JP2011110536A - Recurrent reflective coated material - Google Patents

Recurrent reflective coated material Download PDF

Info

Publication number
JP2011110536A
JP2011110536A JP2009272265A JP2009272265A JP2011110536A JP 2011110536 A JP2011110536 A JP 2011110536A JP 2009272265 A JP2009272265 A JP 2009272265A JP 2009272265 A JP2009272265 A JP 2009272265A JP 2011110536 A JP2011110536 A JP 2011110536A
Authority
JP
Japan
Prior art keywords
layer
microspherical
retroreflector
reflective layer
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009272265A
Other languages
Japanese (ja)
Inventor
Masaki Shigemori
正樹 重盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2009272265A priority Critical patent/JP2011110536A/en
Publication of JP2011110536A publication Critical patent/JP2011110536A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the conventional problem that a recurrent reflective coated material, although it has a recurrent reflective material formed on a reflective layer through a colored clear layer, tends to incur extinction of light emitted by the recurrent reflective material due to a coloring material inside the colored clear layer, if existing, on the reflective layer, accompanied with a phenomenon that the reflected light from the reflective layer does not return to the recurrent reflective material as it is refracted inside the colored clear layer (a resin layer), and consequently, an effective recurrent reflection effect cannot be obtained, resulting in the failure to achieve an intended designability. <P>SOLUTION: The recurrent reflective coated material is of a non-planar type and includes a clear coated layer containing a microspherical recurrent reflector formed on at least the reflective layer. In addition, the relationship between the distance T between the reflective layer and the microspherical recurrent reflector and the average particle diameter r of the microspherical recurrent reflector, is 0 (point contact)&le;T/r&le;0.23. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、再帰性反射塗装物に関するものである。
特に万年筆やボールペンやシャープペンシルなどの筆記具や、口紅やアイライナーなどの容器、釣り竿、ドアノブ、手摺りなどの非平面(筒状部材など)に形成された塗装物が挙げられる。
The present invention relates to a retroreflective coating.
In particular, writing instruments such as fountain pens, ballpoint pens and mechanical pencils, containers such as lipsticks and eyeliners, and paints formed on non-planar surfaces (such as tubular members) such as fishing rods, door knobs and handrails.

近年、塗装物に意匠性を付与するために再帰反射を利用し、「奥行き感」や「深み感」などを発現させることが試みられている。再帰反射を利用した塗装物は、入射した光が再び入射した方向に帰る反射現象が得られるため特異的な意匠性が付与できるとされている。この再帰反射現象を得るためには、一般的に屈折率を制御した(高屈折率とした)微小球型再帰性反射体と反射層を用いることが知られている。   In recent years, attempts have been made to develop a “depth feeling” or a “depth feeling” by using retroreflection in order to impart design properties to a painted object. A painted object using retroreflection is considered to be able to impart a specific design property because a reflection phenomenon is obtained in which incident light returns to the incident direction again. In order to obtain this retroreflection phenomenon, it is generally known to use a microspherical retroreflector and a reflective layer with a controlled refractive index (high refractive index).

文献1には、被塗装物の表面に反射層を形成し、着色クリヤー層を介して再帰反射材を敷き詰めた塗膜構造が提案されている。   Document 1 proposes a coating film structure in which a reflective layer is formed on the surface of an object to be coated, and a retroreflective material is spread through a colored clear layer.

特許3191991号公報Japanese Patent No. 3191991

特許文献1に開示されている再帰性反射塗装物は、反射層上に着色クリヤー層を介して再帰反射材を有することが記載されている。しかし、反射層上に着色クリヤー層が存在すると再帰反射材から出た光が着色クリヤー層内の色材で減光されるとともに、着色クリヤー層内(樹脂層)で屈折するために反射層上での反射光は、再帰反射材に戻らず、有効的な再帰反射現象が得られず目的にする意匠性が達成できない問題があった。   It is described that the retroreflective coating disclosed in Patent Document 1 has a retroreflective material on the reflective layer via a colored clear layer. However, if a colored clear layer is present on the reflective layer, the light emitted from the retroreflective material is attenuated by the color material in the colored clear layer and refracted in the colored clear layer (resin layer). The reflected light does not return to the retroreflective material, and there is a problem that an effective retroreflective phenomenon cannot be obtained and the intended designability cannot be achieved.

本発明は。非平面の再帰性反射塗装物において、少なくとも反射層上に微小球型再帰性反射体を含有するクリヤー塗膜層を有し、反射層と微小球型再帰性反射体との距離Tと微小球型再帰性反射体の平均粒子径rとの関係が、0(点接触)≦T/r≦0.23であることを第1の要旨とし、非平面の再帰性反射塗装物において、少なくとも反射層上に微小球型再帰性反射体と色材とを含有するカラークリヤー塗膜層を有し、反射層と微小球型再帰性反射体との距離Tと微小球型再帰性反射体の平均粒子径rとの関係が、T/r=0(点接触)であることを第2の要旨とし、前記反射層が、銀及び銀合金からなる金属層であることを第3の要旨とし、前記微小球型再帰性反射体の屈折率が、2.2以上であることを第4の要旨とし、前記非平面の再帰性反射塗装物を筒状部材に用いたことを第5の要旨とするものである。   The present invention. The non-planar retroreflective coating has a clear coating layer containing a microspherical retroreflector on at least the reflective layer, and the distance T between the reflective layer and the microspherical retroreflector and the microsphere The first gist is that the relationship with the average particle diameter r of the type retroreflector is 0 (point contact) ≦ T / r ≦ 0.23. A color clear coating layer containing a microspherical retroreflector and a colorant on the layer, the distance T between the reflective layer and the microspherical retroreflector, and the average of the microspherical retroreflector The second gist is that the relationship with the particle diameter r is T / r = 0 (point contact), and the third gist is that the reflective layer is a metal layer made of silver and a silver alloy, The fourth gist is that the refractive index of the microspherical retroreflector is 2.2 or more, and the non-planar retroreflection For using coated product to the tubular member in which the fifth aspect.

