JP2011111375A - Hardened body - Google Patents

Hardened body Download PDF

Info

Publication number
JP2011111375A
JP2011111375A JP2009270867A JP2009270867A JP2011111375A JP 2011111375 A JP2011111375 A JP 2011111375A JP 2009270867 A JP2009270867 A JP 2009270867A JP 2009270867 A JP2009270867 A JP 2009270867A JP 2011111375 A JP2011111375 A JP 2011111375A
Authority
JP
Japan
Prior art keywords
weight
parts
component
metal oxide
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270867A
Other languages
Japanese (ja)
Other versions
JP5374334B2 (en
Inventor
Maki Mukai
麻紀 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consultant Kk F
F Consultant Co Ltd
Original Assignee
Consultant Kk F
F Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consultant Kk F, F Consultant Co Ltd filed Critical Consultant Kk F
Priority to JP2009270867A priority Critical patent/JP5374334B2/en
Publication of JP2011111375A publication Critical patent/JP2011111375A/en
Application granted granted Critical
Publication of JP5374334B2 publication Critical patent/JP5374334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hardened body having excellent heat resistance in relation to a new hardened body. <P>SOLUTION: The hardened body comprises, as constituents, 100 pts.wt. of (A) a hydraulic inorganic binder, 10-300 pts.wt. of (B) a lightweight aggregate, 100-1,200 pts.wt. of (C) at least two metal oxides and/or precursors of metal oxides, and 5-100 pts.wt. of (D) a fibrous material having a melting point of ≥1,000°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規な硬化体に関するものである。   The present invention relates to a novel cured product.

従来、壁、屋根、床、天井、柱、梁等の部位において、セメント、石膏等の無機系の結合材と骨材を含有する無機系硬化体が多く採用されている。例えば、各種高炉の鋳床や、住宅内装におけるコンロ周辺のキッチンバックパネル等、高温に晒される部分のある床や壁材の耐熱性材料として採用されている。
このような耐熱性材料として、例えば特許文献1には、セメントと特定の多孔性骨材を含む耐熱ブロックが記載されている。
Conventionally, inorganic hardened bodies containing inorganic binders such as cement and gypsum and aggregates are often used in parts such as walls, roofs, floors, ceilings, columns, and beams. For example, it is used as a heat-resistant material for floors and wall materials that have parts exposed to high temperatures, such as cast floors of various blast furnaces and kitchen back panels around the stove in the interior of a house.
As such a heat resistant material, for example, Patent Document 1 describes a heat resistant block containing cement and a specific porous aggregate.

しかし、特許文献1の耐熱性材料は、高温に耐え得る耐熱性を有しているが、一方で耐熱ブロックの温度が急激に上昇するおそれがある。   However, the heat-resistant material of Patent Document 1 has heat resistance that can withstand high temperatures, but on the other hand, the temperature of the heat-resistant block may rapidly increase.

特開2003−252672号公報JP 2003-252672 A

本発明は、このような点に鑑みなされたものであり、優れた耐熱性を有する硬化体を得ることを目的とするものである。   This invention is made | formed in view of such a point, and it aims at obtaining the hardening body which has the outstanding heat resistance.

本発明者は、上記目的を達成するため鋭意検討を行なった結果、水硬性無機結合材、軽量骨材、特定の金属酸化物及び/または金属酸化物の前駆体、及び繊維状物質を構成成分とする硬化体に想到し、本発明を完成させた。
すなわち、本発明の硬化体は、下記の特徴を有するものである。
As a result of intensive studies to achieve the above object, the present inventor has found that a hydraulic inorganic binder, a lightweight aggregate, a specific metal oxide and / or a precursor of a metal oxide, and a fibrous material are constituent components. As a result, the present invention was completed.
That is, the cured body of the present invention has the following characteristics.

1.(A)水硬性無機結合材100重量部に対して、(B)軽量骨材10〜300重量部、(C)少なくとも2種以上の金属酸化物及び/または金属酸化物の前駆体100〜1200重量部、(D)融点1000℃以上の繊維状物質5〜100重量部、を構成成分とし、
上記(C)が、平均粒子径0.2μm以上2μm以下の金属酸化物及び/または金属酸化物の前駆体(C−1)、並びに平均粒子径2μm超10μm以下の金属酸化物及び/または金属酸化物の前駆体(C−2)を含むことを特徴とする硬化体。
1. (A) 10 to 300 parts by weight of a lightweight aggregate with respect to 100 parts by weight of a hydraulic inorganic binder, (C) at least two kinds of metal oxides and / or metal oxide precursors 100 to 1200 Parts by weight, (D) 5 to 100 parts by weight of a fibrous material having a melting point of 1000 ° C. or higher,
The above (C) is a metal oxide and / or metal oxide precursor (C-1) having an average particle size of 0.2 μm or more and 2 μm or less, and a metal oxide and / or metal having an average particle size of more than 2 μm and 10 μm or less. A cured product comprising an oxide precursor (C-2).

本発明は、水硬性無機結合材、軽量骨材、平均粒子径0.2μm以上2μm以下の金属酸化物及び/または金属酸化物の前駆体、並びに平均粒子径2μm超10μm以下の金属酸化物及び/または金属酸化物の前駆体、繊維状物質を必須成分として含む無機質硬化体であることにより、優れた耐熱性能を発揮することができるものである。   The present invention relates to a hydraulic inorganic binder, a lightweight aggregate, a metal oxide having an average particle size of 0.2 μm to 2 μm and / or a metal oxide precursor, a metal oxide having an average particle size of more than 2 μm and 10 μm or less, and By being an inorganic cured body containing a precursor of metal oxide and / or a fibrous material as essential components, excellent heat resistance can be exhibited.

