC信号変換部35により同応答信号がモードC応答として扱われ、同応答信号のビット列がモードCコード(気圧高度)に変換される。また、フェーズ[5b]では、信号抽出記録部34により抽出された応答信号がモードA信号変換部37によりモードA応答として扱われ、同応答信号のビット列がモードAコード(8進数)に変換される。フェーズ[6]では、モードC信号種類判定部36により、フェーズ[5a]で算出された気圧高度と、フェーズ[4]のマルチラテレーション計算により取得された幾何学的高度とが比較され、これらの値が近ければ、その応答がモードC応答に特定される。フェーズ[7]では、フェーズ[6]でモードCが特定されたことで、モードA信号種類判定部38により、モードA応答が判明する。   In the phase [5a], the response signal stored in the buffer of the reception information collecting unit 31 is extracted by the signal extraction and recording unit 34, and the response signal is treated as a mode C response by the mode C signal converting unit 35. The bit string of the signal is converted into a mode C code (atmospheric pressure altitude). In phase [5b], the response signal extracted by the signal extraction / recording unit 34 is treated as a mode A response by the mode A signal conversion unit 37, and the bit string of the response signal is converted into a mode A code (octal number). The In the phase [6], the mode C signal type determination unit 36 compares the atmospheric pressure height calculated in the phase [5a] with the geometrical height acquired by the multilateration calculation in the phase [4]. Is close to the mode C response. In the phase [7], the mode A response is determined by the mode A signal type determination unit 38 because the mode C is specified in the phase [6].

以上のように、この実施形態では、データ処理部30により、受信局21,22,…,25で受信される信号w21,w22,…,w25に含まれる応答信号wbがモードA応答なのかモードC応答なのかが判別可能となる。また、データ処理部30は、他の装置、たとえば、既存のSSR装置やRDP(Radar Data Processor、航空路レーダ情報処理システム)などに接続することなく、航空機41の気圧高度情報及び識別情報を取得できる。また、モードA/C情報収集相関更新部39により、記録されているモードC応答及びモードA応答と、次に各受信局21,22,…,25で受信された信号w21,w22,…,w25中の応答信号との相関度が求められ、更新処理が行われるので、より精度の高いモードA/C判定が行われると共に、航空機41の速度の範囲内で、次の位置情報及び高度情報の予測が行われる。また、何らかの原因により受信局21,22,…,25で信号w21,w22,…,w25が受信されなかったり、誤解読された場合には、モードA/C情報収集相関更新部39により、そのデータが明らかに今までの航空機41のものと異なることがわかり、モードA応答/モードC応答の区別精度が高められる。 As described above, in this embodiment, the response signal wb included in the signals w 21 , w 22 ,..., W 25 received by the receiving stations 21, 22 ,. It is possible to determine whether the response is a mode C response. Further, the data processing unit 30 acquires the pressure altitude information and the identification information of the aircraft 41 without connecting to another device such as an existing SSR device or RDP (Radar Data Processor). it can. Further, the mode A / C information collection correlation update unit 39 records the mode C response and the mode A response, and the signals w 21 , w 22 , ..., prompts the correlation between the response signal in w 25, since the update process is performed, along with higher accuracy mode a / C determination is made, within the speed of the aircraft 41, the following location And altitude information is predicted. If the signals w 21 , w 22 ,..., W 25 are not received or misinterpreted by the receiving stations 21, 22,..., 25 for some reason, the mode A / C information collection correlation update unit 39 Thus, it can be seen that the data is clearly different from that of the aircraft 41 so far, and the discrimination accuracy of the mode A response / mode C response is enhanced.

以上、この発明の実施形態を図面により詳述してきたが、具体的な構成は同実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更などがあっても、この発明に含まれる。
たとえば、SSR装置40から航空機41に送信される質問信号wa、及び航空機41の応答信号は、図2中の“A”,“A”,“C”,“A”,“A”,“C”のパターンに限定されない。また、受信局の数は、4つ以上であれば良い。また、図1中のSSR装置40に代えて、他に分散配置されているSSR装置を用いても、上記実施形態とほぼ同様の作用、効果が得られる。
The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiment, and even if there is a design change without departing from the gist of the present invention, Included in the invention.
For example, the interrogation signal wa transmitted from the SSR device 40 to the aircraft 41 and the response signal of the aircraft 41 are “A”, “A”, “C”, “A”, “A”, “C” in FIG. It is not limited to the pattern “”. The number of receiving stations may be four or more. Also, in place of the SSR device 40 in FIG. 1, the same operations and effects as those in the above embodiment can be obtained by using other distributed SSR devices.

