JP2011110884A - Temperature control structure of extrusion molding die - Google Patents

Temperature control structure of extrusion molding die Download PDF

Info

Publication number
JP2011110884A
JP2011110884A JP2009271289A JP2009271289A JP2011110884A JP 2011110884 A JP2011110884 A JP 2011110884A JP 2009271289 A JP2009271289 A JP 2009271289A JP 2009271289 A JP2009271289 A JP 2009271289A JP 2011110884 A JP2011110884 A JP 2011110884A
Authority
JP
Japan
Prior art keywords
mandrel
refrigerant
core
temperature control
control structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009271289A
Other languages
Japanese (ja)
Other versions
JP5623732B2 (en
Inventor
Akiyoshi Tsuji
彰嘉 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2009271289A priority Critical patent/JP5623732B2/en
Publication of JP2011110884A publication Critical patent/JP2011110884A/en
Application granted granted Critical
Publication of JP5623732B2 publication Critical patent/JP5623732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature control structure of an extrusion molding die that can satisfactorily perform extrusion molding using every thermoplastic resin as a raw material and stabilize the quality of a seamless product. <P>SOLUTION: The temperature control structure 11 of the extrusion molding die includes an insertion hole 13 penetrating a core 1 in its axial direction; an inner heater 15 provided at the core 1; an inside mandrel 17 regulating the radial contraction of thermoplastic resin extruded from a clearance 31; a refrigerant introducing pipe 19 inserted through the insertion hole 13 of the core 1 to introduce a refrigerant into the inside mandrel 17; and an outer heater 21 provided at a die 7. The inner heater 15 is arranged around the refrigerant introducing pipe 19 through a void 35. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱可塑性樹脂を筒状のシームレス(無継目)製品になるよう成形する押出成形金型の温調構造に関する。   The present invention relates to a temperature control structure of an extrusion mold for molding a thermoplastic resin so as to become a tubular seamless (seamless) product.

特許文献1,2は、シームレス製品を製造する押出成形金型を開示している。押出成形金型のマンドレル、又はダイボディーにはヒータが取付けられ、これらのヒータの熱でマンドレルとダイボディーとの間に供給される原料を加熱する。例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂を原料として押出成形を行う場合、原料の温度が約220℃になるようヒータの発熱温度が設定される。   Patent Documents 1 and 2 disclose an extrusion mold for producing a seamless product. A heater is attached to the mandrel or die body of the extrusion mold, and the raw material supplied between the mandrel and the die body is heated by the heat of these heaters. For example, when extrusion molding is performed using a polyolefin-based resin such as polyethylene or polypropylene as a raw material, the heating temperature of the heater is set so that the temperature of the raw material is about 220 ° C.

上記の原料がフッ素系樹脂であれば、ヒータの発熱温度は約450℃に設定される。この温度は、ジュール熱を熱源とするヒータの発熱温度の上限に近いが、450℃を下回るとフッ素系樹脂の流動性が損なわれる。このような高温の樹脂は冷却される過程で収縮する割合が比較的大きいので、シームレス製品の寸法に狂いが生じやすい。   If the raw material is a fluororesin, the heating temperature of the heater is set to about 450 ° C. This temperature is close to the upper limit of the heating temperature of the heater using Joule heat as a heat source, but if it falls below 450 ° C., the fluidity of the fluororesin is impaired. Since such a high-temperature resin has a relatively large shrinkage rate in the process of being cooled, the dimensions of the seamless product are likely to be distorted.

そこで、特許文献3に示されるように、マンドレルの端部をダイボディーの外方へ延出し、ダイボディーから押出された直後のシームレス製品の内周面がマンドレルの端部の外周面に押し当たるようにする。これにより、シームレス製品が径方向に収縮するのを規制し、シームレス製品の内周面の仕上がりを向上できる。更に、マンドレルの端部の温度が相対的に低くなるように、マンドレルの端部に冷却水が導入される。これにより、シームレス製品の冷却を促し、シームレス製品がマンドレルの端部から離脱した後で余計に収縮するのを予防できる。   Therefore, as shown in Patent Document 3, the end of the mandrel extends outward from the die body, and the inner peripheral surface of the seamless product immediately after being extruded from the die body presses against the outer peripheral surface of the end of the mandrel. Like that. Thereby, it is possible to restrict the seamless product from shrinking in the radial direction, and to improve the finish of the inner peripheral surface of the seamless product. Furthermore, cooling water is introduced into the end of the mandrel so that the temperature at the end of the mandrel is relatively low. As a result, cooling of the seamless product is promoted, and it is possible to prevent the seamless product from further contracting after being detached from the end of the mandrel.

しかしながら、マンドレルがヒータの熱を伝導し冷却水へ逃がす分、ヒータの出力を高くしなければならない。このような熱の伝導は、マンドレルの全体の温度が一様化する傾向を強くするので、マンドレルの端部の温度を制御するのが難しい。   However, since the mandrel conducts the heat of the heater and releases it to the cooling water, the output of the heater must be increased. Such heat conduction increases the tendency of the overall temperature of the mandrel to be uniform, making it difficult to control the temperature at the end of the mandrel.

