JP2011109936A - Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same - Google Patents

Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same Download PDF

Info

Publication number
JP2011109936A
JP2011109936A JP2009267063A JP2009267063A JP2011109936A JP 2011109936 A JP2011109936 A JP 2011109936A JP 2009267063 A JP2009267063 A JP 2009267063A JP 2009267063 A JP2009267063 A JP 2009267063A JP 2011109936 A JP2011109936 A JP 2011109936A
Authority
JP
Japan
Prior art keywords
sirna
ribonucleotide
gene expression
chemically modified
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009267063A
Other languages
Japanese (ja)
Inventor
Masamichi Shimizu
政道 清水
Masato Haraguchi
正人 原口
Yasuo Asuyama
康生 明日山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENENET KK
Genenet Co Ltd
Original Assignee
GENENET KK
Genenet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENENET KK, Genenet Co Ltd filed Critical GENENET KK
Priority to JP2009267063A priority Critical patent/JP2011109936A/en
Publication of JP2011109936A publication Critical patent/JP2011109936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: an siRNA having a high gene-inhibiting effect, which is double-stranded RNA having target gene expression inhibiting ability and 21 to 27 bases and is used in RNA interference methods; and a method for efficiently inhibiting gene expression using the siRNA. <P>SOLUTION: There are disclosed: an siRNA preparing method in which a low molecular weight compound having an unsaturated hydrocarbon compound as a basic skeleton is conveniently, efficiently and chemically modified to ribonucleotide by known methods such as a phosphoroamidite method or an active esterification method using a succinimide linker; and a method for efficiently inhibiting gene expression that is represented by an RNA interference method using the siRNA. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、化学修飾リボヌクレオチドの合成法とこれらを用いる遺伝子発現抑制効果に関する。     The present invention relates to a method for synthesizing chemically modified ribonucleotides and the effect of suppressing gene expression using them.

近年のゲノムプロジェクト等の成果により、様々な生物のゲノム情報が次々と明らかにされつつある中、このゲノム情報を基盤として、個々の遺伝子の複製や転写、翻訳といった遺伝子機能を解明する研究が著しく発展してきている。この様な機能解明への取組みにおいては、細胞や動物個体へDNAやRNA等を導入し、ターゲットとなる遺伝子を過剰発現させ機能を活性化する、あるいは逆に欠失・欠損させ機能を停止・低下させる等により、多角的な形質変化の情報を収集し、遺伝子及びタンパク質の機能を明らかにする手法が汎用される。       The genome information of various organisms is being clarified one after another by the results of recent genome projects, etc., and research to elucidate gene functions such as replication, transcription, and translation of individual genes based on this genome information is remarkable. It is developing. In such efforts to elucidate functions, DNA or RNA is introduced into cells or animal individuals, and the target gene is overexpressed to activate the function, or conversely, the function is stopped by deletion or deletion. A technique for collecting information on various phenotypic changes and elucidating the functions of genes and proteins, for example, by reducing them, is widely used.

現在、数多くの遺伝子機能解析法が開発されており、目的に応じて種々の手法が選択されるが、取分けRNA interference (RNA干渉法,以下RNAi)は1998年にFireとMelloらによって報告されて以来、1. 遺伝子ノックアウト法の様な煩雑な操作を必要とせず、2.塩基配列情報と低分子RNAを用いることで遺伝子機能を調べることができ、3. アンチセンス法等と比較して数十〜数百倍の抑制活性を持つ、などの理由から遺伝子機能解析を目的とする多くの研究者にその技術が利用されている。上記低分子RNAの一つとしては、化学合成された21〜27塩基程度のオリゴ長を持つ二本鎖リボヌクレオチド(以下siRNA)が用いられるが、更なる発現抑制効果の向上、持続あるいは器官選択性への向上等を理由にその高機能化が望まれる場合があり、その手段の一つとして、リボヌクレオチドへの化学修飾が施される。       Numerous gene function analysis methods are currently being developed, and various methods are selected according to the purpose. Since then, 1. No complicated operation like gene knockout method is required 2. Gene function can be examined by using base sequence information and low molecular weight RNA 3. Number compared with antisense method etc. The technology is used by many researchers aiming at gene function analysis because it has a suppressive activity 10 to several hundred times. As one of the above small RNAs, a chemically synthesized double-stranded ribonucleotide (hereinafter referred to as siRNA) having an oligo length of about 21 to 27 bases is used. There are cases in which higher functionality is desired for reasons such as improvement in sex, and as one of the means, chemical modification to ribonucleotides is performed.

例えば、抑制効果の向上に対しては細胞膜透過性ペプチド等を付与することで導入効果を高める、或いは効果の持続ということであればRNA分解酵素耐性を高める目的で糖鎖リボースの2位水酸基を置換する等の方法が効果的とされ、コレステロール等の脂質化合物を付与することで器官への選択性が向上するケース等もある。     For example, in order to improve the inhibitory effect, the introduction of the cell membrane permeable peptide or the like increases the introduction effect, or if the effect is sustained, the 2nd hydroxyl group of the sugar chain ribose is increased for the purpose of increasing the resistance to RNase. In some cases, a method such as substitution is effective, and the selectivity to an organ is improved by applying a lipid compound such as cholesterol.

しかしながら、ペプチド修飾リボヌクレオチドに関して言えば、ペプチド自体の収量やリボヌクレオチドへの修飾効率等が不十分であるケースもみられ、遺伝子発現抑制の機能としては優れていても、コスト的に充分に満足できない場合がある。又、2位水酸基置換リボヌクレオチドは、酵素耐性という面では優れた効果が期待できるものの、置換するモノヌクレオチドの位置や数によってRNAi効果が左右されるとの報告があり、同機能解析を目的とするsiRNAとしては適切でないケースが見られる。
A. Fire, S. Xu, MK. Montgomery, SA. Kostas, SE. Driver, CC. Mello, Nature, 391, 806 (1998). F. Simeoni, M. C. Morris, F. Heitz, G. Divita, Nucleic Acids Res., 31, 2717 (2003) Y. L.Chiu, T. M. Rana, RNA, 9, 1034 (2003) J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, H.P. Vornlocher, Nature 432, 173 (2004)
However, with regard to peptide-modified ribonucleotides, there are cases where the yield of the peptide itself, the efficiency of modification to ribonucleotides, etc. are inadequate. There is a case. In addition, although the 2-position hydroxyl group-substituted ribonucleotide can be expected to have an excellent effect in terms of enzyme resistance, it has been reported that the RNAi effect depends on the position and number of mononucleotides to be substituted. Some cases are not suitable as siRNA.
A. Fire, S. Xu, MK. Montgomery, SA. Kostas, SE. Driver, CC. Mello, Nature, 391, 806 (1998). F. Simeoni, MC Morris, F. Heitz, G. Divita, Nucleic Acids Res., 31, 2717 (2003) YLChiu, TM Rana, RNA, 9, 1034 (2003) J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, RK Pandey, T. Racie, KG Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, HP Vornlocher, Nature 432, 173 (2004)

本発明は上記問題点に対して、簡便且つ効率的なリボヌクレオチドへの化学修飾法により得られる化学修飾リボヌクレオチドを用い、遺伝子抑制効果の高い該siRNAを提供することを目的する。       An object of the present invention is to provide a siRNA having a high gene suppression effect using a chemically modified ribonucleotide obtained by a simple and efficient method for chemically modifying ribonucleotides.

本発明者は上記課題に対して鋭意研究を重ねた結果、ピレンや3,7-ジメチル-オクタ-2,6-ジエンといった低分子不飽和炭化水素化合物とリボヌクレオチドとの共有結合体を、固相上におけるホスホロアミダイト法もしくはコハク酸イミドリンカーを介する活性エステル化法等を用いて簡便且つ効率的に与え、得られた化学修飾リボヌクレオチド及びその相補鎖から成る化学修飾siRNAが高い遺伝子抑制効果を示すことを見出し、本発明を完成するに至った。       As a result of intensive research on the above problems, the present inventor has found a covalent conjugate of a low molecular unsaturated hydrocarbon compound such as pyrene or 3,7-dimethyl-octa-2,6-diene and ribonucleotide. Giving a simple and efficient method using phosphoramidite method on phase or active esterification method via succinimide linker, etc., and the resulting chemically modified siRNA consisting of chemically modified ribonucleotide and its complementary strand has high gene suppression effect As a result, the present invention has been completed.

即ち、本発明により、下記の一般式(1)に示す低分子不飽和炭化水素化合物がリボヌクレオチド配列中の任意のヌクレオチドの少なくとも1つに、直接あるいはリンカーを介して結合した組成体とする当該siRNAが提供される。     That is, according to the present invention, a composition in which a low molecular weight unsaturated hydrocarbon compound represented by the following general formula (1) is bound to at least one arbitrary nucleotide in a ribonucleotide sequence, directly or via a linker. siRNA is provided.


式中、Xは水素原子,ハロゲン基,スルホニル基,Yは水素原子, ハロゲン基,ニトロ基,スルホニル基,Zは水素原子, ハロゲン基,水酸基,スルホニル基であり、本発明の一態様に置いては、X,Y,Zが水素原子である誘導体が好ましい。 In the formula, X is a hydrogen atom, a halogen group, a sulfonyl group, Y is a hydrogen atom, a halogen group, a nitro group, a sulfonyl group, Z is a hydrogen atom, a halogen group, a hydroxyl group, or a sulfonyl group. In particular, derivatives in which X, Y and Z are hydrogen atoms are preferred.

又、下記の一般式(2)に示す低分子不飽和炭化水素化合物がリボヌクレオチドの任意のヌクレオチドの少なくとも1つに、直接あるいはリンカーを介して結合した組成体とする当該siRNAが提供される。

The siRNA is also provided as a composition in which a low molecular weight unsaturated hydrocarbon compound represented by the following general formula (2) is bound to at least one of ribonucleotides directly or via a linker.

式中、Aは水素原子、飽和アルキル鎖、不飽和アルキル鎖であり、Bは水素原子、飽和アルキル鎖、不飽和アルキル鎖であり、アルキル基の鎖長は0〜20であり、好ましくは5〜15であり、更に好ましくは5〜10である。本発明の一態様においては、Xがメチル基、Yが2-メチル-ペント-2-エンである誘導体が好ましい。     In the formula, A is a hydrogen atom, a saturated alkyl chain, or an unsaturated alkyl chain, B is a hydrogen atom, a saturated alkyl chain, or an unsaturated alkyl chain, and the alkyl group has a chain length of 0 to 20, preferably 5 -15, more preferably 5-10. In one embodiment of the present invention, derivatives wherein X is a methyl group and Y is 2-methyl-pent-2-ene are preferred.

本発明の一態様において、該リボヌクレオチドが、低分子不飽和炭化水素化合物とリボヌクレオチドとをリンカーを介して結合した組成体として提供される場合、そのリンカーには下記一般式(3)〜(12)に示すものが挙げられる。


式中Xは、O, S, SS, CO, CS, NH, CH2, COO, CONH, NHCO, NHCONH, OCO2,OCONH, NHCSO, NHCSNH, OCSNH,-O-PO2-O-,の何れでも良く、式(3)のnは1〜20の整数を表し、好ましくは1〜10であり、更に好ましくは1〜5である。式(4)のnは0〜20の整数を表し、好ましくは0〜10であり、更に好ましくは0〜5である。
In one embodiment of the present invention, when the ribonucleotide is provided as a composition obtained by binding a low molecular weight unsaturated hydrocarbon compound and ribonucleotide via a linker, the linker includes the following general formulas (3) to (3) to ( 12).


In the formula, X is any one of O, S, SS, CO, CS, NH, CH 2 , COO, CONH, NHCO, NHCONH, OCO 2 , OCONH, NHCSO, NHCSNH, OCSNH, -O-PO 2 -O-. However, n in the formula (3) represents an integer of 1 to 20, preferably 1 to 10, and more preferably 1 to 5. N in the formula (4) represents an integer of 0 to 20, preferably 0 to 10, more preferably 0 to 5.

又、本発明における化学修飾法によって提供される化学修飾リボヌクレオチドから成る該siRNAは、その抑制効果の向上によって使用量の軽減等を可能とし、精度や効率面に優れた遺伝子解析法が提供され得る。       In addition, the siRNA comprising the chemically modified ribonucleotide provided by the chemical modification method of the present invention can be used in a reduced amount due to its suppression effect, and a gene analysis method excellent in accuracy and efficiency is provided. obtain.

本発明によって、RNAi等における遺伝子発現抑制効果の高い化学修飾リボヌクレオチドを、安価に入手可能な不飽和炭化水素系の低分子化合物誘導体とリボヌクレオチドとのホスホロアミダイト法もしくはコハク酸イミドリンカーを介する活性エステル化法等によって固相上にて簡便且つ効率的に合成し、低コストで性能に優れた該siRNAの提供が可能となった。又、該siRNAの抑制効果の向上は、その使用量が軽減されることにより、細胞への負荷が低下し解析精度が向上する或いは解析における一回当りのコストが軽減されより多くの検体の解析が可能となる等の効率的遺伝子解析手法の提供を実現する。これは、国内の長寿命化・少子化傾向による社会構造の変化が齎す現行の医療制度への深刻な影響に対する、ゲノムプロジェクト或いはポストゲノム研究に基づく遺伝子レベルでの病因解明が促す疾患への未然予防・早期治療による健康リスクの低減といった取組みにおいて、有用な材料・手法の一つとなり得る。     According to the present invention, a chemically modified ribonucleotide having a high gene expression suppression effect in RNAi and the like is obtained through a phosphoramidite method of an unsaturated hydrocarbon-based low molecular weight compound derivative and a ribonucleotide, or a succinimide linker. It was possible to synthesize the siRNA excellent in performance at low cost by simply and efficiently synthesizing on the solid phase by an active esterification method or the like. In addition, the suppression effect of the siRNA can be reduced by reducing the amount used, thereby reducing the load on the cells and improving the analysis accuracy, or reducing the cost per analysis and analyzing more samples. To provide an efficient genetic analysis method. This is because of the serious impact on the current health care system caused by changes in the social structure due to the trend of long life and declining birthrate in Japan. It can be one of useful materials and methods in efforts to reduce health risks through prevention and early treatment.

化学修飾リボヌクレオチドのHPLC分析結果を示す図である(実施例1)。It is a figure which shows the HPLC analysis result of chemically modified ribonucleotide (Example 1). 未修飾及び化学修飾リボヌクレオチドから成るsiRNAのPAGE分析結果を示す図である(実施例1)。It is a figure which shows the PAGE analysis result of siRNA which consists of an unmodified and chemically modified ribonucleotide (Example 1). 化学修飾リボヌクレオチドを用いたRNA干渉法における、NIH3T3細胞でのLamin遺伝子由来のmRNA発現量をリアルタイムPCR法によって比較したグラフである(実施例1)。It is the graph which compared the mRNA expression level derived from the Lamin gene in NIH3T3 cell by the real-time PCR method in the RNA interference method using chemically modified ribonucleotide (Example 1). 化学修飾リボヌクレオチドを用いたRNA干渉法における、HeLa細胞でのLamin遺伝子由来のタンパク(Lamin A/C)発現量をウェスタンブロッティング法によって比較したグラフである(実施例1)。It is the graph which compared the expression level of the protein (Lamin A / C) derived from the Lamin gene in the HeLa cell by the western blotting method in the RNA interference method using chemically modified ribonucleotide (Example 1).

本発明により、提供される化学修飾リボヌクレオチドは、RNA干渉法に基づく遺伝子発現抑制において未修飾のそれより優れた抑制効果を示すものであり、ピレン誘導体あるいは3,7-ジメチル-オクタ-2,6-ジエン誘導体等を有する不飽和炭化水素化合物の少なくとも1つが、リボヌクレオチドの任意の位置に直接あるいはリンカーを介して結合した組成体であることを特徴とする21〜27塩基の二本鎖リボヌクレオチドである。     The chemically modified ribonucleotide provided by the present invention exhibits a suppression effect superior to that of unmodified in suppression of gene expression based on RNA interference method, and is a pyrene derivative or 3,7-dimethyl-octa-2, A 21-27 base double-stranded ribostructure characterized in that at least one of the unsaturated hydrocarbon compounds having a 6-diene derivative or the like is a composition bonded to an arbitrary position of a ribonucleotide directly or via a linker It is a nucleotide.

本発明者は、前記化学修飾リボヌクレオチドを用いることによって、遺伝子発現抑制効果が惹起され遺伝情報の解析や核酸薬剤として有用となり得るリボヌクレオチドを見出した。即ち、係る新規なリボヌクレオチド存在下においては、RNAi等における遺伝子発現抑制法において効果的に遺伝子の発現を抑制する。よって、従来の未修飾siRNAに比較してその使用量が軽減でき、解析精度や解析コスト面に効果的な遺伝子解析法となり得る。     The present inventor has found a ribonucleotide that can be useful as an analysis of genetic information or as a nucleic acid drug by causing the gene expression suppression effect by using the chemically modified ribonucleotide. That is, in the presence of the novel ribonucleotide, gene expression is effectively suppressed by the gene expression suppression method for RNAi and the like. Therefore, the amount used can be reduced as compared with conventional unmodified siRNA, and it can be an effective gene analysis method in terms of analysis accuracy and analysis cost.

本発明により、リボヌクレオチドに修飾される誘導体は、下記一般式(1)又は(2)で表される化合物を挙げることができる。

Examples of the derivative modified with ribonucleotide according to the present invention include compounds represented by the following general formula (1) or (2).


式中、Xは水素原子,ハロゲン基,スルホニル基,Yは水素原子, ハロゲン基,ニトロ基,スルホニル基,Zは水素原子, ハロゲン基,水酸基,スルホニル基であり、Aは水素原子、飽和アルキル鎖、不飽和アルキル鎖であり、Bは水素原子、飽和アルキル鎖、不飽和アルキル鎖等を有する不飽和炭化水素化合物誘導体が各々用いられる。     In the formula, X is a hydrogen atom, halogen group, sulfonyl group, Y is a hydrogen atom, halogen group, nitro group, sulfonyl group, Z is a hydrogen atom, halogen group, hydroxyl group, sulfonyl group, A is a hydrogen atom, saturated alkyl An unsaturated hydrocarbon compound derivative having a hydrogen atom, a saturated alkyl chain, an unsaturated alkyl chain, or the like is used for B.

本発明によれば、標的遺伝子由来のmRNAを標的とする該siRNA存在下、RNA干渉法において標的遺伝子の発現を効果的に抑制することが可能となる。発現の抑制及びその解析方法は、例えばElbashir, S.M.,et.al,Nature,411:494-498,2001 等の論文に記載の手法等、当業界において既に公知の技術と組み合わせることにより、当該の解析結果を提供できる。     According to the present invention, it is possible to effectively suppress the expression of a target gene in the RNA interference method in the presence of the siRNA targeting the mRNA derived from the target gene. Expression suppression and its analysis method can be performed by combining with techniques already known in the art, such as the method described in the paper such as Elbashir, SM, et.al, Nature, 411: 494-498, 2001. Analysis results can be provided.

以下に、実施例に基づいて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to the following examples.

1. ピレン修飾リボヌクレオチドの合成
(実施例1)
本発明のリボヌクレオチドに修飾する一般式(1)に示す不飽和炭化水素化合物として、ピレンを使用した場合における、該siRNAの合成法を示す。
1. Synthesis of pyrene-modified ribonucleotide (Example 1)
A method for synthesizing the siRNA when pyrene is used as the unsaturated hydrocarbon compound represented by the general formula (1) to be modified to the ribonucleotide of the present invention will be described.

具体的な合成は、先ず、M. H. Caruthers, et. Al., Tetrahedron Lett., 22, 1859 (1981) 又は、S. L. Beaucage, et. Al., Current Protocols in Nucleic Acid Chemistry., vol. 1, pp. 3.3.1-3.3.20, John Wiley & Sons(2000)にて周知のホスホロアミダイト法によって、核酸自動合成装置(ジーンワールド社製 H-8)により所望のリボヌクレオチド塩基配列を合成した。配列は、Lamin遺伝子(核膜蛋白遺伝子)を標的とした配列を選定し、RNAiに要されるsense鎖、antisense鎖を各々合成した。次いでsense鎖の5末端にピレン誘導体を修飾したリボヌクレオチドを作製する場合、上記合成にて得られた未修飾リボヌクレオチドの5末端DMT(Dimethoxytrityl)基を脱保護し、予め合成機に用意しておいた1-(10b,10c-Dihydro-pyren-1-ylmethyl)-pyrrolidin phosphoramidite (Glen Research 10-1987-90)を用い、同合成法によって修飾を施した。又、本リボヌクレオチドは、コハク酸イミドリンカーを用いる活性エステル化法により、炭素鎖10のカルボン酸スクシンイミジルリンカー(Glen Research社製)とアミノピレンとのアミド結合によっても同等の修飾リボヌクレオチド体を得られる。

Lamin-siRNA sense (* Pyrene modified)
(5⇒3) *AAC UGG ACUU CCA GAA GAA CAT T
Lamin-siRNA antisense
(5⇒3) UGU UCU UCU GGA AGU CCA GTT
The specific synthesis is first described in MH Caruthers, et. Al., Tetrahedron Lett., 22, 1859 (1981) or SL Beaucage, et. Al., Current Protocols in Nucleic Acid Chemistry., Vol. 1, pp. 3.3.1-3.3.20, John Wiley & Sons (2000), a desired ribonucleotide base sequence was synthesized by an automatic nucleic acid synthesizer (H-8 manufactured by Geneworld) by a known phosphoramidite method. As a sequence, a sequence targeting the Lamin gene (nuclear membrane protein gene) was selected, and a sense strand and an antisense strand required for RNAi were respectively synthesized. Next, when preparing a ribonucleotide modified with a pyrene derivative at the 5 terminus of the sense strand, the 5-terminal DMT (Dimethoxytrityl) group of the unmodified ribonucleotide obtained in the above synthesis is deprotected and prepared in advance in a synthesizer. 1- (10b, 10c-Dihydro-pyren-1-ylmethyl) -pyrrolidin phosphoramidite (Glen Research 10-1987-90) was used and modified by the same synthesis method. This ribonucleotide can also be modified by an active esterification method using a succinimide linker, by an amide bond between a carbon chain 10 carboxylic acid succinimidyl linker (Glen Research) and aminopyrene. Can be obtained.

Lamin-siRNA sense (* Pyrene modified)
(5⇒3) * AAC UGG ACUU CCA GAA GAA CAT T
Lamin-siRNA antisense
(5⇒3) UGU UCU UCU GGA AGU CCA GTT

得られた未精製ピレン修飾リボヌクレオチドの純度をHPLCにて測定した。分析用のカラムには、Lichrosorb RP-18 (4.6×250mm, GL science)を使用した。溶離液は、溶離液A/0.1M TEAA (10%MeCN,pH 7.0)及び溶離液B/0.1M TEAA (50%MeCN,pH 7.0)を用い、分析時のA/B混合割合には、溶離液Bの比率が40min.かけて0%から100%となるリニアーグラジェントを設定した。分析後同HPLC条件にてHPLC精製を行い、得られたサンプルを一部分析した。図1Aは、未精製のピレン修飾リボヌクレオチドの分析結果である。図1Bは、精製後のピレン修飾リボヌクレオチドの分析結果である。     The purity of the obtained unpurified pyrene-modified ribonucleotide was measured by HPLC. Lichrosorb RP-18 (4.6 × 250 mm, GL science) was used as the analytical column. Use eluent A / 0.1M TEAA (10% MeCN, pH 7.0) and eluent B / 0.1M TEAA (50% MeCN, pH 7.0) as the eluent. A linear gradient was set such that the ratio of liquid B was 0% to 100% over 40 min. After the analysis, HPLC purification was performed under the same HPLC conditions, and a part of the obtained sample was analyzed. FIG. 1A is an analysis result of unpurified pyrene-modified ribonucleotide. FIG. 1B is an analysis result of pyrene-modified ribonucleotide after purification.

2. ピレン修飾siRNAの合成
各々調製したピレン修飾リボヌクレオチド(sense鎖)及びその相補鎖(antisense鎖)を5×アニーリング緩衝液(2.5g K-acetate, 1.8g HEPES, 0.11g Mg-acetate 4水和物, 2.0mL 2M KOH, RNase Free Water 50mLでメスアップ)にて混合・溶解し20μM濃度の溶液とした。90℃で1分間処理後に1時間かけて37℃まで冷却し、4℃で30分間処理して目的の該siRNAを得た。図2Aは未修飾リボヌクレオチド、図2Bはピレン修飾リボヌクレオチドから成るsiRNAのポリアクリルアミドゲル電気泳動の分析結果である。
2. Synthesis of pyrene-modified siRNA Each pyrene-modified ribonucleotide (sense strand) and its complementary strand (antisense strand) prepared in 5 x annealing buffer (2.5 g K-acetate, 1.8 g HEPES, 0.11 g Mg-acetate 4 water) The solution was mixed and dissolved in Japanese, 2.0 mL 2 M KOH, RNase Free Water 50 mL to make a 20 μM concentration solution. After treatment at 90 ° C. for 1 minute, the mixture was cooled to 37 ° C. over 1 hour and treated at 4 ° C. for 30 minutes to obtain the target siRNA. FIG. 2A shows the results of polyacrylamide gel electrophoresis analysis of siRNA composed of unmodified ribonucleotides and FIG. 2B.

3. ピレン修飾siRNAを用いる遺伝子抑制効果の検証
トリプシン処理したNIH3T3細胞あるいはHeLa細胞をDMEM(インビトロジェン社製)培地(10%牛胎児血清(FBS),1%ペニシリン-ストレプトマイシン)に分散させ、12well plateに1well当り7×104個の細胞を播種し、37℃で24時間培養した(培地量は2mL/well)。次いで、siRNA(20μM)を10〜200倍に希釈した溶液を培地添加後の各最終濃度が0.1, 0.2, 0.5, 2, 5, 10, 20nMになるようにopti-MEM(インビトロジェン社製) 100μlに混合し、導入剤であるLipofectamin RNAiMAX(インビトロジェン社製) 1.6μlとopti-MEM 100μlとの混合液に添加し、室温で15〜20分間程インキュベートした溶液を各wellの培地に添加し37℃で72時間インキュベートした。又、比較対象となるネガティブコントロールsiRNA及び未修飾Lamin-siRNA(下記配列参照)も先述の同合成法により調整し、同手法により各wellの培地に添加した。

Lamin-siRNA sense (non-modified)
(5⇒3) CUG GAC UUC CAG AAG AAC ATT
Lamin-siRNA antisense
(5⇒3) UGU UCU UCU GGA AGU CCA GTT

Control-siRNA sense
(5⇒3) UUC UCC GAA CGU GUC ACG UTT
Control-siRNA antisense
(5⇒3) ACG UGA CAC GUU CGG AGA ATT
3. Verification of gene suppression effect using pyrene-modified siRNA Trypsin-treated NIH3T3 cells or HeLa cells are dispersed in DMEM (Invitrogen) medium (10% fetal bovine serum (FBS), 1% penicillin-streptomycin), 12-well plate The cells were seeded with 7 × 10 4 cells per well and cultured at 37 ° C. for 24 hours (medium amount was 2 mL / well). Next, opti-MEM (manufactured by Invitrogen) 100 μl so that each final concentration after adding a medium diluted siRNA (20 μM) 10 to 200 times becomes 0.1, 0.2, 0.5, 2, 5, 10, 20 nM Add to the mixture solution of Lipofectamin RNAiMAX (Invitrogen) 1.6 μl and opti-MEM 100 μl, which is the introduction agent, and incubate at room temperature for 15 to 20 minutes to the medium of each well at 37 ° C. Incubated for 72 hours. In addition, a negative control siRNA and an unmodified Lamin-siRNA (see the sequence below) to be compared were also prepared by the same synthesis method described above and added to the medium of each well by the same method.

Lamin-siRNA sense (non-modified)
(5⇒3) CUG GAC UUC CAG AAG AAC ATT
Lamin-siRNA antisense
(5⇒3) UGU UCU UCU GGA AGU CCA GTT

Control-siRNA sense
(5⇒3) UUC UCC GAA CGU GUC ACG UTT
Control-siRNA antisense
(5⇒3) ACG UGA CAC GUU CGG AGA ATT

インキュベート後、NIH3T3細胞からRNeasy Mini Kit (Qiagen)を用いてRNAを抽出し、Takara RNA PCR Kit (AMV) Ver 3.0 (Takara)を用いて標的mRNA由来のcDNAを調製した。次いで、Real-time PCR Mx 3005P(Stratagene)により、標的とするLamin遺伝子のmRNA発現抑制率を確認した。結果、本発明により提供される該siRNAは、通常のプロトコールの約100倍程度低い濃度域においても、Control-siRNA比で約65%、未修飾Lamin-siRNA比で約15%程高い抑制効果を示した。図3は、該siRNAを用いたRNA干渉法における、NIH3T3細胞でのLamin遺伝子由来のmRNA発現量をリアルタイムPCR法によって比較したグラフである。     After incubation, RNA was extracted from NIH3T3 cells using RNeasy Mini Kit (Qiagen), and target mRNA-derived cDNA was prepared using Takara RNA PCR Kit (AMV) Ver 3.0 (Takara). Subsequently, the mRNA expression suppression rate of the target Lamin gene was confirmed by Real-time PCR Mx 3005P (Stratagene). As a result, the siRNA provided by the present invention has a suppressive effect as high as about 65% in the control-siRNA ratio and about 15% in the unmodified Lamin-siRNA ratio even in a concentration range that is about 100 times lower than the normal protocol. Indicated. FIG. 3 is a graph comparing the mRNA expression levels derived from the Lamin gene in NIH3T3 cells by the real-time PCR method in the RNA interference method using the siRNA.

インキュベート後、HeLa細胞からRIPAバッファ(PIERCE)を用いてタンパク質を抽出し、1次抗体にLamin A/C抗体(BD biosciences), 2次抗体にHRP標識抗体(CALBIOCHEM)を用いてWestern-blotting法によりLamin A/Cタンパクの発現抑制効果を確認した。結果、本発明により提供される該siRNAは、通常のプロトコールの約100倍程度低い濃度域においても、Control-siRNA若しくは未修飾Lamin-siRNAのデータと比較して良好な発現抑制効果を示した。図4は、該siRNAを用いたRNA干渉法における、HeLa細胞でのLamin遺伝子由来のタンパク(Lamin A/C)発現量をウェスタンブロッティング法によって比較したグラフである。     After incubation, proteins are extracted from HeLa cells using RIPA buffer (PIERCE), Western-blotting method using Lamin A / C antibody (BD biosciences) as the primary antibody and HRP-labeled antibody (CALBIOCHEM) as the secondary antibody. Was used to confirm the Lamin A / C protein expression inhibitory effect. As a result, the siRNA provided by the present invention showed a better expression-suppressing effect than the data of Control-siRNA or unmodified Lamin-siRNA even in a concentration range about 100 times lower than that of the normal protocol. FIG. 4 is a graph comparing the expression level of Lamin gene-derived protein (Lamin A / C) in HeLa cells by the Western blotting method in the RNA interference method using the siRNA.

一連の結果は、既知のアミダイト法等を用いることにより、不飽和炭化水素化合物を簡便且つ効率的にリボヌクレオチドへと化学修飾でき得ることを示した。又、本発明により提供される当該siRNAは、RNA干渉法を用いる遺伝子発現抑制効果において、未修飾のそれと比較して同等以上の発現抑制効果を示し、その有用性が証明された。     A series of results showed that by using a known amidite method or the like, an unsaturated hydrocarbon compound can be easily and efficiently chemically modified into ribonucleotides. Moreover, the siRNA provided by the present invention showed an expression suppression effect equivalent to or higher than that of the unmodified one in the gene expression suppression effect using the RNA interference method, and its usefulness was proved.

本発明のより提供される該siRNAは、遺伝子発現抑制向上の為の化学修飾法において、従来の合成法に見られるような煩雑な手法や高価な試剤等を用いることなくその提供が可能であり、効果的な遺伝子発現抑制ツールとして用いることができる。従って、これに係る様々な検査薬、診断薬、核酸医薬等の医療産業への利用が期待される。

The siRNA provided by the present invention can be provided in a chemical modification method for improving gene expression suppression without using a complicated method or an expensive reagent as found in conventional synthesis methods. Can be used as an effective gene expression suppression tool. Therefore, it is expected to be used in the medical industry such as various test drugs, diagnostic drugs, and nucleic acid drugs.

Claims (5)

RNA干渉法等の遺伝子発現抑制手法において、標的遺伝子の発現を抑制する塩基数21〜27の二本鎖RNA(siRNA)であって、その配列中の任意のヌクレオチドの少なくとも1つに、直接あるいはリンカーを介して不飽和炭化水素化合物が修飾された化学修飾リボヌクレオチドからなる該siRNA。     In a gene expression suppression method such as RNA interference method, it is a double-stranded RNA (siRNA) having 21 to 27 bases that suppresses the expression of a target gene, and is directly or directly on at least one of the nucleotides in the sequence The siRNA comprising a chemically modified ribonucleotide obtained by modifying an unsaturated hydrocarbon compound via a linker. 不飽和炭化水素化合物として下記の一般式(1)に示すピレン誘導体を修飾したリボヌクレオチドから成る請求項1の該siRNA。



式中、Xは水素原子,ハロゲン基,スルホニル基,Yは水素原子, ハロゲン基,ニトロ基,スルホニル基,Zは水素原子, ハロゲン基,水酸基,スルホニル基であるピレン誘導体。
The siRNA according to claim 1, comprising a ribonucleotide obtained by modifying a pyrene derivative represented by the following general formula (1) as an unsaturated hydrocarbon compound.