この発明は、マルチラテレーションシステムやHMU(Height Monitoring Unit、高度監視装置)など、二次監視レーダ(SSR装置)に直接接続されない航空機位置測定システム全般に適用できる。   The present invention can be applied to all aircraft position measurement systems that are not directly connected to a secondary monitoring radar (SSR device) such as a multi-lateration system or an HMU (Height Monitoring Unit).

21,22,…,25 受信局
30 データ処理部(位置情報処理手段の一部)
31 受信情報収集部(応答信号種類判別手段の一部、)
32 位置解析部(応答信号種類判別手段の一部)
33 受信局位置記録部(応答信号種類判別手段)
34 信号抽出記録部(応答信号種類判別手段)
35 モードC信号変換部(応答信号種類判別手段の一部、気圧高度情報変換手段)
36 (応答信号種類判別手段の一部、モードC応答判定手段)
37 モードA信号変換部(応答信号種類判別手段の一部、識別情報変換手段)
38 モードA信号種類判定部(応答信号種類判別手段の一部、モードA応答判定手段)
39 モードA/C情報収集相関更新部(応答信号種類判別手段の一部、応答記録更新手段)
40 SSR装置
41 航空機
21, 22,..., 25 receiving station 30 data processing unit (part of position information processing means)
31 Received information collection unit (part of response signal type discrimination means)
32 Position analysis unit (part of response signal type discrimination means)
33 Receiving station position recording unit (response signal type discriminating means)
34 Signal extraction and recording unit (response signal type discrimination means)
35 Mode C signal converter (part of response signal type discriminating means, atmospheric pressure altitude information converting means)
36 (part of response signal type discrimination means, mode C response judgment means)
37 Mode A signal converter (part of response signal type discriminating means, identification information converting means)
38 Mode A signal type determination unit (part of response signal type determination means, mode A response determination means)
39 Mode A / C information collection correlation update unit (part of response signal type determination means, response record update means)
40 SSR equipment 41 Aircraft

Claims (11)