特開2002−331570号公報JP 2002-331570 A 特開平6−91731号公報Japanese Patent Laid-Open No. 6-91731 特開昭52−107057号公報JP-A 52-107057

本発明の目的は、あらゆる熱可塑性樹脂を原料とする押出成形を良好に行え、しかもシームレス製品の品質を安定させることのできる押出成形金型の温調構造を提供することにある。   An object of the present invention is to provide a temperature control structure of an extrusion mold that can satisfactorily perform extrusion molding using any thermoplastic resin as a raw material and can stabilize the quality of a seamless product.

本発明は上記目的を達成するため、軸状のコアをマンドレルに接合し、前記マンドレルの挿入されるダイボディーに、前記コアの周りに間隙を形成するダイを接合し、前記マンドレルと前記ダイボディーとの間に供給される熱可塑性樹脂を、前記間隙から押出すことにより筒状に成形する押出成形金型の温調構造であって、前記コアをその軸方向に貫く挿通孔と、前記コアに設けたインナヒータと、前記間隙から押出される熱可塑性樹脂の径方向の収縮を規制するインサイドマンドレルと、前記コアの挿通孔に挿通され前記インサイドマンドレルに冷媒を導入する冷媒導入管と、前記ダイに設けたアウタヒータとを備え、前記インナヒータが前記冷媒導入管の周りに空隙を介して配置されたことを特徴とする。   In order to achieve the above object, the present invention joins an axial core to a mandrel, and a die body into which the mandrel is inserted, a die that forms a gap around the core, and the mandrel and the die body. A temperature control structure of an extrusion mold for forming a cylindrical shape by extruding a thermoplastic resin supplied between the core and the core, an insertion hole penetrating the core in an axial direction thereof, and the core An inner heater provided on the inner mandrel, an inner mandrel that restricts radial shrinkage of the thermoplastic resin extruded from the gap, a refrigerant introduction pipe that is inserted into the insertion hole of the core and introduces a refrigerant into the inner mandrel, and the die And the inner heater is disposed around the refrigerant introduction pipe with a gap interposed between the inner heater and the outer heater.

また、本発明は、前記インサイドマンドレルが、前記コアに対して空隙を挟む位置で前記冷媒導入管に支持され、前記間隙から押出される筒状の熱可塑性樹脂の内側に嵌入することを特徴とする。   Further, the present invention is characterized in that the inside mandrel is supported by the refrigerant introduction pipe at a position sandwiching a gap with respect to the core, and is fitted inside a cylindrical thermoplastic resin extruded from the gap. To do.

また、本発明は、前記冷媒導入管が、前記冷媒導入管の周りに空隙を確保するスペーサを介して、前記コアに連結されたことを特徴とする。   Further, the present invention is characterized in that the refrigerant introduction pipe is connected to the core via a spacer that secures a gap around the refrigerant introduction pipe.

また、本発明は、前記スペーサが、前記挿通孔に嵌入し前記冷媒導入管を内側に挿通させる環形部と、前記環形部の内側へ向けて突出し前記冷媒導入管を挟着する歯形部とを備えることを特徴とする。   In the present invention, the spacer includes an annular portion that fits into the insertion hole and allows the refrigerant introduction tube to pass inside, and a tooth shape portion that protrudes toward the inside of the annular portion and sandwiches the refrigerant introduction tube. It is characterized by providing.

また、本発明は、前記インサイドマンドレルが、冷媒を導入する蓄冷チャンバを有し、前記冷媒導入管は、前記蓄冷チャンバに供給される冷媒を通す送り管を、前記蓄冷チャンバから排出される冷媒を通す戻り管の内側に挿通させた二重管であることを特徴とする。   Further, according to the present invention, the inside mandrel has a cold storage chamber for introducing a refrigerant, and the refrigerant introduction pipe has a feed pipe through which the refrigerant supplied to the cold storage chamber passes, and the refrigerant discharged from the cold storage chamber. It is a double pipe inserted inside the return pipe to be passed.

また、本発明は、前記冷媒導入管を断熱材で前記インナヒータから遮蔽したことを特徴とする。   Further, the present invention is characterized in that the refrigerant introduction pipe is shielded from the inner heater by a heat insulating material.

本発明に係る押出成形金型の温調構造は、コアの軸方向を貫く挿通孔に冷媒導入管を挿通し、冷媒導入管の周りに、コアを加熱するインナヒータが空隙を介して配置されている。このため、コアとダイをそれぞれ加熱するインナヒータとアウタヒータの熱が、冷媒導入管からインサイドマンドレルへ伝導するのを空隙によって断つことができる。   In the temperature control structure of the extrusion mold according to the present invention, a refrigerant introduction tube is inserted into an insertion hole that penetrates the axial direction of the core, and an inner heater that heats the core is disposed around the refrigerant introduction tube via a gap. Yes. For this reason, the heat of the inner heater and the outer heater that respectively heat the core and the die can be blocked by the air gap from being conducted from the refrigerant introduction pipe to the inside mandrel.

