JP2011106954A - Monitoring method of concentration of polyhydric phenol - Google Patents

Monitoring method of concentration of polyhydric phenol Download PDF

Info

Publication number
JP2011106954A
JP2011106954A JP2009262050A JP2009262050A JP2011106954A JP 2011106954 A JP2011106954 A JP 2011106954A JP 2009262050 A JP2009262050 A JP 2009262050A JP 2009262050 A JP2009262050 A JP 2009262050A JP 2011106954 A JP2011106954 A JP 2011106954A
Authority
JP
Japan
Prior art keywords
concentration
polyhydric phenols
polyhydric
peak
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009262050A
Other languages
Japanese (ja)
Inventor
Shunichiro Nishioka
俊一郎 西岡
Osamu Hamamoto
修 浜本
Yukio Nakamura
幸夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2009262050A priority Critical patent/JP2011106954A/en
Publication of JP2011106954A publication Critical patent/JP2011106954A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring method of a concentration of a polyhydric phenol which correctly detects the concentration of the polyhydric phenol within a polyhydric phenol-containing liquid in real time. <P>SOLUTION: There is provided the monitoring method of the polyhydric phenol which measures the concentration of the polyhydric phenol within the polyhydric phenol-containing liquid from an oxidation-reduction peak of a current generated by changing a potential applied to an electrode immersed in the polyhydric phenol-containing liquid, and containing a carbon element. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多価フェノール類含有液中の多価フェノール類を電気化学的に検出する多価フェノール類の濃度のモニタリング方法に関する。   The present invention relates to a method for monitoring the concentration of polyhydric phenols for electrochemically detecting polyhydric phenols in a polyhydric phenol-containing liquid.

焼酎粕や果汁を濃縮し、これを飼料原料や食品原料として用いる技術がある。例えば、特許文献1は、濃縮設備において、焼酎粕の水分を蒸発させることによって濃縮を行い、これを飼料原料として用いることを開示している。   There is a technique for concentrating shochu and fruit juice and using it as a feed material or a food material. For example, Patent Document 1 discloses that concentration is performed by evaporating water of shochu in a concentration facility, and this is used as a feed material.

このような濃縮を行う際、濃縮度の制御のために、従来は、Kett水分計が用いられている。しかし、この方法では、測定が終わるまでに1〜2時間のタイムラグを要するため、濃縮度のモニタリングをリアルタイムに行うことができず、目的の濃縮度とすることが困難である。   When performing such concentration, a Kett moisture meter has been conventionally used to control the degree of concentration. However, in this method, since a time lag of 1 to 2 hours is required until the measurement is completed, the concentration cannot be monitored in real time, and it is difficult to achieve the target concentration.

濃縮度はあるレベルを超えると濃縮液の粘度が上昇し、例えば、蒸発缶から取り出せなくなる等の問題を生じる。一方、濃縮が不十分であると、腐敗等の問題を生じ、製品価値が下がる。   If the degree of concentration exceeds a certain level, the viscosity of the concentrated solution increases, causing problems such as being unable to be removed from the evaporator. On the other hand, if the concentration is insufficient, problems such as corruption occur and the product value decreases.

液体クロマトグラフィーによって、濃縮液中の特定成分濃度を追跡することによって、濃縮度の追跡は可能であるが、装置の導入や維持が高コストであり、さらに、この方法も完全にリアルタイムなモニタリングを可能にするものではない。   The concentration can be tracked by tracking the concentration of a specific component in the concentrate by liquid chromatography, but the installation and maintenance of the equipment is expensive, and this method also provides full real-time monitoring. It does not make it possible.

濃縮液の濃縮度を目的の濃縮度とするためには、濃縮度を正確且つリアルタイムにモニタリングする方法を確立しなければならないが、従来はそのようなモニタリング方法がなかった。   In order to set the concentration of the concentrate to the target concentration, it is necessary to establish a method for monitoring the concentration accurately and in real time, but there has been no such monitoring method in the past.

特開2006−320206号公報JP 2006-320206 A

本発明者は、焼酎粕や果汁に、酸化還元活性を有することが知られている多価フェノール類が比較的豊富に含まれていることに着目し、これらを電気化学的計測法によってモニタリングすることによって、濃縮液の濃縮度をモニタリングすることを検討した。   The present inventor pays attention to the fact that shochu and fruit juice contain relatively abundant polyhydric phenols known to have redox activity, and monitor these by electrochemical measurement. Therefore, it was studied to monitor the concentration of the concentrate.

電気化学的計測法であればリアルタイムなモニタリングが可能である。しかし、多価フェノール類は、電極での酸化還元活性が低く、検出感度は極めて低く、正確に濃度を測定することが不可能であった。   If it is an electrochemical measurement method, real-time monitoring is possible. However, polyhydric phenols have low redox activity at the electrode, extremely low detection sensitivity, and it has been impossible to accurately measure the concentration.

本発明者は、リアルタイムなモニタリングが可能な電気化学的計測法において、多価フェノール類の検出感度を向上させることについて鋭意検討し、本発明に至った。   The present inventors diligently studied to improve the detection sensitivity of polyhydric phenols in an electrochemical measurement method capable of real-time monitoring, and reached the present invention.

そこで、本発明の課題は、多価フェノール類含有液中の多価フェノール類の濃度を正確且つリアルタイムに検出できる多価フェノール類の濃度のモニタリング方法を提供することにある。   Therefore, an object of the present invention is to provide a method for monitoring the concentration of polyhydric phenols that can accurately and in real time detect the concentration of polyhydric phenols in the polyhydric phenol-containing liquid.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
多価フェノール類含有液に含浸された炭素元素を含有する電極に印加する電位を変化させることによって生じる電流の酸化還元ピークから該多価フェノール類含有液中の多価フェノール類の濃度を測定することを特徴とする多価フェノール類のモニタリング方法。
(Claim 1)
The concentration of polyhydric phenols in the polyhydric phenol-containing liquid is measured from the redox peak of the current generated by changing the potential applied to the electrode containing the carbon element impregnated in the polyhydric phenol-containing liquid. A method for monitoring polyhydric phenols characterized by the above.

(請求項2)
前記炭素元素を含有する電極は、バインダーによって固化された炭素及び/又はグラファイト粉末からなることを特徴とする請求項1記載の多価フェノール類のモニタリング方法。
(Claim 2)
2. The method for monitoring polyhydric phenols according to claim 1, wherein the electrode containing carbon element is made of carbon and / or graphite powder solidified by a binder.

(請求項3)
前記炭素元素を含有する電極に印加する電位を、水素電極基準で最大−1.2V〜+1.2Vの範囲を電位掃引して変化させることを特徴とする請求項1又は2記載の多価フェノール類のモニタリング方法。
(Claim 3)
3. The polyhydric phenol according to claim 1, wherein the potential applied to the electrode containing carbon element is changed by sweeping a potential in a range of −1.2 V to +1.2 V at maximum with respect to a hydrogen electrode. Monitoring method.

(請求項4)
前記多価フェノールが示す電流の酸化還元ピークと重複する電位に酸化及び/又は還元の活性を有する干渉物質による干渉を排除して多価フェノール類の濃度を測定することを特徴とする請求項1〜3の何れかに記載の多価フェノール類のモニタリング方法。
(Claim 4)
2. The concentration of polyhydric phenols is measured by eliminating interference caused by an interfering substance having oxidation and / or reduction activity at a potential overlapping with a redox peak of a current exhibited by the polyhydric phenol. The monitoring method of polyhydric phenols in any one of -3.

(請求項5)
前記干渉物質は、多価フェノールが示す電流の酸化還元ピークと重複する電位に酸化又は還元の何れかの活性のみを有し、前記干渉物質による干渉の排除は、酸化側又は還元側のピークのうち、前記干渉物質が活性を有さない側の電流のピークから多価フェノール類の濃度を測定することによってなされることを特徴とする請求項4記載の多価フェノール類のモニタリング方法。
(Claim 5)
The interfering substance has only an oxidation or reduction activity at a potential overlapping with the redox peak of the current exhibited by the polyhydric phenol, and exclusion of interference by the interfering substance is performed on the oxidation side or the reduction side peak. 5. The method for monitoring polyhydric phenols according to claim 4, wherein the polyphenols are measured by measuring the concentration of polyhydric phenols from the current peak on the side where the interfering substance has no activity.

(請求項6)
前記干渉物質は、前記炭素元素を含有する電極と白金族系金属電極の両方に酸化及び/又は還元の活性を有し、前記干渉物質による干渉の排除は、炭素元素を含有する検出電極と、白金族系金属電極とによって、特定の電極電位における電流のピークを測定し、各ピーク高の差から多価フェノール類の濃度を測定することによってなされることを特徴とする請求項4記載の多価フェノール類のモニタリング方法。
(Claim 6)
The interference substance has oxidation and / or reduction activity on both the electrode containing carbon element and the platinum group metal electrode, and the elimination of interference by the interference substance is a detection electrode containing carbon element; 5. The method according to claim 4, wherein a current peak at a specific electrode potential is measured with a platinum group metal electrode, and a concentration of polyhydric phenols is measured from a difference in peak heights. To monitor polyhydric phenols.

(請求項7)
前記多価フェノール類含有液は、果汁等の食品又は食品排液、焼酎粕等の発酵残渣であることを特徴とする請求項1〜6の何れかに記載の多価フェノール類のモニタリング方法。
(Claim 7)
The method for monitoring a polyhydric phenol according to any one of claims 1 to 6, wherein the polyhydric phenol-containing liquid is food such as fruit juice or a fermentation residue such as food waste liquid or shochu.

本発明の多価フェノール類のモニタリング方法によれば、多価フェノール類を含有する種々の液中における多価フェノール類の濃度を、正確且つリアルタイムにモニタリングできる。   According to the method for monitoring polyhydric phenols of the present invention, the concentration of polyhydric phenols in various liquids containing polyhydric phenols can be monitored accurately and in real time.

また、本発明の多価フェノール類のモニタリング方法によれば、干渉物質による干渉を排除して、より正確に、多価フェノール類の濃度のモニタリングができる。   Moreover, according to the monitoring method of polyhydric phenols of this invention, the density | concentration of polyhydric phenols can be monitored more correctly, eliminating the interference by an interference substance.

また、本発明の多価フェノール類のモニタリング方法によれば、多価フェノール類を含有する濃縮液の濃縮度を正確且つリアルタイムにモニタリングすることができ、濃縮液を目的の濃縮度とすることができる。   In addition, according to the method for monitoring polyhydric phenols of the present invention, the concentration of the concentrate containing the polyphenols can be monitored accurately and in real time, and the concentrate can be set to the target concentration. it can.

更にまた、公知の方法によって多価フェノール類含有液から多価フェノール類を有価物として回収する際に、本発明の多価フェノール類の濃度のモニタリング方法によって、あらかじめ多価フェノール類の濃度の測定を行っておくことで、回収量の予測を行うことができるため、効率的な多価フェノール類の回収が可能となる。   Furthermore, when the polyphenols are recovered as valuables from the polyhydric phenol-containing liquid by a known method, the polyphenols concentration is measured in advance by the polyphenols concentration monitoring method of the present invention. Since the recovery amount can be predicted by performing the step, the polyhydric phenols can be recovered efficiently.

実施例の結果を示す図The figure which shows the result of the example 実施例の結果を示す図The figure which shows the result of the example 実施例の結果を示す図The figure which shows the result of the example

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の多価フェノール類の濃度のモニタリング方法では、多価フェノール類含有液に含浸された炭素元素を含有する電極に印加する電位を変化させることによって生じる電流の酸化還元ピークから多価フェノール類含有液中の多価フェノール類を検出する。   In the method for monitoring the concentration of polyhydric phenols of the present invention, polyhydric phenols are obtained from the redox peak of the current generated by changing the potential applied to the electrode containing the carbon element impregnated in the polyhydric phenol-containing liquid. Polyhydric phenols in the contained liquid are detected.

前記多価フェノール類とは、分子内に複数のフェノール性ヒドロキシ基(ベンゼン環、ナフタレン環などの芳香環に結合したヒドロキシ基)を有する化合物を言い、例えば、フラバン類、カルコン類、フラバノン類、フラボン類、フラボノール類、フラバノノール類、フラバノール(カテキン)類、イソフラボン類、アントシアニジン類、スチルベノイド等のフラボノイド系や、リグナン、クマリン、クルクミン、クロロゲン酸、エラグ酸、タンニンの成分であるフェニルカルボン酸(没食子酸)等や、更に、アントラキノン類であって、酸化還元活性を有するものである。   The polyhydric phenols refer to compounds having a plurality of phenolic hydroxy groups (hydroxy groups bonded to an aromatic ring such as a benzene ring and a naphthalene ring) in the molecule, for example, flavans, chalcones, flavanones, Flavonoids such as flavones, flavonols, flavonols, flavanols (catechins), isoflavones, anthocyanidins, stilbenoids, lignans, coumarins, curcumins, chlorogenic acids, ellagic acids, tannins, phenylcarboxylic acids (gallic acid) Acid) and the like, and further, anthraquinones, which have redox activity.

前記多価フェノール類含有液とは、上記多価フェノール類を少なくとも含有する液であり、果汁等の食品又は食品排液、焼酎粕等の発酵残渣等を好ましく例示できる。   The polyhydric phenol-containing liquid is a liquid containing at least the polyhydric phenols, and preferable examples thereof include foods such as fruit juice, food waste liquids, and fermentation residues such as shochu.

前記炭素元素を含有する電極は、バインダーによって固化された炭素及び/又はグラファイト粉末からなることが好ましい。電極表面における炭素含有率が50%以上のものを好ましく用いることができる。   The electrode containing carbon element is preferably made of carbon and / or graphite powder solidified by a binder. Those having a carbon content of 50% or more on the electrode surface can be preferably used.

かかる炭素元素を含有する電極を検出電極に用いた場合、炭素に対して多価フェノール類が吸着し易い性質を有するため、電極上に多価フェノール類が密集した状態が形成され、電極反応を行う多価フェノール類の量が増大し、検出感度が飛躍的に向上する。   When an electrode containing such a carbon element is used as a detection electrode, it has a property that polyhydric phenols are easily adsorbed to carbon. The amount of polyphenols to be performed is increased, and the detection sensitivity is dramatically improved.

また、前記炭素元素を含有する電極に吸着する多価フェノール類の量は、吸着平衡によって、液中の多価フェノール類の量に伴って増減する。そのため、電極に吸着した多価フェノール類が示す電流の酸化還元ピークを検出することにより、液中の多価フェノール類の濃度をモニタリングすることが可能である。   In addition, the amount of polyhydric phenols adsorbed on the electrode containing carbon element varies with the amount of polyhydric phenols in the liquid due to adsorption equilibrium. Therefore, it is possible to monitor the concentration of polyhydric phenols in the liquid by detecting the redox peak of the current exhibited by the polyhydric phenols adsorbed on the electrode.

前記炭素元素を含有する電極に印加する電位を変化させる方法としては、電位を連続的に変化させる電位掃引法、電位を段階的に変化させる電位ステップ法の何れであってもよいが、電位掃引法が好ましく、例えば、サイクリックボルタンメトリー法を好ましく例示できる。   As a method of changing the potential applied to the electrode containing carbon element, either a potential sweep method in which the potential is continuously changed or a potential step method in which the potential is changed in steps may be used. For example, a cyclic voltammetry method can be preferably exemplified.

また、前記炭素元素を含有する電極に印加する電位は、水素電極基準で−1.2V〜+1.2V、好ましくは、−1.0V〜+1.0Vの範囲を電位掃引して変化させることが好ましい。多価フェノール類が示す電流のピークは、通常この範囲内の電位に検出される。   The potential applied to the carbon element-containing electrode can be changed by sweeping the potential in the range of −1.2 V to +1.2 V, preferably −1.0 V to +1.0 V, based on the hydrogen electrode. preferable. The peak of current exhibited by polyhydric phenols is usually detected at a potential within this range.

得られた酸化還元ピークのピーク高は、多価フェノール類の濃度と比例するため、検量線と参照する等によって、多価フェノール類の濃度を定量することができる。検量線を用いる際は、ピーク高の温度依存性を排除するために、同じ温度条件で作成されたものを用いることが好ましい。   Since the peak height of the obtained redox peak is proportional to the concentration of polyhydric phenols, the concentration of polyhydric phenols can be quantified by referring to a calibration curve or the like. When using a calibration curve, it is preferable to use one prepared under the same temperature conditions in order to eliminate the temperature dependence of the peak height.

また、ボルタングラムの微分曲線を用いることによって、ピークをより明確に測定することができる。これにより、濃度のモニタリングの正確さが更に向上する。   Moreover, a peak can be measured more clearly by using the differential curve of a voltammogram. This further improves the accuracy of concentration monitoring.

ところで、液中に、多価フェノール類が示す電流のピークと重複する電位に酸化及び/又は還元の活性を有する干渉物質が存在する場合、干渉物質の電極電子移動反応に起因する電流により、多価フェノール類が示す電流が干渉を受け、正確な測定が困難になる場合がある。このような場合は、干渉物質による干渉を排除して多価フェノール類の濃度を測定することが好ましい。以下、その具体的な方法について説明する。   By the way, when an interfering substance having oxidation and / or reduction activity exists at a potential overlapping with the current peak of the polyhydric phenol in the liquid, a large amount of electric current is caused by the current resulting from the electrode electron transfer reaction of the interfering substance. In some cases, currents represented by polyhydric phenols interfere with each other, making accurate measurement difficult. In such a case, it is preferable to measure the concentration of polyhydric phenols by eliminating interference caused by interfering substances. The specific method will be described below.

まず、前記干渉物質が、多価フェノール類が示す電流のピークと重複する電位に酸化又は還元の何れかの活性のみを有する場合が考えられる。このような干渉物質としては、例えば、酸化活性のみを示すアスコルビン酸が挙げられる。   First, it is conceivable that the interfering substance has only oxidation or reduction activity at a potential overlapping with the current peak exhibited by the polyhydric phenols. As such an interfering substance, for example, ascorbic acid showing only oxidation activity can be mentioned.

アスコルビン酸の酸化還元反応は非常に複雑であって、且つ酸化物(デヒドロアスコルビン酸)が高い安定性を示す。この酸化物を還元してアスコルビン酸に戻すことは容易ではない。このような特性を有するため、アスコルビン酸は電極電子移動反応において酸化側のみに電流のピークを示す。さらに、電位の掃引を繰り返した場合、電極近傍のアスコルビン酸は、酸化物に変化して濃度が減少し、これに伴い酸化に起因する電流のピークも減少する。このような酸化に起因する電流の変化は、濃縮度とは無関係に起こる。特に濃縮度の追跡には、濃縮液の濃度と電流のピークとの間に一定の相関関係が成り立つことが条件となる。しかし、アスコルビン酸のように酸化又は還元の何れかの活性のみを有する干渉物質は、濃縮による変化に加えて、上述したような、還元型又は酸化型の減少による変化も反映される。これが、多価フェノールが示す電流のピークと重複する電位に酸化又は還元の何れかの活性のみを有する干渉物質による干渉のメカニズムである。   The redox reaction of ascorbic acid is very complicated, and the oxide (dehydroascorbic acid) shows high stability. It is not easy to reduce this oxide back to ascorbic acid. Because of such characteristics, ascorbic acid shows a current peak only on the oxidation side in the electrode electron transfer reaction. Furthermore, when the potential sweep is repeated, the concentration of ascorbic acid in the vicinity of the electrode is changed to an oxide and the concentration thereof is reduced. Along with this, the peak of current due to oxidation is also reduced. This change in current due to oxidation occurs regardless of the concentration. In particular, the tracking of the degree of concentration requires that a certain correlation is established between the concentration of the concentrate and the current peak. However, an interfering substance having only either an oxidation or reduction activity, such as ascorbic acid, reflects a change caused by a reduction in reduced or oxidized form as described above, in addition to a change caused by concentration. This is a mechanism of interference by an interfering substance having only an oxidation or reduction activity at a potential overlapping with a current peak exhibited by polyhydric phenol.

このような干渉物質による干渉の排除は、観察された酸化側又は還元側のピークのうち、前記干渉物質が活性を有さない側の電流のピークから多価フェノール類の濃度を測定することによって行うことができる。   Such interference is eliminated by measuring the concentration of polyphenols from the observed peak on the oxidation side or reduction side on the side where the interference substance has no activity. It can be carried out.

一方、酸化還元活性の電極依存性に基づいて、上記の方法とは異なる方法によって、干渉物質による干渉の排除が可能である。この方法が適用される干渉物質は、炭素元素を含有する電極と白金族系金属電極の両方に酸化及び/又は還元の活性を有するものであり、上述のように酸化又は還元の何れかの活性のみを有する場合だけでなく、酸化及び還元の両方の活性を有する場合であっても、干渉の排除が可能である。   On the other hand, based on the electrode dependency of redox activity, interference by an interference substance can be eliminated by a method different from the above method. Interfering substances to which this method is applied are those that have oxidation and / or reduction activity on both the carbon element-containing electrode and the platinum group metal electrode, and as described above, either oxidation or reduction activity. It is possible to eliminate interference not only in the case of having only oxidant but also in the case of having both oxidation and reduction activities.

つまり、多価フェノール類は、炭素元素を含有する電極には活性を示すが、白金族系金属電極には不活性である。これに対して、干渉物質がこれら両方の電極に活性を有するものであれば、前記干渉物質による干渉の排除は、炭素元素を含有する検出電極と、白金族系金属電極とによって、特定の電極電位における電流のピークを測定し、各ピーク高の差が多価フェノール類の電流のピークに相当するため、これにより多価フェノール類の濃度を測定することによって行うことができる。   That is, polyhydric phenols are active for electrodes containing carbon elements, but are inactive for platinum group metal electrodes. On the other hand, if the interference substance has activity in both of these electrodes, the interference by the interference substance can be eliminated by using a detection electrode containing a carbon element and a platinum group metal electrode. The measurement can be carried out by measuring the current peak at the potential and measuring the concentration of the polyhydric phenols because the difference in peak height corresponds to the current peak of the polyhydric phenols.

本発明の多価フェノール類の濃度のモニタリング方法によれば、多価フェノール類を含有する液中の多価フェノール類の濃度を正確且つリアルタイムに測定することができる。   According to the method for monitoring the concentration of polyphenols of the present invention, the concentration of polyphenols in a liquid containing polyphenols can be measured accurately and in real time.

例えば、本発明の多価フェノール類の濃度のモニタリング方法を用いれば、多価フェノール類を含有する濃縮液中の多価フェノール類を高感度且つリアルタイムに検出できるため、濃縮過程において、多価フェノール類の濃度をモニタリングすることにより、濃縮度の制御を正確に行うことができ、濃縮液を目的の濃縮度とすることができる。   For example, if the method for monitoring the concentration of polyhydric phenols of the present invention is used, polyhydric phenols in a concentrated liquid containing polyhydric phenols can be detected with high sensitivity and in real time. By monitoring the concentration of the liquid, the concentration can be accurately controlled, and the concentrated solution can have the target concentration.

また、例えば、公知の方法によって多価フェノール類含有液から多価フェノール類を有価物として回収する際に、本発明の多価フェノール類の濃度のモニタリング方法によって、あらかじめ多価フェノール類の濃度の測定を行っておくことで、回収量の予測を行うことができるため、効率的な多価フェノール類の回収が可能となる。   Further, for example, when polyhydric phenols are recovered as valuables from a polyhydric phenol-containing liquid by a known method, the concentration of the polyhydric phenols is previously measured by the polyhydric phenol concentration monitoring method of the present invention. Since the recovery amount can be predicted by performing the measurement, the polyhydric phenols can be efficiently recovered.

以下に、本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

蒸発缶から分取した焼酎粕濃縮液について、サイクリックボルタンメトリー測定を行い、これに並行して、乾燥秤量法によって固形分濃度を測定した。   Cyclic voltammetry measurement was performed on the shochu concentrate collected from the evaporator, and in parallel, the solid content concentration was measured by a dry weighing method.

なお、サイクリックボルタンメトリー測定の条件は、15℃において、検出電極に円筒グラファイト(1mmφ)を用い、電位窓を−0.9V〜+0.9V(vs Ag/AgCl)(水素電極基準に換算すると約−0.7V〜約+1.1V)、掃引速度を0.1V/secとした。   The conditions for the cyclic voltammetry measurement are as follows. At 15 ° C., cylindrical graphite (1 mmφ) is used for the detection electrode, and the potential window is −0.9 V to +0.9 V (vs Ag / AgCl) (approximately converted to hydrogen electrode standard). −0.7 V to about +1.1 V), and the sweep speed was 0.1 V / sec.

濃縮後のボルタングラムを図1に示した。また、図1におけるボルタングラムの微分曲線を図2に示した。さらに、図1における還元側の電流のピーク高と固形分濃度との相関を図3に示した。   The voltammogram after concentration is shown in FIG. Moreover, the differential curve of the voltammogram in FIG. 1 is shown in FIG. Furthermore, the correlation between the peak height of the current on the reducing side in FIG. 1 and the solid content concentration is shown in FIG.

<評価>
図1に示した結果から、還元側の電流のピークにおけるピーク高が、固形分濃度に伴って大きくなることがわかる。
<Evaluation>
From the results shown in FIG. 1, it can be seen that the peak height at the current peak on the reduction side increases with the solid content concentration.

図2に示した結果から、還元側の電流のピークは、微分曲線として表すことによって、より明確になることが分かる。   From the results shown in FIG. 2, it can be seen that the peak of the current on the reduction side becomes clearer by representing it as a differential curve.

図3に示した結果から、還元側の電流のピーク高と固形分濃度との間に、比例関係が認められる。つまり、還元側の電流のピーク高から固形分濃度、つまり濃縮度をモニタリングすることが可能である。また、濃縮液中において、固形分濃度の変化は、多価フェノール類の濃度に比例するので、還元側の電流のピーク高と多価フェノール類の濃度についても比例関係にあることがわかる。さらに、測定された多価フェノール類のピーク高を、あらかじめ作成した検量線と参照することで、多価フェノール類の濃度を定量することも可能である。   From the result shown in FIG. 3, a proportional relationship is recognized between the peak height of the current on the reduction side and the solid content concentration. That is, it is possible to monitor the solid content concentration, that is, the concentration, from the peak height of the current on the reduction side. In the concentrated liquid, the change in the solid content concentration is proportional to the concentration of the polyhydric phenols. Therefore, it can be seen that the peak height of the current on the reduction side and the concentration of the polyhydric phenols are also proportional. Furthermore, the concentration of the polyhydric phenols can be quantified by referring to the measured peak height of the polyhydric phenols with a calibration curve prepared in advance.

Claims (7)

多価フェノール類含有液に含浸された炭素元素を含有する電極に印加する電位を変化させることによって生じる電流の酸化還元ピークから該多価フェノール類含有液中の多価フェノール類の濃度を測定することを特徴とする多価フェノール類のモニタリング方法。   The concentration of polyhydric phenols in the polyhydric phenol-containing liquid is measured from the redox peak of the current generated by changing the potential applied to the electrode containing the carbon element impregnated in the polyhydric phenol-containing liquid. A method for monitoring polyhydric phenols characterized by the above. 前記炭素元素を含有する電極は、バインダーによって固化された炭素及び/又はグラファイト粉末からなることを特徴とする請求項1記載の多価フェノール類のモニタリング方法。   2. The method for monitoring polyhydric phenols according to claim 1, wherein the electrode containing carbon element is made of carbon and / or graphite powder solidified by a binder. 前記炭素元素を含有する電極に印加する電位を、水素電極基準で最大−1.2V〜+1.2Vの範囲を電位掃引して変化させることを特徴とする請求項1又は2記載の多価フェノール類のモニタリング方法。   3. The polyhydric phenol according to claim 1, wherein the potential applied to the electrode containing carbon element is changed by sweeping a potential in a range of −1.2 V to +1.2 V at maximum with respect to a hydrogen electrode. Monitoring method. 前記多価フェノールが示す電流の酸化還元ピークと重複する電位に酸化及び/又は還元の活性を有する干渉物質による干渉を排除して多価フェノール類の濃度を測定することを特徴とする請求項1〜3の何れかに記載の多価フェノール類のモニタリング方法。   2. The concentration of polyhydric phenols is measured by eliminating interference caused by an interfering substance having oxidation and / or reduction activity at a potential overlapping with a redox peak of a current exhibited by the polyhydric phenol. The monitoring method of polyhydric phenols in any one of -3. 前記干渉物質は、多価フェノールが示す電流の酸化還元ピークと重複する電位に酸化又は還元の何れかの活性のみを有し、前記干渉物質による干渉の排除は、酸化側又は還元側のピークのうち、前記干渉物質が活性を有さない側の電流のピークから多価フェノール類の濃度を測定することによってなされることを特徴とする請求項4記載の多価フェノール類のモニタリング方法。   The interfering substance has only an oxidation or reduction activity at a potential overlapping with the redox peak of the current exhibited by the polyhydric phenol, and exclusion of interference by the interfering substance is performed on the oxidation side or the reduction side peak. 5. The method for monitoring polyhydric phenols according to claim 4, wherein the polyphenols are measured by measuring the concentration of polyhydric phenols from the current peak on the side where the interfering substance has no activity. 前記干渉物質は、前記炭素元素を含有する電極と白金族系金属電極の両方に酸化及び/又は還元の活性を有し、前記干渉物質による干渉の排除は、炭素元素を含有する検出電極と、白金族系金属電極とによって、特定の電極電位における電流のピークを測定し、各ピーク高の差から多価フェノール類の濃度を測定することによってなされることを特徴とする請求項4記載の多価フェノール類のモニタリング方法。   The interference substance has oxidation and / or reduction activity on both the electrode containing carbon element and the platinum group metal electrode, and the elimination of interference by the interference substance is a detection electrode containing carbon element; 5. The method according to claim 4, wherein a current peak at a specific electrode potential is measured with a platinum group metal electrode, and a concentration of polyhydric phenols is measured from a difference in peak heights. To monitor polyhydric phenols. 前記多価フェノール類含有液は、果汁等の食品又は食品排液、焼酎粕等の発酵残渣であることを特徴とする請求項1〜6の何れかに記載の多価フェノール類のモニタリング方法。   The method for monitoring a polyhydric phenol according to any one of claims 1 to 6, wherein the polyhydric phenol-containing liquid is food such as fruit juice or a fermentation residue such as food waste liquid or shochu.
JP2009262050A 2009-11-17 2009-11-17 Monitoring method of concentration of polyhydric phenol Pending JP2011106954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262050A JP2011106954A (en) 2009-11-17 2009-11-17 Monitoring method of concentration of polyhydric phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262050A JP2011106954A (en) 2009-11-17 2009-11-17 Monitoring method of concentration of polyhydric phenol

Publications (1)

Publication Number Publication Date
JP2011106954A true JP2011106954A (en) 2011-06-02

Family

ID=44230601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262050A Pending JP2011106954A (en) 2009-11-17 2009-11-17 Monitoring method of concentration of polyhydric phenol

Country Status (1)

Country Link
JP (1) JP2011106954A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103939A (en) * 1993-10-06 1995-04-21 Nec Corp Measuring method for biosensor
JPH09159643A (en) * 1995-12-04 1997-06-20 Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou Biosensor
JPH1019832A (en) * 1996-06-28 1998-01-23 Nok Corp Measuring method for concentration by using oxidoreductase immobilized biosensor
JPH11344462A (en) * 1998-01-27 1999-12-14 Matsushita Electric Ind Co Ltd Method for determining substrate
JP2000162176A (en) * 1998-09-22 2000-06-16 Omron Corp Measuring method and measuring device using biosensor
JP2000230918A (en) * 1999-02-10 2000-08-22 Matsushita Electric Ind Co Ltd Acidity-measuring apparatus and acidity measurement method
JP2001041920A (en) * 1998-10-20 2001-02-16 Matsushita Electric Ind Co Ltd Instrument for processing sample solution, and method for processing sample solution using the same
JP2006512585A (en) * 2002-10-30 2006-04-13 ライフスキャン・スコットランド・リミテッド Electrochemical sensor manufacturing process
JP2006517398A (en) * 2002-10-30 2006-07-27 ガリレオ ファーマシューティカルズ, インコーポレイティド Identification of therapeutic compounds based on physical-chemical properties
WO2009119117A1 (en) * 2008-03-27 2009-10-01 パナソニック株式会社 Measurement device, measurement system, and concentration measurement method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103939A (en) * 1993-10-06 1995-04-21 Nec Corp Measuring method for biosensor
JPH09159643A (en) * 1995-12-04 1997-06-20 Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou Biosensor
JPH1019832A (en) * 1996-06-28 1998-01-23 Nok Corp Measuring method for concentration by using oxidoreductase immobilized biosensor
JPH11344462A (en) * 1998-01-27 1999-12-14 Matsushita Electric Ind Co Ltd Method for determining substrate
JP2000162176A (en) * 1998-09-22 2000-06-16 Omron Corp Measuring method and measuring device using biosensor
JP2001041920A (en) * 1998-10-20 2001-02-16 Matsushita Electric Ind Co Ltd Instrument for processing sample solution, and method for processing sample solution using the same
JP2000230918A (en) * 1999-02-10 2000-08-22 Matsushita Electric Ind Co Ltd Acidity-measuring apparatus and acidity measurement method
JP2006512585A (en) * 2002-10-30 2006-04-13 ライフスキャン・スコットランド・リミテッド Electrochemical sensor manufacturing process
JP2006517398A (en) * 2002-10-30 2006-07-27 ガリレオ ファーマシューティカルズ, インコーポレイティド Identification of therapeutic compounds based on physical-chemical properties
WO2009119117A1 (en) * 2008-03-27 2009-10-01 パナソニック株式会社 Measurement device, measurement system, and concentration measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013007116; Paul A. Kilmartin: 'Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltam' Food Chemistry Vol.82/Iss.4, 2003, 501-512, Elsevier *
JPN6013007119; Marcela C. Rodriguez: 'Glassy carbon paste electrodes modified with polyphenol oxidase Analytical applications' Analytica Chimica Acta Vol.459/Iss.1, 20020517, 43-51, Elsevier *

Similar Documents

Publication Publication Date Title
Kilmartin Electrochemical detection of natural antioxidants: Principles and protocols
Keawkim et al. Determination of lead and cadmium in rice samples by sequential injection/anodic stripping voltammetry using a bismuth film/crown ether/Nafion modified screen-printed carbon electrode
Yin et al. Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection
Zuliani et al. A potentiometric disposable sensor strip for measuring pH in saliva
Dilgin et al. Amperometric determination of sulfide based on its electrocatalytic oxidation at a pencil graphite electrode modified with quercetin
Li et al. Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly (caffeic acid)-modified glassy carbon electrode
de Araújo et al. Voltammetric determination of tert-butylhydroquinone in biodiesel using a carbon paste electrode in the presence of surfactant
Siangproh et al. Reverse-phase liquid chromatographic determination of α-lipoic acid in dietary supplements using a boron-doped diamond electrode
WO2006134386A1 (en) Detection of phenols
Guascito et al. Te oxide nanowires as advanced materials for amperometric nonenzymatic hydrogen peroxide sensing
CN105588869B (en) A kind of method of aromatic pollution in hydrogen peroxide sersor quick detection waste water using nano-porous gold
Berrios et al. Electrooxidation of chlorophenols at a glassy carbon electrode in a pH 11 buffer
Chethana et al. Electrochemical oxidation and determination of ascorbic acid present in natural fruit juices using a methionine modified carbon paste electrode
Đurović et al. Electrochemical determination of vitamin D3 in pharmaceutical products by using boron doped diamond electrode
Piovesan et al. Electroanalytical determination of total phenolic compounds by square-wave voltammetry using a poly (vinylpyrrolidone)-modified carbon-paste electrode
Raymundo‐Pereira et al. Simultaneous detection of quercetin and carbendazim in wine samples using disposable electrochemical sensors
Saikrithika et al. Electrochemical detections of tea polyphenols: A review
Kuyumcu Savan Square wave voltammetric (SWV) determination of quercetin in tea samples at a single-walled carbon nanotube (SWCNT) modified glassy carbon electrode (GCE)
Temerk et al. Simultaneous anodic adsorptive stripping voltammetric determination of luteolin and 3‐hydroxyflavone in biological fluids using renewable pencil graphite electrodes
Macikova et al. Electrochemical behavior and determination of rutin on modified carbon paste electrodes
Khairy et al. Electroanalytical sensing of nitrite at shallow recessed screen printed microelectrode arrays
Jesadabundit et al. Simple and Cost‐Effective Electrochemical Approach for Monitoring of Vitamin K in Green Vegetables
Tümay et al. Direct and selective determination of p-coumaric acid in food samples via layered Nb4AlC3-MAX phase
Kilmartin et al. Polyaniline-based microelectrodes for sensing ascorbic acid in beverages
Abd El-Hady Selective and sensitive hydroxypropyl-beta-cyclodextrin based sensor for simple monitoring of (+)-catechin in some commercial drinks and biological fluids

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20120302

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120307

A711 Notification of change in applicant

Effective date: 20120625

Free format text: JAPANESE INTERMEDIATE CODE: A711

A977 Report on retrieval

Effective date: 20121207

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702