JP2011105553A - Method for hydrophobizing treatment of inorganic oxide fine particle, method for producing dispersion, inorganic oxide fine particle and dispersion thereof, and resin composition and application - Google Patents
Method for hydrophobizing treatment of inorganic oxide fine particle, method for producing dispersion, inorganic oxide fine particle and dispersion thereof, and resin composition and application Download PDFInfo
- Publication number
- JP2011105553A JP2011105553A JP2009263423A JP2009263423A JP2011105553A JP 2011105553 A JP2011105553 A JP 2011105553A JP 2009263423 A JP2009263423 A JP 2009263423A JP 2009263423 A JP2009263423 A JP 2009263423A JP 2011105553 A JP2011105553 A JP 2011105553A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic oxide
- oxide fine
- fine particles
- organic solvent
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 147
- 229910052809 inorganic oxide Inorganic materials 0.000 title claims abstract description 115
- 239000006185 dispersion Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000011342 resin composition Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000003960 organic solvent Substances 0.000 claims abstract description 106
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229920005989 resin Polymers 0.000 claims abstract description 27
- 239000011347 resin Substances 0.000 claims abstract description 27
- 238000002156 mixing Methods 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims description 81
- 125000004432 carbon atom Chemical group C* 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 17
- 238000001704 evaporation Methods 0.000 claims description 15
- 239000011259 mixed solution Substances 0.000 claims description 15
- 230000002209 hydrophobic effect Effects 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 239000004033 plastic Substances 0.000 claims description 13
- 229920003023 plastic Polymers 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 8
- 150000001735 carboxylic acids Chemical class 0.000 claims description 6
- 150000007942 carboxylates Chemical class 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 abstract description 139
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract description 22
- 239000002105 nanoparticle Substances 0.000 abstract description 7
- 230000004931 aggregating effect Effects 0.000 abstract description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 44
- 239000012756 surface treatment agent Substances 0.000 description 35
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 24
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 23
- 239000008346 aqueous phase Substances 0.000 description 22
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 21
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 21
- 239000002131 composite material Substances 0.000 description 14
- 239000007791 liquid phase Substances 0.000 description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- 239000010954 inorganic particle Substances 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000002612 dispersion medium Substances 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000004793 Polystyrene Substances 0.000 description 8
- 238000002296 dynamic light scattering Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- -1 phosphorous acid ester Chemical class 0.000 description 8
- 229920002223 polystyrene Polymers 0.000 description 8
- 230000005661 hydrophobic surface Effects 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000010533 azeotropic distillation Methods 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229920005990 polystyrene resin Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 235000002597 Solanum melongena Nutrition 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- SDGKUVSVPIIUCF-UHFFFAOYSA-N 2,6-dimethylpiperidine Chemical compound CC1CCCC(C)N1 SDGKUVSVPIIUCF-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920007962 Styrene Methyl Methacrylate Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001599 direct drying Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- WREDNSAXDZCLCP-UHFFFAOYSA-N methanedithioic acid Chemical compound SC=S WREDNSAXDZCLCP-UHFFFAOYSA-N 0.000 description 1
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 150000003566 thiocarboxylic acids Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、光学部品等への利用において有用な無機酸化物微粒子の疎水化処理方法と分散液の製造方法、および無機酸化物微粒子とその分散液、樹脂組成物並びに用途に関するものである。 The present invention relates to a method for hydrophobizing inorganic oxide fine particles and a method for producing a dispersion useful for use in optical parts and the like, and relates to inorganic oxide fine particles, a dispersion thereof, a resin composition, and an application.
近年、光学材料の研究が盛んに行われており、特にレンズ材料の分野においては高屈折性、低分散性(すなわち高いアッベ数)、耐熱性、透明性、易成形性、軽量性、耐湿性、耐薬品性・耐溶剤性等に優れた材料の開発が強く望まれている。プラスチックレンズは、ガラスなどの無機材料に比べ軽量で割れにくく、様々な形状に容易に加工できるため、眼鏡レンズやカメラ用レンズだけでなく近年ではディスプレイパネル用途等の特殊形状の光学材料にも急速に普及している。その一方、プラスチックはガラスに比べて一般に屈折率が低いため、光学部材を薄肉化するために素材自体を高屈折率化することが求められる。
このため、従来よりディスプレイパネル等の分野においては、酸化チタン、酸化ジルコニウム等の無機酸化物粒子を樹脂中に分散含有させて、高屈折率で透明性に優れた無機粒子複合化プラスチックを実現することが試みられている。たとえばZrO2は無機酸化物特有の高い屈折率を有しているため、高分子と複合化することで高屈折率光学材料への応用が期待されている。
In recent years, research on optical materials has been actively conducted, and particularly in the field of lens materials, high refractive index, low dispersibility (that is, high Abbe number), heat resistance, transparency, easy moldability, light weight, and moisture resistance. The development of materials with excellent chemical resistance and solvent resistance is strongly desired. Plastic lenses are lighter and harder to break than inorganic materials such as glass, and can be easily processed into various shapes. Therefore, not only spectacle lenses and camera lenses, but also optical materials with special shapes such as for display panels in recent years. Is popular. On the other hand, since plastics generally have a lower refractive index than glass, it is required to increase the refractive index of the material itself in order to reduce the thickness of the optical member.
For this reason, conventionally, in the field of display panels and the like, inorganic oxide particles such as titanium oxide and zirconium oxide are dispersed and contained in a resin to realize an inorganic particle composite plastic having a high refractive index and excellent transparency. It has been tried. For example, since ZrO 2 has a high refractive index peculiar to inorganic oxides, application to a high refractive index optical material is expected by compounding with a polymer.
高屈折率で透明性に優れた無機粒子複合化プラスチックを実現するためには、複合化した無機粒子による光の散乱を防止するため、複合化する無機粒子の大きさを可視光の波長に比べて十分に小さくする必要のあることが知られており、好適には20nm以下のサイズを有するZrO2等のナノ微粒子を高分子材料とナノレベルで複合化することで、透明性を維持しつつ高分子材料の屈折率を向上させることが可能であると期待されている。 In order to achieve a plastic compound with high refractive index and excellent transparency, in order to prevent light scattering by the composite inorganic particles, the size of the composite inorganic particles is compared with the wavelength of visible light. It is known that it is necessary to make it sufficiently small, and preferably, nano particles such as ZrO 2 having a size of 20 nm or less are composited with a polymer material at a nano level to maintain transparency. It is expected that the refractive index of the polymer material can be improved.
一方、当該20nm以下のサイズを有するZrO2等のナノ微粒子を、サイズの均一性を確保しつつ大量に製造する方法として従来知られる方法として、例えば引用文献1〜3に記載されるように、水相中にジルコニウムを含有する液体状の分子を溶解等させて、これをアルカリで中和させることで微細なジルコニウムの酸化物粒子(ジルコニア粒子)とする方法が一般的に知られている。このようにして得られるジルコニア粒子は、水相中に分散する分散相として存在し、高い親水性を有することが一般的である。このため、このような親水性のジルコニア粒子を凝集させることなく、均一に樹脂中に分散含有させるためには、その表面を疎水化することで有機溶媒や樹脂との親和性を高めるための処理が必要となる。 On the other hand, as a method conventionally known as a method for producing a large amount of nanoparticles such as ZrO 2 having a size of 20 nm or less while ensuring the uniformity of size, as described in, for example, cited documents 1 to 3, A method is generally known in which fine molecules of zirconium oxide (zirconia particles) are obtained by dissolving a liquid molecule containing zirconium in an aqueous phase and neutralizing it with an alkali. The zirconia particles obtained in this way are generally present as a dispersed phase dispersed in an aqueous phase and generally have high hydrophilicity. For this reason, in order to uniformly disperse the hydrophilic zirconia particles in the resin without aggregating them, a treatment for increasing the affinity with the organic solvent or the resin by hydrophobizing its surface Is required.
従来より、水相中に分散する分散相として存在する無機粒子を、たとえばトルエン等の有機溶媒や、樹脂中への均一分散を図るための方策として、たとえばシランカップリング剤や界面活性剤により無機粒子の表面を修飾すること(特許文献1参照)や、分散剤としてリン酸または亜リン酸のエステルを用いて分散液を調製すること(特許文献2)、さらにはフタル酸等の芳香族カルボン酸やプロピオン酸等の低級カルボン酸という有機酸により無機粒子の表面を修飾することで透明な樹脂との複合体を製造することが(特許文献3)が提案されている。 Conventionally, inorganic particles existing as a dispersed phase dispersed in an aqueous phase are made inorganic by using, for example, an organic solvent such as toluene or a uniform dispersion in a resin by using, for example, a silane coupling agent or a surfactant. Modifying the surface of the particles (see Patent Document 1), preparing a dispersion using phosphoric acid or phosphorous acid ester as a dispersant (Patent Document 2), and further aromatic carboxylic acids such as phthalic acid It has been proposed to produce a composite with a transparent resin by modifying the surface of inorganic particles with an organic acid such as a lower carboxylic acid such as acid or propionic acid (Patent Document 3).
しかしながら、これらの提案にもかかわらず、従来では、水中においてナノ分散しているZrO2等の無機酸化物微粒子を凝集させることなく、そのままのナノスケールの粒子としてトルエン等の有機溶媒に移動させ、これらを樹脂中に均一分散させるための、簡便で、確実な、効率に優れた手段は依然として見出されていないのが実情である。 However, in spite of these proposals, conventionally, inorganic oxide fine particles such as ZrO 2 nano-dispersed in water are agglomerated without being agglomerated as they are, as nanoscale particles, transferred to an organic solvent such as toluene, In fact, no simple, reliable, and efficient means for uniformly dispersing these in the resin has yet been found.
本発明は、上記のとおりの背景から、水中においてナノ分散しているZrO2等の無機酸化物微粒子を凝集させることなく疎水化し、トルエン等の有機溶媒中で、例えば30nm以下、更にはは20nm以下のナノスケールの粒子として存在可能とすることにより、ZrO2等の無機酸化物微粒子を樹脂中に均一分散させる簡便で、確実な、効率に優れた手段を提供し、また、これにより高い屈折率を有する光学部材、光学部品を提供することを課題としている。 From the background as described above, the present invention hydrophobizes inorganic oxide fine particles such as ZrO 2 nano-dispersed in water without agglomeration, and in an organic solvent such as toluene, for example, 30 nm or less, further 20 nm. By making it possible to exist as the following nano-scale particles, it provides a simple, reliable and efficient means for uniformly dispersing inorganic oxide fine particles such as ZrO 2 in the resin, and also provides high refraction. It is an object to provide an optical member and an optical component having a high rate.
本発明は以下のことを特徴としている。 The present invention is characterized by the following.