従って、当該温調構造によれば、冷媒導入管に導入された冷媒にコアから熱が逃げるのを抑制できるので、シームレス製品の原料となる熱硬化性樹脂をインナヒータとアウタヒータで有効に加熱することができる。しかも、インサイドマンドレルの温度はインナヒータとアウタヒータの熱に影響されることがない。このため、熱硬化性樹脂の良好な流動性を確保するために設定されるインナヒータとアウタヒータの発熱温度に関わらず、当該温調構造によれば、あらゆる熱硬化性樹脂を原料とするシームレス製品を安定した品質で製造することができる。   Therefore, according to the temperature control structure, it is possible to prevent heat from escaping from the core to the refrigerant introduced into the refrigerant introduction pipe, so that the thermosetting resin that is a raw material of the seamless product is effectively heated by the inner heater and the outer heater. Can do. Moreover, the temperature of the inside mandrel is not affected by the heat of the inner heater and the outer heater. For this reason, regardless of the heat generation temperature of the inner heater and the outer heater set to ensure good fluidity of the thermosetting resin, the temperature control structure allows seamless products made from any thermosetting resin as a raw material. Can be manufactured with stable quality.

更に、本発明に係る押出成形金型の温調構造によれば、インサイドマンドレルがコアに対して空隙を挟む位置で冷媒導入管に支持されているので、コアにインサイドマンドレルを直に連結することなく両者を空隙によって断熱できる。このため、インサイドマンドレルの温度をコアの温度に関わりなく、インサイドマンドレルを所望の温度に冷却することができる。   Furthermore, according to the temperature control structure of the extrusion mold according to the present invention, the inside mandrel is supported by the refrigerant introduction pipe at a position where the gap is sandwiched with respect to the core, so that the inside mandrel is directly connected to the core. Both can be insulated by air gaps. For this reason, the inside mandrel can be cooled to a desired temperature irrespective of the temperature of the inside mandrel.

更に、本発明に係る押出成形金型の温調構造によれば、媒導入管の周りに空隙を確保するスペーサの環形部をコアの挿通孔に嵌入し、環形部の内側へ向けて突出した歯形部で冷媒導入管を挟着するので、スペーサが冷媒導入管に接触する面積を小さくすることができる。これにより、インナヒータとアウタヒータの熱がスペーサを介して冷媒導入管に伝導するのを抑制することができる。   Furthermore, according to the temperature control structure of the extrusion mold according to the present invention, the annular portion of the spacer that secures a gap around the medium introduction tube is fitted into the insertion hole of the core and protrudes toward the inside of the annular portion. Since the refrigerant introduction tube is sandwiched between the tooth profile portions, the area where the spacer contacts the refrigerant introduction tube can be reduced. Thereby, it can suppress that the heat of an inner heater and an outer heater is conducted to a refrigerant | coolant inlet tube via a spacer.

本発明に係る押出成形金型の温調構造は、インナヒータによる輻射熱を冷媒導入管がある程度受けることになるが、冷媒導入管が送り管を戻り管の内側に挿通させた二重管である場合、インサイドマンドレルの蓄冷チャンバから戻り管に排出される冷媒に、上記の輻射熱を吸収させることができる。このため、当該温調構造は、送り管を通り蓄冷チャンバに供給される冷媒が不要に加熱されないという利点がある。   In the temperature control structure of the extrusion mold according to the present invention, the refrigerant introduction pipe receives a certain amount of radiant heat from the inner heater, but the refrigerant introduction pipe is a double pipe inserted through the return pipe inside the return pipe. The radiant heat can be absorbed by the refrigerant discharged from the cold storage chamber of the inside mandrel to the return pipe. For this reason, the said temperature control structure has the advantage that the refrigerant | coolant supplied to a cool storage chamber through a feed pipe is not heated unnecessarily.

更に、本発明に係る押出成形金型の温調構造によれば、冷媒導入管を断熱材でインナヒータから遮蔽しているので、インナヒータによる輻射熱で冷媒が不要に加熱されないという利点がある。   Furthermore, according to the temperature control structure of the extrusion mold according to the present invention, since the refrigerant introduction pipe is shielded from the inner heater by the heat insulating material, there is an advantage that the refrigerant is not unnecessarily heated by the radiant heat from the inner heater.

本発明の実施形態に係る押出成形金型の温調構造の軸方向の断面図。Sectional drawing of the axial direction of the temperature control structure of the extrusion mold which concerns on embodiment of this invention. 本発明の実施形態に係る押出成形金型の温調構造を図1のA−A線で破断した断面図。Sectional drawing which fractured | ruptured the temperature control structure of the extrusion mold which concerns on embodiment of this invention by the AA line of FIG. 本発明の実施形態に係る押出成形金型の温調構造の腰部を、そのコアを径方向に横切る位置で破断した断面図。Sectional drawing which fractured | ruptured the waist part of the temperature control structure of the extrusion die concerning embodiment of this invention in the position which crosses the core to radial direction. 本発明の実施形態に係る押出成形金型の温調構造の腰部の変形例を示す断面図。Sectional drawing which shows the modification of the waist | hip | lumbar part of the temperature control structure of the extrusion mold which concerns on embodiment of this invention. 本発明の実施形態に係る押出成形金型の温調構造の腰部の更なる変形例を示す断面図。Sectional drawing which shows the further modification of the waist part of the temperature control structure of the extrusion die which concerns on embodiment of this invention. (a)は本発明の実施形態に係る押出成形金型に適用したスペーサの変形例を示す平面図、(b)はその断面図。(A) is a top view which shows the modification of the spacer applied to the extrusion die which concerns on embodiment of this invention, (b) is the sectional drawing. (a)は本発明の実施形態に係る押出成形金型に適用したスペーサの他の変形例を示す平面図、(b)はその断面図。(A) is a top view which shows the other modification of the spacer applied to the extrusion mold which concerns on embodiment of this invention, (b) is the sectional drawing.