(A)水硬性無機結合材
本発明における水硬性無機結合材(以下、単に「(A)成分」ともいう)としては、例えば、セメント、石膏、等が挙げられる。この中でも本発明では、セメントが好適に使用される。
セメントとしては、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント等のポルトランドセメントのほか、アルミナセメント、超速硬セメント、膨張セメント、酸性リン酸塩セメント、シリカセメント、高炉セメント、フライアッシュセメント、キーンスセメント等が挙げられる。これらは1種または2種以上を混合して使用できる。これらの中でも、ポルトランドセメントが好ましい。より具体的には、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント及び白色ポルトランドセメントの少なくとも1種が好ましいものとして挙げられる。
(A) Hydraulic inorganic binding material Examples of the hydraulic inorganic binding material (hereinafter, also simply referred to as “component (A)”) in the present invention include cement, gypsum, and the like. Among them, cement is preferably used in the present invention.
Examples of cement include ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement, white Portland cement, etc., as well as alumina cement, ultrafast cement, expanded Cement, acid phosphate cement, silica cement, blast furnace cement, fly ash cement, keens cement and the like can be mentioned. These may be used alone or in combination of two or more. Among these, Portland cement is preferable. More specifically, at least one of ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement and white Portland cement is preferable.

(B)軽量骨材
本発明における軽量骨材(以下、単に「(B)成分」ともいう)とは、天然鉱物の発泡または膨張した物質である膨張パーライト、膨張頁石、膨張バーミキュライト(ヒル石)、軽石、シラスバルーン等の他、シリカゲルを発泡させたもの、各種スラグを造粒して発泡させたもの、粘土粉体を造粒して発泡させたもの等の人工軽量骨材等が挙げられる。これらは1種または2種以上を混合して使用できる。この中でも、特に膨張パーライト及び/または膨張バーミキュライトを含むことが好ましい。(B)成分は、かさ比重が0.05〜0.15であることが好ましい。このような範囲である場合、優れた断熱性を発揮することができる。また、(B)成分の平均粒径は、特に限定されるものではないが、好ましくは1〜10mm程度である。
(B) Lightweight Aggregate Lightweight aggregate in the present invention (hereinafter also simply referred to as “component (B)”) is an expanded perlite, expanded shale, expanded vermiculite (Hillstone) which is a natural mineral foamed or expanded material. ), Pumice, shirasu balloon, etc., artificial lightweight aggregate such as foamed silica gel, granulated various slag, foamed clay powder, etc. It is done. These may be used alone or in combination of two or more. Among these, it is particularly preferable to include expanded pearlite and / or expanded vermiculite. The component (B) preferably has a bulk specific gravity of 0.05 to 0.15. In such a range, excellent heat insulating properties can be exhibited. Moreover, the average particle diameter of (B) component is although it does not specifically limit, Preferably it is about 1-10 mm.

(B)成分の比率は、(A)成分100重量部に対して、10〜300重量部、好ましくは50〜200重量部である。このような範囲である場合、優れた耐熱性、断熱性を発揮することができる。   The ratio of (B) component is 10-300 weight part with respect to 100 weight part of (A) component, Preferably it is 50-200 weight part. In such a range, excellent heat resistance and heat insulation can be exhibited.

(C)金属酸化物及び/または金属酸化物の前駆体
本発明における金属酸化物及び/または金属酸化物の前駆体(以下、単に「(C)成分」ともいう)は、硬化体の耐熱性を向上させるものである。
金属酸化物としては、特に限定されないが、例えば、亜鉛、鉄、銅、錫、バリウム、アルミニウム、マグネシウム、チタン、ジルコニウム、アンチモン、インジウム等の酸化物、またそれらの複合酸化物等が挙げられる。本発明では特に、酸化アルミニウム、酸化チタン、酸化マグネシウム等が好ましい。
金属酸化物の前駆体としては、硬化体が高温に晒された際に、酸化反応等により上記の金属酸化物を生成するものであれば特に限定されず、例えば、亜鉛、鉄、銅、錫、バリウム、アルミニウム、マグネシウム、チタン、ジルコニウム、アンチモン、インジウム等の各種金属、またはそれら金属の水酸化物、硫酸塩、亜硫酸塩、リン酸塩、硝酸塩、酢酸塩、塩化物塩、ホウ酸塩、または上記金属の複合化合物等が挙げられる。本発明では特に、上記金属の水酸化物、硫酸塩、ホウ酸塩等が好ましい。
(C) Metal Oxide and / or Precursor of Metal Oxide The metal oxide and / or precursor of the metal oxide in the present invention (hereinafter also simply referred to as “component (C)”) is the heat resistance of the cured product. Is to improve.
Although it does not specifically limit as a metal oxide, For example, oxides, such as zinc, iron, copper, tin, barium, aluminum, magnesium, titanium, zirconium, antimony, indium, those complex oxides, etc. are mentioned. In the present invention, aluminum oxide, titanium oxide, magnesium oxide and the like are particularly preferable.
The precursor of the metal oxide is not particularly limited as long as it generates the above metal oxide by an oxidation reaction or the like when the cured body is exposed to a high temperature. For example, zinc, iron, copper, tin , Various metals such as barium, aluminum, magnesium, titanium, zirconium, antimony, indium, or hydroxides, sulfates, sulfites, phosphates, nitrates, acetates, chlorides, borates of these metals, Or the compound compound of the said metal, etc. are mentioned. In the present invention, the above metal hydroxides, sulfates, borates and the like are particularly preferable.

また、(C)成分の金属酸化物としては屈折率が1.4以上のものが好ましい。この場合、硬化体の耐熱性を向上させることができる。   Moreover, as a metal oxide of (C) component, a thing with a refractive index of 1.4 or more is preferable. In this case, the heat resistance of the cured body can be improved.

(C)成分の比率は、(A)成分100重量部に対して、100〜1200重量部、好ましくは300〜900重量部である。このような範囲である場合、優れた耐熱性を有することができる。   The ratio of (C) component is 100-1200 weight part with respect to 100 weight part of (A) component, Preferably it is 300-900 weight part. In such a range, excellent heat resistance can be obtained.

本発明において、上記(C)成分は、平均粒子径0.2μm以上2μm以下(好ましくは0.6μm以上1.8μm以下)の金属酸化物及び/または金属酸化物の前駆体(C−1)(以下、単に「(C−1)成分」ともいう)、並びに平均粒子径2μm超10μm以下の金属酸化物及び/または金属酸化物の前駆体(C−2)(以下、単に「(C−2)成分」ともいう)を含むものである。このように、平均粒子径が異なる少なくとも2種以上の(C)成分を含むことにより、優れた耐熱性を発揮することができる。   In the present invention, the component (C) is a metal oxide and / or metal oxide precursor (C-1) having an average particle size of 0.2 μm to 2 μm (preferably 0.6 μm to 1.8 μm). (Hereinafter, also simply referred to as “component (C-1)”) and metal oxide and / or metal oxide precursor (C-2) having an average particle diameter of more than 2 μm and 10 μm or less (hereinafter simply referred to as “(C— 2) also referred to as “component”). Thus, the outstanding heat resistance can be exhibited by including the (C) component of 2 or more types from which an average particle diameter differs.

(C)成分中の(C−1)成分と(C−2)成分の重量比は、1:1〜1:80であることが好ましい。この場合、優れた耐熱性能を発揮することができる。   The weight ratio of the component (C-1) to the component (C-2) in the component (C) is preferably 1: 1 to 1:80. In this case, excellent heat resistance can be exhibited.

この(C)成分の作用機構は明らかではないが、一般に粒子はレイリー散乱の理論から、その粒子の2倍の長さの波長の光を最も強く反射するため、(C−1)成分は波長0.5μm〜5μm程度の波長領域(可視光〜中赤外線領域)、また(C−2)成分は波長5μm〜25μm程度の波長領域(中赤外線〜遠赤外線領域)において高い反射率を有すると推察される。このため、本発明の硬化体は、広範囲の波長領域において高い反射率を有しており、高温に晒された場合でも効率的に温度上昇を抑制することができるものと推察される。   Although the mechanism of action of the component (C) is not clear, in general, the particle reflects light having a wavelength twice as long as that of the particle based on the theory of Rayleigh scattering. It is assumed that the component (C-2) has a high reflectance in the wavelength region of 0.5 μm to 5 μm (visible light to mid-infrared region) and the wavelength region of about 5 μm to 25 μm (mid-infrared to far infrared region). Is done. For this reason, the cured body of the present invention has a high reflectance in a wide wavelength range, and it is presumed that the temperature rise can be efficiently suppressed even when exposed to high temperatures.

本発明において、特に高い耐熱性を必要とする場合、金属酸化物と金属酸化物の前駆体をそれぞれ含むことが好ましい。この場合の(C−1)成分と(C−2)成分の組み合わせとしては、例えば、(C−1)成分として酸化チタン(屈折率:2.71)、(C−2)成分として水酸化アルミニウム(酸化アルミニウム(屈折率:1.76)の前駆体)とすることが好ましい。   In the present invention, when particularly high heat resistance is required, it is preferable to include a metal oxide and a metal oxide precursor, respectively. In this case, the combination of the component (C-1) and the component (C-2) includes, for example, titanium oxide (refractive index: 2.71) as the component (C-1) and hydroxylation as the component (C-2). It is preferable to use aluminum (a precursor of aluminum oxide (refractive index: 1.76)).

(D)繊維状物質
本発明における繊維状物質(以下、単に「(D)成分」ともいう)は、融点1000℃以上のものであり、硬化体に優れた耐熱性、耐久性を付与するものである。
(D)成分としては、例えば、ロックウール、セラミック繊維等の人工鉱物繊維、珪酸塩鉱物等の天然鉱物繊維が挙げられ、これらは1種又は2種以上を混合して使用できる。本発明では特に、ザクロ石、カンラン石等のネソ珪酸塩;異極鉱、ローソン石等のソロ珪酸塩;緑柱石や電気石等のシクロ珪酸塩;輝石類、珪灰石、角閃石、ゾノトラ石等のイノ珪酸塩;雲母類、滑石、緑泥石類等のフィロ珪酸塩;長石類、沸石類等のテクト珪酸塩;等の珪酸塩鉱物が好ましく、中でも、輝石類、珪灰石、角閃石、ゾノトラ石等のイノ珪酸塩が好ましい。
(D) Fibrous material The fibrous material in the present invention (hereinafter also simply referred to as “component (D)”) has a melting point of 1000 ° C. or higher, and imparts excellent heat resistance and durability to the cured body. It is.
Examples of the component (D) include artificial mineral fibers such as rock wool and ceramic fibers, and natural mineral fibers such as silicate minerals, and these can be used alone or in combination. In the present invention, in particular, nezosilicates such as garnet and olivine; solosilicates such as heteropolarite and Lawsonite; cyclosilicates such as beryl and tourmaline; pyroxenes, wollastonite, amphibolite, and zonotralite Inosilicates such as phyllosilicates such as mica, talc and chlorite; Tectonic silicates such as feldspars and zeolites; silicate minerals such as pyroxenes, wollastonite, amphibole, Inosilicates such as zonotolite are preferred.

