JP2011107100A - Measuring instrument and analysis chip - Google Patents
Measuring instrument and analysis chip Download PDFInfo
- Publication number
- JP2011107100A JP2011107100A JP2009265401A JP2009265401A JP2011107100A JP 2011107100 A JP2011107100 A JP 2011107100A JP 2009265401 A JP2009265401 A JP 2009265401A JP 2009265401 A JP2009265401 A JP 2009265401A JP 2011107100 A JP2011107100 A JP 2011107100A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- liquid
- waste liquid
- time
- absorbent member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
本発明は、被測定物質の測定に用いられる廃液機構を有する測定装置に関する。 The present invention relates to a measuring apparatus having a waste liquid mechanism used for measuring a substance to be measured.
近年、医療や健康、食品、創薬などの分野で、DNAや酵素、抗原、抗体、タンパク質、ウィルスおよび細胞などの生体物質、ならびに化学物質を検知、検出あるいは定量する重要性が増してきており、それらを簡便に測定できる様々なバイオチップおよびマイクロ化学チップ(以下、これらを総称して分析チップと称する。)が提案されている。分析チップは、実験室で行なっている一連の実験・分析操作を、数cm角で厚さ数mm〜1cm程度のチップ内で簡易に行なえるように作られており、検体および試薬が微量で済むため、コストが安く、反応速度が速く、ハイスループットな検査ができ、検体を採取した現場で直ちに検査結果を得ることができるなど多くの利点を有している。このような分析チップは、たとえば血液検査等の生化学検査用として好適に用いられている。 In recent years, the importance of detecting, detecting or quantifying biological substances such as DNA, enzymes, antigens, antibodies, proteins, viruses and cells, and chemical substances has increased in the fields of medicine, health, food, and drug discovery. Various biochips and microchemical chips (hereinafter collectively referred to as analysis chips) that can easily measure them have been proposed. The analysis chip is designed so that a series of experiments and analysis operations performed in the laboratory can be easily performed within a chip of several centimeters square and several millimeters to 1 cm thick. Therefore, it has many advantages such as low cost, high reaction rate, high throughput testing, and the ability to obtain test results immediately at the site where the sample is collected. Such an analysis chip is suitably used for biochemical tests such as blood tests.
現在、さまざまな手法で、生体由来の各種物質の簡易測定が行われている。インフルエンザ検査、妊娠検査、血糖値の測定などといった、主に医療分野において、簡易かつ安価であり、一般人の需要も高く、大きな市場を獲得している。今後もますます大きな市場を形成することが期待される。 Currently, various methods are used for simple measurement of various substances derived from living bodies. In the medical field such as influenza test, pregnancy test, blood glucose level measurement, etc., it is simple and inexpensive, the demand for general public is high, and it has gained a big market. It is expected to form an increasingly large market in the future.
生体サンプル(サンプルは被測定物質の未知濃度の溶液)中に極微量しか存在しない生理活性物質を選択的に捕捉して高感度な分析を行うには、酵素センサ、酵素試験紙等、酵素触媒の高い分子認識メカニズムを利用した酵素反応、ラジオイムノアッセイ(RIA)、酵素標識免疫測定法(Enzyme-Linked Immuno Sorbent Assay;ELISA)、イムノセンサ、発光酵素免疫測定法(Chemiluminesent Enzyme Immunoassay;CLEIA)、表面プラズモン共鳴(Surface Plasmon Resonance;SPR)等、抗原抗体反応の高い分子認識メカニズムを利用したイムノアッセイや、DNAマイクロアレイ(DNAチップ)、表面プラズモン励起増強蛍光分光 (Surface Plasmon-field enhanced Fluorescence Spectroscopy;SPFS)等、DNAの高い分子認識メカニズムを利用したハイブリダイゼーション等が用いられている。 In order to selectively capture bioactive substances that are present in trace amounts in biological samples (samples are solutions of unknown concentration) and perform highly sensitive analysis, enzyme sensors, enzyme test papers, etc., enzyme catalysts Reaction using high molecular recognition mechanism, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), immunosensor, luminescent enzyme immunoassay (CLEIA), surface Immunoassay using molecular recognition mechanism with high antigen-antibody reaction such as plasmon resonance (SPR), DNA microarray (DNA chip), surface plasmon-field enhanced fluorescence spectroscopy (SPFS), etc. , Hybridization using the high molecular recognition mechanism of DNA It is used.
分子認識自体は、原理的には上述の分子認識メカニズムが利用できるが、それを物理量、化学量として取り出すには、もう一工夫が必要である。タンパク質、神経伝達物質、ホルモン等の被測定物質の多くは、その化学反応において低分子量の単純な分子を生成することはまれなので、血糖測定器の被測定物質であるグルコースのように酸化還元性の高いH2O2の生成やO2の消費に結びつけることが難しく、その結果、複雑な分析工程が必要となることが多い。例えば、ストレスホルモンとして知られているコルチゾールは、分子量が362.47、しかないハプテン、つまり単価抗原である。よって、複数抗体を分子認識に用いたサンドイッチ法を適用することができず、競合法を適用する必要がある。その結果、サンプル注入→被測定物質―標識物質複合体との競合反応→未反応物質の除去→酵素基質の注入→反応強度測定という分析工程が必要となる。 In principle, the above-described molecular recognition mechanism can be used for molecular recognition itself. However, in order to extract it as a physical quantity or a chemical quantity, another contrivance is required. Many analytes such as proteins, neurotransmitters, and hormones rarely produce low-molecular-weight simple molecules in their chemical reactions, so they are redox like glucose, which is the analyte of blood glucose meters. It is difficult to connect to the production of high H 2 O 2 and consumption of O 2 , and as a result, a complicated analysis process is often required. For example, cortisol, known as a stress hormone, is a hapten with a molecular weight of only 362.47, that is, a unitary antigen. Therefore, the sandwich method using a plurality of antibodies for molecular recognition cannot be applied, and the competition method must be applied. As a result, an analysis step of sample injection → competitive reaction with the substance to be measured-labeled substance complex → removal of unreacted substance → injection of enzyme substrate → reaction intensity measurement is required.
特に、「未反応物質の除去」が適切に行われないと、検出信号のベースラインが高くなってしまい、反応後の検出信号との差異が小さくなり、せっかく高感度なイムノアッセイやハイブリダイゼーション等の分子認識メカニズムを適用しているにもかかわらず、必要とされる分析精度が得られない。 In particular, if the “removal of unreacted substances” is not performed properly, the baseline of the detection signal becomes high, the difference from the detection signal after the reaction becomes small, and highly sensitive immunoassay, hybridization, etc. Despite applying the molecular recognition mechanism, the required analytical accuracy cannot be obtained.