被塗物の材質は、反射層を形成できる材料であればよく特に限定されない。具体的には、アルミニウムまたはその合金、銅またはその合金、鉄またはその合金、亜鉛またはその合金、マグネシウムまたはその合金、チタンまたはその合金、金またはその合金、銀またはその合金、白金またはその合金、スズまたはその合金、ニッケルまたはその合金などの金属材料、塩化ビニル、ポリスチレン、アクリル、ポリカーボネート、アクリロニトリルブタジエンスチレン共重合体、アクリロニトリルスチレン共重合体、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリアミド、ナイロン、ポリアセタールなどの熱可塑性樹脂材料、ポリスチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系などの熱可塑性エラストマー、シリコーン、スチレンブタジエン、ウレタン、ブタジエン、イソプレン、フッ素などの合成ゴムや天然ゴム、エポキシ樹脂、フェノール樹脂、シアネート樹脂、尿素樹脂、グアナミン樹脂などの熱硬化樹脂材料、アルミナ、ジルコニア、陶磁器、ガラスなどのセラミック材料、木材、紙、石などの天然材料などを用いることができる。特に金属材料を用いることにより反射層を兼ねることもできる。
また、これらの材料は1種または2種以上の混合物であってもよい。さらに、これら材質には彫刻や、エッチング、印刷などで模様を形成してもよい。
The material of the object to be coated is not particularly limited as long as it is a material capable of forming the reflective layer. Specifically, aluminum or its alloy, copper or its alloy, iron or its alloy, zinc or its alloy, magnesium or its alloy, titanium or its alloy, gold or its alloy, silver or its alloy, platinum or its alloy, Metal material such as tin or its alloy, nickel or its alloy, vinyl chloride, polystyrene, acrylic, polycarbonate, acrylonitrile butadiene styrene copolymer, acrylonitrile styrene copolymer, polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate , Thermoplastic resin materials such as polybutylene naphthalate, polyamide, nylon, polyacetal, polystyrene, polyolefin, polyvinyl chloride, polyurethane, polyester Thermoplastic resins such as thermoplastic elastomers such as rubbers and polyamides, synthetic rubbers such as silicone, styrene butadiene, urethane, butadiene, isoprene and fluorine, natural rubber, epoxy resins, phenol resins, cyanate resins, urea resins and guanamine resins Materials, ceramic materials such as alumina, zirconia, ceramics, and glass, natural materials such as wood, paper, and stone can be used. In particular, by using a metal material, it can also serve as a reflective layer.
These materials may be one kind or a mixture of two or more kinds. Furthermore, a pattern may be formed on these materials by engraving, etching, printing, or the like.

反射層は、湿式めっき法や乾式めっき法、塗装、印刷、化成処理などの公知の方法により、ニッケルやクロムや黒クロムなどの金属めっき層、あるいは金や銀やパラジウムなどの貴金属めっき層、塗膜層、印刷層、酸化物層などが用いることができる。特に、被塗物との密着性が得られる湿式めっき法による銀や銀合金の金属めっき層を用いることにより再帰反射現象を有効に発現できる。また、反射層上にクロメート処理などの酸化物層を施すことで、後述するクリヤー塗膜層またはカラークリヤー塗膜層との密着性が向上する。   The reflective layer is formed by a known method such as a wet plating method, a dry plating method, painting, printing, chemical conversion treatment, a metal plating layer such as nickel, chromium, black chrome, a noble metal plating layer such as gold, silver, palladium, or the like. A film layer, a printing layer, an oxide layer, or the like can be used. In particular, the retroreflective phenomenon can be effectively expressed by using a metal plating layer of silver or a silver alloy by a wet plating method capable of obtaining adhesion with an object to be coated. Further, by applying an oxide layer such as a chromate treatment on the reflective layer, adhesion with a clear coating layer or a color clear coating layer described later is improved.

微小球型再帰性反射体は、再帰反射を発現できるものであればよく特に限定されない。具体的には、BaO−SiO−TiO系ガラスビーズ、BaO−ZnO−TiO系ガラスビーズなどを用いることができる。屈折率が2.2であるBaO−ZnO−TiO系ガラスビーズが良好な再帰反射特性が得られる。 The microsphere retroreflector is not particularly limited as long as it can exhibit retroreflection. Specifically, BaO—SiO 2 —TiO 2 glass beads, BaO—ZnO—TiO 2 glass beads, and the like can be used. The BaO—ZnO—TiO 2 glass beads having a refractive index of 2.2 provide good retroreflection characteristics.

微小球型再帰性反射体を含有するクリヤー塗膜層は、反射層上に微小球型再帰性反射体とクリヤー塗膜を別々の工程で塗膜層を形成してもよいし、クリヤー塗料中に微小球型再帰性反射体を分散させて塗膜層を形成してもよい。これは、カラークリヤー塗膜層の場合も同様である。   The clear coating layer containing the microspherical retroreflector may be formed on the reflective layer by forming the microspherical retroreflector and the clear coating in separate steps. Alternatively, the coating layer may be formed by dispersing the microspherical retroreflector. The same applies to the color clear coating layer.