第1:無機酸化物微粒子を水中に分散してなる無機酸化物微粒子の水分散液に対し、炭素数4以上のカルボン酸を混合して混合液にする工程と、当該混合液から水を除去する工程とを含むことを特徴とする無機酸化物微粒子の疎水化処理方法。 1: Mixing a carboxylic acid having 4 or more carbon atoms into an aqueous dispersion of inorganic oxide fine particles obtained by dispersing inorganic oxide fine particles in water to remove the water from the mixture A process for hydrophobizing inorganic oxide fine particles, comprising the step of:
第2:前記混合液から水を除去する工程は、当該混合液に非水溶性有機溶媒と両溶性有機溶媒とを混合することで前記無機酸化物微粒子を懸濁する水と非水溶性有機溶媒と両溶性有機溶媒とを含む混合溶液を形成する工程と、当該混合溶液から水と両溶性有機溶媒とを蒸発除去する工程とを含むことを特徴とする上記第1の無機酸化物微粒子の疎水化処理方法。 2nd: The process of removing water from the said liquid mixture is the water and water-insoluble organic solvent which suspend the said inorganic oxide microparticles | fine-particles by mixing a water-insoluble organic solvent and an amphoteric organic solvent in the said liquid mixture. And forming the mixed solution containing the water-soluble organic solvent and evaporating and removing water and the water-soluble organic solvent from the mixed solution. Processing method.
第3:前記非水溶性有機溶媒が芳香族炭化水素の少なくとも1種であり、前記両溶性有機溶媒がアルコールの少なくとも1種であることを特徴とする上記第2の無機酸化物微粒子の疎水化処理方法。 Third: the hydrophobicity of the second inorganic oxide fine particles, wherein the water-insoluble organic solvent is at least one kind of aromatic hydrocarbon, and the amphoteric organic solvent is at least one kind of alcohol. Processing method.
第4:前記混合液から水を除去する工程を行った後、更に非水溶性有機溶媒を蒸発除去する工程を含むことを特徴とする上記第2または第3の無機酸化物微粒子の疎水化処理方法。 Fourth: Hydrophobizing treatment of the second or third inorganic oxide fine particles described above, further comprising a step of evaporating and removing the water-insoluble organic solvent after performing the step of removing water from the mixed solution Method.
第5:前記混合液から水を除去する工程は、当該混合液を凍結乾燥して水を除去する工程であることを特徴とする上記第1の無機酸化物微粒子の疎水化処理方法。 Fifth: The step of removing water from the mixed solution is a step of removing water by freeze-drying the mixed solution, wherein the first inorganic oxide fine particle hydrophobizing method is characterized.
第6:上記第1から第5のいずれかの無機酸化物微粒子の疎水化処理方法により疎水化された無機酸化物微粒子を、芳香族炭化水素の少なくとも1種を含む有機溶媒に分散させることを特徴とする無機酸化物微粒子分散液の製造方法。 Sixth: Dispersing the inorganic oxide fine particles hydrophobized by any one of the first to fifth inorganic oxide fine particles in an organic solvent containing at least one aromatic hydrocarbon. A method for producing a featured inorganic oxide fine particle dispersion.
第7:前記有機溶媒が重合性化合物を含むことを特徴とする上記第6の無機酸化物微粒子分散液の製造方法。 Seventh: The sixth method for producing an inorganic oxide fine particle dispersion, wherein the organic solvent contains a polymerizable compound.
第8:上記第7の方法により製造された無機酸化物微粒子分散液に含まれる重合性化合物を重合硬化させることを特徴とする無機酸化物微粒子分散樹脂組成物の製造方法。 Eighth: A method for producing an inorganic oxide fine particle-dispersed resin composition comprising polymerizing and curing a polymerizable compound contained in the inorganic oxide fine particle dispersion produced by the seventh method.
第9:粒子の表面に炭素数4以上のカルボン酸がカルボキシレートとして吸着していることを特徴とする無機酸化物微粒子。 Ninth: Inorganic oxide fine particles, wherein a carboxylic acid having 4 or more carbon atoms is adsorbed as a carboxylate on the surface of the particles.
第10:上記第9の無機酸化物微粒子が有機溶媒中に分散して存在することを特徴とする無機酸化物微粒子分散液。 Tenth: An inorganic oxide fine particle dispersion characterized in that the ninth inorganic oxide fine particles are dispersed in an organic solvent.
第11:有機溶媒が芳香族炭化水素の少なくとも1種であることを特徴とする上記第10の無機酸化物微粒子分散液。 Eleventh: The tenth inorganic oxide fine particle dispersion, wherein the organic solvent is at least one of aromatic hydrocarbons.
第12:前記有機溶媒が重合性化合物の少なくとも1種を含むことを特徴とする上記第9又は10のいずれかの無機酸化物微粒子分散液。 Twelfth: The inorganic oxide fine particle dispersion liquid according to any one of the ninth and tenth aspects, wherein the organic solvent contains at least one polymerizable compound.
第13:上記第9の無機酸化物微粒子が樹脂中に分散含有されていることを特徴とする無機酸化物微粒子分散樹脂組成物。 Thirteenth: An inorganic oxide fine particle-dispersed resin composition, wherein the ninth inorganic oxide fine particles are dispersed and contained in a resin.
第14:上記第13の樹脂組成物がその構成の少なくとも一部とされていることを特徴とするプラスチック部材。 14th: A plastic member characterized in that the 13th resin composition is at least a part of its structure.
第15:上記第14のプラスチック部材が少なくともその構成の一部とされていることを特徴とする光学部品。 Fifteenth: An optical component in which the fourteenth plastic member is at least a part of its configuration.
本発明においては平均粒径が例えば30nm以下の無機酸化物微粒子が疎水性表面処理剤としての炭素数4以上のカルボン酸という特定の化合物によって疎水化表面処理を行うことが可能となる。これによって、ZrO2等の酸化物のナノスケールの微粒子を凝集することなく一次粒子の状態でトルエン等の有機溶媒に均一分散させることが可能となる。 In the present invention, the inorganic oxide fine particles having an average particle diameter of, for example, 30 nm or less can be subjected to a hydrophobic surface treatment with a specific compound of carboxylic acid having 4 or more carbon atoms as a hydrophobic surface treatment agent. Thus, nanoscale fine particles of oxide such as ZrO 2 can be uniformly dispersed in an organic solvent such as toluene in the form of primary particles without agglomeration.
また、このトルエン等の有機溶媒にZrO2等の酸化物のナノスケールの微粒子が均一分散した分散液を用いて、重合性化合物を混合し重合硬化させることによってナノ微粒子のナノ分散複合化された樹脂が形成される。 In addition, by using a dispersion in which nanoscale fine particles of oxide such as ZrO 2 were uniformly dispersed in an organic solvent such as toluene, the polymerizable compound was mixed and polymerized to form a nanodispersed composite of nanoparticle. A resin is formed.
すなわち、本発明によって、水中においてナノ分散しているZrO2等の無機酸化物微粒子を疎水化し、トルエン等の有機溶媒に微細に分散させることが可能となるため、無機酸化物微粒子を樹脂中に均一分散させることが可能となって、簡便で、確実な、効率に優れた新しい技術手段が提供され、また、これにより高い屈折率を有する光学部材、光学部品が提供される。 That is, according to the present invention, inorganic oxide fine particles such as ZrO 2 nano-dispersed in water can be hydrophobized and finely dispersed in an organic solvent such as toluene. It is possible to uniformly disperse, and a new technical means that is simple, reliable, and efficient is provided, and an optical member and an optical component having a high refractive index are thereby provided.
本発明が対象としているナノ微粒子を構成する無機酸化物粒子は、その平均粒径が例えば30nm、更には20nm以下のナノスケールの範囲にあり、水相中に分散している無機酸化物粒子である。無機酸化物の種類としては、透明性の高屈折率の無機粒子・樹脂複合体に用いることのできるZrO2(酸化ジルコニウム)、TiO2(酸化チタン)、SnO2(酸化スズ)、SiO2(酸化ケイ素)等の各種のものを例示することができる。なかでも、本発明においては、光学部材、光学部品としての利用の観点からZrO2を好適なものの一つとして挙げることができる。 The inorganic oxide particles constituting the nano fine particles targeted by the present invention are inorganic oxide particles whose average particle diameter is in the nanoscale range of, for example, 30 nm or even 20 nm or less and dispersed in the aqueous phase. is there. As the kind of inorganic oxide, ZrO 2 (zirconium oxide), TiO 2 (titanium oxide), SnO 2 (tin oxide), SiO 2 (which can be used for transparent high refractive index inorganic particle / resin composites are used. Various examples such as silicon oxide) can be exemplified. Among them, in the present invention, mention may be made of an optical member, the ZrO 2 in terms of the use as an optical component as a preferred one.
これら本発明の対象となる無機酸化物微粒子は、水相中に分散しているものであれば、その製造法や成分、結晶構造等については特に限定されることはない。 As long as these inorganic oxide fine particles to be an object of the present invention are dispersed in an aqueous phase, the production method, components, crystal structure and the like are not particularly limited.
これら本発明に係る疎水化処理方法の対象となる無機酸化物微粒子は、水相中に分散しているものであれば、その製造法や成分、結晶構造等については特に限定されることはない。なお、本発明において「微粒子」と記載される粒子としては、動的光散乱(DLS)により得られる平均粒径が30nm以下のものを典型とするが、本発明に係る疎水化処理により有機溶媒中で沈殿を生じることなく均一に分散できる程度の粒径の粒子であれば、本発明が適用可能であることはいうまでもない。 As long as the inorganic oxide fine particles to be subjected to the hydrophobization treatment method according to the present invention are dispersed in the aqueous phase, the production method, components, crystal structure, and the like are not particularly limited. . The particles described as “fine particles” in the present invention are typically those having an average particle diameter of 30 nm or less obtained by dynamic light scattering (DLS). Needless to say, the present invention can be applied to particles having a particle size that can be uniformly dispersed without causing precipitation.
本発明は、以上のとおり、親水性を有して水相中に分散している無機酸化物微粒子の表面を、水相中、又は、水相から有機溶媒に置換する過程において、所定の疎水化表面処理剤により修飾することで疎水化して、有機溶媒や樹脂等の有機物との親和性を向上するものである。この場合の疎水化表面処理剤は、本発明においては炭素数4以上の脂肪酸カルボン酸であることを必須とし、かつ、本質的な特徴としている。 As described above, the present invention has a predetermined hydrophobicity in the process of replacing the surface of the inorganic oxide fine particles having hydrophilicity and dispersed in the aqueous phase with the organic solvent in the aqueous phase or from the aqueous phase. It is hydrophobized by modification with a chemical surface treatment agent to improve the affinity with organic substances such as organic solvents and resins. In this case, the hydrophobic surface treating agent in this case is essential to be a fatty acid carboxylic acid having 4 or more carbon atoms, and is an essential feature.