(D)成分の平均繊維長は10〜4000μm、好ましくは10〜1000μm、より好ましくは100〜500μmである。また、(D)成分の比率は、(A)成分100重量部に対して、5〜100重量部、好ましくは10〜80重量部である。このような範囲である場合、耐熱性、耐久性(耐クラック性)、等に優れる。   (D) The average fiber length of a component is 10-4000 micrometers, Preferably it is 10-1000 micrometers, More preferably, it is 100-500 micrometers. Moreover, the ratio of (D) component is 5-100 weight part with respect to 100 weight part of (A) component, Preferably it is 10-80 weight part. In such a range, it is excellent in heat resistance, durability (crack resistance), and the like.

本発明の硬化体は、上記(B)成分、(C)成分、(D)成分を併用して用いることにより、優れた耐熱性、断熱性、耐久性を有するものである。作用機構は明らかではないが、(D)成分は融点が1000℃以上と高温でり、1000℃未満の温度では軟化しないため、硬化体が高温に晒された場合でも繊維状を維持することができる。これにより硬化体強度の低下を抑制することができるとともに、(D)成分は硬化体中で(B)成分、及び(C)成分のスペーサーとして作用すると推察される。このスペーサー効果により、(B)成分の空隙を保持すること、(C)成分の焼結による粒子径増大を抑制することができ、上述の反射特性等を維持すると推察される。この結果、本発明の(B)成分、(C)成分の効果を十分に発揮させることができると考えられる。   The cured body of the present invention has excellent heat resistance, heat insulation, and durability by using the above components (B), (C), and (D) in combination. Although the mechanism of action is not clear, the component (D) has a high melting point of 1000 ° C. or higher and does not soften at a temperature lower than 1000 ° C., so that it can maintain a fibrous shape even when the cured body is exposed to a high temperature. it can. Thereby, while the fall of hardening body intensity | strength can be suppressed, it is guessed that (D) component acts as a spacer of (B) component and (C) component in a hardening body. By this spacer effect, it is presumed that the voids of the component (B) can be maintained and the increase in the particle diameter due to the sintering of the component (C) can be suppressed, and the above-described reflection characteristics and the like are maintained. As a result, it is considered that the effects of the components (B) and (C) of the present invention can be sufficiently exhibited.

上記以外に、本発明の硬化体の構成成分として、(F)合成樹脂、(G)粘性調整剤、(H)充填剤、(I)前記(D)以外の繊維状物質を含むことができる。   In addition to the above, (F) a synthetic resin, (G) a viscosity modifier, (H) a filler, (I) a fibrous substance other than (D) can be included as a constituent component of the cured body of the present invention. .

(F)合成樹脂は、ラテックス、合成樹脂エマルション、粉末樹脂等のいずれであっても良い。とりわけ、プレミックスが可能であり、加水後の分散性に優れるという点で再乳化形粉末樹脂を好適に用いることができる。樹脂成分としては、最終的に得られる硬化体の強度向上、成形性の向上等を図ることができるものであれば限定的でなく、公知のもの又は市販品を使用することができる。例えば、アクリル樹脂、酢酸ビニル樹脂、プロピオン酸ビニル樹脂、ベオバ樹脂、アクリル酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂等を挙げることができる。これらの樹脂成分を添加することにより、強度等の向上を図ることができる。樹脂成分の添加量は限定的ではないが、通常は(A)成分100重量部に対し、固形分換算で3〜50重量部程度とすることが強度向上の点で望ましい。   (F) The synthetic resin may be any of latex, synthetic resin emulsion, powder resin, and the like. In particular, a re-emulsified powder resin can be suitably used in that premixing is possible and the dispersibility after addition of water is excellent. The resin component is not limited as long as it can improve the strength and moldability of the finally obtained cured body, and known or commercially available products can be used. For example, acrylic resin, vinyl acetate resin, vinyl propionate resin, Veova resin, acrylic vinyl acetate resin, ethylene vinyl acetate resin, vinyl chloride resin, epoxy resin and the like can be mentioned. By adding these resin components, the strength and the like can be improved. Although the addition amount of the resin component is not limited, it is usually desirable in terms of strength improvement to be about 3 to 50 parts by weight in terms of solid content with respect to 100 parts by weight of component (A).

(G)粘性調整剤は、粘性調整や保水性の向上による作業性の改良のために添加するものであり、セルロース類等の水溶性樹脂が使用できる。(H)充填剤としては、炭酸カルシウム、炭酸マグネシウム等の炭酸塩が使用できる。(I)前記(D)以外の繊維状物質は、収縮量低下、等のために添加するものであり、ガラス繊維等の無機繊維が使用できる。   (G) The viscosity modifier is added for improving workability by adjusting viscosity or improving water retention, and water-soluble resins such as celluloses can be used. (H) As the filler, carbonates such as calcium carbonate and magnesium carbonate can be used. (I) Fibrous substances other than (D) are added for shrinkage reduction, etc., and inorganic fibers such as glass fibers can be used.

さらに、上記以外にも必要に応じて、界面活性剤、減水剤、消泡剤、防錆剤、顔料等の公知の添加剤を含んでもよい。   Furthermore, you may contain well-known additives other than the above as needed, such as surfactant, a water reducing agent, an antifoamer, a rust preventive agent, and a pigment.

本発明硬化体は、(A)水硬性無機結合材、(B)軽量骨材、平均粒子径0.2μm以上2μm以下の金属酸化物及び/または金属酸化物の前駆体(C−1)、並びに平均粒子径2μm超10μm以下の金属酸化物及び/または金属酸化物の前駆体(C−2)、及び(D)融点1000℃以上の繊維状物質を必須構成成分とし、これらと適当量の水とを均一に混合した組成物(以下、単に「硬化体組成物」ともいう)を成形することによって得られるものである。硬化体組成物の各成分は、(A)成分100重量部に対して、(B)成分10〜300重量部、(C)成分50〜1000重量部、及び(D)成分5〜50重量部を含むものである。   The cured product of the present invention comprises (A) a hydraulic inorganic binder, (B) a lightweight aggregate, a metal oxide having an average particle diameter of 0.2 μm to 2 μm and / or a metal oxide precursor (C-1), And metal oxide and / or metal oxide precursor (C-2) having an average particle diameter of more than 2 μm and not more than 10 μm, and (D) a fibrous material having a melting point of 1000 ° C. or more as essential constituents, and an appropriate amount thereof It is obtained by molding a composition in which water is uniformly mixed (hereinafter also simply referred to as “cured body composition”). Each component of the cured product composition is 10 to 300 parts by weight of component (B), 50 to 1000 parts by weight of component (C), and 5 to 50 parts by weight of component (D) with respect to 100 parts by weight of component (A). Is included.

水の比率は、(A)成分100重量部に対し、好ましくは100〜2000重量部、より好ましくは200〜1500重量部である。この範囲の水を添加することにより、硬化体を効率的に形成することができる。   The ratio of water is preferably 100 to 2000 parts by weight, more preferably 200 to 1500 parts by weight with respect to 100 parts by weight of component (A). By adding water in this range, a cured product can be efficiently formed.

上記硬化体組成物の成形方法としては、特に限定されないが、例えば、硬化体組成物を型枠内に流し込み、乾燥後に脱型する方法、あるいは耐熱性が要求される各部位に直接塗付し、乾燥、成形する方法、等が挙げられる。   The molding method of the cured product composition is not particularly limited. For example, the cured product composition is poured into a mold and demolded after drying, or directly applied to each part requiring heat resistance. , Drying, molding, and the like.

上記において、硬化体組成物を流し込む、あるいは塗付する際には、例えば、スプレー、ローラー、こて、刷毛塗り、レシプロ、コーター、流し込み、等の手段を用いた方法を採用することができる。また、使用できる型枠としては、例えばシリコン樹脂製、ウレタン樹脂製、金属製等の型枠、あるいは離型紙を設けた型枠等が使用できる。
また、硬化体組成物を乾燥させる際には、通常常温で行えばよい。
In the above, when the cured product composition is poured or applied, a method using means such as spray, roller, trowel, brush coating, reciprocating, coater, casting or the like can be employed. Moreover, as a usable mold, for example, a mold made of silicon resin, urethane resin, metal or the like, or a mold provided with release paper can be used.
Moreover, what is necessary is just to perform normally at normal temperature, when drying a hardening body composition.

本発明硬化体の厚みは、通常1〜30mm、好ましくは5〜20mm程度である。この場合、優れた耐熱性、断熱性、耐久性を発揮することができる。   The thickness of this invention hardening body is 1-30 mm normally, Preferably it is about 5-20 mm. In this case, excellent heat resistance, heat insulation, and durability can be exhibited.

本発明の硬化体は、壁、屋根、床、天井、柱、梁、等の部位に使用することができ、硬化体が高温に晒された場合においても、優れた耐熱性を発揮し、急激な温度上昇を効果的に抑制することができる。   The cured body of the present invention can be used for parts such as walls, roofs, floors, ceilings, columns, beams, etc., and exhibits excellent heat resistance even when the cured body is exposed to high temperatures, Temperature rise can be effectively suppressed.

以下に実施例を示し、本発明の特徴をより明確にする。 Examples are given below to clarify the features of the present invention.

原料としては以下のものを使用した。
・ポルトランドセメント
・膨張パーライト:かさ比重0.07
・ヒル石:かさ比重0.12
・酸化チタン1:平均粒子径1μm
・酸化チタン2:平均粒子径0.3μm
・酸化チタン3:平均粒子径0.1μm
・水酸化アルミニウム1:平均粒子径6μm
・水酸化アルミニウム2:平均粒子径50μm
・珪灰石:平均繊維長300μm、融点1540℃、アスペクト比約30
・ガラス繊維:平均繊維長1200μm、融点(軟化点)約730〜950℃、アスペクト比約200
・パルプ繊維:平均繊維長2000μm、アスペクト比50
・メチルセルロース
・酢酸ビニル系エマルション
The following were used as raw materials.
・ Portland cement ・ Expanded perlite: Bulk specific gravity 0.07
・ Hill stone: Bulk specific gravity 0.12
・ Titanium oxide 1: average particle size 1μm
・ Titanium oxide 2: Average particle size 0.3 μm
・ Titanium oxide 3: Average particle size 0.1 μm
Aluminum hydroxide 1: average particle size 6μm
Aluminum hydroxide 2: Average particle size 50 μm
Wollastonite: average fiber length of 300 μm, melting point of 1540 ° C., aspect ratio of about 30
Glass fiber: average fiber length of 1200 μm, melting point (softening point) of about 730 to 950 ° C., aspect ratio of about 200
Pulp fiber: Average fiber length 2000 μm, aspect ratio 50
・ Methylcellulose-vinyl acetate emulsion