直接的に電気化学測定を行うことのできないタンパク質等の被測定物質を分析チップなどを用いた簡便な方法で測定しようとした場合、電気化学的分析などのために必要な前処理反応に供される反応液(被測定物質および試薬を含む液)の余剰分を、如何にして簡便な手法で除去できるかが課題となる。 When attempting to measure a substance to be measured, such as a protein that cannot be directly measured electrochemically, using a simple method using an analytical chip, it is subjected to a pretreatment reaction necessary for electrochemical analysis. The problem is how to remove the excess of the reaction liquid (liquid containing the substance to be measured and the reagent) by a simple method.
したがって、本発明は、直接的に電気化学測定を行うことのできないタンパク質等の被測定物質に対しても、前処理反応を行うことにより電気化学的分析などの正確な定量測定を行うことのできる簡便な測定装置を提供することを目的とする。 Therefore, the present invention can perform an accurate quantitative measurement such as an electrochemical analysis by performing a pretreatment reaction on a substance to be measured such as a protein that cannot be directly subjected to an electrochemical measurement. An object is to provide a simple measuring apparatus.
本発明は、前処理反応を行うための反応部、上記反応部内の反応液の余剰液を除去するための吸収性部材を備えた廃液機構、および、被測定物質を測定するための測定部を備え、
上記廃液機構は、上記反応部における上記前処理反応に必要な時間を確保できるように廃液時間が調節されたものである、被測定物質の測定装置である。
The present invention includes a reaction part for performing a pretreatment reaction, a waste liquid mechanism including an absorbent member for removing excess liquid of the reaction liquid in the reaction part, and a measurement part for measuring a substance to be measured. Prepared,
The waste liquid mechanism is an apparatus for measuring a substance to be measured, in which the waste liquid time is adjusted so that the time required for the pretreatment reaction in the reaction section can be secured.
ここで「廃液時間」とは、反応液を上記反応部に導入してから廃液が開始されるまでの時間(以下、「廃液開始時間」と略す。)と、吸収性部材に余剰液が吸収される時間(以下、「吸収時間」と略す。)の和である。 Here, “waste liquid time” refers to the time from the introduction of the reaction liquid into the reaction section until the start of the waste liquid (hereinafter abbreviated as “waste liquid start time”), and the excess liquid absorbed by the absorbent member. Time (hereinafter abbreviated as “absorption time”).
上記反応部、上記測定部および上記吸収性部材が基板上に配置されることが好ましい。
上記吸収性部材が、上記毛細幹部の稜線の長さを変えることによって、上記吸収時間が調節されることが好ましい。
It is preferable that the reaction part, the measurement part, and the absorbent member are arranged on a substrate.
It is preferable that the absorption time is adjusted by the absorbent member changing the length of the ridgeline of the capillary trunk.
上記反応部と上記吸収性部材との間に間隙を有することが好ましい。
上記間隙の大きさを調整することにより上記廃液開始時間が調節されることが好ましい。
It is preferable to have a gap between the reaction part and the absorbent member.
The waste liquid start time is preferably adjusted by adjusting the size of the gap.
上記反応液を上記吸収性部材に導くためのガイド部材を備えることが好ましい。
上記ガイド部材が、上記反応部を少なくとも水平方向に囲む部材であり、上記反応液の上記吸収性部材への流路となる開口部を有することが好ましい。
It is preferable to provide a guide member for guiding the reaction liquid to the absorbent member.
The guide member is a member that at least surrounds the reaction part in the horizontal direction, and preferably has an opening that serves as a flow path of the reaction liquid to the absorbent member.
上記吸収性部材は、上記反応液の吸収が開始される毛細管部と、それ以外の貯水部からなり、上記毛細管部の形状を調節することにより上記吸収時間が調節されることが好ましい。 The absorbent member is preferably composed of a capillary part where absorption of the reaction solution is started and a water storage part other than that, and the absorption time is adjusted by adjusting the shape of the capillary part.
上記毛細管部の上面から見た形状が矩形、三角形または櫛歯形であることが好ましい。
上記吸収性部材は、上記貯水部の体積を調節することにより上記吸収時間が調節されることが好ましい。
It is preferable that the shape seen from the upper surface of the said capillary part is a rectangle, a triangle, or a comb-tooth shape.
It is preferable that the said absorption member adjusts the said absorption time by adjusting the volume of the said water storage part.
上記反応部と上記測定部が一体になっていることが好ましい。
また、本発明は、前処理反応を行うための反応部と、上記反応部内の反応液の余剰液を除去するための吸収性部材を備えた廃液機構とを備え、上記廃液機構は、上記反応部における上記前処理反応に必要な時間を確保できるように廃液時間が調節されたものである、被測定物質の測定装置に用いられる分析チップにも関する。
It is preferable that the reaction part and the measurement part are integrated.
Further, the present invention includes a reaction part for performing a pretreatment reaction, and a waste liquid mechanism including an absorbent member for removing excess liquid of the reaction liquid in the reaction part, and the waste liquid mechanism includes the reaction The present invention also relates to an analysis chip used in a measurement apparatus for a substance to be measured, in which the waste liquid time is adjusted so that the time required for the pretreatment reaction in the section can be secured.
本発明の測定装置は、反応部に導入された余剰な反応液を廃液するために、吸収性部材を用いた特定の廃液機構を備えたことにより、何ら動力を必要とすることなく簡便な構成で、反応部に導入された反応液の廃液時間を調節しながら、反応液の余剰液を廃液することができる。 The measuring apparatus according to the present invention includes a specific waste liquid mechanism using an absorbent member in order to waste excess reaction liquid introduced into the reaction section, and thus has a simple configuration without requiring any power. Thus, the excess liquid of the reaction liquid can be discharged while adjusting the waste liquid time of the reaction liquid introduced into the reaction section.
本発明の測定装置は、被測定物質および試薬を含む反応液の前処理反応を行った後に、被測定物質を定量するための測定を行う装置である。そして、前処理反応を行うための反応部に導入された反応液の余剰液を、吸収性部材によって吸収し除去する廃液機構を備え、反応部における前処理反応に必要な時間を確保できるように、反応液の廃液時間が調節されたことを特徴とするものである。 The measuring apparatus of the present invention is an apparatus for performing measurement for quantifying a substance to be measured after performing a pretreatment reaction of a reaction solution containing the substance to be measured and a reagent. And it is equipped with the waste liquid mechanism which absorbs and removes the surplus liquid of the reaction liquid introduced into the reaction part for performing the pretreatment reaction so that the time required for the pretreatment reaction in the reaction part can be secured. The waste liquid time of the reaction liquid is adjusted.