図1は、軸状のコア1をマンドレル3に接合し、マンドレル3の挿入されるダイボディー5にダイ7を接合した押出成形金型9を示している。図面は特に断らない限り図1〜図3を参照する。押出成形金型の温調構造11は、コア1とマンドレル3をそれぞれ軸方向に貫く挿通孔13と、コア1とマンドレル3に挿通孔13の内側から取付けたインナヒータ15と、インサイドマンドレル17と、コア1の挿通孔13に挿通されインサイドマンドレル17に冷媒を導入する冷媒導入管19と、ダイボディー5とダイ7に設けたアウタヒータ21,23とを備える。   FIG. 1 shows an extrusion mold 9 in which a shaft-like core 1 is joined to a mandrel 3 and a die 7 is joined to a die body 5 into which the mandrel 3 is inserted. The drawings refer to FIGS. 1 to 3 unless otherwise specified. The temperature control structure 11 of the extrusion mold includes an insertion hole 13 that penetrates the core 1 and the mandrel 3 in the axial direction, an inner heater 15 attached to the core 1 and the mandrel 3 from the inside of the insertion hole 13, an inside mandrel 17, A refrigerant introduction pipe 19 that is inserted into the insertion hole 13 of the core 1 and introduces a refrigerant into the inside mandrel 17, and outer heaters 21 and 23 provided in the die body 5 and the die 7 are provided.

マンドレル3は、その一端に設けたフランジ25を、ボルト等によりダイボディー5に取付けられている。マンドレル3の他端はコア1に滑らかに連なる。図示のマンドレル3は他端を上向きにしているが、この姿勢に押出成形金型9の使用される向きが限定されることはない。マンドレル3の周面には、導入路27と複数のスパイラル溝29が形成されている。ダイボディー5の端部にアジャストリング33がボルト等で取付けられており、ダイ7は、コア1の周りに円形の間隙31を形成するように、アジャストリング33の内側に位置決めされている。   The mandrel 3 has a flange 25 provided at one end thereof attached to the die body 5 with bolts or the like. The other end of the mandrel 3 is smoothly connected to the core 1. The illustrated mandrel 3 has the other end facing upward, but the orientation in which the extrusion mold 9 is used is not limited to this posture. An introduction path 27 and a plurality of spiral grooves 29 are formed on the peripheral surface of the mandrel 3. An adjuster string 33 is attached to the end of the die body 5 with a bolt or the like, and the die 7 is positioned inside the adjuster string 33 so as to form a circular gap 31 around the core 1.

インナヒータ15は、冷媒導入管19の周りに空隙35を介して配置された真鍮鋳込みヒータと称する筒状の電熱器である。アウタヒータ21,23は、ダイ7とダイボディー5のそれぞれの周面に巻掛されたバンドヒータと称する電熱器である。インサイドマンドレル17は、その内部に冷媒を導入する蓄冷チャンバ37が形成された円柱状の中空体である。インサイドマンドレル17の外周面には、マンドレル3の他端から矢印Fで指した向きに離れるに従いインサイドマンドレル17の直径が減少するように、微少なテーパを設けるのが好ましい。   The inner heater 15 is a cylindrical electric heater called a brass cast heater disposed around the refrigerant introduction pipe 19 via a gap 35. The outer heaters 21 and 23 are electric heaters called band heaters wound around the peripheral surfaces of the die 7 and the die body 5. The inside mandrel 17 is a cylindrical hollow body in which a cold storage chamber 37 for introducing a refrigerant is formed. It is preferable to provide a small taper on the outer peripheral surface of the inside mandrel 17 so that the diameter of the inside mandrel 17 decreases as it moves away from the other end of the mandrel 3 in the direction indicated by the arrow F.

冷媒導入管19は、インサイドマンドレル17を、コア1に対して空隙39を挟む位置に支持する支持体としての役割を兼ねている。冷媒導入管19の材質は銅、又はステンレス鋼である。また、インサイドマンドレル17と冷媒導入管19の端部の何れか一方に形成した雄ネジを、両者の他方に形成した雌ネジに螺合することにより、両者を連結しても良い。或いは、両者を溶接しても良い。   The refrigerant introduction pipe 19 also serves as a support that supports the inside mandrel 17 at a position sandwiching the gap 39 with respect to the core 1. The material of the refrigerant introduction pipe 19 is copper or stainless steel. Moreover, you may connect both by screwing the external thread formed in any one of the inside mandrel 17 and the edge part of the refrigerant | coolant inlet tube 19 with the internal thread formed in the other of both. Or you may weld both.

シームレス製品の原料となる熱可塑性樹脂は、予め押出成形金型9の外部で溶融され、ダイボディー5に設けたアダプターノズル41から導入路27を通り、マンドレル3とダイボディー5との間に供給され、スパイラル溝29に流入する。更に、熱可塑性樹脂は、マンドレル3とダイボディー5との間を満たしながら、矢印Fで指した向きに流動し、間隙31から押し出された時点で筒状のシームレス製品となる。また、インサイドマンドレル17が、間隙31から押出された直後のシームレス製品の内側に嵌入し、シームレス製品が径方向に収縮するのを規制する。   The thermoplastic resin used as the raw material of the seamless product is melted in advance outside the extrusion mold 9 and is supplied between the mandrel 3 and the die body 5 from the adapter nozzle 41 provided in the die body 5 through the introduction path 27. And flows into the spiral groove 29. Further, the thermoplastic resin flows in the direction indicated by the arrow F while filling the space between the mandrel 3 and the die body 5, and becomes a cylindrical seamless product when pushed out from the gap 31. Further, the inside mandrel 17 is fitted inside the seamless product immediately after being pushed out from the gap 31 to restrict the seamless product from contracting in the radial direction.