A pyrene derivative in which X is a hydrogen atom, halogen group, sulfonyl group, Y is a hydrogen atom, halogen group, nitro group, sulfonyl group, and Z is a hydrogen atom, halogen group, hydroxyl group, sulfonyl group.
不飽和炭化水素化合物として下記の一般式(2)に示す不飽和アルキル誘導体を修飾したリボヌクレオチドから成る請求項1の該siRNA。



式中、Aは水素原子、飽和アルキル鎖、不飽和アルキル鎖であり、Bは水素原子、飽和アルキル鎖、不飽和アルキル鎖等である不飽和アルキル誘導体。
The siRNA according to claim 1, comprising a ribonucleotide obtained by modifying an unsaturated alkyl derivative represented by the following general formula (2) as an unsaturated hydrocarbon compound.



An unsaturated alkyl derivative in which A is a hydrogen atom, a saturated alkyl chain, or an unsaturated alkyl chain, and B is a hydrogen atom, a saturated alkyl chain, an unsaturated alkyl chain, or the like.
請求項1〜3の該siRNAを構成する化学修飾リボヌクレオチドであって、ホスホロアミダイト法もしくはコハク酸イミドリンカーを用いる活性エステル化法を用いる当該化学修飾リボヌクレオチドの合成法。     A method for synthesizing the chemically modified ribonucleotide using the phosphoramidite method or the active esterification method using a succinimide linker, which is the chemically modified ribonucleotide constituting the siRNA according to claims 1 to 3. 請求項1〜3の何れかの該siRNAを用いるRNA干渉法等に代表される遺伝子発現抑制法。

The gene expression suppression method represented by the RNA interference method etc. which use this siRNA in any one of Claims 1-3.

JP2009267063A 2009-11-25 2009-11-25 Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same Pending JP2011109936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267063A JP2011109936A (en) 2009-11-25 2009-11-25 Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267063A JP2011109936A (en) 2009-11-25 2009-11-25 Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same

Publications (1)

Publication Number Publication Date
JP2011109936A true JP2011109936A (en) 2011-06-09

Family

ID=44232767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267063A Pending JP2011109936A (en) 2009-11-25 2009-11-25 Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same

Country Status (1)

Country Link
JP (1) JP2011109936A (en)

Similar Documents

Publication Publication Date Title
JP7422068B2 (en) Oligonucleotide composition and method thereof
KR102362030B1 (en) Highly efficient synthesis of long rna using reverse direction approach
US9751909B2 (en) Synthesis and uses of nucleic acid compounds with conformationally restricted monomers
US7772387B2 (en) Oligonucleotides comprising a modified or non-natural nucleobase
US8470988B2 (en) Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety
BR112021008449A2 (en) METHODS TO DELIVER A NUCLEIC ACID TO A CELL, TO DELIVER A NUCLEIC ACID TO THE CYTOSOL OF A CELL, COMPOSITION, TO TREAT A DISEASE, TO DELIVER A SIRNA TO THE LIVER OF AN ANIMAL, AND TO TREAT A VIRAL HEPATITIS B INFECTION IN AN ANIMAL, KITS, MEMBRANE DESTABILIZING POLYMER, FORMULA (X) NUCLEIC ACID CONJUGATES, USE OF A CONJUGATE AND PHARMACEUTICAL COMPOSITION
JP2008501694A5 (en)
AU2005323437A1 (en) Oligonucleotides comprising a C5-modified pyrimidine
Beaucage Solid-phase synthesis of siRNA oligonucleotides
TWI772632B (en) Production method of hairpin type single-stranded RNA molecule, single-stranded oligoRNA molecule and kit comprising the same
KR20160121510A (en) Artificial match-type mirna for controlling gene expression and use therefor
AU2017203685B2 (en) 3&#39;end caps for RNAi agents for use in RNA interference
WO2017010575A1 (en) β2GPI GENE EXPRESSION INHIBITING NUCLEIC ACID COMPLEX
JPWO2007094218A1 (en) Modified oligonucleotide
Haziri et al. Synthesis and pairing properties of oligodeoxynucleotides containing Bicyclo-RNA and Bicyclo-ANA modifications
Ueno et al. Synthesis and silencing properties of siRNAs possessing lipophilic groups at their 3′-termini
JP2011109936A (en) Chemically modified ribonucleotide synthesis and gene expression inhibiting effect for the same
JP6501753B2 (en) Ribonucleoside analog having an azide group, method for producing the same, and chimeric oligoribonucleotide analog containing triazole-linked oligoribonucleotide formed from the analog
JP5464401B2 (en) Oligonucleotide derivative, oligonucleotide construct using oligonucleotide derivative, compound for synthesizing oligonucleotide derivative, and method for producing oligonucleotide derivative
WO2022175749A1 (en) Compositions for conjugating oligonucleotides and carbohydrates
JP6491233B2 (en) Nucleic acid complex for stabilizing hybridization, method for stabilizing nucleic acid hybridization, antisense nucleic acid pharmaceutical and microRNA inhibitor
JP5424236B2 (en) Oligonucleotide derivative, oligonucleotide construct using oligonucleotide derivative, compound for synthesizing oligonucleotide derivative, and method for producing oligonucleotide derivative
JP6429264B2 (en) Boranophosphate compounds and nucleic acid oligomers
Kosmidis Development of site-specific RNA labeling strategies to probe alternative RNA splicing
TW201120055A (en) Modified double strand polynucleotides