ここで、炭素数4以上のカルボン酸としては、炭素数4〜18の飽和または不飽和のカルボン酸が挙げられる。たとえばこれらのカルボン酸としては、ブタン酸、イソブタン酸、メタクリル酸、ヘキサン酸、オクタン酸、オレイン酸、リノール酸、ラウリン酸等の一価の脂肪酸カルボン酸が例示される。これらは単一で用いられてもよく、また、複数種のものを混合して用いてもよい。特に、疎水化処理後の無機酸化物微粒子を樹脂に分散して用いる場合には、当該樹脂の種類等に応じて、当該樹脂との親和性を向上しやすいカルボン酸を適宜選択して用いることが望ましい。また、カルボン酸のカルボキシル基を構成する酸素原子を硫黄原子で置換した炭素数4以上のチオカルボン酸、炭素数4以上のジチオカルボン酸を用いることで、カルボン酸を用いる場合より屈折率の高い無機酸化物微粒子とすることができる。 Here, examples of the carboxylic acid having 4 or more carbon atoms include saturated or unsaturated carboxylic acids having 4 to 18 carbon atoms. Examples of these carboxylic acids include monovalent fatty acid carboxylic acids such as butanoic acid, isobutanoic acid, methacrylic acid, hexanoic acid, octanoic acid, oleic acid, linoleic acid, and lauric acid. These may be used alone, or a plurality of types may be mixed and used. In particular, when the inorganic oxide fine particles after hydrophobization treatment are used dispersed in a resin, a carboxylic acid that easily improves the affinity with the resin should be selected and used according to the type of the resin. Is desirable. Further, by using a thiocarboxylic acid having 4 or more carbon atoms in which an oxygen atom constituting the carboxyl group of the carboxylic acid is substituted with a sulfur atom, or a dithiocarboxylic acid having 4 or more carbon atoms, an inorganic material having a higher refractive index than that in the case of using the carboxylic acid. Fine oxide particles can be obtained.
水相に分散する親水性の無機酸化物微粒子に対して炭素数4以上の脂肪酸カルボン酸を作用させることにより、疎水化して有機溶媒に対して親和性を生じる直接の原因については明らかではないが、以下に示す赤外吸収の結果などから、当該炭素数4以上のカルボン酸が無機酸化物微粒子の表面に吸着することにより、疎水化を生じるものと考えられる。 Although it is not clear about the direct cause of causing affinity for organic solvents by hydrophobizing the fatty acid carboxylic acid having 4 or more carbon atoms to the hydrophilic inorganic oxide fine particles dispersed in the aqueous phase. From the results of infrared absorption shown below, it is considered that the carboxylic acid having 4 or more carbon atoms is adsorbed on the surface of the inorganic oxide fine particles to cause hydrophobicity.
また、上記カルボン酸による無機酸化物微粒子の表面修飾においては、一般に表面修飾に用いる疎水化表面処理剤としてのカルボン酸の量が増加するに従って有機溶媒や樹脂組成物への親和性が高まる傾向が見られた。その一方で、過剰な修飾を行った場合には、各分散粒子における無機酸化物の体積割合が減少し、光学部材として樹脂組成物に分散させた場合の屈折率の向上効果が低下する。このため、修飾に用いるカルボン酸の量は、樹脂の高屈折率化を主目的とする場合には、使用する樹脂組成物に応じて均一な分散を行うために必要最小限の量とすることが好ましい。典型的には、修飾処理される無機酸化物微粒子に対して30質量%以下、より好ましくは20質量%以下、さらには10質量%以下の質量のカルボン酸を使用することが高屈折率の観点からは好ましい。一方、その用途に応じて高い透明性を確実に得るためには、修飾処理される無機酸化物微粒子に対して100質量%程度のカルボン酸を使用した疎水化処理を行うことで、確実な疎水化処理が可能となる。 In addition, in the surface modification of the inorganic oxide fine particles with the carboxylic acid, the affinity to the organic solvent or the resin composition tends to increase as the amount of the carboxylic acid as a hydrophobizing surface treatment agent generally used for the surface modification increases. It was seen. On the other hand, when excessive modification is performed, the volume ratio of the inorganic oxide in each dispersed particle is reduced, and the effect of improving the refractive index when dispersed in the resin composition as an optical member is lowered. For this reason, the amount of carboxylic acid used for modification should be the minimum amount necessary for uniform dispersion depending on the resin composition used when the main purpose is to increase the refractive index of the resin. Is preferred. Typically, the use of a carboxylic acid having a mass of 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less based on the inorganic oxide fine particles to be modified is a viewpoint of high refractive index. Is preferable. On the other hand, in order to reliably obtain high transparency according to the application, a hydrophobic treatment using about 100% by mass of carboxylic acid is performed on the inorganic oxide fine particles to be modified, thereby ensuring a reliable hydrophobicity. Can be processed.
本発明におけるカルボン酸による無機酸化物微粒子の表面修飾は、以下のような工程により行われる。すなわち、平均粒径20nm程度以下の親水性の無機酸化物微粒子が分散した透明の水分散液中に、疎水化表面処理剤として適量の炭素数4以上の脂肪酸カルボン酸を混合し攪拌することにより分散液に白濁を生じさせることができる。この白濁は、親水性を有していた無機酸化物微粒子の表面が疎水化されて粒子と水相間に界面を生じることに伴うものであり、無機酸化物微粒子が疎水化されたことを示すものである。 The surface modification of the inorganic oxide fine particles with carboxylic acid in the present invention is performed by the following steps. That is, by mixing and stirring an appropriate amount of a fatty acid carboxylic acid having 4 or more carbon atoms as a hydrophobizing surface treatment agent in a transparent aqueous dispersion in which hydrophilic inorganic oxide fine particles having an average particle size of about 20 nm or less are dispersed. White turbidity can be generated in the dispersion. This white turbidity is caused by the surface of the inorganic oxide fine particles having hydrophilicity being hydrophobized to form an interface between the particles and the aqueous phase, which indicates that the inorganic oxide fine particles have been hydrophobized. It is.
疎水化した無機酸化物微粒子を有機溶媒や樹脂組成物に分散させるためには、上記白濁した分散液から水を除去する必要がある。本発明においては、最終的に樹脂組成物に均一分散させるための中間的な手段として、(1)上記疎水化した無機酸化物微粒子が懸濁している分散液を凍結乾燥させて分散液中の無機酸化物微粒子を乾燥させて分離する方法、及び、(2)疎水化した無機酸化物微粒子が懸濁している分散液に、所定量の非水溶性有機溶媒と両溶性有機溶媒とを混合して、水と非水溶性有機溶媒と両溶性有機溶媒とからなる混合溶液を媒質として無機酸化物微粒子が懸濁している分散液とし、その後に主に水と両溶性有機溶媒とを共沸により除去することで、非水溶性有機溶媒に疎水化された無機酸化物微粒子が透明に均一分散した分散液を得る方法、及び、(3)上記で得られた非水溶性有機溶媒に無機酸化物微粒子が透明に均一分散した分散液から更に非水溶性有機溶媒を蒸発除去して無機酸化物微粒子を分離取得する方法のいずれかを用いることが好ましいことが明らかになった。 In order to disperse the hydrophobized inorganic oxide fine particles in an organic solvent or a resin composition, it is necessary to remove water from the cloudy dispersion. In the present invention, as an intermediate means for finally uniformly dispersing in the resin composition, (1) a dispersion in which the hydrophobic inorganic oxide fine particles are suspended is freeze-dried and A method of drying and separating inorganic oxide fine particles, and (2) mixing a predetermined amount of a water-insoluble organic solvent and an amphoteric organic solvent in a dispersion in which the hydrophobized inorganic oxide fine particles are suspended. Then, a mixed solution of water, a water-insoluble organic solvent and an amphoteric organic solvent is used as a medium to form a dispersion in which inorganic oxide fine particles are suspended, and then water and the amphoteric organic solvent are mainly azeotropically distilled. A method for obtaining a dispersion in which inorganic oxide fine particles hydrophobized in a water-insoluble organic solvent are uniformly dispersed transparently, and (3) the inorganic oxide in the water-insoluble organic solvent obtained above. Non-dispersion from a dispersion in which fine particles are uniformly dispersed in a transparent manner It is preferable to use any of the methods the soluble organic solvent removed by evaporation to separate acquires inorganic oxide particles revealed.
つまり、上記(1)、(3)の方法により得られる無機酸化物微粒子は、適切な疎水化処理が行われていることを条件に、その後にトルエンや、スチレン等の有機溶媒に対して容易に均一分散して透明の分散液を生じることから、疎水化処理された無機酸化物微粒子を有機溶媒を含む適宜の樹脂組成物と混合して重合等を行うことにより、無機酸化物微粒子が均一分散した無機粒子複合化プラスチックを得ることができる。また、(2)の方法により得られる分散液に樹脂組成物を混合する等して適宜重合等を行うことによっても、無機酸化物微粒子が均一分散した無機粒子複合化プラスチックを得ることができる。 In other words, the inorganic oxide fine particles obtained by the above methods (1) and (3) can be easily applied to an organic solvent such as toluene or styrene on the condition that an appropriate hydrophobic treatment is performed. The inorganic oxide fine particles are uniformly dispersed by mixing the hydrophobic inorganic oxide fine particles with an appropriate resin composition containing an organic solvent and performing polymerization or the like. A dispersed inorganic particle composite plastic can be obtained. Also, an inorganic particle composite plastic in which inorganic oxide fine particles are uniformly dispersed can be obtained by appropriately performing polymerization or the like by mixing the resin composition with the dispersion obtained by the method (2).
上記(1)の方法によれば、非常に簡便に水相中に存在する親水性の無機酸化物微粒子を疎水化することが可能であり、凍結乾燥により得られた疎水化処理された無機酸化物微粒子は、その後に適宜の有機溶媒や樹脂組成物に均一にナノスケールで分散させることが可能となる。(1)の方法により無機酸化物微粒子の疎水化を行うためには、使用する疎水化表面処理剤の水相中への分散性等を考慮して、疎水化表面処理剤の混合量を定めることが望ましい。典型的には、修飾処理される水相中に分散した無機酸化物微粒子に対して30〜100質量%程度のカルボン酸を混合して疎水化処理を行うことで、実効的な疎水化処理が可能となる。
一方、(2)、(3)の方法においては、特に少量の疎水化表面処理剤によっても良好な疎水化を効率的に行うことが可能である点で望ましい。疎水化処理に非水溶性有機溶媒と両溶性有機溶媒を共に用いる(2)、(3)の方法により効率的な疎水化処理の行える理由は明らかでないが、非水溶性有機溶媒と両溶性有機溶媒の存在により、分散液中において疎水化表面処理剤がより均一に存在すること、及び、無機酸化物微粒子の表面に存在する水相のバリアが消滅して、疎水化表面処理剤が無機酸化物微粒子表面に効率的に供給されることが考えられる。
According to the above method (1), it is possible to hydrophobize hydrophilic inorganic oxide fine particles present in the aqueous phase very easily, and the hydrophobized inorganic oxide obtained by lyophilization. The fine particles can then be uniformly dispersed on a nanoscale in an appropriate organic solvent or resin composition. In order to hydrophobize the inorganic oxide fine particles by the method (1), the mixing amount of the hydrophobized surface treatment agent is determined in consideration of the dispersibility of the hydrophobized surface treatment agent used in the aqueous phase. It is desirable. Typically, an effective hydrophobization treatment can be achieved by performing a hydrophobization treatment by mixing about 30 to 100% by mass of a carboxylic acid with respect to inorganic oxide fine particles dispersed in an aqueous phase to be modified. It becomes possible.