例えば、血液中などに存在するグルコースは、酵素であるグルコースオキシダーゼ等が触媒となる反応により酸化還元電流を生じるため、この電流を測定することにより電気化学的に直接検出することが可能である。一方、生体中に存在する種々のタンパク質の多くは、直接的に酸化還元電流を生じるような反応を行わせて電気化学的に定量・定性することが困難である。このため、生体中のタンパク質などを電気化学的測定を用いて測定する際には、被測定物質と、被測定物質−酵素標識複合体とを競合反応させて、酵素標識を利用して電気化学的に検出する方法が用いられる。本発明は、このように電気化学的に直接検出することができない被測定物質についても、間接的な前処理反応を介して電気化学的分析を行うことのできる簡便な測定装置である。 For example, glucose present in blood or the like generates an oxidation-reduction current by a reaction catalyzed by the enzyme glucose oxidase or the like, and can be directly detected electrochemically by measuring this current. On the other hand, many of various proteins existing in living bodies are difficult to electrochemically quantify and qualify by causing a reaction that directly generates a redox current. For this reason, when measuring proteins and the like in living bodies using electrochemical measurement, the substance to be measured and the substance to be measured-enzyme label complex are subjected to a competitive reaction, and the enzyme is used to perform the electrochemical reaction. The detection method is used automatically. The present invention is a simple measuring apparatus capable of performing electrochemical analysis on a substance to be measured that cannot be directly detected electrochemically through an indirect pretreatment reaction.
したがって、本発明の測定装置は、測定の対象となる被測定物質が、電気化学的に直接検出することのできない物質である場合に好適に用いられる。そのような被測定物質として、具体的には、例えば、酵素などのタンパク質、核酸、ホルモンなどの生理活性物質、神経伝達物質、低分子化合物などの生化学物質が挙げられる。好ましくは、低分子化合物であり、より好ましくは、コルチコイドおよびその誘導体である。コルチコイドとしては、コルチゾール、コルチコステロン、コルチゾンなどが挙げられ、好ましくはコルチゾールである。 Therefore, the measuring apparatus of the present invention is suitably used when the substance to be measured is a substance that cannot be directly detected electrochemically. Specific examples of such substances to be measured include bioactive substances such as proteins such as enzymes, physiologically active substances such as nucleic acids and hormones, neurotransmitters, and low molecular compounds. Preferred are low molecular weight compounds, and more preferred are corticoids and derivatives thereof. Examples of the corticoid include cortisol, corticosterone, cortisone and the like, preferably cortisol.
反応液とは、電気化学的分析などの被測定物質の定量測定のために必要な前処理反応に供される液であり、被測定物質および必要な試薬を含む液である。具体的には、例えば、前処理反応として競合法を利用し、反応部に抗体が保持されている場合、抗原(被測定物質)および抗原と電気化学的に検出可能な標識物質との複合体(以下、「抗原(被測定物質)−標識物質複合体」と略すことがある)を含む液や、抗原抗体反応後の余剰な抗原や被測定物質−標識物質複合体を除去するための洗浄液などが上記反応液に含まれる。 The reaction liquid is a liquid that is subjected to a pretreatment reaction necessary for quantitative measurement of a substance to be measured such as electrochemical analysis, and is a liquid that includes the substance to be measured and a necessary reagent. Specifically, for example, when a competition method is used as a pretreatment reaction and an antibody is held in the reaction part, an antigen (substance to be measured) and a complex of an antigen and a labeling substance that can be detected electrochemically (Hereinafter, may be abbreviated as “antigen (substance to be measured) -labeled substance complex”), or a washing liquid for removing excess antigen or target substance-labeled substance complex after antigen-antibody reaction Etc. are contained in the reaction solution.
反応液にはサンプルも含まれる。ここではサンプルとは、被測定物質を含む液体であり、具体的に、被測定物質が唾液、汗、血液などの生体由来の液体成分に含まれる場合は、これらの生体由来の液体成分そのものである。サンプルをそのまま反応液の一部として用いることができる。これらの生体由来の液体成分のうちでも、非浸襲的な採取が可能である点で、唾液、汗をサンプルとして用いることが好ましい。なお、液体成分中の夾雑物質などが問題となる場合は、抽出や遠心分離等の処理を行った後に、後述の展開洗浄液と同じ媒質などに分散または溶解させた液をサンプルとして用いてもよい。分析の簡便性の観点からは、生体由来の液体成分そのものをサンプルとすることが好ましい。 The reaction solution includes a sample. Here, the sample is a liquid containing a substance to be measured. Specifically, when the substance to be measured is contained in a biological component derived from a living body such as saliva, sweat, blood, etc., the liquid component derived from the living body itself. is there. The sample can be used as it is as a part of the reaction solution. Among these liquid components derived from living organisms, saliva and sweat are preferably used as samples in that non-invasive collection is possible. In the case where contaminants in the liquid component become a problem, a liquid dispersed or dissolved in the same medium as a developing cleaning liquid described later may be used as a sample after performing processing such as extraction or centrifugation. . From the viewpoint of simplicity of analysis, it is preferable to use a liquid component derived from a living body as a sample.
本発明の測定装置を用いた測定においては、例えば、サンプルが反応部に導入された後に前処理反応に必要な試薬を含む液が導入され、前処理反応が行われる。その後、必要に応じて、例えば、抗体に結合していない余剰の被測定物質および被測定物質−標識物質複合体を洗い流して、反応部から取り除くための洗浄液が反応部に導入される。 In the measurement using the measuring apparatus of the present invention, for example, after a sample is introduced into the reaction part, a liquid containing a reagent necessary for the pretreatment reaction is introduced, and the pretreatment reaction is performed. Thereafter, if necessary, for example, a surplus substance to be measured and a substance to be measured-labeled substance complex that are not bound to the antibody are washed away, and a cleaning solution for removing the substance from the reaction part is introduced into the reaction part.
洗浄液は、被測定物質の種類や上記被測定物質−標識物質複合体の種類などに応じて適宜選択される。例えば、被測定物質がコルチコイドであり、被測定物質−標識物質複合体がコルチコイド−GOD複合体である場合に用いられる展開洗浄液としては、リン酸緩衝液、HEPES、Tris buffer、Acetate bufferなどが挙げられる。特にコルチコイドがコルチゾールである場合は、リン酸緩液を洗浄液として用いることが好ましい。 The cleaning liquid is appropriately selected according to the type of the substance to be measured and the kind of the substance to be measured-labeled substance complex. For example, as a developing cleaning solution used when the substance to be measured is a corticoid and the substance to be measured-label substance complex is a corticoid-GOD complex, a phosphate buffer, HEPES, Tris buffer, Acetate buffer, etc. It is done. In particular, when the corticoid is cortisol, it is preferable to use a phosphate phosphate as a cleaning solution.
本発明における前処理反応では、上記反応液(洗浄液等を含む)が反応部の容積に対して過剰に導入されるため、余剰の反応液を除去(廃液)する必要がある。前処理反応としては、上述の競合反応を利用した反応の他にも、サンドウィッチ法などが挙げられる。 In the pretreatment reaction in the present invention, the reaction solution (including the cleaning solution) is introduced excessively with respect to the volume of the reaction section, and therefore, it is necessary to remove (waste liquid) the excess reaction solution. Examples of the pretreatment reaction include a sandwich method in addition to the reaction using the above-described competitive reaction.
測定装置の反応部とは、反応液が少なくとも上記前処理反応に必要な時間保持される領域であり、具体的には、例えば、反応液を吸収し一定時間保持するためのサンプルパッドを含む領域や、反応液が一定時間保持されるように隔壁で囲まれた領域が挙げられる。反応液を反応部に導入する方法は、特に限定されないが、滴下などの方法が挙げられる。 The reaction part of the measuring device is a region where the reaction solution is held for at least the time required for the pretreatment reaction. Specifically, for example, a region including a sample pad for absorbing and holding the reaction solution for a certain period of time. Alternatively, a region surrounded by a partition so that the reaction solution can be held for a certain period of time can be mentioned. The method for introducing the reaction liquid into the reaction part is not particularly limited, and examples thereof include a dropping method.
反応部は、必要に応じて、前処理反応に必要な被測定物質−標識物質複合体等の試薬や、電気化学的分析に必要な試薬などを含んでいてもよい。例えば、前処理反応が抗原抗体反応を利用した競合反応である場合に用いられる試薬としては、抗体−標識物質複合体が挙げられる。この複合体と抗原とを競合させた状態で、反応部の電極上等に保持された抗体との抗原抗体反応を行い、抗体と結合した複合体の標識を電気化学分析などにより検出することで、結果的に被測定物質の定量測定を行うことができる。なお、反応部には、1種の試薬のみが保持されていてもよく、2種以上の試薬が保持されていてもよい。 The reaction unit may contain a reagent such as a substance to be measured-labeled substance complex necessary for the pretreatment reaction, a reagent necessary for electrochemical analysis, and the like as necessary. For example, the reagent used when the pretreatment reaction is a competitive reaction utilizing an antigen-antibody reaction includes an antibody-labeling substance complex. An antigen-antibody reaction is performed with an antibody held on the electrode of the reaction part in a state where the complex and the antigen are in competition, and the label of the complex bound to the antibody is detected by electrochemical analysis or the like. As a result, quantitative measurement of the substance to be measured can be performed. Note that only one type of reagent may be held in the reaction unit, or two or more types of reagents may be held.
吸収性部材は、余剰の反応液を吸収できる部材であれば特に限定されないが、例えば、吸湿性繊維、多孔性樹脂、高分子吸収体、海綿により構成される部材が挙げられる。このような構成によれば、吸収性部材が吸湿性繊維、多孔性樹脂、高分子吸収体、あるいは海綿により構成されているので、試験片に付着した余剰分の検体を吸収性部材自体に効果的に吸収させることができる。たとえば、吸収性部材の具体的な材質として、吸湿性繊維の一種である不織布を採用すれば、不織布の織り込まれた繊維すきま間に十分な量の反応液を吸収させることができる。 Although an absorptive member will not be specifically limited if it is a member which can absorb an excess reaction liquid, For example, the member comprised by a hygroscopic fiber, a porous resin, a polymeric absorber, and sponge is mentioned. According to such a configuration, since the absorbent member is composed of hygroscopic fibers, porous resin, polymer absorbent body, or sponge, the surplus specimen adhering to the test piece is effective for the absorbent member itself. Can be absorbed. For example, if a non-woven fabric, which is a kind of hygroscopic fiber, is employed as a specific material for the absorbent member, a sufficient amount of the reaction solution can be absorbed between the fiber gaps in which the non-woven fabric is woven.
また、吸収性部材は交換可能に配置されていてもよい。このような構成によれば、吸収性部材の吸湿作用が弱まった際に、新たな別の部材に容易に交換することができるので、使用者は、簡単な交換作業を行うだけで本装置の廃液機構を持続させることができる。 Moreover, the absorptive member may be arrange | positioned so that replacement | exchange is possible. According to such a configuration, when the hygroscopic action of the absorbent member is weakened, it can be easily replaced with another new member, so that the user can perform a simple replacement operation. The waste liquid mechanism can be maintained.
本発明において、反応部および吸収性部材は板状体等の基板上に配置されることが好ましい。基板の材質は、特に制限されず、たとえば、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリジメチルシロキサン(PDMS)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアリレート樹脂(PAR)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、塩化ビニル樹脂(PVC)、ポリメチルペンテン樹脂(PMP)、ポリブタジエン樹脂(PBD)、生分解性ポリマー(BP)、シクロオレフィンポリマー(COP)などの有機材料;シリコン、シリコーン、ガラス、石英などの無機材料等を用いることができる。これらの中でも、反応を妨げず、液切れの良い疎水性材料を用いることが好ましい。疎水性材料としては、アクリル樹脂、ポリジメチルシロキサン(PDMS)などを好適に用いることができる。 In the present invention, the reaction part and the absorbent member are preferably arranged on a substrate such as a plate-like body. The material of the substrate is not particularly limited. For example, acrylic resin such as polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), polystyrene ( PS), polypropylene (PP), polyethylene (PE), polyethylene naphthalate (PEN), polyarylate resin (PAR), acrylonitrile-butadiene-styrene resin (ABS), vinyl chloride resin (PVC), polymethylpentene resin (PMP) ), Polybutadiene resin (PBD), biodegradable polymer (BP), cycloolefin polymer (COP), and other organic materials; silicon, silicone, glass, quartz, and other inorganic materials. Among these, it is preferable to use a hydrophobic material that does not hinder the reaction and has good liquid drainage. As the hydrophobic material, acrylic resin, polydimethylsiloxane (PDMS), or the like can be preferably used.
反応部および吸収性部材が基板上に配置される場合、反応部と吸収性部材との間に間隙を有することが好ましい。反応液を上記反応部に導入してから廃液が開始されるまでの時間は、反応部と吸収性部材の間隙の距離に影響される。このため、間隙の距離を調節することにより廃液開始時間を調節することで、全体の廃液時間を調節することができる。間隙の距離は、通常、約5mm以下の範囲で変化させることができ、距離を長くすると廃液開始時間は遅くなり、全体の廃液時間は遅くなる。また、間隙の距離を短くすると廃液開始時間は速くなり、全体の廃液時間は速くなる。 When the reaction part and the absorbent member are disposed on the substrate, it is preferable to have a gap between the reaction part and the absorbent member. The time from the introduction of the reaction liquid into the reaction part until the start of the waste liquid is affected by the distance between the reaction part and the absorbent member. For this reason, the total waste liquid time can be adjusted by adjusting the waste liquid start time by adjusting the gap distance. The distance of the gap can usually be changed within a range of about 5 mm or less. When the distance is increased, the waste liquid start time is delayed, and the entire waste liquid time is delayed. Further, when the gap distance is shortened, the waste liquid start time is increased, and the entire waste liquid time is increased.
ガイド部材とは、反応液を吸収性部材に導くための部材である。ガイド部材は、反応部を少なくとも水平方向に囲む部材であり、反応液が吸収性部材へ移動するための流路となる開口部を有することが好ましい。 The guide member is a member for guiding the reaction liquid to the absorbent member. The guide member is a member that at least surrounds the reaction part in the horizontal direction, and preferably has an opening that serves as a flow path for the reaction liquid to move to the absorbent member.
ガイド部材の材料としては、吸水性の小さい材料を用いることが好ましく、吸水性の小さい材料としては、反応液(サンプル、試薬)などに応じて、プラスティックやアクリル樹脂などを適宜選択することができる。また、シリコンゴムやO−リングなどをガイド部材と電極などとの間に介在させることで、反応液の吸収性部材以外への漏れを防止するようにしてもよい。 As the material of the guide member, it is preferable to use a material having low water absorption, and as the material having low water absorption, plastic, acrylic resin, or the like can be appropriately selected according to the reaction liquid (sample, reagent) or the like. . Further, by interposing silicon rubber, an O-ring or the like between the guide member and the electrode, leakage of the reaction liquid to other than the absorbent member may be prevented.
測定装置が、反応部の下に電極を有する電気化学測定用の測定装置である場合、上記ガイド部材は、電気化学測定を疎外しない程度に電極の必要最小限の部分を露出させて反応部を覆うような形状であることが好ましい。このようにすることで、反応部の容積が必要最小限となるため、測定サンプルの採取量をより少なくすることができる。 When the measuring device is a measuring device for electrochemical measurement having an electrode under the reaction part, the guide member exposes the minimum necessary part of the electrode to the extent that the electrochemical measurement is not excluded, and the reaction part is It is preferable that it is a shape which covers. By doing in this way, since the volume of a reaction part becomes the minimum required, the collection amount of a measurement sample can be decreased more.
このようなガイド部材の材料としては、特にポリジメチルシロキサン(PDMS)を用いることが好ましい。PDMSは、シリコンゴムの一種であり、モールディング(型取り)によりマイクロ構造が製作でき、サブミクロンの構造まで転写可能である。自己吸着性があるため、大きな内圧を必要としない場合は基板に貼り付けるだけでシール出来る。生体適合性材料で細胞や組織に悪影響を及ぼしにくい。ガラスやプラスティック製のチップと異なり、ウェットエッチングや高温接合を必要とせず、比較的容易に作ることができるといった利点がある。 As a material for such a guide member, it is particularly preferable to use polydimethylsiloxane (PDMS). PDMS is a kind of silicon rubber, and a micro structure can be manufactured by molding (molding), and a sub-micron structure can be transferred. Because of its self-adsorption property, it can be sealed by simply sticking it to the substrate when a large internal pressure is not required. It is a biocompatible material and does not adversely affect cells and tissues. Unlike glass and plastic chips, there is an advantage that it can be made relatively easily without requiring wet etching or high-temperature bonding.
上記電極には、通常、作用電極(ワーキング電極)、対電極(カウンター電極)および参照電極(リファレンス電極)が含まれる。電気化学分析を行う際には、前処理反応後の反応液に電気化学的検出に必要な試薬等を添加した後、作用電極の参照電極に対する電位変化に対応する電流変化(作用電極と対電極との間を流れる電流変化)を検出する。そして、その電流変化を積分計算して得られる電気量(クーロン量)、ピーク電流値、または電流の微分値などを検量線と比較することにより、被測定物質を分析(定量、定性)することができる。 The electrodes usually include a working electrode (working electrode), a counter electrode (counter electrode), and a reference electrode (reference electrode). When performing an electrochemical analysis, a reagent necessary for electrochemical detection is added to the reaction solution after the pretreatment reaction, and then a current change corresponding to the potential change of the working electrode with respect to the reference electrode (working electrode and counter electrode). Change in current flowing between the two. Analyze (quantitatively, qualitatively) the substance to be measured by comparing the amount of electricity (coulomb amount), peak current value, or current differential value obtained by integrating the change in current with a calibration curve. Can do.
例えば、ある抗原が被測定物質であるとき、抗体に結合した抗原と抗原−標識物質複合体の比を検出することで抗原の定量を行う方法(競合法)において、標識物質がグルコースオキシダーゼである場合、一定量のグルコース液を電極表面付近に供給することにより、グルコースオキシダーゼによるグルコースの酸化反応を行い、その際放出される電子による電流変化を測定することで、抗原と抗原−標識物質複合体の抗体への結合比を測定し、その結果から抗原の定量測定を行うことができる。 For example, when a certain antigen is a substance to be measured, the labeling substance is glucose oxidase in a method for quantifying the antigen by detecting the ratio of the antigen bound to the antibody and the antigen-labeling substance complex (competitive method) In this case, by supplying a certain amount of glucose solution to the vicinity of the electrode surface, an oxidation reaction of glucose by glucose oxidase is performed, and a current change due to electrons released at that time is measured, whereby an antigen-antigen-labeling substance complex The antibody-to-antibody binding ratio can be measured, and the antigen can be quantitatively measured from the result.
電極の材料としては、標識物質の電気化学分析に用いられる種々公知の電極材料を用いることができ、例えば、電極の材料としては、白金、カーボン、金、銀、パラジウム、ルテニウム、ロジウムなどが挙げられる。特に、反応液中に含まれる試薬が、被測定物質−標識物質複合体であり、標識物質としてグルコースオキシダーゼを用いる場合、その検出反応(グルコースオキシダーゼによる酸化反応)の触媒となる白金を材料として含む電極を用いることが好ましい。本発明における電極は、後述のような電極の表面上に抗体が固定された電極や、電子メディエータを含む電極も包含される。 As the electrode material, various known electrode materials used for electrochemical analysis of a labeling substance can be used. Examples of the electrode material include platinum, carbon, gold, silver, palladium, ruthenium, and rhodium. It is done. In particular, when the reagent contained in the reaction solution is a substance to be measured-labeling substance complex and glucose oxidase is used as the labeling substance, platinum as a catalyst for the detection reaction (oxidation reaction by glucose oxidase) is included as a material. It is preferable to use an electrode. The electrode in the present invention includes an electrode in which an antibody is immobilized on the surface of the electrode as described later, and an electrode containing an electron mediator.
また、吸収性部材を、反応液の吸収が開始される毛細管部と、それ以外の貯水部からなるものとした場合、毛細管部の形状を調節することにより反応液の廃液時間が調節されるようにしてもよい。反応液の廃液時間は、反応液と吸収性部材の毛細管部における接触面積の影響を受けるため、この点を考慮して毛細管部の形状を調節すればよい。 Further, when the absorbent member is composed of a capillary part where absorption of the reaction liquid is started and a water storage part other than that, the waste liquid time of the reaction liquid is adjusted by adjusting the shape of the capillary part. It may be. Since the waste time of the reaction liquid is affected by the contact area of the reaction liquid and the capillary part of the absorbent member, the shape of the capillary part may be adjusted in consideration of this point.
上記毛細管部の上面から見た形状が矩形、三角形または櫛歯形であることが好ましい。このような形状とすることにより、反応部の反応液を吸収する際の、反応液と吸収性部材の毛細管部との接触面積を変化させることで吸収時間を調節し、廃液時間を調節することができる。 It is preferable that the shape seen from the upper surface of the said capillary part is a rectangle, a triangle, or a comb-tooth shape. By adopting such a shape, the absorption time is adjusted by changing the contact area between the reaction liquid and the capillary part of the absorbent member when absorbing the reaction liquid in the reaction part, and the waste liquid time is adjusted. Can do.
また、吸収性部材の上記貯水部の体積を調節することにより、反応液の廃液時間を調節するようにしてもよい。 Moreover, you may make it adjust the waste liquid time of a reaction liquid by adjusting the volume of the said water storage part of an absorptive member.
必要に応じて、廃液機構の廃液時間を調節するための上記構成の2つ以上を組み合わせることによって、前処理反応に必要な時間を確保できるように、廃液時間を調節してもよい。 If necessary, the waste liquid time may be adjusted so that the time required for the pretreatment reaction can be secured by combining two or more of the above-described configurations for adjusting the waste liquid time of the waste liquid mechanism.
また、本発明は、上述の反応部および廃液機構を備えた分析チップにも関する。分析チップとは、任意の測定原理を採用することによって、被測定物質を含むサンプルを分析(例えば、サンプル中の被測定物質の検出または定量)するために用いられるハンディーサイズの測定部材である。かかる分析チップは、上記本発明の測定装置の構成部材として用いることができる。 The present invention also relates to an analysis chip provided with the above-described reaction section and waste liquid mechanism. The analysis chip is a handy size measuring member used for analyzing a sample containing a substance to be measured (for example, detecting or quantifying the substance to be measured in the sample) by adopting an arbitrary measurement principle. Such an analysis chip can be used as a constituent member of the measurement apparatus of the present invention.
(実施形態1)
本実施形態の測定装置は、図1に示すように、基板3上に設けられた吸収性部材1および反応部(測定部を兼ねるものであってもよい)を構成するサンプルパッド2を有している。基板3は疎水性材料からなることが好ましい。そして、サンプルパッド2と吸収性部材1とは、それらの間に間隙を有するように配置されており、その間隙の距離Lを調節することによって、反応液4が滴下される場合等に、反応液4が吸収開始部10に達するまでの時間が調節される。これによって、反応液の廃液開始時間を調節することが可能である。
(Embodiment 1)
As shown in FIG. 1, the measurement apparatus of the present embodiment has an absorbent member 1 provided on a