以上に述べた押出成形金型の温調構造11によれば、インナヒータ15とアウタヒータ21,23の熱はコア1とマンドレル3に伝導するが、挿通孔13の内側へ伝導しようとする熱を空隙35によって断つことができる。また、コア1に対してインサイドマンドレル17は空隙39によって断熱されている。これにより、インナヒータ15とアウタヒータ21,23の熱が冷媒に逃げるのを抑制し、インナヒータ15とアウタヒータ21,23の熱で原料を有効に加熱することができる。   According to the temperature control structure 11 of the extrusion mold described above, the heat of the inner heater 15 and the outer heaters 21 and 23 is conducted to the core 1 and the mandrel 3, but the heat to be conducted to the inside of the insertion hole 13 is a gap. It can be cut by 35. Further, the inside mandrel 17 is thermally insulated from the core 1 by a gap 39. Thereby, it is possible to suppress the heat of the inner heater 15 and the outer heaters 21 and 23 from escaping to the refrigerant, and to effectively heat the raw material with the heat of the inner heater 15 and the outer heaters 21 and 23.

しかも、押出成形金型の温調構造11によれば、インナヒータ15とアウタヒータ21,23の熱にインサイドマンドレル17の温度が影響されないので、熱硬化性樹脂の良好な流動性を確保するために設定されるインナヒータ15とアウタヒータ21,23の発熱温度に関わらず、あらゆる熱硬化性樹脂を原料とするシームレス製品を安定した品質で製造することができる。符号38で指した一点鎖線は、押出成形金型9の4箇所の温度を測定するための熱電対の位置を示している。例えば、フッ素系樹脂を原料として押出成形を行う場合、上記の4箇所の温度を約450℃に保てるように、インナヒータ15とアウタヒータ21,23のそれぞれの発熱温度が制御されるが、これらの熱でインサイドマンドレル17が加熱されることはない。   In addition, according to the temperature control structure 11 of the extrusion mold, the temperature of the inner mandrel 17 is not affected by the heat of the inner heater 15 and the outer heaters 21 and 23, so that it is set to ensure good fluidity of the thermosetting resin. Regardless of the heat generation temperatures of the inner heater 15 and the outer heaters 21 and 23, seamless products using any thermosetting resin as a raw material can be manufactured with stable quality. The alternate long and short dash lines indicated by reference numeral 38 indicate the positions of thermocouples for measuring temperatures at four locations of the extrusion mold 9. For example, when extrusion molding is performed using a fluororesin as a raw material, the heat generation temperatures of the inner heater 15 and the outer heaters 21 and 23 are controlled so that the temperatures at the four locations described above can be maintained at about 450 ° C. Thus, the inside mandrel 17 is not heated.

更に、押出成形金型の温調構造11は、冷媒導入管19の周りに空隙35を確保するスペーサ43,45を介して、冷媒導入管19をコア1とマンドレル3にそれぞれ連結することが好ましい。スペーサ43,45は、冷媒導入管19に支持されたインサイドマンドレル17をコア1に位置決めするものであれば良い。特に、スペーサ43として、挿通孔13に嵌入し冷媒導入管19を内側に挿通させる環形部44と、環形部44の内側へ向けて突出し冷媒導入管19を挟着する歯形部46とを一体に成形したものを適用するのが好ましい。この場合、歯形部46は、冷媒導入管19に接触する面積の小さい複数の突起であるので、インナヒータ15とアウタヒータ21,23の熱がスペーサ43を介して冷媒導入管19に伝導するのを抑制できる。スペーサ45として、スペーサ43と同様のものを適用しても良い。   Furthermore, the temperature control structure 11 of the extrusion mold preferably connects the refrigerant introduction pipe 19 to the core 1 and the mandrel 3 via spacers 43 and 45 that secure a gap 35 around the refrigerant introduction pipe 19. . The spacers 43 and 45 may be any member that positions the inside mandrel 17 supported by the refrigerant introduction pipe 19 on the core 1. In particular, as the spacer 43, an annular portion 44 that fits into the insertion hole 13 and allows the refrigerant introduction tube 19 to pass inside, and a tooth shape portion 46 that protrudes toward the inside of the annular portion 44 and sandwiches the refrigerant introduction tube 19 are integrated. It is preferable to apply a molded one. In this case, since the tooth profile 46 is a plurality of projections having a small area in contact with the refrigerant introduction pipe 19, the heat of the inner heater 15 and the outer heaters 21 and 23 is prevented from being conducted to the refrigerant introduction pipe 19 through the spacer 43. it can. The spacer 45 may be the same as the spacer 43.