設置位置情報が確定し、航空機から送信される信号を受信する所定数の受信局と、
前記各受信局の前記設置位置情報及び前記各受信局で前記信号を受信したときの受信時刻の差情報に基づいて、前記航空機の飛行位置情報を求める位置情報処理手段とを備え、前記航空機の飛行位置情報は、緯度情報、経度情報及び幾何学的高度情報からなる航空機位置測定システムであって、
前記航空機の識別情報を要求するためのモードA信号と該航空機の高度情報を要求するためのモードC信号とを含む質問信号を前記航空機に向けて発信する二次監視レーダが設けられ、
前記各受信局は、
前記二次監視レーダの前記質問信号に対応する前記航空機の応答信号を受信する構成とされ、
前記位置情報処理手段は、
前記各受信局で受信された前記応答信号を気圧高度情報に変換すると共に、該気圧高度情報と前記幾何学的高度情報とを比較し、この比較結果に基づいて、前記応答信号が前記モードA信号に対応するモードA応答か前記モードC信号に対応するモードC応答かを判別する応答信号種類判別手段が設けられていることを特徴とする航空機位置測定システム。
A predetermined number of receiving stations that receive the signals transmitted from the aircraft when the installation position information is confirmed;
Position information processing means for obtaining flight position information of the aircraft based on the installation position information of each receiving station and difference information of reception times when the signals are received by the receiving stations; Flight position information is an aircraft position measurement system consisting of latitude information, longitude information and geometric altitude information,
A secondary monitoring radar is provided that transmits an interrogation signal including a mode A signal for requesting identification information of the aircraft and a mode C signal for requesting altitude information of the aircraft to the aircraft;
Each receiving station is
It is configured to receive a response signal of the aircraft corresponding to the interrogation signal of the secondary monitoring radar,
The position information processing means includes
The response signal received at each receiving station is converted into barometric altitude information, and the barometric altitude information is compared with the geometric altitude information. Based on the comparison result, the response signal is converted to the mode A. An aircraft position measurement system comprising response signal type discrimination means for discriminating between a mode A response corresponding to a signal and a mode C response corresponding to the mode C signal.
前記応答信号種類判別手段は、
前記気圧高度情報の値と前記幾何学的高度情報の値との差分が所定の閾値以下のとき、前記応答信号を前記モードC応答として判定する一方、前記差分が前記閾値を超えるとき、前記応答信号を前記モードA応答として判定する構成とされていることを特徴とする請求項1記載の航空機位置測定システム。
The response signal type discriminating means is
When the difference between the value of the barometric altitude information and the value of the geometric altitude information is equal to or less than a predetermined threshold, the response signal is determined as the mode C response, while when the difference exceeds the threshold, the response The aircraft position measurement system according to claim 1, wherein a signal is determined as the mode A response.
前記応答信号種類判別手段は、
前記各受信局で受信された前記応答信号を前記モードC応答として扱い、該応答信号のビット列を前記気圧高度情報に対応するモードCコードに変換する気圧高度情報変換手段と、
該気圧高度情報変換手段で変換された前記気圧高度情報のモードCコードと前記幾何学的高度情報とを比較し、前記気圧高度情報の値と前記幾何学的高度情報の値との差分が所定の閾値以下のとき、前記応答信号を前記モードC応答として判定するモードC応答判定手段と、
前記各受信局で受信された前記応答信号を前記モードA応答として扱い、該応答信号のビット列を前記識別情報に対応するモードAコードに変換する識別情報変換手段と、
該識別情報変換手段で変換された前記モードAコードのうちの前記モードC応答以外のビット列を前記モードA応答として判定するモードA応答判定手段とを備えてなることを特徴とする請求項1又は2記載の航空機位置測定システム。
The response signal type discriminating means is
Barometric altitude information converting means for treating the response signal received at each receiving station as the mode C response and converting a bit string of the response signal into a mode C code corresponding to the barometric altitude information;
The mode C code of the barometric altitude information converted by the barometric altitude information converting means is compared with the geometric altitude information, and a difference between the value of the barometric altitude information and the value of the geometric altitude information is predetermined. Mode C response determination means for determining the response signal as the mode C response when
Identification information conversion means for treating the response signal received at each receiving station as the mode A response and converting a bit string of the response signal into a mode A code corresponding to the identification information;
2. A mode A response determination unit that determines, as the mode A response, a bit string other than the mode C response in the mode A code converted by the identification information conversion unit. 2. The aircraft position measurement system according to 2.
前記応答信号種類判別手段は、
前記モードC応答判定手段で判定された前記モードC応答、及び前記モードA応答判定手段で判定された前記モードA応答を記録し、次に前記各受信局で受信された前記応答信号と比較して相関度を求め、該相関度が所定値以上の場合、前記モードC応答及びモードA応答の記録を更新する応答記録更新手段が設けられていることを特徴とする請求項3記載の航空機位置測定システム。
The response signal type discriminating means is
The mode C response determined by the mode C response determination unit and the mode A response determined by the mode A response determination unit are recorded, and then compared with the response signal received by each receiving station. 4. The aircraft position according to claim 3, further comprising response record updating means for obtaining a correlation degree and updating the record of the mode C response and the mode A response when the correlation degree is equal to or greater than a predetermined value. Measuring system.
前記応答信号種類判別手段は、
前記各受信局で受信された前記応答信号を格納する応答信号格納手段を有することを特徴とする請求項1、2、3又は4記載の航空機位置測定システム。
The response signal type discriminating means is
5. The aircraft position measurement system according to claim 1, further comprising response signal storage means for storing the response signal received at each receiving station.
設置位置情報が確定し、航空機から送信される信号を受信する所定数の受信局と、
前記各受信局の前記設置位置情報及び前記各受信局で前記信号を受信したときの受信時刻の差情報に基づいて、前記航空機の飛行位置情報を求める位置情報処理手段とを備え、前記航空機の飛行位置情報は、緯度情報、経度情報及び幾何学的高度情報からなる航空機位置測定システムに用いられる応答信号判別方法であって、
前記航空機の識別情報を要求するためのモードA信号と該航空機の高度情報を要求するためのモードC信号とを含む質問信号を前記航空機に向けて発信する二次監視レーダが設けられ、
前記各受信局は、
前記二次監視レーダの前記質問信号に対応する前記航空機の応答信号を受信する構成とされ、
前記位置情報処理手段では、
応答信号種類判別手段が、前記各受信局で受信された前記応答信号を気圧高度情報に変換すると共に、該気圧高度情報と前記幾何学的高度情報とを比較し、この比較結果に基づいて、前記応答信号が前記モードA信号に対応するモードA応答か前記モードC信号に対応するモードC応答かを判別する応答信号種類判別処理を行うことを特徴とする応答信号判別方法。
A predetermined number of receiving stations that receive the signals transmitted from the aircraft when the installation position information is confirmed;