図2を用いて、本発明の廃液機構について説明する。図2においては図1に示すようなサンプルパッド2は示されていないが、サンプルパッドが設けられている場合も本発明の廃液機構は同様に説明される。まず、図2(a)に示すように、反応液4に液滴41(例えば、洗浄液)を滴下していくと、図2(b)のように反応液4が吸収性部材1に接触し、その接触部に毛細管力が働くことで液滴内部の分子間力の均衡が崩れ、反応液4が吸収性部材1へ展開する吸収が始まる。吸収が始まる液量は、液滴41が滴下される位置と吸収性部材1との距離Lを変化させることにより調節される。
The waste liquid mechanism of the present invention will be described with reference to FIG. In FIG. 2, the
図2(c)に示すように一旦、反応液4の吸収が開始されると、反応液4の表面張力の水平方向成分よりも吸収性部材1の毛細管力の方が大きい間は、反応液4が吸収性部材1に吸収され続ける(図2(d))。そして、反応液4の表面張力の水平方向成分と吸収性部材1の毛細管力の方とが等しくなったときに吸収が終了する(図2(e))。その後は、反応液4が表面張力により吸収性部材1と離れた位置に戻ることになる(図2(f)〜(g))。図2(h)に示すように、次に、反応液4が吸収開始液量43に達するまでは、吸収性部材1に反応液4が吸収されることはない。このように本発明に用いられる廃液機構は、バルブの役割を果たすものである。
As shown in FIG. 2 (c), once the absorption of the
(実施形態2)
本実施形態は、図3に示すように、実施形態1に加えて開口部51を有するガイド部材5が設けられた形態である。ガイド部材5を設けることにより、サンプルパッド2と吸収性部材1の距離を長くした場合でも、吸収性部材1以外の周辺部に反応液が漏れ出すことが防止されるため、廃液開始までの時間をより遅らせるように調節することが可能となる。
(Embodiment 2)
As shown in FIG. 3, the present embodiment is a form in which a
(実施形態3)
本実施形態は、図4に示すように、実施形態2のガイド部材5が下部のみに開口部51を有する形態である。開口部51を下部のみとすることで反応液が開口部51を通過するときの抵抗が大きくなるため、反応液が開口部51を通過して吸収性部材1に達するまでの時間を遅らせることができ、実施形態2よりもさらに廃液開始までの時間を遅らせるように調節することが可能となる。
(Embodiment 3)
In the present embodiment, as shown in FIG. 4, the
図5を用いて、実施形態3における廃液機構を説明する。図5(a)においては、サンプルパッド2が保持できる液量よりも多い反応液4(例えば、被測定物質および試薬を含む液)がガイド部材5に囲まれた反応部(測定部を兼ねるものであってもよい)に導入されており、さらに液滴41(例えば、洗浄液)が滴下される。図5(b)に示すように、反応液4が、ガイド部材5の開口部51の表面エネルギーを越える圧力がかかる液量になると、開口部51を通過して吸収性部材1の方へ展開し、吸収性部材1による吸収が開始される。一度、液が吸収性部材1に吸収され始めると、表面エネルギーの効果がなくなり、反応液4の一定量が吸収性部材1に吸収され(吸収された反応液42)、反応部の反応液4の液量は一定量まで減少する。この反応部に残る一定量は、反応液の粘性、表面張力、基板の撥水性、吸収性部材1との距離などによって決まるものである。図5(d)に示すように、次に、液滴41(例えば、標識検出のための検出液)を滴下する場合も、反応液4が開口部51の表面エネルギーを超える一定液量に達するまでは、吸収性部材1に反応液4が吸収されることはなく、反応液4がガイド部材5に囲まれた反応部に保持される。このように本発明に用いられる廃液機構は、バルブの役割を果たすものである。
The waste liquid mechanism in
(実施形態4)
本実施形態は、図6に示すように、吸収性部材1において反応液の吸収が開始される部分である毛細管部11の形状を調節することにより、廃液時間を調節した形態である。図6(a)は毛細管部の形状を矩形とした吸収性部材1を示し、図6(b)は毛細管部の形状を三角形とした吸収性部材1を示し、図6(c)は毛細管部の形状を櫛歯形にした吸収性部材1を示す。毛細管部の形状をこのようにすることで、吸収性部材の形状が方形である場合と比べて、吸収性部材1が反応液を吸収する速度を遅くすることができ、廃液時間を遅くなるように調節することができる。
(Embodiment 4)
As shown in FIG. 6, the present embodiment is a form in which the waste liquid time is adjusted by adjusting the shape of the
なお、毛細管部11以外の部分である貯水部12の体積を調節することによっても、吸収性部材1が反応液を吸収する速度を調節することができ、廃液時間の調節が可能である。
In addition, also by adjusting the volume of the
(実施形態5)
本実施形態は、図6(a)に示す吸収性部材1を矩形の毛細管部11がサンプルパッド2に接した状態で設置し、実施形態2と同様のガイド部材5に加えて、さらに第2ガイド部材52を設けた形態である。第2ガイド部材としてはPDMSを用いることが好ましい。52吸収性部材1はサンプルパッド2に接した状態であるため、吸収性部材1の吸収開始時間は比較的早いものの、毛細管部11の形状により吸収速度は遅くなるため、全体として廃液時間を遅く調節することができる。
(Embodiment 5)
In the present embodiment, the absorbent member 1 shown in FIG. 6A is installed in a state where the
また、第2ガイド部材52はサンプルパッド2にほぼ接してサンプルパッド2を囲むような形状であり、このような第2ガイド部材52を設けることにより、サンプルパッド2の周囲の基板3上に反応液が保持されないため、反応液を必要最小限とすることができる。
Further, the
<材料>
疎水性のアクリル樹脂からなる基板上に吸収性部材を固定し、質量を測定した。吸収性部材(吸収パッド)としては、大きさ14mm×50mmのセルロースファイバーサンプルパッド(ミリポア社製 CFSP203000)を用いた。なお、基板としては吸収性部材よりも十分に大きい面積の主面を有するものを用いた。
<Material>
An absorbent member was fixed on a substrate made of a hydrophobic acrylic resin, and its mass was measured. As the absorbent member (absorbing pad), a cellulose fiber sample pad (CFSP203000 manufactured by Millipore) having a size of 14 mm × 50 mm was used. In addition, as a board | substrate, what has the main surface of an area sufficiently larger than an absorptive member was used.
<実験方法>
(1) 吸収性部材の端から長手方向に7mm離れた位置の基板上に、一定時間(2.5秒)ごとに10μLの純水(反応液の代わり)を滴下する。
(2) 吸収性部材による純水の吸収が始まったら、滴下を中断する。
(3) 吸収が終われば、全体の質量を測定し残り液量を調べてから、純水の滴下を再開する。
(4) 上記(1)〜(3)の工程を繰り返す。
<Experiment method>
(1) 10 μL of pure water (instead of the reaction solution) is dropped at regular intervals (2.5 seconds) onto the substrate at a position 7 mm away from the end of the absorbent member in the longitudinal direction.
(2) When the absorption of pure water by the absorbent member starts, the dropping is stopped.
(3) When the absorption is completed, the entire mass is measured and the remaining liquid amount is examined, and then the dropping of pure water is restarted.
(4) The steps (1) to (3) are repeated.
<実験結果>
アクリル基板上の液量の変化を図8のグラフに示す。また、上記(1)〜(3)の工程の繰り返しにおいて吸収が始まる純水の滴下量を表1に示す。図8に示すように、初めの吸収開始は、基板上の液量が200μLとなった時点であり、吸収(廃液)が終わった後に滴下部(反応部に相当する)に残った液量は40μLであった。その後は、基板上の液量が200μL付近で吸収が始まり、基板上の液量が30〜40μLまで減少した時点で吸収が終わるという結果になった。また、表1に示すように、1回目は滴下量が約200μLとなった時点で吸収が開始され、2回目以降は滴下量が160〜170μLとなった時点で吸収が開始された。この結果から、本発明における廃液機構は、反応部にある反応液が一定量以上になったときに廃液が行われ反応部の液量が一定量以下まで廃液される。その後は次に反応液が一定量以上になるまでは廃液が行われないような機能を有し、自動バルブの役割を果たすことがわかる。
<Experimental result>
The change in the amount of liquid on the acrylic substrate is shown in the graph of FIG. In addition, Table 1 shows the amount of pure water that begins to be absorbed in the repetition of the steps (1) to (3). As shown in FIG. 8, the first absorption start is when the amount of liquid on the substrate becomes 200 μL, and the amount of liquid remaining in the dropping part (corresponding to the reaction part) after absorption (waste liquid) is 40 μL. Thereafter, the absorption started when the liquid volume on the substrate was around 200 μL, and the absorption ended when the liquid volume on the substrate decreased to 30 to 40 μL. Moreover, as shown in Table 1, the absorption started when the dropping amount became about 200 μL for the first time, and the absorption started when the dropping amount became 160 to 170 μL for the second time and thereafter. From this result, in the waste liquid mechanism in the present invention, the waste liquid is discharged when the reaction liquid in the reaction part becomes a certain amount or more, and the liquid amount in the reaction part is discharged to a certain amount or less. Thereafter, it has a function that the waste liquid is not performed until the reaction liquid reaches a predetermined amount or more, and it is understood that it plays the role of an automatic valve.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 吸収性部材、10 吸収開始部、11 毛細管部、12 貯水部、2 サンプルパッド、3 基板、4 反応液、41 液滴、42 吸収された反応液、43 吸収開始液量、5 ガイド部材、51 開口部、52 第2ガイド部材。 DESCRIPTION OF SYMBOLS 1 Absorbing member, 10 Absorption start part, 11 Capillary part, 12 Water storage part, 2 Sample pad, 3 Substrate, 4 Reaction liquid, 41 Droplet, 42 Absorbed reaction liquid, 43 Absorption start liquid quantity, 5 Guide member, 51 opening part, 52 2nd guide member.
Claims (12)
前記廃液機構は、前記反応部における前記前処理反応に必要な時間を確保できるように廃液時間が調節されたものであり、
前記廃液時間は、前記反応液を前記反応部に導入してから廃液が開始されるまでの時間である廃液開始時間と、前記吸収性部材に前記余剰液が吸収される時間である吸収時間との和である、被測定物質の測定装置。 A reaction section for performing a pretreatment reaction, a waste liquid mechanism having an absorbent member for removing excess liquid of the reaction liquid in the reaction section, and a measurement section for measuring a substance to be measured,
The waste liquid mechanism is one in which the waste liquid time is adjusted so that the time required for the pretreatment reaction in the reaction section can be secured.
The waste liquid time is a waste liquid start time that is a time from when the reaction liquid is introduced into the reaction section until the waste liquid is started, and an absorption time that is a time during which the surplus liquid is absorbed by the absorbent member. Is the sum of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009265401A JP2011107100A (en) | 2009-11-20 | 2009-11-20 | Measuring instrument and analysis chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009265401A JP2011107100A (en) | 2009-11-20 | 2009-11-20 | Measuring instrument and analysis chip |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011107100A true JP2011107100A (en) | 2011-06-02 |
Family
ID=44230732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009265401A Pending JP2011107100A (en) | 2009-11-20 | 2009-11-20 | Measuring instrument and analysis chip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011107100A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015068747A (en) * | 2013-09-30 | 2015-04-13 | 日本電波工業株式会社 | Sensing sensor and sensing device |
KR20190102357A (en) * | 2018-02-26 | 2019-09-04 | 주식회사 어큐노스 | Device for biochemical detection with regulation of reaction incubation time |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006149215A (en) * | 2004-11-25 | 2006-06-15 | Asahi Kasei Corp | Cartridge for detecting nucleic acid and method for detecting nucleic acid |
JP2008224600A (en) * | 2007-03-15 | 2008-09-25 | Olympus Corp | Reaction quantity measurement method |
WO2009107608A1 (en) * | 2008-02-26 | 2009-09-03 | シャープ株式会社 | Liquid supply structure and micro-analysis chip using the same |
-
2009
- 2009-11-20 JP JP2009265401A patent/JP2011107100A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006149215A (en) * | 2004-11-25 | 2006-06-15 | Asahi Kasei Corp | Cartridge for detecting nucleic acid and method for detecting nucleic acid |
JP2008224600A (en) * | 2007-03-15 | 2008-09-25 | Olympus Corp | Reaction quantity measurement method |
WO2009107608A1 (en) * | 2008-02-26 | 2009-09-03 | シャープ株式会社 | Liquid supply structure and micro-analysis chip using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015068747A (en) * | 2013-09-30 | 2015-04-13 | 日本電波工業株式会社 | Sensing sensor and sensing device |
KR20190102357A (en) * | 2018-02-26 | 2019-09-04 | 주식회사 어큐노스 | Device for biochemical detection with regulation of reaction incubation time |
KR102019818B1 (en) | 2018-02-26 | 2019-09-09 | 주식회사 어큐노스 | Device for biochemical detection with regulation of reaction incubation time |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2846675C (en) | Rotatable fluid sample collection device | |
JP5043186B2 (en) | Fine channel type sensor composite structure | |
CA2802260C (en) | Controlling fluid flow through an assay device | |
KR100968524B1 (en) | Micoro-nano fluidic biochip for assaying biomass | |
DK1604204T3 (en) | AGGLUTINATION BASED TEST DEVICE | |
US20110124130A1 (en) | Device and method for analysis of samples with depletion of analyte content | |
US20210268496A1 (en) | Lateral-flow assay device with filtration flow control | |
CN113295659A (en) | Mass/process control for lateral flow assay devices based on flow monitoring | |
CA2802645C (en) | Assay device having controllable sample size | |
US9547004B2 (en) | Rapid quantification of biomolecules in a selectively functionalized nanofluidic biosensor and method thereof | |
US20120237950A1 (en) | Analysis chip, analysis system, and analysis method | |
WO2014078679A1 (en) | Calibrating assays using reaction time | |
WO2021001208A1 (en) | Saliva testing | |
JP2007139658A (en) | Allergen detection method and allergen detection device | |
JP6728237B2 (en) | Method for improving the flow of a liquid sample in an assay device | |
TWI295730B (en) | Microfluidic chip for sample assay and method thereof | |
JP2011107100A (en) | Measuring instrument and analysis chip | |
JP5522515B2 (en) | Electrochemical analysis chip | |
KR101546826B1 (en) | Blood sample assay cartridge and cartridge reader | |
JP2012202925A (en) | Analytical chip, analytical system and analytical method | |
JP2012194037A (en) | Analysis chip, analysis system and analysis method | |
JP6977705B2 (en) | Biomolecule measuring device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121119 |
|
A521 | Written amendment |
Effective date: 20130116 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130611 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130808 |
|
A131 | Notification of reasons for refusal |
Effective date: 20140415 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20140819 Free format text: JAPANESE INTERMEDIATE CODE: A02 |