クリヤー塗膜層を形成する塗料は、少なくとも樹脂と液媒体を含んでいればよい。液媒体として有機溶剤を使用した有機溶剤系塗料や、水または水と有機溶剤を混合した溶液を使用した水系塗料であれば特に限定しない。しかし、クリヤー塗膜層には、色材を含有しないことが重要である。
また、クリヤー塗膜層を形成する塗料は、一般的に市販されている熱硬化型樹脂や熱可塑性樹脂を主成分とする塗料や、前記塗料に硬化剤などを添加した反応硬化型塗料などが使用できる。特に反射層との密着性を考慮すると接着性を有する熱可塑性樹脂を配合した塗料が好適に使用できる。具体的には、ポリエチレン樹脂、エチレン−酢酸ビニル共重合樹脂、エチレン−イソブチルアクリレート共重合樹脂、ポリアミド樹脂、ポリエステル樹脂、ブチラール樹脂、ポリ酢酸ビニルおよび共重合体、ポリメチルメタクリレート樹脂、ポリビニルエーテル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、又はこれら樹脂を主成分とする混合物が挙げられ、これらは一種もしくは二種以上の混合物でもよい。また、これらにテルペン系樹脂やロジン系樹脂などの粘着性付与剤や、パラフィン系オイルなどの柔軟剤や、ポリイソシアネート樹脂などの硬化剤などを必要に応じて添加することもできる。特に吸水性が少ないポリエステル樹脂が好適に使用できる。
一方、カラークリヤー塗膜層を形成する塗料は、色材を添加すること以外は、前記のクリヤー塗膜層と同様である。添加する色材は、染料や着色顔料などが使用でき、カラークリヤー塗膜層が光透過性を有していればよい。
The paint for forming the clear coating layer only needs to contain at least a resin and a liquid medium. There is no particular limitation as long as it is an organic solvent-based paint using an organic solvent as a liquid medium, or a water-based paint using a solution in which water or water and an organic solvent are mixed. However, it is important that the clear coating layer does not contain a coloring material.
The paint for forming the clear coating layer may be a commercially available thermosetting resin or a paint mainly composed of a thermoplastic resin, or a reaction curable paint obtained by adding a curing agent to the paint. Can be used. In particular, in consideration of adhesion to the reflective layer, a paint containing a thermoplastic resin having adhesiveness can be suitably used. Specifically, polyethylene resin, ethylene-vinyl acetate copolymer resin, ethylene-isobutyl acrylate copolymer resin, polyamide resin, polyester resin, butyral resin, polyvinyl acetate and copolymer, polymethyl methacrylate resin, polyvinyl ether resin, A polyurethane resin, a polycarbonate resin, a polypropylene resin, or a mixture containing these resins as a main component may be mentioned, and these may be one kind or a mixture of two or more kinds. Moreover, tackifiers such as terpene resins and rosin resins, softeners such as paraffinic oils, curing agents such as polyisocyanate resins, and the like can be added to these as required. In particular, a polyester resin with low water absorption can be suitably used.
On the other hand, the coating material for forming the color clear coating layer is the same as the above clear coating layer except that a coloring material is added. As the coloring material to be added, a dye, a coloring pigment, or the like can be used, and it is sufficient that the color clear coating layer has light transmittance.