Position information processing means for obtaining flight position information of the aircraft based on the installation position information of each receiving station and difference information of reception times when the signals are received by the receiving stations; Flight position information is a response signal discrimination method used in an aircraft position measurement system consisting of latitude information, longitude information and geometric altitude information,
A secondary monitoring radar is provided that transmits an interrogation signal including a mode A signal for requesting identification information of the aircraft and a mode C signal for requesting altitude information of the aircraft to the aircraft;
Each receiving station is
It is configured to receive a response signal of the aircraft corresponding to the interrogation signal of the secondary monitoring radar,
In the position information processing means,
The response signal type determination means converts the response signal received at each receiving station into barometric height information, compares the barometric height information with the geometric height information, and based on the comparison result, A response signal discrimination method comprising: performing a response signal type discrimination process for discriminating whether the response signal is a mode A response corresponding to the mode A signal or a mode C response corresponding to the mode C signal.
前記応答信号種類判別処理では、
前記気圧高度情報の値と前記幾何学的高度情報の値との差分が所定の閾値以下のとき、前記応答信号を前記モードC応答として判定する一方、前記差分が前記閾値を超えるとき、前記応答信号を前記モードA応答として判定することを特徴とする請求項6記載の応答信号判別方法。
In the response signal type determination process,
When the difference between the value of the barometric altitude information and the value of the geometric altitude information is equal to or less than a predetermined threshold, the response signal is determined as the mode C response, while when the difference exceeds the threshold, the response 7. The response signal determination method according to claim 6, wherein a signal is determined as the mode A response.
前記応答信号種類判別処理では、
気圧高度情報変換手段が、前記各受信局で受信された前記応答信号を前記モードC応答として扱い、該応答信号のビット列を前記気圧高度情報に対応するモードCコードに変換する気圧高度情報変換処理と、
モードC応答判定手段が、前記気圧高度情報変換手段で変換された前記気圧高度情報のモードCコードと前記幾何学的高度情報とを比較し、前記気圧高度情報の値と前記幾何学的高度情報の値との差分が所定の閾値以下のとき、前記応答信号を前記モードC応答として判定するモードC応答判定処理と、
識別情報変換手段が、前記各受信局で受信された前記応答信号を前記モードA応答として扱い、該応答信号のビット列を前記識別情報に対応するモードAコードに変換する識別情報変換処理と、
モードA応答判定手段が、前記識別情報変換手段で変換された前記モードAコードのうちの前記モードC応答以外のビット列を前記モードA応答として判定するモードA応答判定処理とを行うことを特徴とする請求項6又は7記載の応答信号判別方法。
In the response signal type determination process,
Pressure altitude information conversion means for treating the response signal received at each receiving station as the mode C response and converting a bit string of the response signal into a mode C code corresponding to the pressure altitude information When,
A mode C response determination means compares the mode C code of the barometric height information converted by the barometric height information converting means with the geometric altitude information, and the value of the barometric altitude information and the geometric altitude information A mode C response determination process for determining the response signal as the mode C response when the difference from the value is equal to or less than a predetermined threshold;
Identification information conversion means for treating the response signal received at each receiving station as the mode A response and converting a bit string of the response signal into a mode A code corresponding to the identification information;
The mode A response determination means performs a mode A response determination process for determining a bit string other than the mode C response in the mode A code converted by the identification information conversion means as the mode A response. The response signal discrimination method according to claim 6 or 7.
前記応答信号種類判別処理では、
応答記録更新手段が、前記モードC応答判定手段で判定された前記モードC応答、及び前記モードA応答判定手段で判定された前記モードA応答を記録し、次に前記各受信局で受信された前記応答信号と比較して相関度を求め、該相関度が所定値以上の場合、前記モードC応答及びモードA応答の記録を更新する応答記録更新処理を行うことを特徴とする請求項8記載の応答信号判別方法。
In the response signal type determination process,
Response record update means records the mode C response determined by the mode C response determination means and the mode A response determined by the mode A response determination means, and then received by each receiving station. 9. The response record update process is performed, wherein a correlation degree is obtained by comparison with the response signal, and when the correlation degree is equal to or greater than a predetermined value, a response record update process for updating a record of the mode C response and the mode A response is performed. Response signal discrimination method.
前記応答信号種類判別処理では、
応答信号格納手段が、前記各受信局で受信された前記応答信号を格納する応答信号格納処理を行うことを特徴とする請求項6、7、8又は9記載の応答信号判別方法。
In the response signal type determination process,
10. The response signal determination method according to claim 6, 7, 8 or 9, wherein the response signal storage means performs a response signal storage process for storing the response signal received at each receiving station.
コンピュータを、請求項1乃至5のいずれか一に記載の応答信号種類判別手段として機能させることを特徴とする応答信号判別プログラム。   6. A response signal discrimination program for causing a computer to function as the response signal type discrimination means according to claim 1.
JP2009268150A 2009-11-25 2009-11-25 Aircraft position measurement system, response signal discrimination method and response signal discrimination program used in the system Active JP5463875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268150A JP5463875B2 (en) 2009-11-25 2009-11-25 Aircraft position measurement system, response signal discrimination method and response signal discrimination program used in the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268150A JP5463875B2 (en) 2009-11-25 2009-11-25 Aircraft position measurement system, response signal discrimination method and response signal discrimination program used in the system

Publications (2)

Publication Number Publication Date
JP2011112465A true JP2011112465A (en) 2011-06-09
JP5463875B2 JP5463875B2 (en) 2014-04-09

Family

ID=44234909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268150A Active JP5463875B2 (en) 2009-11-25 2009-11-25 Aircraft position measurement system, response signal discrimination method and response signal discrimination program used in the system

Country Status (1)

Country Link
JP (1) JP5463875B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209211A (en) * 2010-03-30 2011-10-20 Nec Corp Multilateration system, signal processing method of multilateration receiving station, and processing program thereof
JP2012122775A (en) * 2010-12-06 2012-06-28 Nec Corp Aircraft position measuring system, time synchronization method, and time synchronization program for use in the system
WO2013136648A1 (en) * 2012-03-14 2013-09-19 日本電気株式会社 Wide-area multilateration system, central station, and 2-dimensional-position calculation method using same
KR20140121847A (en) 2012-02-15 2014-10-16 닛본 덴끼 가부시끼가이샤 Movable body position measuring system, central station, question control method used therein, and storage medium on which program thereof has been stored
KR20140121838A (en) 2012-02-15 2014-10-16 닛본 덴끼 가부시끼가이샤 Movable body position measuring system, central processing unit, and question control method used therein
KR20160130255A (en) 2014-03-04 2016-11-10 닛본 덴끼 가부시끼가이샤 System for measuring position of flying objects

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949340B1 (en) * 2016-11-02 2019-02-18 단국대학교 산학협력단 Method for determining generation position of sound source and apparatus for the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304374A (en) * 1988-06-01 1989-12-07 Mitsubishi Electric Corp Radar signal processor
JPH0315788A (en) * 1989-03-31 1991-01-24 Toyo Commun Equip Co Ltd Mode c code correlation processing system
JPH09230040A (en) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp Tracking data judging method
JP2003240847A (en) * 2002-02-18 2003-08-27 Kawasaki Heavy Ind Ltd Pseudo-interrogation signal generator for air traffic control secondary surveillance radar
JP2005345283A (en) * 2004-06-03 2005-12-15 Nec Corp Poor transponder response removal system and method in ssr mode s aeronautical station
JP2007010629A (en) * 2005-07-04 2007-01-18 Toshiba Corp Secondary surveillance radar response signal receiver and secondary surveillance radar response signal receiving method
JP2007333427A (en) * 2006-06-12 2007-12-27 Mitsubishi Electric Corp Airport surface surveillance system
JP2009300146A (en) * 2008-06-11 2009-12-24 Nec Corp Aircraft position measuring system, signal kind determination method, center station, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304374A (en) * 1988-06-01 1989-12-07 Mitsubishi Electric Corp Radar signal processor
JPH0315788A (en) * 1989-03-31 1991-01-24 Toyo Commun Equip Co Ltd Mode c code correlation processing system
JPH09230040A (en) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp Tracking data judging method
JP2003240847A (en) * 2002-02-18 2003-08-27 Kawasaki Heavy Ind Ltd Pseudo-interrogation signal generator for air traffic control secondary surveillance radar
JP2005345283A (en) * 2004-06-03 2005-12-15 Nec Corp Poor transponder response removal system and method in ssr mode s aeronautical station
JP2007010629A (en) * 2005-07-04 2007-01-18 Toshiba Corp Secondary surveillance radar response signal receiver and secondary surveillance radar response signal receiving method
JP2007333427A (en) * 2006-06-12 2007-12-27 Mitsubishi Electric Corp Airport surface surveillance system
JP2009300146A (en) * 2008-06-11 2009-12-24 Nec Corp Aircraft position measuring system, signal kind determination method, center station, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209211A (en) * 2010-03-30 2011-10-20 Nec Corp Multilateration system, signal processing method of multilateration receiving station, and processing program thereof
JP2012122775A (en) * 2010-12-06 2012-06-28 Nec Corp Aircraft position measuring system, time synchronization method, and time synchronization program for use in the system
KR20140121847A (en) 2012-02-15 2014-10-16 닛본 덴끼 가부시끼가이샤 Movable body position measuring system, central station, question control method used therein, and storage medium on which program thereof has been stored
KR20140121838A (en) 2012-02-15 2014-10-16 닛본 덴끼 가부시끼가이샤 Movable body position measuring system, central processing unit, and question control method used therein
WO2013136648A1 (en) * 2012-03-14 2013-09-19 日本電気株式会社 Wide-area multilateration system, central station, and 2-dimensional-position calculation method using same
JPWO2013136648A1 (en) * 2012-03-14 2015-08-03 日本電気株式会社 Wide area multilateration system, central office, and two-dimensional position calculation method used therefor
KR20160130255A (en) 2014-03-04 2016-11-10 닛본 덴끼 가부시끼가이샤 System for measuring position of flying objects

Also Published As

Publication number Publication date
JP5463875B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5463875B2 (en) Aircraft position measurement system, response signal discrimination method and response signal discrimination program used in the system
US20100001895A1 (en) Method and apparatus for determining dme reply efficiency
JP5125784B2 (en) Aircraft position measurement system, signal type determination method, center station, and program
EP2916139B1 (en) A computer implemented system and method for wi-fi based indoor localization
EP1783720B1 (en) Error control in an air traffic management system
WO2019119195A1 (en) Target signal detection method and device, unmanned aerial vehicle, and agricultural unmanned aerial vehicle
US10698076B2 (en) Radio frequency signal transmission detector and locator
US10611495B2 (en) Sea state estimation
JPWO2013121709A1 (en) MOBILE POSITION MEASUREMENT SYSTEM, CENTRAL OFFICE, QUERY CONTROL METHOD USED FOR THEM, AND ITS PROGRAM
KR101170292B1 (en) System and method of target identification using radar analyzing server
JP2003172777A (en) Target detection system and target detection method
KR101925489B1 (en) Method for identifying friend or foe based on response power and apparatus supporting the same
JP7187699B2 (en) Apparatus, method and computer program for processing audio radio signals
EP2312490A1 (en) A method of and apparatus for identifying associated objects
JP6199644B2 (en) Radio wave monitoring apparatus and radio wave monitoring method
Ostroumov et al. Identification of distance measuring equipment interrogations
Sinitsyn et al. Passive acoustic radar for aircraft trajectory tracking
JP5439421B2 (en) Multilateration system
JP7436290B2 (en) Identification information management system and identification information collection method
US20230400572A1 (en) Object detection apparatus, object detection method, and non-transitory computer readable-medium
Poston ILoViT: Indoor localization via vibration tracking
US20220137206A1 (en) Aviation detect and avoid method and system
JP6139210B2 (en) Aircraft monitoring system
RU2791600C1 (en) Method for direct identification of air targets
US20230358597A1 (en) Acoustic detection of cargo mass change

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5463875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150