冷媒導入管19は、送り管47を戻り管49の内側に挿通させた二重管であることが、次の理由で好ましい。即ち、冷媒導入管19の送り管47には、図に表れていない金型温調装置から冷媒となる冷却水が供給される。冷媒は、矢印Fで指す向きに送り管47を通り、インサイドマンドレル17の蓄冷チャンバ37に達したところで端面51に突き当たり、その流動する向きを反転する。続いて、蓄冷チャンバ37から戻り管49へ排出される冷媒は、上記の金型温調装置へ戻り管49を通って循環する。インナヒータ15による輻射熱を冷媒導入管19が受けるのを完全に避けることはできないが、蓄冷チャンバ37から排出される冷媒に輻射熱を吸収させることにより、送り管47を通る冷媒が蓄冷チャンバ37に達する前に不要に加熱されるのを防止できる。   The refrigerant introduction pipe 19 is preferably a double pipe in which the feed pipe 47 is inserted inside the return pipe 49 for the following reason. That is, the feed water 47 serving as the coolant is supplied to the feed tube 47 of the coolant introduction tube 19 from a mold temperature control device not shown in the drawing. The refrigerant passes through the feed pipe 47 in the direction indicated by the arrow F, hits the end face 51 when it reaches the cold storage chamber 37 of the inside mandrel 17, and reverses its flowing direction. Subsequently, the refrigerant discharged from the cold storage chamber 37 to the return pipe 49 circulates through the return pipe 49 to the mold temperature controller. Although it is impossible to completely prevent the refrigerant introduction pipe 19 from receiving the radiant heat from the inner heater 15, the refrigerant passing through the feed pipe 47 reaches the cold storage chamber 37 by absorbing the radiant heat into the refrigerant discharged from the cold storage chamber 37. Unnecessary heating can be prevented.

また、押出成形金型の温調構造11によれば、ポリオレフィン系樹脂を原料として成形を行う場合、アウタヒータ21,23の熱だけで原料を加熱し、インナヒータ15に通電しなくても良いが、アウタヒータ21,23の発熱する熱量は、インナヒータ15に比べ小さく、またアウタヒータ21,23の熱の多くは、ダイ7に伝わる前に大気へ放出される。このため、アウタヒータ21,23による発熱だけでは、ダイ7を上記のように約450℃に保つことができないので、押出成形金型の温調構造11は、インナヒータ15とアウタヒータ21,23とを必須の要素としている。   Further, according to the temperature control structure 11 of the extrusion mold, when molding is performed using a polyolefin-based resin as a raw material, the raw material may be heated only by the heat of the outer heaters 21 and 23 and the inner heater 15 may not be energized. The amount of heat generated by the outer heaters 21 and 23 is smaller than that of the inner heater 15, and most of the heat of the outer heaters 21 and 23 is released to the atmosphere before being transmitted to the die 7. For this reason, since the die 7 cannot be maintained at about 450 ° C. as described above only by the heat generated by the outer heaters 21 and 23, the temperature control structure 11 of the extrusion mold is indispensable for the inner heater 15 and the outer heaters 21 and 23. As an element.

尚、本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施でき、以下の態様で実施しても良い。図4に示すように、複数本の棒状のインナヒータ15をコア1に取付けても良く、冷媒導入管19を断熱材48でインナヒータ15から遮蔽し、コア1による輻射熱で冷媒が加熱されるのを抑制しても良い。図5に示すように、インナヒータ15をコア1に没入させても良い。   In addition, this invention can be implemented also in the aspect which added various improvement, correction, or a deformation | transformation based on the knowledge of those skilled in the art within the range which does not deviate from the meaning, and may be implemented in the following aspects. As shown in FIG. 4, a plurality of rod-shaped inner heaters 15 may be attached to the core 1, and the refrigerant introduction pipe 19 is shielded from the inner heater 15 by the heat insulating material 48, and the refrigerant is heated by the radiant heat from the core 1. It may be suppressed. As shown in FIG. 5, the inner heater 15 may be immersed in the core 1.

図6(a)に示すように、スペーサ43の歯形部46は、冷媒導入管19に接触する4つの突起であっても良い。歯形部46の冷媒導入管19に接触する面積を、更に小さくするために、同図(b)に示すように、歯形部46に傾斜面50,52を形成することにより、歯形部46の断面を山形にしても良い。熱の伝導を規制する複数の貫通孔53を、環形部44に形成しても良い。   As shown in FIG. 6A, the tooth profile 46 of the spacer 43 may be four protrusions that come into contact with the coolant introduction pipe 19. In order to further reduce the area of the tooth profile portion 46 in contact with the refrigerant introduction pipe 19, the inclined surface 50, 52 is formed on the tooth profile portion 46 as shown in FIG. May be Yamagata. A plurality of through holes 53 for restricting heat conduction may be formed in the annular portion 44.

図7(a),(b)に示すように、スペーサ45の歯形部46は、冷媒導入管19に接触する円弧状の2つの突起であっても良く、歯形部46に傾斜面50,52を形成しても良い。この場合、環形部44に切欠部54,55を形成し、熱電対、及びインナヒータ15のリード線を切欠部54,55の内側に通しても良い。符号56は、スペーサ43をマンドレル3の一端に固定するためのボルトの挿通孔を指している。   As shown in FIGS. 7A and 7B, the tooth profile 46 of the spacer 45 may be two arc-shaped protrusions that contact the refrigerant introduction pipe 19, and the inclined surfaces 50 and 52 are formed on the tooth profile 46. May be formed. In this case, notches 54 and 55 may be formed in the ring-shaped portion 44, and the thermocouple and the lead wire of the inner heater 15 may be passed inside the notches 54 and 55. Reference numeral 56 denotes a bolt insertion hole for fixing the spacer 43 to one end of the mandrel 3.

本発明は、精密な電子部品の製造に加え、あらゆる環状の製品を成形するのに有益な技術である。   The present invention is a useful technique for molding any annular product in addition to the manufacture of precision electronic components.

1…コア、3…マンドレル、5…ダイボディー、7…アジャストリング、9…押出成形金型、11…押出成形金型の温調構造、13…挿通孔、15…インナヒータ、17…インサイドマンドレル、19…冷媒導入管、21,23…アウタヒータ、25…フランジ、27…導入路、29…スパイラル溝、31…間隙、33…アジャストリング、35,39…空隙、37…蓄冷チャンバ、41…アダプターノズル、43,45…スペーサ、44…環形部、46…歯形部、47…送り管、48…断熱材、49…戻り管、50,52…傾斜面、51…端面、53…貫通孔、54,55…切欠部。   DESCRIPTION OF SYMBOLS 1 ... Core, 3 ... Mandrel, 5 ... Die body, 7 ... Adjustable string, 9 ... Extrusion mold, 11 ... Temperature control structure of extrusion mold, 13 ... Insertion hole, 15 ... Inner heater, 17 ... Inside mandrel, DESCRIPTION OF SYMBOLS 19 ... Refrigerant introducing pipe, 21, 23 ... Outer heater, 25 ... Flange, 27 ... Introducing path, 29 ... Spiral groove, 31 ... Gap, 33 ... Adjustable, 35, 39 ... Air gap, 37 ... Cold storage chamber, 41 ... Adapter nozzle , 43, 45 ... spacer, 44 ... ring-shaped part, 46 ... tooth form part, 47 ... feed pipe, 48 ... heat insulating material, 49 ... return pipe, 50, 52 ... inclined surface, 51 ... end face, 53 ... through hole, 54, 55 ... Notch.

Claims (6)

軸状のコアをマンドレルに接合し、前記マンドレルの挿入されるダイボディーに、前記コアの周りに間隙を形成するダイを接合し、前記マンドレルと前記ダイボディーとの間に供給される熱可塑性樹脂を、前記間隙から押出すことにより筒状に成形する押出成形金型の温調構造であって、
前記コアをその軸方向に貫く挿通孔と、前記コアに設けたインナヒータと、前記間隙から押出される熱可塑性樹脂の径方向の収縮を規制するインサイドマンドレルと、前記コアの挿通孔に挿通され前記インサイドマンドレルに冷媒を導入する冷媒導入管と、前記ダイに設けたアウタヒータとを備え、前記インナヒータが前記冷媒導入管の周りに空隙を介して配置されたことを特徴とする押出成形金型の温調構造。
A thermoplastic resin that is supplied between the mandrel and the die body by joining an axial core to the mandrel, joining a die that forms a gap around the core to the die body into which the mandrel is inserted. Is a temperature control structure of an extrusion mold that is molded into a cylindrical shape by extruding from the gap,
An insertion hole that penetrates the core in the axial direction, an inner heater provided in the core, an inside mandrel that regulates radial shrinkage of the thermoplastic resin extruded from the gap, and the insertion hole that is inserted through the insertion hole of the core A temperature of an extrusion mold, comprising: a refrigerant introduction pipe for introducing a refrigerant into the inside mandrel; and an outer heater provided in the die, wherein the inner heater is disposed around the refrigerant introduction pipe via a gap. Tonal structure.
前記インサイドマンドレルが、前記コアに対して空隙を挟む位置で前記冷媒導入管に支持され、前記間隙から押出される筒状の熱可塑性樹脂の内側に嵌入することを特徴とする請求項1に記載の押出成形金型の温調構造。   The said inside mandrel is supported by the said refrigerant | coolant inlet tube in the position which pinches | interposes a space | gap with respect to the said core, and it inserts inside the cylindrical thermoplastic resin extruded from the said gap | interval. Temperature control structure of extrusion mold. 前記冷媒導入管が、前記冷媒導入管の周りに空隙を確保するスペーサを介して、前記コアに連結されたことを特徴とする請求項1又は2に記載の押出成形金型の温調構造。   The temperature control structure of an extrusion mold according to claim 1 or 2, wherein the refrigerant introduction pipe is connected to the core via a spacer that secures a gap around the refrigerant introduction pipe. 前記スペーサは、前記挿通孔に嵌入し前記冷媒導入管を内側に挿通させる環形部と、前記環形部の内側へ向けて突出し前記冷媒導入管を挟着する歯形部とを備えることを特徴とする請求項1乃至3の何れか一つに記載の押出成形金型の温調構造。   The spacer includes an annular portion that fits into the insertion hole and allows the refrigerant introduction tube to pass inside, and a tooth shape portion that protrudes toward the inside of the annular portion and sandwiches the refrigerant introduction tube. The temperature control structure of an extrusion mold according to any one of claims 1 to 3. 前記インサイドマンドレルは、冷媒を導入する蓄冷チャンバを有し、前記冷媒導入管は、前記蓄冷チャンバに供給される冷媒を通す送り管を、前記蓄冷チャンバから排出される冷媒を通す戻り管の内側に挿通させた二重管であることを特徴とする請求項1乃至4の何れか一つに記載の押出成形金型の温調構造。   The inside mandrel has a cold storage chamber for introducing a refrigerant, and the refrigerant introduction pipe has a feed pipe through which the refrigerant supplied to the cold storage chamber passes inside a return pipe through which the refrigerant discharged from the cold storage chamber passes. The temperature control structure for an extrusion mold according to any one of claims 1 to 4, wherein the temperature control structure is an inserted double pipe. 前記冷媒導入管を断熱材で前記インナヒータから遮蔽したことを特徴とする請求項1乃至5の何れか一つに記載の押出成形金型の温調構造。   The temperature control structure of an extrusion mold according to any one of claims 1 to 5, wherein the refrigerant introduction pipe is shielded from the inner heater by a heat insulating material.
JP2009271289A 2009-11-30 2009-11-30 Temperature control structure of extrusion mold Active JP5623732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271289A JP5623732B2 (en) 2009-11-30 2009-11-30 Temperature control structure of extrusion mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271289A JP5623732B2 (en) 2009-11-30 2009-11-30 Temperature control structure of extrusion mold