本発明において最も重要な反射層と微小球型再帰性反射体(微小球型再帰性反射体を含有するクリヤー塗膜層)との位置関係を図を用いて詳細に説明する。
図1は、本発明の断面模式図である。
被塗物1上に反射層2が形成され、さらに反射層2上に微小球型再帰性反射体を含有するクリヤー塗膜層5(またはカラークリヤー塗膜層)が形成されている。接触部6において反射層2と微小球型再帰性反射体3が点接触(T/r=0; T:反射層と微小球型再帰性反射体との距離,r:微小球型再帰性反射体の平均粒子径)していることが最も意匠性に有効な再帰反射特性が得られる。
また、クリヤー塗膜層に染料や顔料などの色材を含まない場合には、図2で示す位置関係においても再帰反射特性が得られるものである(図3は色材を含む場合であり、反射層2と微小球型再帰性反射体3が点接触(T/r=0; T:反射層と微小球型再帰性反射体との距離,r:微小球型再帰性反射体の平均粒子径)している)。
図2は、本発明の拡大断面模式図である。
接触部6(図中省略)において、反射層と微小球型再帰性反射体との距離Tと微小球型再帰性反射体の平均粒子径rとの関係が、0≦T/r≦0.23であれば意匠性に有効な再帰反射特性が得られる。具体的には、微小球型再帰性反射体の平均粒子径rによって反射層と微小球型再帰性反射体との距離Tは変化するが、微小球型再帰性反射体の平均粒子径を50μmとした場合、反射層と微小球型再帰性反射体との距離は、11.5μmとなる。さらに距離を短くし点接触(0μm)するまでの距離が有効であるが、反射層と微小球型再帰性反射体との距離が2.5μm以下(0≦T/r≦0.05)にすることで点接触(0μm)とほぼ同等な再帰反射特性が得られる。
また、T/rが0.23より大きくなると、微小球型再帰性反射体から出た光がクリヤー塗膜層で屈折し(複屈折し)、減光しながら反射層で反射するが、元の微小球型再帰性反射体には戻らず、乱反射光となってしまい再帰反射特性は得られない。この現象は、微小球型再帰性反射体とクリヤー塗膜層との屈折率の差(微小球型再帰性反射体の屈折率(2.2)、クリヤー塗膜層の屈折率(1.5))によって生じる現象であり、本発明においては、微小球型再帰性反射体の平均粒子径に対して、23%以下の反射層と微小球型再帰性反射体との距離が、複屈折を生じても再帰反射特性が得られるものである。
なお、本発明における平均粒子径とは、JIS R 6002(1998)に規定されている測定方法(沈殿試験)での累積高さ50%に相当する粒子径を示し、また、距離とは、反射層と微小球型再帰性反射体との最短での距離を示す。
The positional relationship between the most important reflective layer in the present invention and the microspherical retroreflector (clear coating layer containing the microspherical retroreflector) will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of the present invention.
A reflective layer 2 is formed on the object 1 to be coated, and a clear coating layer 5 (or a color clear coating layer) containing a microspherical retroreflector is further formed on the reflective layer 2. Point of contact between the reflective layer 2 and the microspherical retroreflector 3 at the contact portion 6 (T / r = 0; T: distance between the reflective layer and the microspherical retroreflector, r: microspherical retroreflective It is possible to obtain retroreflective properties that are most effective for design properties.
Further, when the clear coating layer does not contain a coloring material such as a dye or a pigment, retroreflective properties can be obtained even in the positional relationship shown in FIG. 2 (FIG. 3 is a case where the coloring material is included, Point contact between the reflective layer 2 and the microspherical retroreflector 3 (T / r = 0; T: distance between the reflective layer and the microspherical retroreflector, r: average particle of the microspherical retroreflector Diameter)).
FIG. 2 is an enlarged schematic sectional view of the present invention.
In the contact portion 6 (not shown), the relationship between the distance T between the reflective layer and the microspherical retroreflector and the average particle diameter r of the microspherical retroreflector is 0 ≦ T / r ≦ 0. If it is 23, the retroreflective characteristic effective for the design is obtained. Specifically, although the distance T between the reflective layer and the microspherical retroreflector varies depending on the average particle diameter r of the microspherical retroreflector, the average particle diameter of the microspherical retroreflector is 50 μm. In this case, the distance between the reflective layer and the microspherical retroreflector is 11.5 μm. The distance until the point contact (0 μm) is further shortened is effective, but the distance between the reflective layer and the microspherical retroreflector is 2.5 μm or less (0 ≦ T / r ≦ 0.05). By doing so, retroreflective characteristics almost equivalent to point contact (0 μm) can be obtained.
When T / r is greater than 0.23, the light emitted from the microspherical retroreflector is refracted (birefringed) by the clear coating layer and reflected by the reflecting layer while dimming. It does not return to the microspherical retroreflector, but becomes irregularly reflected light, and the retroreflective property cannot be obtained. This phenomenon is caused by the difference in refractive index between the microspherical retroreflector and the clear coating layer (refractive index of the microspherical retroreflector (2.2), refractive index of the clear coating layer (1.5 )), And in the present invention, the distance between the reflection layer of 23% or less and the microspherical retroreflector is less than the average particle diameter of the microspherical retroreflector. Even if it occurs, a retroreflective characteristic can be obtained.
In addition, the average particle diameter in this invention shows the particle diameter corresponded in 50% of cumulative height in the measuring method (precipitation test) prescribed | regulated to JISR6002 (1998), and distance is reflection The shortest distance between the layer and the microspherical retroreflector is shown.

本発明においては、少なくとも被塗物上に反射層(被塗物が反射層を兼ねる場合を含む)と、微小球型再帰性反射体を含有するクリヤー塗膜層(またはカラークリヤー塗膜層)とを有していればよいが、それら上層にクリヤー塗膜、カラークリヤー塗膜、パールクリヤー塗膜、メタリック塗膜、薄膜蒸着膜などの光透過性層を全面及び/又は部分的に形成してもよい。   In the present invention, at least a reflective layer (including a case where the coated object also serves as a reflective layer) and a clear coating layer (or a color clear coating layer) containing a microspherical retroreflector on the coating object. However, a light-transmitting layer such as a clear coating film, a color clear coating film, a pearl clear coating film, a metallic coating film, or a thin film deposition film is formed on the entire surface and / or a part thereof. May be.

本発明は、意匠性を有効的に発現させるために再帰反射現象を積極的に利用したものであるが、反射層上に微小球型再帰性反射体を反射層と微小球型再帰性反射体との距離Tと微小球型再帰性反射体の平均粒子径rとの関係を0(点接触)≦T/r≦0.23にすることで、非平面の再帰性反射塗装物の塗膜構造中で入射した光が反射(全反射や再帰反射など)と透過が発現するとともに、微小球型再帰性反射体の表面及び/又は内部での光の散乱とが加味され、特異的な「奥行き感」と「深み感」などが形成されることで神秘的な意匠性が得られるものである。
また、反射層が、銀及び銀合金からなる金属めっき層で、微小球型再帰性反射体の屈折率が、2.2以上とすることで、銀特有の淡い黄色みをおびた白色金属光沢と再帰反射の相乗効果により意匠性が向上する。
特に、筒状部材においては、側面部で色相の変化を伴わない明度差(濃淡差)が発生し、その結果、実際の塗膜厚さより厚く見える錯覚が加味される。
The present invention actively uses the retroreflective phenomenon in order to effectively develop the design, but the microsphere-type retroreflector is formed on the reflective layer with the reflective layer and the microsphere-type retroreflector. By setting the relationship between the distance T to the average particle diameter r of the microspherical retroreflector to 0 (point contact) ≦ T / r ≦ 0.23, the coating film of the non-planar retroreflective coating The incident light in the structure is reflected (total reflection, retroreflection, etc.) and transmitted, and the scattering of light on the surface and / or inside of the microspherical retroreflector is taken into account. A mysterious design can be obtained by creating a sense of depth and depth.
In addition, the reflective layer is a metal plating layer made of silver and a silver alloy, and the refractive index of the microspherical retroreflector is 2.2 or more. And the design is improved by the synergistic effect of retroreflection.
In particular, in the cylindrical member, a difference in brightness (lightness difference) that does not cause a change in hue occurs in the side surface portion, and as a result, an illusion that appears thicker than the actual coating thickness is added.

さらに、本発明の効果を図を用いて具体的に説明する。
図4は、再帰性反射塗装物を筒状部材に形成した部分塗膜断面模式図である。
反射光7は、全反射光に加えて再帰反射光が再帰性反射塗装物の正面部付近で発現される。乱反射光8は、正面部付近から側面部付近にかけて発現され、側面部付近においては、複数の微小球型再帰性反射体の屈折を繰り返し、反射層に入射光が到達せず外にぬけていく(透過光9)ことで、入射した光が様々な特性を有することで特異的な「奥行き感」と「深み感」などが形成され神秘的な意匠性が得られるものである。
Further, the effects of the present invention will be specifically described with reference to the drawings.
FIG. 4 is a partial cross-sectional schematic view of a retroreflective coating formed on a cylindrical member.
In the reflected light 7, retroreflected light is expressed in the vicinity of the front portion of the retroreflective coating in addition to the total reflected light. The irregularly reflected light 8 is expressed from the vicinity of the front surface portion to the vicinity of the side surface portion, and in the vicinity of the side surface portion, the refraction of the plurality of microspherical retroreflectors is repeated, and the incident light does not reach the reflection layer and passes outside. By (transmitted light 9), the incident light has various characteristics, so that specific “depth feeling” and “depth feeling” are formed, and a mysterious design is obtained.

再帰性反射塗装物の塗膜断面模式図。The coating-film cross-sectional schematic diagram of a retroreflection coating thing. 再帰性反射塗装物の塗膜断面模式図。The coating-film cross-sectional schematic diagram of a retroreflection coating thing. 再帰性反射塗装物の塗膜断面模式図。The coating-film cross-sectional schematic diagram of a retroreflection coating thing. 再帰性反射塗装物を筒状部材に形成した部分塗膜断面図。The partial coating-film cross section which formed the retroreflection coating thing in the cylindrical member.

本発明は、非平面の被塗物上に、反射層と微小球型再帰性反射体を含有するクリヤー塗膜層を形成したことを最も主要な特徴とし、反射層上に微小球型再帰性反射体が点接触することで再帰反射特性を利用した意匠性を発現し、さらに塗膜構造中で入射した光が反射(全反射や再帰反射など)と透過が発現するとともに、微小球型再帰性反射体の表面及び/又は内部での光の散乱とが加味され、特異的な「奥行き感」と「深み感」などが形成されることで神秘的な意匠性を実現した。   The main feature of the present invention is that a clear coating layer containing a reflective layer and a microspherical retroreflector is formed on a non-planar object, and the microspherical retroreflective property is formed on the reflective layer. The reflector makes point contact and exhibits design using retroreflective properties. In addition, the incident light in the coating structure is reflected (total reflection, retroreflection, etc.) and transmitted. Considering the scattering of light on the surface and / or inside of the reflective reflector, a unique “depth feeling” and “depth feeling” are formed to realize a mysterious design.

(実施例1)
鉄製の、100mm×100mm×厚さ1mmである鋼板を湾曲状(曲率半径50mm)に加工し、バフ研磨にて表面を平滑にし、ジクロロメタンで脱脂処理し被塗物とした。次いで公知の電気めっき法により金属Ni層を形成し反射層とした。
次いで前記反射層上にアクリルラッカー塗料(トアインクラック(クリヤー)、(株)トウペ製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
Example 1
An iron steel plate 100 mm × 100 mm × thickness 1 mm was processed into a curved shape (curvature radius 50 mm), the surface was smoothed by buffing, and degreased with dichloromethane to obtain a coating. Next, a metal Ni layer was formed by a known electroplating method to form a reflective layer.
Next, an acrylic lacquer paint (Toin rack (Clear), manufactured by Toupe Co., Ltd., diluted twice with a special thinner) and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, Using a refractive index of 2.2 (manufactured by Union Co., Ltd.), a clear coating layer in which microspherical retroreflectors are arranged in a single layer so that T / r = 0 (point contact) is formed. A retroreflective coating was obtained.

(実施例2)
アクリロニトリルブタジエンスチレン共重合体製(ABS製)の、長径10mm、短径5mm、長さ100mmである横断面外形状が楕円形の成型品を、イソプロピレンで脱脂処理し被塗物とした。次いで公知の真空蒸着法により金属Al層を形成し反射層とした。
次いで前記反射層上にアクリルラッカー塗料(トアインクラック(クリヤー)、(株)トウペ製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 2)
A molded product made of an acrylonitrile butadiene styrene copolymer (manufactured by ABS) having a major axis of 10 mm, a minor axis of 5 mm, and a length of 100 mm and having an elliptical outer cross-sectional shape was degreased with isopropylene to obtain a coating. Next, a metal Al layer was formed by a known vacuum deposition method to form a reflective layer.
Next, an acrylic lacquer paint (Toin rack (Clear), manufactured by Toupe Co., Ltd., diluted twice with a special thinner) and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, Using a refractive index of 2.2 (manufactured by Union Co., Ltd.), a clear coating layer in which microspherical retroreflectors are arranged in a single layer so that T / r = 0 (point contact) is formed. A retroreflective coating was obtained.

(実施例3)
真鍮製の、外径10mm、長さ100mmである横断面外形状が円形の材料をバフ研磨し、表面を平滑にし、ジクロロメタンで脱脂処理し被塗物とした。次いで公知の電気めっき法により金属Ni層を形成し反射層とした。
次いで前記反射層上にアクリルラッカー塗料(トアインクラック(クリヤー)、(株)トウペ製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 3)
A material made of brass having an outer diameter of 10 mm and a length of 100 mm and having a circular cross-sectional outer shape was buffed, the surface was smoothed, and degreased with dichloromethane to obtain an article to be coated. Next, a metal Ni layer was formed by a known electroplating method to form a reflective layer.
Next, an acrylic lacquer paint (Toin rack (Clear), manufactured by Toupe Co., Ltd., diluted twice with a special thinner) and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, Using a refractive index of 2.2 (manufactured by Union Co., Ltd.), a clear coating layer in which microspherical retroreflectors are arranged in a single layer so that T / r = 0 (point contact) is formed. A retroreflective coating was obtained.

(実施例4)
実施例3と同様の被塗物を用いた。
次いで前記反射層上に熱硬化型アクリル系塗料(マジクロン1000(クリヤー)、関西ペイント(株)製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
Example 4
The same coated object as in Example 3 was used.
Next, a thermosetting acrylic paint (Majicron 1000 (Clear), manufactured by Kansai Paint Co., Ltd., diluted twice with a special thinner) and a microspherical retroreflector (Unibead UB-23NH (average particle size 53) are formed on the reflective layer. A clear coating layer in which microspherical retroreflectors are arranged in a single layer so that T / r = 0 (point contact) using 0.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) And a retroreflective coating was obtained.

(実施例5)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 5)
The same coated object as in Example 3 was used. Next, a metal Ni layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that / r = 0 (point contact) to obtain a retroreflective coating.

(実施例6)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 6)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that / r = 0 (point contact) to obtain a retroreflective coating.

(実施例7)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.02(T=1.0μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 7)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.02 (T = 1.0 μm) to obtain a retroreflective coating.

(実施例8)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.04(T=2.1μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 8)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.04 (T = 2.1 μm) to obtain a retroreflective coating.

(実施例9)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.10(T=5.3μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
Example 9
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.10 (T = 5.3 μm) to obtain a retroreflective coating.

(実施例10)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.13(T=7.0μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 10)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.13 (T = 7.0 μm) to obtain a retroreflective coating.

(実施例11)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.22(T=11.4μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 11)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.22 (T = 11.4 μm) to obtain a retroreflective coating.

(実施例12)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.25(T=13.0μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 12)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.25 (T = 13.0 μm) to obtain a retroreflective coating.

(実施例13)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル系塗料(フランボヤンNo.140(N)(ワインレッドクリヤー)、大橋化学工業(株)製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたカラークリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 13)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a polyester-based paint (Flamboyant No. 140 (N) (Wine Red Clear), manufactured by Ohashi Chemical Industry Co., Ltd., diluted twice with a special thinner) and a microsphere retroreflector (Unibead UB-23NH) are formed on the reflective layer. (Average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.), microsphere-shaped retroreflectors are arranged in a single layer so that T / r = 0 (point contact). A color clear coating layer was formed to obtain a retroreflective coating.

(実施例14)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−052NH(平均粒子径35.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 14)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-052NH (average particle size 35.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that / r = 0 (point contact) to obtain a retroreflective coating.

(実施例15)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−45NH(平均粒子径69.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 15)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint to which 10 wt% was added and a microsphere retroreflector (Unibeads UB-45NH (average particle size 69.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that / r = 0 (point contact) to obtain a retroreflective coating.

(実施例16)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−24M(平均粒子径54.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 16)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibead UB-24M (average particle diameter 54.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.)) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that / r = 0 (point contact) to obtain a retroreflective coating.

(実施例17)
真鍮製の、外径10mm、長さ100mmである横断面外形状が円形の材料をバフ研磨し、表面を平滑にした後、公知の方法にて長手方向に線状の彫刻、所謂光線彫りを施し、ジクロロメタンで脱脂処理し被塗物とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、再帰性反射塗装物を得た。
(Example 17)
A material made of brass with an outer diameter of 10 mm and a length of 100 mm having a circular cross-sectional outer shape is buffed and the surface is smoothed, and then a linear engraving in the longitudinal direction by a known method, so-called beam engraving is performed. And degreased with dichloromethane to obtain a coated article.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that / r = 0 (point contact) to obtain a retroreflective coating.

(比較例1)
鉄製の、100mm×100mm×厚さ1mmである板状鋼板を、バフ研磨にて表面を平滑にし、ジクロロメタンで脱脂処理し被塗物とした。次いで公知の電気めっき法により金属Ni層を形成し反射層とした。
次いで前記反射層上にアクリルラッカー塗料(トアインクラック(クリヤー)、(株)トウペ製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0(点接触)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、塗装物を得た。
(Comparative Example 1)
A steel plate made of 100 mm × 100 mm × thickness 1 mm was smoothed by buffing and degreased with dichloromethane to obtain an article to be coated. Next, a metal Ni layer was formed by a known electroplating method to form a reflective layer.
Next, an acrylic lacquer paint (Toin rack (Clear), manufactured by Toupe Co., Ltd., diluted twice with a special thinner) and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, Using a refractive index of 2.2 (manufactured by Union Co., Ltd.), a clear coating layer in which microspherical retroreflectors are arranged in a single layer so that T / r = 0 (point contact) is formed. A painted product was obtained.

(比較例2)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル樹脂を主成分とする熱可塑性接着剤(PES−360HVXM30(透明)、東亜合成(株)製)にポリイソシアネート樹脂を主成分とする硬化剤(コロネートL、日本ポリウレタン工業(株)製)を10wt%添加したポリエステル系塗料と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.29(T=15.3μm)となるように、微小球型再帰性反射体を単層配列させたクリヤー塗膜層を形成し、塗装物を得た。
(Comparative Example 2)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a thermoplastic adhesive (PES-360HVXM30 (transparent), manufactured by Toa Gosei Co., Ltd.) with a polyisocyanate resin as a main component (Coronate L, Nippon Polyurethane Industry) on the reflective layer. Using a polyester-based paint and a microsphere retroreflector (Unibeads UB-23NH (average particle size 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.) A clear coating layer was formed by arranging a single layer of microspherical retroreflectors so that /r=0.29 (T = 15.3 μm) to obtain a coated product.

(比較例3)
実施例3と同様の被塗物を用いた。次いで公知の電気めっき法により金属Ni/Ag層を形成し反射層とした。
次いで前記反射層上にポリエステル系塗料(フランボヤンNo.140(N)(ワインレッドクリヤー)、大橋化学工業(株)製を専用シンナーで2倍希釈)と微小球再帰性反射体(ユニビーズUB−23NH(平均粒子径53.0μm、屈折率2.2、(株)ユニオン製)を用いて、T/r=0.04(T=2.1μm)となるように、微小球型再帰性反射体を単層配列させたカラークリヤー塗膜層を形成し、塗装物を得た。
(Comparative Example 3)
The same coated object as in Example 3 was used. Next, a metal Ni / Ag layer was formed by a known electroplating method to form a reflective layer.
Next, a polyester-based paint (Flamboyant No. 140 (N) (Wine Red Clear), manufactured by Ohashi Chemical Industry Co., Ltd., diluted twice with a special thinner) and a microsphere retroreflector (Unibead UB-23NH) are formed on the reflective layer. (Average particle diameter 53.0 μm, refractive index 2.2, manufactured by Union Co., Ltd.), so that T / r = 0.04 (T = 2.1 μm). A color clear coating layer having a single layer arrangement was formed to obtain a coated product.

<外観特性の評価>
JIS K 5600−4−3:1999「塗料一般試験方法−第4部:塗膜の視覚特性−第3節:色の目視比較」に準じた色観察用照明(自然昼光照明)下で目視にて再帰性反射塗装物の外観特性(再帰反射性及び深み感)を評価した。
<Evaluation of appearance characteristics>
Visually observed under illumination for color observation (natural daylight illumination) in accordance with JIS K 5600-4-3: 1999 “General test method for paints—Part 4: Visual characteristics of coating film—Section 3: Visual comparison of colors” The appearance characteristics (retroreflectivity and depth) of the retroreflective coating were evaluated.

<水に対する塗膜耐性評価(沸騰水試験)>
2級の純度の水(ISO3696)を沸騰状態にし、実施例及び比較例で得た光輝性塗装物を前記沸騰状態の水に25分間浸漬した後、塗装物を沸騰状態の水の中から取りだし常温に戻す。次にJIS K 5600−5−6「塗料一般試験方法−第5部:塗膜の機械的性質−第6節:付着性(クロスカット法)」に規定されているクロスカット法(1mmの正方形を10×10コマ(計100コマ))にて密着性を評価する。尚評価は、100コマの碁盤目内で塗膜が残ったコマ数とした。
<Evaluation of paint film resistance to water (boiling water test)>
Second grade water (ISO 3696) is brought to a boiling state, and the glittering paints obtained in Examples and Comparative Examples are immersed in the boiling water for 25 minutes, and then the paint is taken out of the boiling water. Return to room temperature. Next, the cross-cut method (1 mm square) defined in JIS K 5600-5-6 “General test method for paints—Part 5: Mechanical properties of coating film—Section 6: Adhesiveness (cross-cut method)” Is evaluated at 10 × 10 frames (100 frames in total). In addition, evaluation was made into the number of the frames with which the coating film remained within the 100-frame grid.

各実施例、比較例をまとめたものを表1に、前記3項目による評価結果を表2に示す。   Table 1 shows a summary of each example and comparative example, and Table 2 shows the evaluation results of the three items.

1 被塗物
2 反射層
3 微小球型再帰性反射体
4 クリヤー塗膜層
5 微小球型再帰性反射体を含有するクリヤー塗膜層
6 接触部
7 反射光
8 乱反射光
9 透過光
10 色材
DESCRIPTION OF SYMBOLS 1 Object to be coated 2 Reflective layer 3 Microsphere type retroreflector 4 Clear coating layer 5 Clear coating layer containing microsphere type retroreflector 6 Contact part 7 Reflected light 8 Diffuse reflected light 9 Transmitted light 10 Color material

Claims (5)

非平面の再帰性反射塗装物において、少なくとも反射層上に微小球型再帰性反射体を含有するクリヤー塗膜層を有し、反射層と微小球型再帰性反射体との距離Tと微小球型再帰性反射体の平均粒子径rとの関係が、0(点接触)≦T/r≦0.23であることを特徴とする再帰性反射塗装物。 The non-planar retroreflective coating has a clear coating layer containing a microspherical retroreflector on at least the reflective layer, and the distance T between the reflective layer and the microspherical retroreflector and the microsphere A retroreflective coating product, wherein the relationship between the average particle diameter r of the type retroreflector is 0 (point contact) ≦ T / r ≦ 0.23. 非平面の再帰性反射塗装物において、少なくとも反射層上に微小球型再帰性反射体と色材とを含有するカラークリヤー塗膜層を有し、反射層と微小球型再帰性反射体との距離Tと微小球型再帰性反射体の平均粒子径rとの関係が、T/r=0(点接触)であることを特徴とする再帰性反射塗装物。 The non-planar retroreflective coating has a color clear coating layer containing at least a microspherical retroreflector and a color material on at least the reflective layer, and includes a reflective layer and a microspherical retroreflector. A retroreflective coating, wherein the relationship between the distance T and the average particle diameter r of the microspherical retroreflector is T / r = 0 (point contact). 前記反射層が、銀及び銀合金からなる金属層であることを特徴とする請求項1乃至2記載の再帰性反射塗装物。 The retroreflective coating according to claim 1, wherein the reflective layer is a metal layer made of silver and a silver alloy. 前記微小球型再帰性反射体の屈折率が、2.2以上であることを特徴とする請求項1乃至3の再帰性反射塗装物。 4. The retroreflective coating according to claim 1, wherein a refractive index of the microspherical retroreflector is 2.2 or more. 前記非平面の再帰性反射塗装物を筒状部材に用いたことを特徴とする請求項1乃至4記載の再帰性反射塗装物。 5. The retroreflective coating according to claim 1, wherein the non-planar retroreflective coating is used for a cylindrical member.
JP2009272265A 2009-11-30 2009-11-30 Recurrent reflective coated material Pending JP2011110536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272265A JP2011110536A (en) 2009-11-30 2009-11-30 Recurrent reflective coated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272265A JP2011110536A (en) 2009-11-30 2009-11-30 Recurrent reflective coated material

Publications (1)

Publication Number Publication Date
JP2011110536A true JP2011110536A (en) 2011-06-09

Family

ID=44233304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272265A Pending JP2011110536A (en) 2009-11-30 2009-11-30 Recurrent reflective coated material

Country Status (1)

Country Link
JP (1) JP2011110536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196455A1 (en) * 2019-03-28 2020-10-01 関西ペイント株式会社 Retroreflective coating composition and method for forming multilayer coating film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121533U (en) * 1987-01-30 1988-08-08
JPH03242267A (en) * 1990-02-16 1991-10-29 Koa Glass Kk Decorating method by bead coating
JPH0550030A (en) * 1991-08-22 1993-03-02 Mazda Motor Corp Coating film structure
JP2000075116A (en) * 1998-08-31 2000-03-14 Katsuhiko Nakamae Optical retroreflective material
JP2007256433A (en) * 2006-03-22 2007-10-04 Nippon Carbide Ind Co Inc Retroreflective sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121533U (en) * 1987-01-30 1988-08-08
JPH03242267A (en) * 1990-02-16 1991-10-29 Koa Glass Kk Decorating method by bead coating
JPH0550030A (en) * 1991-08-22 1993-03-02 Mazda Motor Corp Coating film structure
JP2000075116A (en) * 1998-08-31 2000-03-14 Katsuhiko Nakamae Optical retroreflective material
JP2007256433A (en) * 2006-03-22 2007-10-04 Nippon Carbide Ind Co Inc Retroreflective sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196455A1 (en) * 2019-03-28 2020-10-01 関西ペイント株式会社 Retroreflective coating composition and method for forming multilayer coating film

Similar Documents

Publication Publication Date Title
JP4650960B2 (en) Decorative sheet
JP7097857B2 (en) How to make plastic vehicle attachments
JP6213463B2 (en) Light diffuse reflector
US20100330331A1 (en) Panel for a display and electronic device using same
CN102421929A (en) Sanitary objects
CN101856892A (en) Adhered film
JP2011110536A (en) Recurrent reflective coated material
JP2015085257A (en) Lamination coating film and coated article
JP6074252B2 (en) Decorative sheet
JP2011025207A (en) Retroreflective coated article
JP2015214031A (en) Transfer film and decorative molding
KR100942432B1 (en) Decoration Sheet Having Good Scratch-Resistance, Anti-finger Print and Soft Skin Feeling and Method for Preparing the Same
JP6156336B2 (en) Laminated coatings and painted products
JP2007169310A (en) Coating agent and portable electronic instrument
CN102582179A (en) Colored diamond scratch-resistant protective film and manufacturing method thereof
CN211653200U (en) Colorful dazzling film
JP2007216611A (en) Mat tone film
CN112218835B (en) Transparent substrate coated with discontinuous colorless or colored transparent organic layer textured with dots and reflective layer
TW201102985A (en) Lens and electronic device using the same
JP2009083138A (en) Decorative object
JP5217263B2 (en) Decorative body
WO2016175064A1 (en) Laminated body
TWI410328B (en) Ornamental sheet
JP2020146952A (en) Decorative material
CN201550777U (en) Color reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Effective date: 20130131

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112