On the other hand, the methods (2) and (3) are desirable in that good hydrophobicity can be efficiently performed even with a small amount of a hydrophobic surface treatment agent. The reason why efficient hydrophobic treatment can be performed by the methods (2) and (3) using both a water-insoluble organic solvent and an amphoteric organic solvent for the hydrophobic treatment is not clear. Due to the presence of the solvent, the hydrophobized surface treatment agent is more uniformly present in the dispersion, and the water phase barrier existing on the surface of the inorganic oxide fine particles disappears, so that the hydrophobized surface treatment agent is inorganic oxidized. It can be considered that the fine particles are efficiently supplied to the surface of the fine particles.
上記において、両溶性有機溶媒とは、水溶性であるとともに、非水溶性有機溶媒との相溶性をも有していることを意味している。このような両溶性有機溶媒としては、その代表例としては、たとえば、メタノール、エタノール、プロパノール、ブタノール等のアルコールや、アセトン等が好適なものとして挙げられる。これらは単一もしくは複数種のものとして用いられてもよい。使用される両溶性有機溶媒は、主に水と非水溶性有機溶媒とを含む均一な液相を生成するため、及び、水と共沸することにより液相から水分を除去する目的で使用される。このため、少量で水と非水溶性有機溶媒とを含む均一な液相を生じること、及び、比較的低い沸点を有するものが好ましいため、使用する非水溶性有機溶媒の種類等に応じて実験的に決定することが望ましいが、一般には水との相溶性の高い炭素数が3以下の比較的分子の小さなアルコールや、アセトン等が好ましく用いられる。 In the above, the amphoteric organic solvent means that it is water-soluble and has compatibility with a water-insoluble organic solvent. Typical examples of such an amphoteric organic solvent include alcohols such as methanol, ethanol, propanol and butanol, and acetone. These may be used as single or plural kinds. The amphoteric organic solvent used is mainly used to produce a uniform liquid phase containing water and a water-insoluble organic solvent and to remove water from the liquid phase by azeotroping with water. The Therefore, it is preferable to produce a uniform liquid phase containing water and a water-insoluble organic solvent in a small amount and to have a relatively low boiling point. In general, alcohol having a relatively small molecule having 3 or less carbon atoms having high compatibility with water, acetone, or the like is preferably used.
また、非水溶性有機溶媒としては、その代表例として、たとえばトルエン、キシレン、ベンゼン等の芳香族炭化水素、シクロヘキサン等の脂環式炭化水素等が好適なものとして挙げられる。これらは単一もしくは複数種のものを混合して用いてもよい。非水溶性有機溶媒は、疎水化された無機酸化物微粒子を分散保持するためのものであり、水の除去の際に過剰な蒸発を生じない低蒸気圧のものが好ましい。また、その後に目的とする樹脂化合物との相溶性が高いものを選択して用いることが好ましい。また、適切な条件とすることで重合して樹脂となるスチレン等を非水溶性有機溶媒として用いることも可能である。 In addition, typical examples of the water-insoluble organic solvent include aromatic hydrocarbons such as toluene, xylene, and benzene, and alicyclic hydrocarbons such as cyclohexane. These may be used singly or in combination. The water-insoluble organic solvent is for dispersing and holding the hydrophobized inorganic oxide fine particles, and preferably has a low vapor pressure that does not cause excessive evaporation when water is removed. Moreover, it is preferable to select and use a thing with high compatibility with the target resin compound after that. Moreover, it is also possible to use styrene etc. which become a resin by polymerization under appropriate conditions as the water-insoluble organic solvent.
また、無機酸化物微粒子の水分散液については、微細な無機酸化物微粒子が均一に分散可能である範囲内において、なるべく高濃度の無機酸化物微粒子を含むものが、処理効率の観点から望ましい。一般的には、無機酸化物微粒子の含有量が5〜50質量%の範囲となることを目安とすることができる。 As for the aqueous dispersion of inorganic oxide fine particles, it is desirable from the viewpoint of processing efficiency that the inorganic oxide fine particles contain as high a concentration as possible within the range in which the fine inorganic oxide fine particles can be uniformly dispersed. Generally, it can be taken as a standard that the content of inorganic oxide fine particles is in the range of 5 to 50% by mass.
水分散液と非水溶性有機溶媒の混合割合について、上記の通り、非水溶性有機溶媒は疎水処理された無機酸化物微粒子を分散保持するためのものであり、その目的を達することが可能な最低量以上にする必要がある。一方、過剰量の非水溶性有機溶媒は、樹脂組成物中の無機酸化物微粒子の配合割合を低下させることになるため望ましくない。具体的には、例えば、無機酸化物微粒子としてジルコニア粒子を使用し、非水溶性有機溶媒としてトルエンを用いる場合には、使用する水分散液中に含まれるジルコニア粒子1gあたり0.3〜5ml程度が好適である。なお、水の共沸除去の際に非水溶性有機溶媒が蒸発する場合には、適宜非水溶性有機溶媒を追加することも可能である。 Regarding the mixing ratio of the aqueous dispersion and the water-insoluble organic solvent, as described above, the water-insoluble organic solvent is for dispersing and holding the hydrophobic-treated inorganic oxide fine particles, and can achieve its purpose. Must be above the minimum amount. On the other hand, an excessive amount of the water-insoluble organic solvent is undesirable because it reduces the blending ratio of the inorganic oxide fine particles in the resin composition. Specifically, for example, when zirconia particles are used as the inorganic oxide fine particles and toluene is used as the water-insoluble organic solvent, about 0.3 to 5 ml per gram of zirconia particles contained in the aqueous dispersion to be used. Is preferred. In addition, when a water-insoluble organic solvent evaporates at the time of azeotropic removal of water, it is also possible to add a water-insoluble organic solvent suitably.
上記両溶性有機溶媒は、当該水分散液と非水溶性有機溶媒を共に溶解することで、その混合溶液である液相を生成可能な量以上の割合で用いることが望ましい。一方、過剰の量を用いた場合には、水の共沸除去の際に水の蒸気圧を過剰に低下させる結果となるために望ましくない。なお、水の共沸除去を複数回に分けて行う場合には、必ずしも各回の共沸除去において全部の水分散液と非水溶性有機溶媒共に溶解する必要はなく、最終的に残留する全ての水を溶解する量の両溶性有機溶媒が混合されることで、良好な疎水化処理が可能である。両溶性有機溶媒の具体的な使用量は、使用する非水溶性有機溶媒の種類や使用量により決定されるが、例えば、水分散液が10ml、非水溶性有機溶媒としてのトルエンが1ml程度である場合において、両溶性有機溶媒としてメタノールを用いる場合、概ね20ml〜100ml程度のメタノールを使用することが好ましい。 The amphoteric organic solvent is desirably used in a proportion higher than the amount capable of producing a liquid phase as a mixed solution by dissolving both the aqueous dispersion and the water-insoluble organic solvent. On the other hand, when an excessive amount is used, it is not desirable because the vapor pressure of water is excessively reduced during the azeotropic removal of water. In addition, when performing azeotropic removal of water in multiple steps, it is not always necessary to dissolve all the aqueous dispersion and the water-insoluble organic solvent in each azeotropic removal, A good hydrophobizing treatment can be performed by mixing an amount of an amphoteric organic solvent capable of dissolving water. The specific amount of the amphoteric organic solvent used is determined by the type and amount of the water-insoluble organic solvent to be used. For example, 10 ml of the aqueous dispersion and about 1 ml of toluene as the water-insoluble organic solvent are used. In some cases, when methanol is used as the amphoteric organic solvent, it is preferable to use about 20 to 100 ml of methanol.
両溶性有機溶媒との共沸により水を除去する蒸発行程においては、水の除去を効率的に行えるように、使用する両溶性有機溶媒の種類や使用量に応じて、特に混合液の温度と、それに平衡する気相の圧力が適宜定められる。典型的な水の共沸除去の条件として、両溶性有機溶媒としてメタノールを用いる場合には、液相を室温程度に維持しつつ、液相内に突沸を生じない範囲で気相の圧力を減圧することで、水を液相から効率的に除去することが可能である。水の共沸除去は、液相に含まれる水がほぼ完全に除去されて、液相の白濁が見られなくなって十分に透明になる程度になるまで行う。このためには、両溶性有機溶媒の添加混合と蒸発行程を複数回繰り返し行う処理、又は、蒸発工程を実施しつつ両溶性有機溶媒を補充することで継続的に水の含有量を減少させる処理が望ましい。また、この際に非水溶性有機溶媒が同時に蒸発してその量が減少する場合には、適宜補充を行うことが好ましい。 In the evaporation process in which water is removed by azeotropy with the amphoteric organic solvent, depending on the type and amount of the amphoteric organic solvent to be used, the temperature of the mixed solution can be increased. The gas phase pressure that equilibrates to this is appropriately determined. As typical azeotropic removal conditions for water, when methanol is used as the amphoteric organic solvent, the gas phase pressure is reduced within a range that does not cause bumping in the liquid phase while maintaining the liquid phase at about room temperature. By doing so, it is possible to efficiently remove water from the liquid phase. The azeotropic removal of water is performed until the water contained in the liquid phase is almost completely removed, and the liquid phase is no longer cloudy and becomes sufficiently transparent. For this purpose, a process of repeatedly adding and mixing the amphoteric organic solvent and the evaporation process a plurality of times, or a process of continuously reducing the water content by replenishing the amphoteric organic solvent while carrying out the evaporation step. Is desirable. In this case, when the water-insoluble organic solvent evaporates at the same time and the amount thereof decreases, it is preferable to replenish appropriately.
以上の工程により得られた非水溶性有機溶媒中に疎水化された無機酸化物微粒子がナノスケールで透明に均一分散した分散液に対して、当該非水溶性有機溶媒と相溶性を有する樹脂組成物を混合して適宜重合等を行うことにより、無機酸化物微粒子が均一分散した無機粒子複合化プラスチックを得ることができる。 Resin composition compatible with the water-insoluble organic solvent in a dispersion in which the inorganic oxide fine particles hydrophobized in the water-insoluble organic solvent obtained by the above steps are uniformly dispersed in a nanoscale. An inorganic particle composite plastic in which inorganic oxide fine particles are uniformly dispersed can be obtained by appropriately mixing the materials and performing polymerization or the like.