Publications (2)

Publication Number Publication Date
JP2011110884A true JP2011110884A (en) 2011-06-09
JP5623732B2 JP5623732B2 (en) 2014-11-12

Family

ID=44233580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271289A Active JP5623732B2 (en) 2009-11-30 2009-11-30 Temperature control structure of extrusion mold

Country Status (1)

Country Link
JP (1) JP5623732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108215109A (en) * 2017-12-24 2018-06-29 中山市小榄企业服务有限公司 A kind of manufacturing method of fiber optic protection blank pipe
CN114311233A (en) * 2022-01-18 2022-04-12 哈尔滨福泰环保建材有限公司 Temperature control device for forming concrete prefabricated member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045053A (en) * 1973-08-27 1975-04-22
JPS612524A (en) * 1984-06-15 1986-01-08 Sekisui Chem Co Ltd Manufacture of thermoplastic resin pipe
JPS62140816A (en) * 1985-12-13 1987-06-24 Sekisui Chem Co Ltd Manufacture of theremoplastic resin pipe and device therefor
JPS634931A (en) * 1986-06-20 1988-01-09 フ−バ−ト、エム、ドロスバツハ Method and device for manufacturing double wall pipe
JPH06297548A (en) * 1993-04-19 1994-10-25 Mitsuboshi Belting Ltd Manufacture and molding die device for resin pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045053A (en) * 1973-08-27 1975-04-22
JPS612524A (en) * 1984-06-15 1986-01-08 Sekisui Chem Co Ltd Manufacture of thermoplastic resin pipe
JPS62140816A (en) * 1985-12-13 1987-06-24 Sekisui Chem Co Ltd Manufacture of theremoplastic resin pipe and device therefor
JPS634931A (en) * 1986-06-20 1988-01-09 フ−バ−ト、エム、ドロスバツハ Method and device for manufacturing double wall pipe
JPH06297548A (en) * 1993-04-19 1994-10-25 Mitsuboshi Belting Ltd Manufacture and molding die device for resin pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108215109A (en) * 2017-12-24 2018-06-29 中山市小榄企业服务有限公司 A kind of manufacturing method of fiber optic protection blank pipe
CN114311233A (en) * 2022-01-18 2022-04-12 哈尔滨福泰环保建材有限公司 Temperature control device for forming concrete prefabricated member

Also Published As

Publication number Publication date
JP5623732B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
US7781707B2 (en) Heated nozzle unit for the moulding of plastics materials
US20100025391A1 (en) Composite inductive heating assembly and method of heating and manufacture
JP2009534237A (en) Injection molding nozzle and tip for this nozzle
JP2009255535A (en) Tire vulcanizer
US20030209532A1 (en) Apparatus and method for heating injection molding fluid
JP5623732B2 (en) Temperature control structure of extrusion mold
US7238018B2 (en) Method and apparatus for heating plastic extruding die
US10596759B2 (en) Extrusion assembly for an additive manufacturing system
US7205511B2 (en) Combined heater and heat diffuser for an injection nozzle for moulding plastics materials and a method for the manufacture thereof
JP6246194B2 (en) Granulator
JP2021526470A (en) Plastic cylinder of plastic extruder or injection molding machine
JP2005324483A (en) Injection molding nozzle
JP4064405B2 (en) Method and apparatus for heating plastic extrusion dies
JP4567457B2 (en) Vacuum cast ceramic fiber insulation band with heating and cooling elements
JP2010064317A (en) Injection molding apparatus for thermosetting resin
JP2009248423A (en) Mold for injection molding and method of injection molding
JP3172810U (en) Injection molding equipment
CN206718469U (en) A kind of FDM classes 3D printer double head structure
JP4113694B2 (en) Optical fiber preform heating furnace and heating method thereof
JP2021049661A (en) Injection molding device
KR101172392B1 (en) Heater Cartridge
TWI640218B (en) Injection molding machine and its variable power type heating sheet
JP2004314400A (en) Temperature adjusting device of molding machine
JP5088441B1 (en) Tubular body manufacturing apparatus and tubular body manufacturing method
JP5855543B2 (en) Injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5623732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250