(試験例1)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン1を50重量部、水酸化アルミニウム1を650重量部、珪灰石を50重量部、酢酸ビニル系エマルションを25重量部、メチルセルロース5重量部、及び水を1000重量部加えて、十分に攪拌してスラリー状の硬化体組成物1を作製した。
硬化体組成物1を100×100×5mmの型枠に充填し、23℃下で7日間乾燥後、脱型し硬化体1を得た。
得られた硬化体1において以下の耐熱性試験を行った結果、A判定であった。
(Test Example 1)
60 parts by weight of expanded perlite, 60 parts by weight of leechite, 50 parts by weight of titanium oxide 1, 650 parts by weight of aluminum hydroxide, 50 parts by weight of wollastonite, 100 parts by weight of vinyl acetate based on 100 parts by weight of Portland cement 25 parts by weight of the emulsion, 5 parts by weight of methylcellulose, and 1000 parts by weight of water were added and stirred sufficiently to prepare a slurry-like cured product composition 1.
The cured product composition 1 was filled in a 100 × 100 × 5 mm mold, dried at 23 ° C. for 7 days, and then demolded to obtain a cured product 1.
As a result of conducting the following heat resistance test on the obtained cured body 1, it was judged as A.

・耐熱性試験
硬化体1から高さ25mmの位置に600℃のヒーターを設置して、硬化体1を10分間加熱した後、試験体の裏面温度を測定した。試験結果を、表1に示す。評価基準は、以下の通りである。
A:裏面温度400℃未満
B:裏面温度400℃以上425℃未満
C:裏面温度425℃以上450℃未満
D:裏面温度450℃以上
-Heat resistance test The heater of 600 degreeC was installed in the position of 25 mm in height from the hardening body 1, and after heating the hardening body 1 for 10 minutes, the back surface temperature of the test body was measured. The test results are shown in Table 1. The evaluation criteria are as follows.
A: Back surface temperature of less than 400 ° C. B: Back surface temperature of 400 ° C. or more and less than 425 ° C. C: Back surface temperature of 425 ° C. or more and less than 450 ° C. D: Back surface temperature of 450 ° C. or more

(試験例2)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン1を50重量部、水酸化アルミニウム1を650重量部、珪灰石を25重量部、ガラス繊維を25重量部、酢酸ビニル系エマルションを25重量部、メチルセルロース5重量部、及び水を1000重量部加えて、十分に攪拌してスラリー状の硬化体組成物2を作製した。
試験例1と同様にして硬化体2を作製した。得られた硬化体2において、試験例1と同様に耐熱性試験を実施した結果、A判定であった。
(Test Example 2)
60 parts by weight of expanded perlite, 60 parts by weight of leechite, 50 parts by weight of titanium oxide 1, 650 parts by weight of aluminum hydroxide 1, 25 parts by weight of wollastonite, and glass fiber with respect to 100 parts by weight of Portland cement 25 parts by weight, 25 parts by weight of a vinyl acetate emulsion, 5 parts by weight of methylcellulose, and 1000 parts by weight of water were added and sufficiently stirred to prepare a slurry-like cured product composition 2.
A cured body 2 was produced in the same manner as in Test Example 1. The obtained cured product 2 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was judged as A.

(試験例3)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン1を10重量部、水酸化アルミニウム1を700重量部、珪灰石を25重量部、ガラス繊維を15重量部、酢酸ビニル系エマルションを25重量部、メチルセルロース5重量部、及び水を1000重量部加えて、十分に攪拌してスラリー状の硬化体組成物3を作製した。
試験例1と同様にして硬化体3を作製した。得られた硬化体3において、試験例1と同様に耐熱性試験を実施した結果、A判定であった。
(Test Example 3)
60 parts by weight of expanded perlite, 60 parts by weight of leechite, 10 parts by weight of titanium oxide 1, 700 parts by weight of aluminum hydroxide 1, 25 parts by weight of wollastonite, and glass fiber with respect to 100 parts by weight of Portland cement 15 parts by weight, 25 parts by weight of a vinyl acetate emulsion, 5 parts by weight of methylcellulose, and 1000 parts by weight of water were added and sufficiently stirred to prepare a slurry-like cured product composition 3.
A cured body 3 was produced in the same manner as in Test Example 1. The obtained cured product 3 was subjected to a heat resistance test in the same manner as in Test Example 1. As a result, it was determined as A.

(試験例4)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン1を350重量部、水酸化アルミニウム1を350重量部、珪灰石を10重量部、ガラス繊維を15重量部、酢酸ビニル系エマルションを50重量部、メチルセルロース5重量部、及び水を1000重量部加えて、十分に攪拌してスラリー状の硬化体組成物4を作製した。
試験例1と同様にして硬化体4を作製した。得られた硬化体4において、試験例1と同様に耐熱性試験を実施した結果、A判定であった。
(Test Example 4)
60 parts by weight of expanded perlite, 60 parts by weight of leechite, 350 parts by weight of titanium oxide 1, 350 parts by weight of aluminum hydroxide 1, 10 parts by weight of wollastonite, and glass fiber with respect to 100 parts by weight of Portland cement 15 parts by weight, 50 parts by weight of a vinyl acetate emulsion, 5 parts by weight of methylcellulose, and 1000 parts by weight of water were added and sufficiently stirred to prepare a slurry-like cured body composition 4.
A cured body 4 was produced in the same manner as in Test Example 1. The obtained cured product 4 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was A.

(試験例5)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン2を50重量部、水酸化アルミニウム1を650重量部、珪灰石を25重量部、ガラス繊維を25重量部、酢酸ビニル系エマルションを25重量部、メチルセルロース5重量部に適量の水を加えて、十分に攪拌してスラリー状の硬化体組成物5を作製した。
試験例1と同様にして硬化体5を作製した。得られた硬化体5において、試験例1と同様に耐熱性試験を実施した結果、B判定であった。
(Test Example 5)
60 parts by weight of expanded perlite, 60 parts by weight of leechite, 50 parts by weight of titanium oxide 2, 650 parts by weight of aluminum hydroxide 1, 25 parts by weight of wollastonite, and glass fiber with respect to 100 parts by weight of Portland cement An appropriate amount of water was added to 25 parts by weight, 25 parts by weight of a vinyl acetate emulsion, and 5 parts by weight of methylcellulose, and stirred sufficiently to prepare a slurry-like cured body composition 5.
A cured body 5 was produced in the same manner as in Test Example 1. The obtained cured product 5 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was B.

(試験例6)
ポルトランドセメント100重量部に対して、膨張パーライトを100重量部、ヒル石を100重量部、酸化チタン1を15重量部、水酸化アルミニウム1を150重量部、珪灰石を13重量部、ガラス繊維を8重量部、酢酸ビニル系エマルションを13重量部、メチルセルロース8重量部、及び水を500重量部加えて、十分に攪拌してスラリー状の硬化体組成物6を作製した。
試験例1と同様にして硬化体6を作製した。得られた硬化体6において、試験例1と同様に耐熱性試験を実施した結果、C判定であった。
(Test Example 6)
100 parts by weight of Portland cement, 100 parts by weight of expanded perlite, 100 parts by weight of leechite, 15 parts by weight of titanium oxide 1, 150 parts by weight of aluminum hydroxide 1, 13 parts by weight of wollastonite, and glass fiber 8 parts by weight, 13 parts by weight of a vinyl acetate emulsion, 8 parts by weight of methylcellulose, and 500 parts by weight of water were added and stirred sufficiently to prepare a slurry-like cured product composition 6.
A cured body 6 was produced in the same manner as in Test Example 1. The obtained cured product 6 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was C determination.

(試験例7)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン3を50重量部、水酸化アルミニウム1を650重量部、珪灰石を25重量部、ガラス繊維を25重量部、酢酸ビニル系エマルションを25重量部、メチルセルロース5重量部、及び水を1000重量部加えて、十分に攪拌してスラリー状の硬化体組成物7を作製した。
試験例1と同様にして硬化体7を作製した。得られた硬化体7において、試験例1と同様に耐熱性試験を実施した結果、D判定であった。
(Test Example 7)
60 parts by weight of expanded pearlite, 60 parts by weight of leechite, 50 parts by weight of titanium oxide, 650 parts by weight of aluminum hydroxide, 25 parts by weight of wollastonite, and glass fiber with respect to 100 parts by weight of Portland cement 25 parts by weight, 25 parts by weight of a vinyl acetate emulsion, 5 parts by weight of methylcellulose, and 1000 parts by weight of water were added and stirred sufficiently to prepare a slurry-like cured product composition 7.
A cured body 7 was produced in the same manner as in Test Example 1. The obtained cured product 7 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was D determination.

(試験例8)
ポルトランドセメント100重量部に対して、膨張パーライトを100重量部、ヒル石を100重量部、酸化チタン3を15重量部、水酸化アルミニウム2を150重量部、珪灰石を12.5重量部、ガラス繊維を7.5重量部、酢酸ビニル系エマルションを12.5重量部、メチルセルロース2.5重量部、及び水を500重量部加えて、十分に攪拌してスラリー状の硬化体組成物8を作製した。
試験例1と同様にして硬化体8を作製した。得られた硬化体7において、試験例1と同様に耐熱性試験を実施した結果、D判定であった。
(Test Example 8)
100 parts by weight of Portland cement, 100 parts by weight of expanded perlite, 100 parts by weight of leechite, 15 parts by weight of titanium oxide 3, 150 parts by weight of aluminum hydroxide 2, 12.5 parts by weight of wollastonite, glass Add 7.5 parts by weight of fiber, 12.5 parts by weight of vinyl acetate emulsion, 2.5 parts by weight of methylcellulose, and 500 parts by weight of water, and stir well to prepare slurry-like cured body composition 8 did.
A cured body 8 was produced in the same manner as in Test Example 1. The obtained cured product 7 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was D determination.

(試験例9)
ポルトランドセメント100重量部に対して、膨張パーライトを60重量部、ヒル石を60重量部、酸化チタン1を50重量部、水酸化アルミニウム1を650重量部、ガラス繊維を25重量部、パルプ繊維を25重量部、酢酸ビニル系エマルションを25重量部、メチルセルロース5重量部、及び水を1000重量部加えて、十分に攪拌してスラリー状の硬化体組成物8を作製した。
得られた硬化体8において、試験例1と同様に耐熱性試験を実施した結果、D判定であった。また、耐熱性試験後の硬化体は、亀裂が生じていた。
(Test Example 9)
60 parts by weight of expanded perlite, 60 parts by weight of leechite, 50 parts by weight of titanium oxide 1, 650 parts by weight of aluminum hydroxide 1, 25 parts by weight of glass fiber, and pulp fiber to 100 parts by weight of Portland cement 25 parts by weight, 25 parts by weight of a vinyl acetate emulsion, 5 parts by weight of methyl cellulose, and 1000 parts by weight of water were added and stirred sufficiently to prepare a slurry-like cured product composition 8.
The obtained cured product 8 was subjected to a heat resistance test in the same manner as in Test Example 1, and as a result, was D. Further, the cured body after the heat resistance test had cracks.

Claims (1)

(A)水硬性無機結合材100重量部に対して、(B)軽量骨材10〜300重量部、(C)少なくとも2種以上の金属酸化物及び/または金属酸化物の前駆体100〜1200重量部、(D)融点1000℃以上の繊維状物質5〜100重量部、を構成成分とし、
上記(C)が、平均粒子径0.2μm以上2μm以下の金属酸化物及び/または金属酸化物の前駆体(C−1)、並びに平均粒子径2μm超10μm以下の金属酸化物及び/または金属酸化物の前駆体(C−2)を含むことを特徴とする硬化体。
(A) 10 to 300 parts by weight of a lightweight aggregate with respect to 100 parts by weight of a hydraulic inorganic binder, (C) at least two kinds of metal oxides and / or metal oxide precursors 100 to 1200 Parts by weight, (D) 5 to 100 parts by weight of a fibrous material having a melting point of 1000 ° C. or higher,
The above (C) is a metal oxide and / or metal oxide precursor (C-1) having an average particle size of 0.2 μm or more and 2 μm or less, and a metal oxide and / or metal having an average particle size of more than 2 μm and 10 μm or less. A cured product comprising an oxide precursor (C-2).
JP2009270867A 2009-11-28 2009-11-28 Cured body Active JP5374334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270867A JP5374334B2 (en) 2009-11-28 2009-11-28 Cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270867A JP5374334B2 (en) 2009-11-28 2009-11-28 Cured body

Publications (2)

Publication Number Publication Date
JP2011111375A true JP2011111375A (en) 2011-06-09
JP5374334B2 JP5374334B2 (en) 2013-12-25

Family

ID=44233974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270867A Active JP5374334B2 (en) 2009-11-28 2009-11-28 Cured body

Country Status (1)

Country Link
JP (1) JP5374334B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431348A (en) * 1990-05-24 1992-02-03 Nippon Steel Chem Co Ltd Spraying material of rock wool composition
JPH0465340A (en) * 1990-07-04 1992-03-02 Shinagawa Refract Co Ltd Filler for preventing fire from spreading
JPH0489342A (en) * 1990-07-31 1992-03-23 Sekisui Chem Co Ltd Cement composition to be extrusion-molded
JPH04295076A (en) * 1991-03-23 1992-10-20 Kikusui Kagaku Kogyo Kk Refractory coating composition
JPH08337456A (en) * 1995-06-14 1996-12-24 Mitsubishi Chem Corp Flame retarding hydraulic composition and its molded body
JP2000016843A (en) * 1998-07-02 2000-01-18 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, its amorphous refractory, and spay application using the same
JP2003287374A (en) * 2002-03-27 2003-10-10 Kurosaki Harima Corp Spraying method of heat insulating monolithic refractory
JP2004196602A (en) * 2002-12-19 2004-07-15 Toray Amenity & Civil Engineering Co Ltd Lightweight inorganic molding excellent in fire resistance and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431348A (en) * 1990-05-24 1992-02-03 Nippon Steel Chem Co Ltd Spraying material of rock wool composition
JPH0465340A (en) * 1990-07-04 1992-03-02 Shinagawa Refract Co Ltd Filler for preventing fire from spreading
JPH0489342A (en) * 1990-07-31 1992-03-23 Sekisui Chem Co Ltd Cement composition to be extrusion-molded
JPH04295076A (en) * 1991-03-23 1992-10-20 Kikusui Kagaku Kogyo Kk Refractory coating composition
JPH08337456A (en) * 1995-06-14 1996-12-24 Mitsubishi Chem Corp Flame retarding hydraulic composition and its molded body
JP2000016843A (en) * 1998-07-02 2000-01-18 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, its amorphous refractory, and spay application using the same
JP2003287374A (en) * 2002-03-27 2003-10-10 Kurosaki Harima Corp Spraying method of heat insulating monolithic refractory
JP2004196602A (en) * 2002-12-19 2004-07-15 Toray Amenity & Civil Engineering Co Ltd Lightweight inorganic molding excellent in fire resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JP5374334B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
KR101037073B1 (en) High fire resistant mortar composition using recycled aggregate and its construction method
CN101724302B (en) Light inorganic silicate fiber reinforcing fireproof paint and preparation method thereof
KR101311700B1 (en) Cement mortar composite having improved adiabatic capacity and durability, manufacturing method of panel and manufacturing method block using the composite
Ding et al. Strengthening concrete using phosphate cement-based fiber-reinforced inorganic composites for improved fire resistance
KR101300515B1 (en) High-performance cement concrete composite and overlay pavement method using the composite
KR950002916B1 (en) Fireproofing covering material
KR101744601B1 (en) Adiabatic waterproof mortar for concrete surface preparation of dryvit
CN104788115A (en) Fireproof spraying coating for steel ladle working lining and preparation method of fireproof spraying coating
JP2012515128A (en) Hydraulic cement assembly for heat insulation and heat reflection products
KR20190011861A (en) A method of manufacturing a board using bottom ash, and a board manufactured thereby
JP6049213B2 (en) Coke oven joint repair material
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
JP2009084092A (en) Mortar-based restoring material
KR100833871B1 (en) Mortar composite for section repair of concrete structure
JP6207423B2 (en) Lightweight alkali-proof fireproof insulation brick and method for producing the same
KR100704056B1 (en) Composition of fire-resistant board for concrete
CA3148234A1 (en) Inorganic polymers and use thereof in composite materials
JP5374334B2 (en) Cured body
JP5465396B2 (en) Low thermal conductivity powder composition for heat insulation castable
JP6224679B2 (en) Water-curable powder composition, cured product thereof, and method of forming cured product
JP2017186186A (en) Geopolymer composition, and geopolymer cured body
KR101755637B1 (en) Heat shield for the finishing of construction and civil engineering coating compositions and coating methods
JP6129941B1 (en) Tile panel and manufacturing method thereof
JP7232658B2 (en) rock wool composition
KR100242593B1 (en) Hard ceramic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250