また、当該分散液からさらに非水溶性有機溶媒を蒸発除去させることにより得られる疎水化表面修飾された無機酸化物微粒子は、再び非水溶性有機溶媒中にナノスケールで均一に再分散させ透明な分散液とすることが可能であり、必要に応じて非水溶性有機溶媒や樹脂組成物と混合することで、無機酸化物微粒子が均一分散した無機粒子複合化プラスチックを得ることができる。この場合の分散媒としての有機溶媒は、非極性の炭化水素、たとえばトルエン、ベンゼン等の芳香族炭化水素等であってよく、重合性のスチレン、メタクリル酸、メタクリレート等のモノマー化合物、オリゴマー化合物であってもよい。有機溶媒が重合性化合物を含んでいてもよい。これらは単一もしくは複数種のものとして用いられてもよい。 Further, the hydrophobic oxide-modified inorganic oxide fine particles obtained by further evaporating and removing the water-insoluble organic solvent from the dispersion liquid are again re-dispersed uniformly in a water-insoluble organic solvent on a nanoscale to obtain a transparent material. It is possible to obtain a dispersion liquid, and by mixing with a water-insoluble organic solvent or a resin composition as necessary, an inorganic particle composite plastic in which inorganic oxide fine particles are uniformly dispersed can be obtained. The organic solvent as the dispersion medium in this case may be a nonpolar hydrocarbon, for example, an aromatic hydrocarbon such as toluene or benzene, and may be a monomer compound or oligomer compound such as polymerizable styrene, methacrylic acid or methacrylate. There may be. The organic solvent may contain a polymerizable compound. These may be used as single or plural kinds.
有機溶媒が重合性化合物である場合、あるいは重合性化合物を含む場合には、無機酸化物微粒子分散重合性組成物とすることができ、これを用いて重合硬化することで、無機酸化物微粒子を分散含有させたプラスチックを形成することができる。重合性化合物としては各種のものが考慮される。これらは透明性樹脂を形成する化合物として用いられる。 When the organic solvent is a polymerizable compound or contains a polymerizable compound, it can be made into an inorganic oxide fine particle-dispersed polymerizable composition, which is polymerized and cured to produce inorganic oxide fine particles. A dispersed plastic can be formed. Various types of polymerizable compounds are considered. These are used as compounds that form a transparent resin.
たとえばこの透明性樹脂としては、ポリスチレン、ポリメチルメタクリレート(PMMA)、ポリエーテル、ポリカーボネート、エポキシ樹脂、ポリウレタン、スチレン、MMA共重合体、ポリエステル、フェノール樹脂等の各種のものが考慮される。 For example, as the transparent resin, various materials such as polystyrene, polymethyl methacrylate (PMMA), polyether, polycarbonate, epoxy resin, polyurethane, styrene, MMA copolymer, polyester, and phenol resin are considered.
本発明の表面修飾した無機酸化物微粒子を分散含有させた樹脂組成物においては、無機酸化物微粒子の含有量は、期待される屈折率等に応じて決定されるが、透明性を確保するためには全体量の80質量%以下の範囲内とすることが好適に考慮される。 In the resin composition in which the surface-modified inorganic oxide fine particles of the present invention are dispersedly contained, the content of the inorganic oxide fine particles is determined according to the expected refractive index and the like, but to ensure transparency. Is preferably considered to be in the range of 80% by mass or less of the total amount.
このような樹脂組成物により、所定の形成を有する成形品とすることで、光学部材や光学部品を構成することができる。重合酸化については加熱による熱重合、あるいは重合開始剤を含有させての重合や、光照射による光重合等の様々な手段が採用されてよいことは言うまでもない。 By using such a resin composition as a molded product having a predetermined formation, an optical member or an optical component can be configured. It goes without saying that various means such as thermal polymerization by heating, polymerization by containing a polymerization initiator, and photopolymerization by light irradiation may be employed for the polymerization oxidation.
本発明によって疎水化されたナノスケールの無機酸化物微粒子を分散含有させた樹脂組成物においては、無機酸化物微粒子が可視光の波長に比べても十分に小さなサイズであり、また無機酸化物微粒子と樹脂との界面が実質的に存在しないことから、光散乱が小さく十分な透明性を有することができる。また、従来のシリコンカップリング剤等により無機酸化物微粒子の表面に比較的肉厚の疎水化被膜を設ける方法と比較して、比較的少量の疎水化表面処理剤により無機酸化物微粒子を疎水化して樹脂との界面を消失させるため、既存の方法により疎水化被膜を設けた無機酸化物微粒子と比較して、樹脂に分散させた場合に高い屈折率向上の効果が得られる。 In the resin composition in which the nanoscale inorganic oxide fine particles hydrophobized according to the present invention are dispersed, the inorganic oxide fine particles have a sufficiently small size compared to the wavelength of visible light, and the inorganic oxide fine particles Since there is substantially no interface between the resin and the resin, light scattering is small and sufficient transparency can be obtained. Compared with the conventional method of providing a relatively thick hydrophobic coating on the surface of the inorganic oxide fine particles with a silicon coupling agent, etc., the inorganic oxide fine particles are hydrophobized with a relatively small amount of the hydrophobizing surface treatment agent. In order to eliminate the interface with the resin, compared with the inorganic oxide fine particles provided with a hydrophobic coating film by an existing method, a high effect of improving the refractive index can be obtained when dispersed in the resin.
以下に実施例として無機酸化物微粒子としてZrO2ナノ微粒子を用いる場合を例としてより詳しく説明する。もちろん本発明は以下の例によって限定されるものではない。
[実施例]
Hereinafter, the case where ZrO 2 nanoparticles are used as the inorganic oxide particles will be described in more detail as an example. Of course, the present invention is not limited to the following examples.
[Example]
水相中に分散したZrO2微粒子を、水相中で疎水化処理して非水溶性有機溶媒へ再分散可能なZrO2粒子とする手段について検討した。
<1>様々な表面処理剤によるZrO2微粒子の表面修飾
ZrO2微粒子が水相中に均一に分散して透明となっている水分散液(ZrO2含有量11.61wt%)3mLに対して、表1に示す条件で種々の表面処理剤を水分散液に含有されるZrO2に対して30質量%となるように添加して、スターラーチップをセットした10mLナスフラスコ中で約一時間混合を行った。ZrO2微粒子水分散液としては住友大阪セメント製のものを用いた。表面処理剤を混合した後の分散液は、使用した表面処理剤により、白濁を示すものと、透明を維持するものが見られた。
<2>凍結乾燥による水分の除去
上記で得られた種々の表面処理剤を添加して混合した混合液を、通常の凍結乾燥により乾燥して水分の除去を行い、水相中に分散していたZrO2粒子を粉末状のものとした。
<3>非水溶性有機溶媒への分散性の確認
上記で得られたZrO2粒子からなる粉末を非水溶性有機溶媒であるトルエンを分散媒として投入して混合し、各粉末のトルエンに対する分散性を確認すると共に、トルエン中に分散するZrO2粒子の粒子径を動的光散乱(DLS)により測定した。その結果を表1にまとめて示す。
The ZrO 2 particles dispersed in an aqueous phase, means for the hydrophobic treatment to redispersible ZrO 2 particles into water-insoluble organic solvent in the aqueous phase was studied.
<1> to various surface treatment agents according to ZrO 2 surface-modified ZrO 2 fine particles aqueous dispersion and has a uniformly dispersed transparent in the aqueous phase of the particles (ZrO 2 content 11.61wt%) 3mL In the conditions shown in Table 1, various surface treatment agents were added to 30% by mass with respect to ZrO 2 contained in the aqueous dispersion, and the mixture was mixed for about one hour in a 10 mL eggplant flask with a stirrer chip set. Went. As the ZrO 2 fine particle aqueous dispersion, a product made by Sumitomo Osaka Cement was used. Depending on the surface treatment agent used, the dispersion liquid after mixing the surface treatment agent showed white turbidity and maintained the transparency.
<2> Removal of water by freeze-drying The liquid mixture obtained by adding and mixing the various surface treatment agents obtained above is dried by ordinary freeze-drying to remove water and dispersed in the aqueous phase. The ZrO 2 particles were powdery.
<3> Confirmation of dispersibility in water-insoluble organic solvent The powder composed of the ZrO 2 particles obtained above is mixed by adding toluene, which is a water-insoluble organic solvent, as a dispersion medium, and each powder is dispersed in toluene. The particle diameter of ZrO 2 particles dispersed in toluene was measured by dynamic light scattering (DLS). The results are summarized in Table 1.
表1に示すように、表面処理剤として所定量の炭素数4以上のカルボン酸であるメタクリル酸、ヘキサン酸を用いた場合には、少なくともZrO2粒子の一部がトルエン中に均一に分散して、透明になることが観察された。また、トルエン中に存在するZrO2粒子の粒子径は10nm程度であり、ナノスケールで分散していることが認められた。 As shown in Table 1, when methacrylic acid or hexanoic acid, which is a predetermined amount of carboxylic acid having 4 or more carbon atoms, is used as a surface treatment agent, at least a part of ZrO 2 particles is uniformly dispersed in toluene. And was observed to be transparent. Moreover, the particle diameter of the ZrO 2 particles present in toluene was about 10 nm, and it was confirmed that the particles were dispersed on the nanoscale.
一方、疎水化表面処理剤として酢酸、プロピオン酸を用いた場合には、ほぼ全てのZrO2粒子がトルエンに分散することなく、沈殿を生じた。 On the other hand, when acetic acid or propionic acid was used as the hydrophobizing surface treatment agent, almost all of the ZrO 2 particles were not dispersed in toluene but precipitated.
表1に示す結果から、疎水化表面処理剤として炭素数4以上のカルボン酸を用いることで、水相中に分散するZrO2微粒子を疎水化可能であり、水を除去した後に非水溶性有機溶媒中にナノスケールを維持した状態での再分散が可能となることが明らかになった。 From the results shown in Table 1, it is possible to hydrophobize ZrO 2 fine particles dispersed in the aqueous phase by using a carboxylic acid having 4 or more carbon atoms as a hydrophobizing surface treatment agent. It became clear that redispersion in a state where the nanoscale was maintained in the solvent became possible.
水相中に分散したZrO2微粒子を非水溶性有機溶媒へ移行する際に、その過程で表面処理剤により疎水化処理を行い、非水溶性有機溶媒中にZrO2微粒子が均一に分散した分散液を得る手段について検討した。
<1>様々な疎水化表面処理剤によるZrO2微粒子の表面修飾
スターラーチップをセットした100mLナスフラスコに、処理されるZrO2に対して10〜100wt%に相当する量の各種の疎水化表面処理剤をとり、非水溶性有機溶媒としてのトルエン1mL、両溶性有機溶媒であるメタノール30mLを加えたものに、ZrO2微粒子水分散液(ZrO2含有量11.61wt%)10mLを加えて混合した。ZrO2微粒子水分散液としては住友大阪セメント製のものを用いた。得られた混合溶液においては、両溶性有機溶媒であるメタノールに非水溶性有機溶媒のトルエンと水が溶解して均一な液相が形成されると共に、ZrO2微粒子に起因すると思われる白濁を生じていた。
When the ZrO 2 fine particles dispersed in the aqueous phase are transferred to the water-insoluble organic solvent, the surface treatment agent is hydrophobized in the process, and the ZrO 2 fine particles are uniformly dispersed in the water-insoluble organic solvent. The means for obtaining the liquid was studied.
<1> different in 100mL eggplant flask equipped with a surface-modified stirrer chip of ZrO 2 particles by the hydrophobic surface treatment agent, various hydrophobic surface treatment in an amount corresponding to 10~100Wt% relative ZrO 2 to be processed 10 mL of ZrO 2 fine particle aqueous dispersion (ZrO 2 content 11.61 wt%) was added to and mixed with 1 mL of toluene as a water-insoluble organic solvent and 30 mL of methanol as an amphoteric organic solvent. . As the ZrO 2 fine particle aqueous dispersion, a product made by Sumitomo Osaka Cement was used. In the obtained mixed solution, the water-insoluble organic solvent toluene and water are dissolved in methanol, which is the miscible organic solvent, to form a uniform liquid phase, and white turbidity caused by ZrO 2 fine particles is generated. It was.
上記で得られる混合液を1時間室温で攪拌した後、ロータリーエバポレーターにより3〜5mL程度になるまで分散媒を蒸発除去した。分散媒の蒸発除去は、混合液を室温に保ちつつ液相内での突沸が生じない程度の圧力に雰囲気を減圧することにより行った。 After stirring the liquid mixture obtained above at room temperature for 1 hour, the dispersion medium was removed by evaporation using a rotary evaporator until the volume became about 3 to 5 mL. Evaporation removal of the dispersion medium was performed by reducing the atmosphere to a pressure that does not cause bumping in the liquid phase while keeping the mixed liquid at room temperature.
初回の分散媒の蒸発除去後にナスフラスコに残留した混合液は白濁を有し、液相が2相に分離していた。その混合液に、更にメタノール30mL、トルエン1mLを加えて再び界面がない白濁した分散液とし、再度3〜5mL程度になるまでエバポレーションを行う操作を行った。当該操作を概ね数回重ねることにより、使用した表面処理剤の種類や量によっては分散液を白濁した状態から無色透明へと変化させ、残留する液相を単相とすることができることが明らかになった。本実施例では5〜6回の操作により、水/エタノール/トルエン混合溶媒からトルエンのみの溶媒に置換してZrO2微粒子のトルエン分散液を得た。得られたトルエン分散液中のZrO2微粒子の粒子径は動的光散乱(DLS)により測定した。 The mixed liquid remaining in the eggplant flask after the first removal of the dispersion medium by evaporation was cloudy, and the liquid phase was separated into two phases. To the mixture, 30 mL of methanol and 1 mL of toluene were further added to form a cloudy dispersion with no interface again, and the evaporation was performed again until about 3 to 5 mL. Obviously, by repeating this operation several times, depending on the type and amount of the surface treatment agent used, the dispersion can be changed from cloudy to colorless and transparent, and the remaining liquid phase can be made into a single phase. became. In this example, a toluene dispersion of ZrO 2 fine particles was obtained by replacing the water / ethanol / toluene mixed solvent with a solvent containing only toluene by 5 to 6 operations. The particle diameter of the ZrO 2 fine particles in the obtained toluene dispersion was measured by dynamic light scattering (DLS).
本実施例で得られたZrO2粒子のトルエン分散液について、表2にまとめて示す。 Table 2 summarizes the toluene dispersion of ZrO 2 particles obtained in this example.
表2の結果から明らかなように、表面処理剤としてアルコール、アミンを用いた場合には、白濁が残留することから、ZrO2粒子表面がトルエンに対して十分な親和性を有しておらず、両者間に界面が存在するものと推察された。一方、脂肪酸カルボン酸の中でも特に炭素数が4以上のものを用いた場合には、ZrO2粒子の量に対して10〜100質量%を混合することで、トルエン分散液が透明になることが観察され、ZrO2粒子表面がトルエンに対して親和性を有しており、両者間に実質的な界面が存在しないものと推察された。
<2>表面修飾の状態
上記のように、炭素数が4以上のカルボン酸を疎水化表面処理剤として水相中に分散するZrO2微粒子の表面修飾を行うことで、トルエン中に凝集することなく分散させることが可能である。図5には、ZrO2微粒子に対して20質量%に相当するヘキサン酸を疎水化表面処理剤として加えてトルエン置換を行って得たZrO2微粒子のトルエン分散液の1H NMRスペクトル測定結果(下段)を、ヘキサン酸の測定結果(上段)と比較して示す。図5から明らかなように、ヘキサン酸で疎水化したZrO2微粒子が分散したトルエンにおいては、ヘキサン酸のピークがブロードになったものに相当する信号が得られ、ヘキサン酸がZrO2微粒子に吸着していることが推察された。
As is apparent from the results in Table 2, when alcohol or amine is used as the surface treatment agent, white turbidity remains, so that the ZrO 2 particle surface does not have sufficient affinity for toluene. It was inferred that there was an interface between them. On the other hand, when a fatty acid carboxylic acid having 4 or more carbon atoms is used, the toluene dispersion may become transparent by mixing 10 to 100% by mass with respect to the amount of ZrO 2 particles. It was observed that the surface of the ZrO 2 particles had an affinity for toluene, and it was assumed that there was no substantial interface between them.
<2> Surface modification state As described above, the surface modification of ZrO 2 fine particles in which a carboxylic acid having 4 or more carbon atoms is dispersed in an aqueous phase as a hydrophobizing surface treatment agent causes aggregation in toluene. It is possible to disperse without. FIG. 5 shows a 1 H NMR spectrum measurement result of a toluene dispersion of ZrO 2 fine particles obtained by adding toluene as a hydrophobizing surface treatment agent corresponding to 20% by mass with respect to the ZrO 2 fine particles (toluene replacement). The lower part is shown in comparison with the measurement result of hexanoic acid (upper part). As is clear from FIG. 5, in toluene in which ZrO 2 fine particles hydrophobized with hexanoic acid are dispersed, a signal corresponding to a broad peak of hexanoic acid is obtained, and hexanoic acid is adsorbed on ZrO 2 fine particles. It was inferred that
図4には、比較例として、表面処理剤として酢酸を用いてトルエン置換を行うことで白濁を生じたZrO2粒子のトルエン分散液の1H NMRスペクトル測定結果(下段)を、酢酸の測定結果(上段)と比較して示す。酢酸で疎水化を行ったZrO2粒子を含むトルエンにおいては、酢酸に起因する信号が観察されなかった。 FIG. 4 shows, as a comparative example, 1 H NMR spectrum measurement results (lower stage) of a toluene dispersion of ZrO 2 particles that have been clouded by performing substitution with toluene using acetic acid as a surface treatment agent. Shown in comparison with (top). In toluene containing ZrO 2 particles hydrophobized with acetic acid, no signal due to acetic acid was observed.
また、図6には、上記と同様にZrO2微粒子に対して20質量%に相当するヘキサン酸を疎水化表面処理剤として加えてトルエン置換を行った後にトルエンを室温で真空乾燥して得られたZrO2微粒子のIR測定の結果(下段)を、ZrO2微粒子水分散液に疎水化表面処理剤として酢酸を加えた後に乾燥して得られたZrO2粒子のIR測定の結果(中段)と、ZrO2微粒子水分散液を直接乾燥して得られたZrO2粒子を更に400℃でベーキングして得られたZrO2粒子のIR測定の結果(上段)と比較して示す。 In addition, FIG. 6 is obtained by adding 20% by mass of hexanoic acid as a hydrophobizing surface treatment agent to the ZrO 2 fine particles as described above and performing toluene substitution, followed by vacuum drying at room temperature. and ZrO 2 results of IR measurement of the fine particles (lower), ZrO 2 fine particle aqueous dispersion in a hydrophobic surface treatment agent as a result of IR measurement of the dried resultant ZrO 2 particles after the addition of acetic acid and (middle) The results are shown in comparison with IR measurement results (upper) of ZrO 2 particles obtained by further baking ZrO 2 particles obtained by directly drying an aqueous dispersion of ZrO 2 fine particles at 400 ° C.
図6から、ヘキサン酸、酢酸を加えたZrO2粒子は共にカルボキシレートに起因する吸収を示す一方で、ヘキサン酸を加えたものでは3000cm−1付近にCH3等に起因する吸収を示した。これらのことから、酢酸やヘキサン酸は共にZrO2微粒子に吸着していることが推察される一方で、炭素数の相違により疎水性に与える影響が異なるものと推察される。つまり、本願発明に係る疎水化処理方法により疎水化されたZrO2粒子が芳香族炭化水素等に凝集せずに分散して透明な分散液を生成する理由は、上記のように、疎水化表面処理剤として加えた炭素数が4以上のカルボン酸が、カルボキシレートの状態でZrO2粒子表面に吸着していることに基づくものと推察される。 From FIG. 6, both ZrO 2 particles to which hexanoic acid and acetic acid were added showed absorption due to carboxylate, while those with hexanoic acid showed absorption due to CH 3 etc. in the vicinity of 3000 cm −1 . From these facts, it is presumed that both acetic acid and hexanoic acid are adsorbed on the ZrO 2 fine particles, but it is presumed that the influence on the hydrophobicity is different due to the difference in the number of carbon atoms. That is, the reason why the ZrO 2 particles hydrophobized by the hydrophobizing method according to the present invention are dispersed without agglomerating into aromatic hydrocarbons to produce a transparent dispersion is as described above. It is presumed that the carboxylic acid having 4 or more carbon atoms added as a treating agent is adsorbed on the surface of the ZrO 2 particles in the carboxylate state.
ZrO2微子の分散した非水溶性有機溶媒の分散液から、非水溶性有機溶媒を蒸発し除去して得られるZrO2粒子中について、非水溶性有機溶媒への再分散性を検討した。
<1>非水溶性有機溶媒の除去
実施例2で得られた各トルエン分散液を室温で24時間真空乾燥させてトルエンを除去し、ZrO2粒子からなる粉末を得た。
<2>非水溶性有機溶媒への分散性の確認
上記で得たZrO2粒子からなる粉末を各種の分散媒中に投入し、各種分散媒中へのZrO2粒子の再分散性を検討した。その結果を表3にまとめて示す。
The redispersibility of the ZrO 2 particles obtained by evaporating and removing the water-insoluble organic solvent from the dispersion of the water-insoluble organic solvent in which the ZrO 2 fine particles are dispersed was examined.
<1> Removal of water-insoluble organic solvent Each toluene dispersion obtained in Example 2 was vacuum-dried at room temperature for 24 hours to remove toluene, thereby obtaining a powder composed of ZrO 2 particles.
<2> Confirmation of dispersibility in non-water-soluble organic solvent The powder made of ZrO 2 particles obtained above was put into various dispersion media, and the redispersibility of ZrO 2 particles in various dispersion media was examined. . The results are summarized in Table 3.
表3の結果から明らかなように、特に炭素数が4以上のカルボン酸で疎水化処理を行ったZrO2粒子は、広く各種の非水溶性有機溶媒中において透明な状態で均一に再分散可能であり、非水溶性有機溶媒と親和性を有していることが明らかである。 As is clear from the results in Table 3, ZrO 2 particles that have been hydrophobized with carboxylic acids having 4 or more carbon atoms can be uniformly redispersed in a wide variety of water-insoluble organic solvents in a transparent state. It is clear that it has an affinity for water-insoluble organic solvents.
水相中に分散したZrO2微粒子を非水溶性有機溶媒へ移行する過程で疎水化表面処理剤を用いた疎水化処理を行う際のさまざまな処理条件が及ぼす影響について検討した。特に、本実施例では疎水化表面処理剤として炭素数4以上のカルボン酸のうちから特にヘキサン酸(HA)とメタクリル酸(MA)を選択して混合して用いた際に、疎水化表面処理剤の種類の影響を検討した。
<1>様々な表面処理剤によるZrO2微粒子の表面修飾
スターラーチップをセットしたナスフラスコに、表4に記載されるNo.1〜4の条件で、住友大阪セメント製のZrO2微粒子水分散液(ZrO2含有量11.61wt%)、メタノール、トルエンを混合したものに、疎水化表面処理剤としてヘキサン酸とメタクリル酸の混合物を添加して単一相の液相からなる白濁した混合液を得た。この混合液を実施例2と同様の方法で5〜6回の分散媒の蒸発除去を行って、ZrO2粒子のトルエン分散液を得た。得られたZrO2微粒子のトルエン分散液の性状と、動的光散乱(DLS)により測定した分散液中のZrO2粒子のサイズを表4に示す。
The influence of various treatment conditions when hydrophobizing with a hydrophobizing surface treatment agent in the process of transferring ZrO 2 fine particles dispersed in an aqueous phase to a water-insoluble organic solvent was investigated. In particular, in this example, when hydrophobized surface treatment agent was used by selecting and mixing hexanoic acid (HA) and methacrylic acid (MA) among carboxylic acids having 4 or more carbon atoms, the hydrophobized surface treatment. The effect of the type of agent was investigated.
<1> Surface Modification of ZrO 2 Fine Particles with Various Surface Treatment Agents No. 1 described in Table 4 was placed on an eggplant flask in which a stirrer chip was set. A mixture of ZrO 2 fine particle aqueous dispersion (ZrO 2 content 11.61 wt%), methanol, and toluene manufactured by Sumitomo Osaka Cement under conditions 1 to 4 with hexanoic acid and methacrylic acid as hydrophobizing surface treatment agents. The mixture was added to obtain a cloudy mixture consisting of a single-phase liquid phase. This mixture was evaporated and removed from the dispersion medium 5-6 times in the same manner as in Example 2 to obtain a toluene dispersion of ZrO 2 particles. Table 4 shows the properties of the obtained ZrO 2 fine particle toluene dispersion and the size of the ZrO 2 particles in the dispersion measured by dynamic light scattering (DLS).
表4の結果から明らかなように、ZrO2微粒子水分散液、メタノール、トルエンの混合比率や、疎水化表面処理剤としてのヘキサン酸とメタクリル酸の混合比率等によらず、広い範囲で透明なZrO2粒子のトルエン分散液が得られること、及び、いずれの分散液においても概ねZrO2粒子のサイズが10nm以下に保たれることが明らかとなった。 As is clear from the results in Table 4, it is transparent in a wide range regardless of the mixing ratio of ZrO 2 fine particle aqueous dispersion, methanol, toluene, the mixing ratio of hexanoic acid and methacrylic acid as the hydrophobizing surface treatment agent, etc. It has been clarified that a toluene dispersion of ZrO 2 particles can be obtained, and that the size of the ZrO 2 particles can be generally maintained at 10 nm or less in any of the dispersions.
実施例4で得られたZrO2粒子のトルエン分散液からトルエンを真空乾燥して得たZrO2粒子を、樹脂組成物としてのスチレンに再分散した後、スチレンを重合して得られるポリスチレン樹脂の性状について検討した。
<1>表面修飾ZrO2微粒子のスチレン分散液の製造とスチレンの重合
表3にも示すように、本発明に係る表面修飾方法によって得られるZrO2微粒子は、スチレンに再分散可能である。本実施例では、実施例4で表面修飾による疎水化処理を行ったZrO2微粒子を樹脂組成物としてのスチレンに20〜65質量%の割合で分散させて、透明なZrO2粒子のスチレン分散液を得た。このZrO2微粒子のスチレン分散液を試験管へ移し、氷浴中で10分間窒素バブリングを行い、120℃のオイルバスで三日間重合してポリスチレンとした。
<2>ZrO2微粒子が分散したポリスチレン樹脂
本実施例において使用したZrO2粒子とスチレン(St)の混合比率、及び得られたポリスチレンの性状を表5に示す。また、図1には、得られたポリスチレンの光学写真を示す。
The ZrO 2 particles toluene from toluene dispersion of ZrO 2 particles obtained in Example 4 was obtained by vacuum drying, it was re-dispersed in styrene as a resin composition, a polystyrene resin obtained by polymerizing styrene The properties were examined.
<1> Production of Styrene Dispersion of Surface-Modified ZrO 2 Fine Particles and Polymerization of Styrene As shown in Table 3, the ZrO 2 fine particles obtained by the surface modification method according to the present invention can be redispersed in styrene. In this example, ZrO 2 fine particles subjected to hydrophobic treatment by surface modification in Example 4 were dispersed in styrene as a resin composition at a ratio of 20 to 65% by mass, and a transparent styrene dispersion of ZrO 2 particles. Got. This styrene dispersion of ZrO 2 fine particles was transferred to a test tube, subjected to nitrogen bubbling in an ice bath for 10 minutes, and polymerized in an oil bath at 120 ° C. for 3 days to obtain polystyrene.
<2> Polystyrene resin in which ZrO 2 fine particles are dispersed Table 5 shows the mixing ratio of the ZrO 2 particles and styrene (St) used in this example and the properties of the obtained polystyrene. FIG. 1 shows an optical photograph of the obtained polystyrene.
表5、及び、図1から明らかなように、ヘキサン酸(HA)とメタクリル酸(MA)を6:4〜3:7の割合で混合した疎水化表面処理剤を用いた場合、いずれもZrO2粒子が凝集等をすることなく透明のポリスチレンとの複合体が得られることが明らかとなった。特に、ヘキサン酸とメタクリル酸を4:6〜3:7の割合で混合した疎水化表面処理剤を用いた場合には、高い透明度のポリスチレン複合体が得られる傾向が見られた。 As is clear from Table 5 and FIG. 1, when a hydrophobized surface treatment agent in which hexanoic acid (HA) and methacrylic acid (MA) are mixed at a ratio of 6: 4 to 3: 7 is used, both are ZrO. It was revealed that a composite with transparent polystyrene can be obtained without aggregation of the two particles. In particular, when a hydrophobized surface treatment agent in which hexanoic acid and methacrylic acid were mixed at a ratio of 4: 6 to 3: 7 was used, a tendency to obtain a highly transparent polystyrene composite was observed.
また、次の表6、及び、図2に示すように、表4中のNo.2の条件で疎水化処理を行ったZrO2粒子を46.9質量%、64.7質量%の割合で含有させた場合でもポリスチレン複合体の透明性が損なわれることがなく、本発明による疎水化処理を行ったZrO2微粒子を用いることで、透明性を損なうことなく樹脂中にZrO2粒子を分散させることが可能となることが明らかになった。 In addition, as shown in the following Table 6 and FIG. Even when the ZrO 2 particles hydrophobized under the condition 2 are contained in the proportions of 46.9% by mass and 64.7% by mass, the transparency of the polystyrene composite is not impaired. It became clear that the ZrO 2 particles can be dispersed in the resin without impairing the transparency by using the ZrO 2 fine particles subjected to the chemical treatment.
また、樹脂組成物としてのスチレンとメチルメタクリレートを質量比で7:3に混合した分散媒にヘキサン酸とメタクリル酸で疎水化処理を行ったZrO2粒子を分散させて重合して複合化した場合(表6中のNo.7)にも、透明性に優れたスチレン−メチルメタクリレート共重合樹脂とZrO2粒子複合体が得られた。
<4>スチレン−ZrO2粒子分散液、及び、ZrO2粒子を分散したポリスチレン樹脂の屈折率
スチレン−ZrO2粒子分散液について、アッベ屈折計により屈折率を測定した屈折率測定の結果を図3に示した。スチレンに分散させたZrO2粒子は、ヘキサン酸とメタクリル酸を5:5の割合で混合した疎水化表面処理剤を用いて疎水化処理を行ったものである。また、図3には、Lorentz−Lorenzの式から算出したスチレン−ZrO2粒子分散液の屈折率の理論値を示した。ZrO2微粒子を分散させることで分散液の屈折率は増加し、65wt%ZrO2微粒子を含有させた分散液では、スチレンの屈折率と比較して0.087の屈折率の増加がみられた。
Also, when ZrO 2 particles hydrophobized with hexanoic acid and methacrylic acid are dispersed in a dispersion medium in which styrene and methyl methacrylate as a resin composition are mixed at a mass ratio of 7: 3, and polymerized to form a composite. Also in (No. 7 in Table 6), a styrene-methyl methacrylate copolymer resin and a ZrO 2 particle composite excellent in transparency were obtained.
<4> styrene -ZrO 2 particle dispersion and for the refractive index of the polystyrene resin containing dispersed ZrO 2 particles styrene -ZrO 2 particle dispersion 3 The results of the refractive index measurement, which had been measured for refractive index with an Abbe refractometer It was shown to. The ZrO 2 particles dispersed in styrene have been subjected to a hydrophobization treatment using a hydrophobizing surface treatment agent in which hexanoic acid and methacrylic acid are mixed in a ratio of 5: 5. FIG. 3 shows the theoretical value of the refractive index of the styrene-ZrO 2 particle dispersion calculated from the Lorentz-Lorenz equation. The refractive index of the dispersion increased by dispersing the ZrO 2 fine particles. In the dispersion containing 65 wt% ZrO 2 fine particles, an increase in the refractive index of 0.087 was observed compared to the refractive index of styrene. .
従来、ZrO2粒子を樹脂中に分散させることを目的として、ZrO2粒子の表面を屈折率の低いシリコンカップリング剤等で被覆した場合には、当該ZrO2粒子の体積と比較してシリコンカップリング剤等の体積割合が大きくなるため、結果として、当該被覆のされたZrO2粒子を樹脂中に分散させても、期待される程度の屈折率の向上効果が得られないことが問題とされていた。これに対して、図3に示されるように本実施例で得られる屈折率の増加の割合はほぼ理論値に沿っていることから、本発明に係る疎水化処理によりZrO2微粒子の表面に吸着するカルボン酸は、ごく僅かの量でZrO2微粒子を疎水化して樹脂組成物中に分散可能とできることが推察される。 Conventionally, when the surface of a ZrO 2 particle is coated with a silicon coupling agent having a low refractive index for the purpose of dispersing the ZrO 2 particle in a resin, the silicon cup is compared with the volume of the ZrO 2 particle. Since the volume ratio of the ring agent and the like is increased, as a result, even if the coated ZrO 2 particles are dispersed in the resin, the expected improvement in the refractive index cannot be obtained. It was. On the other hand, as shown in FIG. 3, since the rate of increase in the refractive index obtained in this example is almost in line with the theoretical value, it is adsorbed on the surface of the ZrO 2 fine particles by the hydrophobic treatment according to the present invention. It is inferred that the carboxylic acid to be dispersed can be dispersed in the resin composition by hydrophobizing the ZrO 2 fine particles in a very small amount.
上記ZrO2粒子を分散させたスチレンを重合し、ZrO2粒子を分散したポリスチレン樹脂とした場合、30質量%のZrO2粒子を含むポリスチレン樹脂の屈折率が1.620(D線:589nm)となり、スチレンの重合により屈折率が向上した。また、同様に50質量%のZrO2粒子を含むものが1.630、65質量%のZrO2粒子を含むものが1.655の屈折率(いずれもD線:589nm)を示し、本発明に係る疎水化処理による処理を行ったZrO2微粒子を分散させることで、重合を行ったポリスチレンにおいても屈折率が向上することが確認された。 Polymerizing styrene having dispersed therein the ZrO 2 particles, when a polystyrene resin containing dispersed ZrO 2 particles, the refractive index of the polystyrene resin containing 30 wt% of ZrO 2 particles 1.620 (D line: 589 nm) becomes The refractive index was improved by polymerization of styrene. Similarly, those containing 50% by mass of ZrO 2 particles have a refractive index of 1.630, and those containing 65% by mass of ZrO 2 particles have a refractive index of 1.655 (both D line: 589 nm). It was confirmed that the refractive index of the polymerized polystyrene was improved by dispersing the ZrO 2 fine particles that had been treated by the hydrophobization treatment.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009263423A JP5660481B2 (en) | 2009-11-18 | 2009-11-18 | Hydrophobic treatment method of inorganic oxide fine particles and method of producing dispersion, and inorganic oxide fine particles and dispersion thereof, resin composition and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009263423A JP5660481B2 (en) | 2009-11-18 | 2009-11-18 | Hydrophobic treatment method of inorganic oxide fine particles and method of producing dispersion, and inorganic oxide fine particles and dispersion thereof, resin composition and use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011105553A true JP2011105553A (en) | 2011-06-02 |
JP5660481B2 JP5660481B2 (en) | 2015-01-28 |
Family
ID=44229497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009263423A Expired - Fee Related JP5660481B2 (en) | 2009-11-18 | 2009-11-18 | Hydrophobic treatment method of inorganic oxide fine particles and method of producing dispersion, and inorganic oxide fine particles and dispersion thereof, resin composition and use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5660481B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017210385A (en) * | 2016-05-24 | 2017-11-30 | 三菱ケミカル株式会社 | Manufacturing method of hydrophobized inorganic nanoparticle and inorganic nanoparticle dispersion |
WO2019146409A1 (en) * | 2018-01-24 | 2019-08-01 | 第一稀元素化学工業株式会社 | Surface-modified metal compound particles, and method for producing surface-modified metal compound particles |
CN113493222A (en) * | 2020-04-01 | 2021-10-12 | 凯斯科技股份有限公司 | Inorganic oxide nanoparticle dispersion liquid having high transparency, optical film prepared therefrom and member for display |
JP7492703B2 (en) | 2020-04-13 | 2024-05-30 | 三菱瓦斯化学株式会社 | Method for producing fine particle-dispersed polymerizable composition and fine particle-dispersed polymerizable composition produced by said method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007197655A (en) * | 2005-05-30 | 2007-08-09 | Admatechs Co Ltd | Microparticle-containing composition and method for producing the composition |
JP2008179514A (en) * | 2007-01-25 | 2008-08-07 | Sumitomo Osaka Cement Co Ltd | Surface-coated nanoparticle, its manufacturing method, and surface-coated nanoparticle dispersion liquid |
WO2009096253A1 (en) * | 2008-01-29 | 2009-08-06 | Konica Minolta Opto, Inc. | Composite material for optical use and optical device using the same |
-
2009
- 2009-11-18 JP JP2009263423A patent/JP5660481B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007197655A (en) * | 2005-05-30 | 2007-08-09 | Admatechs Co Ltd | Microparticle-containing composition and method for producing the composition |
JP2008179514A (en) * | 2007-01-25 | 2008-08-07 | Sumitomo Osaka Cement Co Ltd | Surface-coated nanoparticle, its manufacturing method, and surface-coated nanoparticle dispersion liquid |
WO2009096253A1 (en) * | 2008-01-29 | 2009-08-06 | Konica Minolta Opto, Inc. | Composite material for optical use and optical device using the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017210385A (en) * | 2016-05-24 | 2017-11-30 | 三菱ケミカル株式会社 | Manufacturing method of hydrophobized inorganic nanoparticle and inorganic nanoparticle dispersion |
WO2019146409A1 (en) * | 2018-01-24 | 2019-08-01 | 第一稀元素化学工業株式会社 | Surface-modified metal compound particles, and method for producing surface-modified metal compound particles |
JPWO2019146409A1 (en) * | 2018-01-24 | 2020-02-06 | 第一稀元素化学工業株式会社 | Surface-modified metal compound particles and method for producing surface-modified metal compound particles |
KR20200058497A (en) * | 2018-01-24 | 2020-05-27 | 다이치 키겐소 카가쿠 코교 컴퍼니 리미티드 | Method for producing surface-modified metal compound particles and surface-modified metal compound particles |
CN111655622A (en) * | 2018-01-24 | 2020-09-11 | 第一稀元素化学工业株式会社 | Surface-modified metal compound particle and method for producing surface-modified metal compound particle |
KR102385822B1 (en) * | 2018-01-24 | 2022-04-12 | 다이치 키겐소 카가쿠 코교 컴퍼니 리미티드 | Surface-modified metal compound particles and method for producing surface-modified metal compound particles |
US11325838B2 (en) | 2018-01-24 | 2022-05-10 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Surface-modified metal compound particles, and method for producing surface-modified metal compound particles |
CN113493222A (en) * | 2020-04-01 | 2021-10-12 | 凯斯科技股份有限公司 | Inorganic oxide nanoparticle dispersion liquid having high transparency, optical film prepared therefrom and member for display |
CN113493222B (en) * | 2020-04-01 | 2023-08-11 | 凯斯科技股份有限公司 | Inorganic oxide nanoparticle dispersion liquid having high transparency, optical film prepared therefrom, and member for display |
JP7492703B2 (en) | 2020-04-13 | 2024-05-30 | 三菱瓦斯化学株式会社 | Method for producing fine particle-dispersed polymerizable composition and fine particle-dispersed polymerizable composition produced by said method |
Also Published As
Publication number | Publication date |
---|---|
JP5660481B2 (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5411149B2 (en) | Additive to coating containing metal nanoparticles and method for preparing the additive | |
TW200534918A (en) | Nanoparticles | |
ES2549983T3 (en) | Methods of combining nanoparticles with a resin | |
KR101837829B1 (en) | High reflective organic-inorganic hybrid solution and its manufacturing method | |
TW200844164A (en) | Cellulose fine particle, dispersion liquid thereof and dispersion body thereof | |
JP5660481B2 (en) | Hydrophobic treatment method of inorganic oxide fine particles and method of producing dispersion, and inorganic oxide fine particles and dispersion thereof, resin composition and use | |
KR20090033251A (en) | Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film | |
JP2010527395A (en) | Composite particles and methods for their preparation | |
JP2011057960A (en) | Aggregate of spherical core-shell cerium oxide/polymer hybrid nanoparticle and method for producing the same | |
JP5188045B2 (en) | Nano-oxide particles and method for producing the same | |
Yao et al. | Nanocrystalline cellulose/fluorinated polyacrylate latex via RAFT‐mediated surfactant‐free emulsion polymerization and its application as waterborne textile finishing agent | |
JP5484025B2 (en) | Titanium oxide sol, resin composition using the same, optical material and optical element | |
JP2010042369A (en) | Dispersion liquid of inorganic nanoparticle and method for preparing the same, and composite composition | |
Wen et al. | Synthesis of PVAc/SiO2 latices stabilized by silica nanoparticles | |
Zhang et al. | Towards transparent PMMA/S i O 2 nanocomposites with promising scratch‐resistance by manipulation of SiO 2 aggregation followed by in situ polymerization | |
KR100913272B1 (en) | Preparation method of core-shell type nanocomposite particles in supercritical carbon dioxide | |
JP5054920B2 (en) | Method for producing non-aqueous fine particle dispersion and antireflection plate or antireflection film using the dispersion | |
Peng et al. | Organically modified layered-silicates facilitate the formation of interconnected structure in the reaction-induced phase separation of epoxy/thermoplastic hybrid nanocomposite | |
TW201038648A (en) | Method for transferring inorganic oxide nanoparticles from aqueous phase to organic phase | |
JP2010052985A (en) | Dispersion liquid of metal oxide fine particle, and molding | |
JP2012057177A (en) | Organic particle for light diffusing medium | |
Chang et al. | Preparation of solvent-dispersible nano-silica powder by sol-gel method | |
JP2008069046A (en) | Method for producing nonaqueous dispersion containing titanium oxide microparticle and method for producing polymer-type nanocomposite containing titanium oxide microparticle and organic polymer | |
JP2011074328A (en) | Titanium oxide dispersion liquid | |
Sun et al. | Antifogging UV curable coatings based on hierarchical composite particles through electrostatic interactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5660481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |