JP2011103010A - Method, program and apparatus for synthesizing tone signal - Google Patents

Method, program and apparatus for synthesizing tone signal Download PDF

Info

Publication number
JP2011103010A
JP2011103010A JP2011013339A JP2011013339A JP2011103010A JP 2011103010 A JP2011103010 A JP 2011103010A JP 2011013339 A JP2011013339 A JP 2011013339A JP 2011013339 A JP2011013339 A JP 2011013339A JP 2011103010 A JP2011103010 A JP 2011103010A
Authority
JP
Japan
Prior art keywords
string
information
tone signal
equation
bending vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011013339A
Other languages
Japanese (ja)
Other versions
JP5605239B2 (en
Inventor
Hidetsugu Tominaga
英嗣 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2011013339A priority Critical patent/JP5605239B2/en
Publication of JP2011103010A publication Critical patent/JP2011103010A/en
Application granted granted Critical
Publication of JP5605239B2 publication Critical patent/JP5605239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrophonic Musical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing a tone signal, a program, and a tone signal generating system for generating quasi musical instrument sounds expressing property possessed by sounds generated from a musical instrument of three-dimensional structure having wires and a body in reality. <P>SOLUTION: In this method for synthesizing the tone signal, a first bending vibration, a second bending vibration and a vertical vibration of wires are calculated based on three equations of motion having an interaction through a wire support end, that is, a first equation of motion representing the first bending vibration of the wires in a first direction with the usage of force acting on the wires calculated in accordance with performance information, a second equation of motion representing the second bending vibration of the wires in a direction different from the first direction, and a third equation of motion representing the vertical vibration of the wires, and the tone signal is calculated based on the information. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自然楽器における発音機構(発音メカニズム)に立脚した所定の物理モデルに従って、シミュレーションを行うことにより楽音信号を合成する技術に関する。特に、弦および本体(弦を支持し、空気中に音響を放射する部品)を有する3次元構造の楽器から発せられる音が有する特質をリアルに表現した疑似楽器音を生成するのに好適な楽音信号合成方法、プログラムおよび楽音信号合成装置に関する。   The present invention relates to a technique for synthesizing a musical sound signal by performing a simulation in accordance with a predetermined physical model based on a sound generation mechanism (sound generation mechanism) in a natural musical instrument. In particular, a musical tone suitable for generating a pseudo-instrument sound that realistically represents the characteristics of a sound emitted from a three-dimensional instrument having a string and a main body (a component that supports the string and emits sound in the air) The present invention relates to a signal synthesis method, a program, and a musical tone signal synthesis apparatus.

従来から、汎用コンピュータ、DSP(Digital Signal Processor)等のディジタル信号処理装置、集積回路、大規模集積回路等を含んで構成された専用ハードウエア装置において、自然楽器の発音機構(発音メカニズム)に立脚した所定の物理モデルに従って、シミュレーションを行うことにより、自然楽器の楽音を疑似的(仮想的)に合成する方法が知られている。例えば、疑似ピアノ音を発生させたい場合、弦の振動をシミュレートする弦モデル部と、前記弦の振動に応じて弦とともに振動する駒や響板などの振動をシミュレートする響板モデル部とを設けた所定の物理モデルに従って、DSP等からなる物理モデル音源にシミュレーション演算を実行させることにより、楽音信号を合成するということが行われている。このような方法を用いた楽音合成装置は、例えば、特許文献1に記載されている。また、特許文献2には、疑似ピアノ音の合成時に「弦の非線形振動機構」を取り入れることを試みた例が記載されている。   Conventionally, a dedicated hardware device configured to include a general-purpose computer, a digital signal processor such as a DSP (Digital Signal Processor), an integrated circuit, a large-scale integrated circuit, etc. A method is known in which a musical instrument sound is synthesized in a pseudo (virtual) manner by performing a simulation in accordance with the predetermined physical model. For example, to generate a pseudo piano sound, a string model unit that simulates vibration of a string, a soundboard model unit that simulates vibration of a piece or soundboard that vibrates with a string in accordance with the vibration of the string, and In accordance with a predetermined physical model provided with a synthesizer, a musical sound signal is synthesized by causing a physical model sound source composed of a DSP or the like to execute a simulation operation. A musical tone synthesizer using such a method is described in Patent Document 1, for example. Patent Document 2 describes an example in which a “non-linear vibration mechanism of a string” is tried when synthesizing a pseudo piano sound.

特開平10−63270号公報JP-A-10-63270 特開平06−83363号公報Japanese Patent Laid-Open No. 06-83363

ピアノの弦は、その一端が本体の一部であるフレーム上のベアリングで支持され、他の一端が本体の一部である響板上の駒で支持されている。鍵を押すと、対応する弦がダンパから解放されると同時に、ハンマに運動エネルギが与えられる。ハンマが弦を打つことによって弦の中に励起した波動のエネルギは、一部がこれらの支持端を介して本体に透過し、残りが支持端で反射されることによって弦の中に留まる。弦の中に生まれた波動が弦支持端間の往復を繰り返すことによって、振動が生まれる。弦の軸方向に直交する方向の振動、即ち、曲げ振動は、最初、ハンマによって打たれた方向に生じるが、3次元運動を行う駒の影響により、それと直交する方向にも生じる。弦は、上記2方向の曲げ振動の他に弦軸方向の振動、即ち、縦振動も行う。   One end of a piano string is supported by a bearing on a frame that is a part of the main body, and the other end is supported by a piece on a soundboard that is a part of the main body. When the key is pressed, the corresponding string is released from the damper, and at the same time, kinetic energy is given to the hammer. The energy of the wave excited in the string by the hammer hitting the string is partially transmitted to the main body through these support ends, and the rest is reflected in the support ends and remains in the string. The vibration is born by the wave generated in the string repeating the reciprocation between the string support ends. The vibration in the direction orthogonal to the axial direction of the string, that is, the bending vibration is initially generated in the direction struck by the hammer, but is also generated in the direction orthogonal thereto due to the influence of the three-dimensional motion piece. In addition to the bending vibrations in the two directions, the string also performs vibrations in the string axis direction, that is, longitudinal vibration.

ダンパペダルを踏み込むことによって、全ての弦がダンパから解放されるとき、ハンマに打たれていない弦までもが、本体からエネルギをもらうことによって振動を始める。このように、ピアノの発音は、弦が本体を振動させるだけでなく、本体も弦を振動させる3次元連成振動機構によっている。そして、響板、フレーム、支柱、側板などから構成される複雑な3次元形状を有する本体の全表面から空気中に音響が放射されることによって、豊かで立体的なピアノ特有の楽音が生成される。   When all the strings are released from the damper by depressing the damper pedal, even the strings not hit by the hammer start to vibrate by receiving energy from the main body. In this way, the pronunciation of the piano is based on a three-dimensional coupled vibration mechanism in which not only the strings vibrate the main body but also the main body vibrates the strings. Sound is radiated into the air from the entire surface of the main body, which has a complicated three-dimensional shape composed of soundboards, frames, columns, side panels, etc., creating rich and three-dimensional piano-specific musical sounds. The

ところで、標準的な88鍵ピアノのおよそ第40鍵より下の音域においては、「リンリン」、「ヒンヒン」、あるいは「ヒーン」、「キーン」といった、鈴がなるような、あるいは金属的な非調和音(以下、リンギングサウンドという)が発生する場合がある。この特徴的なリンギングサウンドは、強打時ほど際立って発生し、そのレベルが大きすぎると不快に感じられることもあるが、逆にそれが全く聴こえないとするとピアノ音は単調でつまらないものとなってしまう。このピアノ特有のリンギングサウンドの発生には、弦の非線形(有限振幅)振動が寄与している。   By the way, in the range below about the 40th key of a standard 88-key piano, “Rinling”, “Hinhin”, “Hein”, “Kein”, bell-like, or metallic anharmonicity Sound (hereinafter referred to as ringing sound) may occur. This characteristic ringing sound is prominently generated when hitting hard, and if the level is too high, it may feel uncomfortable, but if you can not hear it at all, the piano sound will be monotonous and boring. End up. Non-linear (finite amplitude) vibration of the strings contributes to the generation of the ringing sound peculiar to this piano.

要するに、音階を生成する部品である弦と、弦を支持し、空気中に音響を放射する部品である本体とを有する3次元構造体であるピアノから発せられる楽音の特徴をリアルに表現するためには、「弦と本体との3次元連成振動機構」、「本体の3次元音響放射機構」、「弦の非線形(有限振幅)振動機構」の3点を考慮した上で高精度のシミュレーションを行う必要があるが、これを実現するための方法(計算アルゴリズム)は未だ提案されていない。   In short, to realistically express the characteristics of musical sounds emitted from a piano, which is a three-dimensional structure having a string that is a part that generates a scale and a main body that is a part that supports the string and emits sound in the air. The three-dimensional coupled vibration mechanism of the string and the main body, the three-dimensional acoustic radiation mechanism of the main body, and the non-linear (finite amplitude) vibration mechanism of the string are taken into account for high-precision simulation. However, a method (calculation algorithm) for realizing this has not been proposed yet.

ピアノでは、鍵の押し込み深さ、あるいは、ダンパペダルの踏み込み深さを時間軸上でコントロールすることによって、多彩な音楽的ニュアンスを表現することができる。例えば、打鍵後、押し込んだ鍵をゆっくり離すか急に離すかによって音の止まり方のニュアンスは全く異なったものになる。また、ピアノでは、ダンパペダルを全ストロークの途中まで踏み込む「ハーフペダル」と呼ばれる奏法を用いることで、弦を「最大限共鳴させる」のではなく「適度に共鳴させる」といったことが可能となる。従来の電子音源では、上記のような多彩な止音および弦共鳴の効果を生成することはできない。   In the piano, various musical nuances can be expressed by controlling the key press depth or the damper pedal press depth on the time axis. For example, after a key is pressed, the nuance of how the sound stops is completely different depending on whether the pressed key is released slowly or suddenly. Also, in a piano, it is possible to “resonate moderately” instead of “maximally resonate” a string by using a technique called “half pedal” in which the damper pedal is depressed halfway through the entire stroke. A conventional electronic sound source cannot generate the various sound-stopping and string resonance effects described above.

一般的なグランドピアノには、シフトペダルと呼ばれるペダルが備わっている。このペダルを踏み込むことで全てのハンマの位置が高音側にシフトし、ハンマの普段弦にあたっていない相対的に柔らかい部分が弦にあたるようになる。更に、それを完全に踏み込むとき、例えば、1個の鍵に対応して3本の弦が備わっている音域では、ハンマは3本中2本の弦のみを打つようになり、残りの1本は共鳴弦として働くようになる。従来の電子音源では、シフトペダルの踏み込み加減によって得られるきめ細かな音楽的ニュアンスを表現することはできない。   A general grand piano has a pedal called a shift pedal. By depressing this pedal, the position of all the hammers shifts to the high-pitched sound side, and the relatively soft part of the hammer that normally does not touch the strings comes into contact with the strings. Furthermore, when fully depressing it, for example, in a range with three strings corresponding to one key, the hammer will only strike two of the three strings, and the remaining one Works as a resonant string. Conventional electronic sound sources cannot express the fine musical nuances obtained by stepping on the shift pedal.

本発明は、上述の事情に鑑みてなされたものであり、弦および本体を有する3次元構造の楽器から発せられる音が有する特質をリアルに表現した疑似楽器音を生成することができる楽音信号合成方法、プログラムおよび楽音信号合成装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a musical tone signal synthesis capable of generating a pseudo-instrument sound that realistically represents the characteristics of a sound emitted from a three-dimensional musical instrument having a string and a main body. It is an object to provide a method, a program, and a musical tone signal synthesizer.

上述の課題を解決するため、本発明は、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号合成方法であって、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する3つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動、前記第2曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算過程と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算過程とを備えることを特徴とする楽音信号合成方法を提供する。   In order to solve the above-described problems, the present invention inputs a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by applying a force from at least a first direction and a string support end that supports the string. A musical sound signal synthesis method generated according to performance information to be obtained, wherein first information representing a force acting on the string calculated according to the performance information is acquired, and interaction via the string support end is obtained. A first equation of motion representing a first bending vibration of the string in the first direction using the first information, and the string in a direction different from the first direction. Based on the second equation of motion representing the second bending vibration of the second string and the third equation of motion representing the longitudinal vibration of the string, the second bending vibration, the second bending vibration, and the second vibration representing the longitudinal vibration of the string A string model calculation process for calculating information, and the second information Based on, to provide a tone signal synthesis method characterized by comprising a tone signal calculation process of calculating the tone signal.

また、別の好ましい態様において、前記第3運動方程式は、前記第1曲げ振動及び前記第2曲げ振動を用いて表されているを特徴とする。   In another preferred embodiment, the third equation of motion is expressed using the first bending vibration and the second bending vibration.

また、本発明は、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号合成方法であって、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算過程と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算過程とを備えることを特徴とする楽音信号合成方法を提供する。   According to the present invention, a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted with a force from at least the first direction and a string support end that supports the string is determined according to input performance information. A first tone information representing a force acting on the string calculated in accordance with the performance information, and two equations of motion having an interaction via the string support end. The string based on a first equation of motion representing a first bending vibration of the string in the first direction using the first information and a third equation of motion representing a longitudinal vibration of the string. A string model calculation process for calculating second information indicating the first bending vibration and the longitudinal vibration, and a tone signal calculation process for calculating the tone signal based on the second information. A method for synthesizing a musical sound signal is provided.

また、本発明は、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号合成方法であって、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式に基づいて、前記弦の第1曲げ振動および前記第2曲げ振動を示す第2の情報を算出する弦モデル計算過程と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算過程とを備えることを特徴とする楽音信号合成方法を提供する。   According to the present invention, a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted with a force from at least the first direction and a string support end that supports the string is determined according to input performance information. A first tone information representing a force acting on the string calculated in accordance with the performance information, and two equations of motion having an interaction via the string support end. A first equation of motion representing a first bending vibration of the string in the first direction using the first information, and a second bending vibration of the string in a direction different from the first direction. A string model calculation process for calculating second information indicating the first bending vibration and the second bending vibration of the string based on the second equation of motion, and the musical tone signal based on the second information And a musical sound signal calculation process for calculating Providing a tone signal synthesis method of the symptoms.

また、本発明は、コンピュータに、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成させるプログラムであって、前記コンピュータを、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する3つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動、前記第2曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段として機能させるためのプログラムを提供する。   In addition, the present invention provides a performance in which a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string support end that supports the string is input to a computer. A program generated according to information, wherein the computer acquires first information representing a force exerted on the string calculated according to the performance information, and has an interaction via the string support end A first equation of motion representing a first bending vibration of the string in the first direction using the first information; a first equation of motion of the string in a direction different from the first direction; Based on a second equation of motion representing two bending vibrations and a third equation of motion representing longitudinal vibration of the string, second information indicating the first bending vibration, the second bending vibration and the longitudinal vibration of the string is obtained. A string model calculating means for calculating; Based on the serial second information providing program for functioning as a tone signal calculating means for calculating said tone signal.

また、本発明は、コンピュータに、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成させるプログラムであって、前記コンピュータを、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段として機能させるためのプログラムを提供する。   In addition, the present invention provides a performance in which a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string support end that supports the string is input to a computer. A program generated according to information, wherein the computer acquires first information representing a force exerted on the string calculated according to the performance information, and has an interaction via the string support end Two equations of motion based on a first equation of motion representing a first bending vibration of the string in the first direction using the first information and a third equation of motion representing a longitudinal vibration of the string. And functioning as a string model calculation means for calculating second information indicating the first bending vibration and the longitudinal vibration of the string, and as a tone signal calculation means for calculating the tone signal based on the second information. Pro for To provide the ram.

また、本発明は、コンピュータに、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成させるプログラムであって、前記コンピュータを、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式に基づいて、前記弦の第1曲げ振動および前記第2曲げ振動を示す第2の情報を算出する弦モデル計算手段と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段として機能させるためのプログラムを提供する。   In addition, the present invention provides a performance in which a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string support end that supports the string is input to a computer. A program generated according to information, wherein the computer acquires first information representing a force exerted on the string calculated according to the performance information, and has an interaction via the string support end Two equations of motion, the first equation of motion representing the first bending vibration of the string in the first direction using the first information, and the string in a direction different from the first direction Based on a second equation of motion representing a second bending vibration, a string model calculation means for calculating second information indicating the first bending vibration and the second bending vibration of the string, and based on the second information , Calculate the tone signal It provides a program to function as a sound signal calculating means.

また、本発明は、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号生成装置であって、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する3つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動、前記第2曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段とを具備することを特徴とする楽音信号生成装置を提供する。   According to the present invention, a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted with a force from at least the first direction and a string support end that supports the string is determined according to input performance information. 3 is a musical tone signal generating device for generating first information representing a force acting on the string calculated in accordance with the performance information and having an interaction via the string support end. A first equation of motion representing a first bending vibration of the string in the first direction using the first information, and a second bending vibration of the string in a direction different from the first direction. A string model for calculating second information indicating the first bending vibration, the second bending vibration, and the longitudinal vibration of the string based on the second motion equation representing the third motion equation representing the longitudinal vibration of the string Based on the calculation means and the second information, Providing a musical tone signal generating apparatus characterized by comprising a tone signal calculating means for calculating a signal.

また、本発明は、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号生成装置であって、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段とを具備することを特徴とする楽音信号生成装置を提供する。   According to the present invention, a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted with a force from at least the first direction and a string support end that supports the string is determined according to input performance information. A musical tone signal generating device for generating first information representing a force acting on the string calculated in accordance with the performance information, and two equations of motion having an interaction via the string support end The string based on a first equation of motion representing a first bending vibration of the string in the first direction using the first information and a third equation of motion representing a longitudinal vibration of the string. A string model calculating means for calculating second information indicating the first bending vibration and the longitudinal vibration, and a tone signal calculating means for calculating the tone signal based on the second information. A musical sound signal generating apparatus is provided.

また、本発明は、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号生成装置であって、前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式に基づいて、前記弦の第1曲げ振動および前記第2曲げ振動を示す第2の情報を算出する弦モデル計算手段と、前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段とを具備することを特徴とする楽音信号生成装置を提供する。   According to the present invention, a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted with a force from at least the first direction and a string support end that supports the string is determined according to input performance information. A musical tone signal generating device for generating first information representing a force acting on the string calculated in accordance with the performance information, and two equations of motion having an interaction via the string support end A first equation of motion representing a first bending vibration of the string in the first direction using the first information, and a second bending vibration of the string in a direction different from the first direction. A string model calculating means for calculating second information indicating the first bending vibration and the second bending vibration of the string based on the second equation of motion, and the musical tone signal based on the second information. A musical sound signal calculating means for calculating Providing a musical tone signal generating apparatus according to claim.

本発明によれば、弦および本体を有する3次元構造の楽器から発せられる音が有する特質をリアルに表現した疑似楽器音を生成することができる楽音信号合成方法、プログラムおよび楽音信号合成装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the musical tone signal synthesis method, program, and musical tone signal synthesis | combination apparatus which can produce | generate the pseudo musical instrument sound which realistically expressed the characteristic which the sound emitted from the musical instrument emitted from the three-dimensional structure which has a string and a main body have are provided can do.

本発明の第1実施形態に係る電子楽器の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic musical instrument which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る楽音信号合成部の構成を示すブロック図である。It is a block diagram which shows the structure of the musical tone signal synthetic | combination part which concerns on 1st Embodiment of this invention. 標準的なグランドピアノの構成を説明する図である。It is a figure explaining the structure of a standard grand piano. 本発明の第2実施形態に係る電子楽器の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic musical instrument which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る楽音信号合成部の構成を示すブロック図である。It is a block diagram which shows the structure of the musical tone signal synthetic | combination part which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る電子楽器の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic musical instrument which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る楽音信号合成部の構成を示すブロック図である。It is a block diagram which shows the structure of the musical tone signal synthetic | combination part which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る電子楽器の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic musical instrument which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る楽音信号合成部の構成を示すブロック図である。It is a block diagram which shows the structure of the musical tone signal synthetic | combination part which concerns on 4th Embodiment of this invention.

以下、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

<第1実施形態>
図1は、本発明の第1実施形態に係る電子楽器1の構成を示すブロック図である。電子楽器1は、例えば、電子ピアノであり、制御部11、記憶部12、ユーザ操作部13、演奏操作部15および放音部17を有している。これらの各部は、バス18を介して互いに接続されている。
<First Embodiment>
FIG. 1 is a block diagram showing a configuration of an electronic musical instrument 1 according to the first embodiment of the present invention. The electronic musical instrument 1 is, for example, an electronic piano, and includes a control unit 11, a storage unit 12, a user operation unit 13, a performance operation unit 15, and a sound emission unit 17. These units are connected to each other via a bus 18.

制御部11は、CPU(Central Processing Unit)11a、DSP11b、他の図示しない周辺回路、ROM(Read Only Memory)11c、RAM(Random Access Memory)11d、信号インターフェイス11eおよび内部バス11fを有する。DMA(Direct Memory Access)コントローラ、ビデオプロセッサは他の周辺回路として含まれていてもよい。CPU11aは、ROM11cに記憶されている制御プログラムを読み出して、RAM11dにロードして実行することにより、電子楽器1の各部について、バス18を介して制御し、後述する楽音信号合成処理を行う楽音信号合成部100などを実現する。また、RAM11dは、CPU11aが各データの加工などを行う際のワークエリアとして機能する。   The control unit 11 includes a CPU (Central Processing Unit) 11a, a DSP 11b, other peripheral circuits (not shown), a ROM (Read Only Memory) 11c, a RAM (Random Access Memory) 11d, a signal interface 11e, and an internal bus 11f. A DMA (Direct Memory Access) controller and a video processor may be included as other peripheral circuits. The CPU 11a reads out a control program stored in the ROM 11c, loads it into the RAM 11d, and executes it, thereby controlling each part of the electronic musical instrument 1 via the bus 18 and performing a tone signal synthesis process to be described later. The synthesis unit 100 and the like are realized. The RAM 11d functions as a work area when the CPU 11a processes each data.

記憶部12は、例えば、ハードディスクなどの大容量記憶手段であって、MIDI(Musical Instrument Digital Interface)データなどの楽音制御データ、後述する楽音信号合成処理により生成した楽音信号などを記憶する。楽音制御データは、この例においては、鍵の押込量、ハンマ速度、ダンパペダル踏込量、シフトペダル踏込量の時刻の進行に応じた変化を示すデータを含んでいる。これらのデータは、情報記憶媒体DP(例えば、コンパクトディスク)からロードされたり、ネットワークを介してサーバからダウンロードされたりしたものであってもよい。   The storage unit 12 is, for example, a large-capacity storage unit such as a hard disk, and stores musical tone control data such as MIDI (Musical Instrument Digital Interface) data, musical tone signals generated by musical tone signal synthesis processing described later, and the like. In this example, the musical tone control data includes data indicating changes in key depression amount, hammer speed, damper pedal depression amount, and shift pedal depression amount according to time progress. These data may be loaded from an information storage medium DP (for example, a compact disk) or downloaded from a server via a network.

ユーザ操作部13は、操作パネル13aおよび表示部14を有する。操作パネル13aには、例えば、マウス13b、操作スイッチ13c、キーボード13dなどである。ユーザがマウス13b、操作スイッチ13c、キーボード13dを操作するとその操作内容を表すデータが制御部11へ出力される。これにより、ユーザは電子楽器1に指示を行う。表示部14は、映像を画面に表示する液晶ディスプレイなどの表示デバイスであって、制御部11に制御され、メニュー画面などの各種画面を表示する。メニュー画面は、電子楽器1に電力が供給されると、自動的に表示されるようにしてもよい。   The user operation unit 13 includes an operation panel 13 a and a display unit 14. The operation panel 13a includes, for example, a mouse 13b, an operation switch 13c, a keyboard 13d, and the like. When the user operates the mouse 13b, the operation switch 13c, and the keyboard 13d, data representing the operation content is output to the control unit 11. As a result, the user gives an instruction to the electronic musical instrument 1. The display unit 14 is a display device such as a liquid crystal display that displays video on the screen, and is controlled by the control unit 11 to display various screens such as a menu screen. The menu screen may be automatically displayed when power is supplied to the electronic musical instrument 1.

演奏操作部15は、鍵盤部15aおよびペダル部16を有する。鍵盤部15aは、電子ピアノなどの鍵盤部分に相当するものであって、複数の鍵(黒鍵15b、白鍵15c)が並べられた鍵盤を有する。また、鍵盤部15aにおける各鍵15b、15cには、各鍵を押し込まれると、その鍵の押込量を表す情報を出力する鍵位置センサ15d、および押込速度を表す情報を出力する鍵速度センサ15eが設けられている。鍵盤部15aは、鍵の押込量を表す情報をアナログ形式からデジタル形式に変換した情報KSを出力し、また、押込速度を表す情報をアナログ形式からデジタル形式に変換した情報KVを、バス18を介して制御部11の信号インターフェイス11eまで定期的に出力する。鍵盤部15aは、これらの情報KS、KVを、押し込まれた鍵を表す情報KC(例えば、鍵番号)とともに出力する。このとき、ハンマ速度は、制御部11において、鍵盤部15aから出力される情報をもとに算出される。なお、押込速度については、鍵位置センサ15dから出力される鍵の押込量から算出されるようにして、鍵速度センサ15eについては設けられていなくてもよい。この場合には、鍵盤部15aに鍵の押込量から押込速度を算出する算出部を設けてもよい。また、制御部11のCPU11aにおいて、情報KSから押込速度を算出するようにしてもよい。   The performance operation unit 15 includes a keyboard unit 15 a and a pedal unit 16. The keyboard portion 15a corresponds to a keyboard portion such as an electronic piano, and has a keyboard on which a plurality of keys (black key 15b, white key 15c) are arranged. Further, when each key is pressed into each key 15b, 15c in the keyboard portion 15a, a key position sensor 15d that outputs information indicating the amount of pressing the key, and a key speed sensor 15e that outputs information indicating the pressing speed. Is provided. The keyboard unit 15a outputs information KS obtained by converting the information indicating the key pressing amount from the analog format to the digital format, and information KV obtained by converting the information indicating the pressing speed from the analog format to the digital format via the bus 18. And periodically output to the signal interface 11e of the control unit 11. The keyboard unit 15a outputs these pieces of information KS and KV together with information KC (for example, key number) representing the depressed key. At this time, the hammer speed is calculated by the control unit 11 based on information output from the keyboard unit 15a. The pressing speed may be calculated from the key pressing amount output from the key position sensor 15d, and the key speed sensor 15e may not be provided. In this case, the keyboard unit 15a may be provided with a calculating unit that calculates the pressing speed from the key pressing amount. Further, the CPU 11a of the control unit 11 may calculate the pushing speed from the information KS.

ペダル部16は、ダンパペダル16aおよびシフトペダル16bに相当する複数のペダルを有する。また、ダンパペダル16aおよびシフトペダル16bには、ペダルが踏み込まれると、そのペダルの踏込量を表す情報を出力するペダル位置センサ16cが設けられている。ペダル部16は、ペダルの踏込量を表す情報をアナログ形式からデジタル形式に変換した情報PSを、バス18を介して制御部11の信号インターフェイス11eまで定期的に出力する。ペダル部16は、この情報PSを、踏込まれたペダルを表す情報PCとともに出力する。このように、鍵盤部15aおよびペダル部16は、その操作により、各演奏情報を出力する。   The pedal portion 16 has a plurality of pedals corresponding to the damper pedal 16a and the shift pedal 16b. In addition, the damper pedal 16a and the shift pedal 16b are provided with a pedal position sensor 16c that outputs information indicating the depression amount of the pedal when the pedal is depressed. The pedal unit 16 periodically outputs information PS obtained by converting information representing the pedal depression amount from an analog format to a digital format to the signal interface 11e of the control unit 11 via the bus 18. The pedal section 16 outputs this information PS together with information PC indicating the pedal that has been depressed. Thus, the keyboard part 15a and the pedal part 16 output each performance information by the operation.

放音部17は、デジタルアナログ変換器17a、図示しないアンプおよびスピーカ17bを有する。制御部11の制御により入力される楽音信号は、デジタルアナログ変換器17aにおいてデジタル形式からアナログ形式に変換され、アンプで増幅され、スピーカ17bから音として出力される。この楽音信号は、この例においては、後述する楽音信号合成処理の結果生成されるものである。以上が、電子楽器1の構成の説明である。次に、制御部11が制御プログラムを実行することによって実現される楽音信号合成部100について図2を用いて説明する。なお、以下に説明する楽音信号合成部100については、それぞれの各機能をハードウエアによって実現してもよい。   The sound emitting unit 17 includes a digital / analog converter 17a, an amplifier (not shown), and a speaker 17b. A musical sound signal input under the control of the control unit 11 is converted from a digital format to an analog format in the digital / analog converter 17a, amplified by an amplifier, and output as a sound from the speaker 17b. In this example, this musical tone signal is generated as a result of musical tone signal synthesis processing described later. The above is the description of the configuration of the electronic musical instrument 1. Next, the tone signal synthesis unit 100 realized by the control unit 11 executing the control program will be described with reference to FIG. It should be noted that each of the functions of the tone signal synthesizer 100 described below may be realized by hardware.

図2は、楽音信号合成部100の構成を示すブロック図である。楽音信号合成部100は、以下で説明する複数モデル(ダンパモデル、ハンマモデル、弦モデル、本体モデル、空気モデル)から構成される物理モデルにより、擬似ピアノ音を示す楽音信号を合成する。標準的なピアノは、鍵盤には88個の鍵が備わっており、各鍵に対応して、ハンマが1個、弦が1〜3本、ダンパが0〜複数個(弦と複数点で接触することを意味する)、備わっている。なお、弦の本数、ダンパの個数については、音域毎に異なるものとなっている。   FIG. 2 is a block diagram showing the configuration of the tone signal synthesizer 100. The musical sound signal synthesizing unit 100 synthesizes a musical sound signal indicating a pseudo piano sound by a physical model composed of a plurality of models (damper model, hammer model, string model, main body model, air model) described below. The standard piano has 88 keys on the keyboard. One hammer, one to three strings, and 0 to multiple dampers (contact with the strings at multiple points). It means). The number of strings and the number of dampers are different for each sound range.

図3は、標準的なグランドピアノの構成を説明する図である。上記複数のモデルは、図3に示す標準的なグランドピアノ(アコースティックピアノ)21を前提としている。グランドピアノ21は、88の鍵21aを含む鍵盤21b、アクション機構21dを介して鍵21aと接続されたハンマ21c、弦21e、および弦21eと接触可能なダンパ21fを有する。弦21eは、その一端で駒21eaと、他端でベアリング21ebと接続されている。鍵21a、ハンマ21c、アクション機構21d、弦21e、ダンパ21fは、大部分がキャビネット21h内に収められている。弦21eの数およびダンパ21fの接触点の数は、音域によって変化する。キャビネット21h、フレーム、木製フレーム、駒21ea、ベアリング21ebおよびピアノ音を放射する他の振動部分は、本体21jを構成する。以下の説明において、弦、ハンマ、ダンパおよび本体は、標準的なグランドピアノ21における構成を示し、電子楽器1に含まれている構成を示すものではない。   FIG. 3 is a diagram illustrating the configuration of a standard grand piano. The plurality of models are based on a standard grand piano (acoustic piano) 21 shown in FIG. The grand piano 21 includes a keyboard 21b including 88 keys 21a, a hammer 21c connected to the key 21a via an action mechanism 21d, a string 21e, and a damper 21f capable of contacting the string 21e. The string 21e is connected to a piece 21ea at one end and a bearing 21eb at the other end. Most of the key 21a, the hammer 21c, the action mechanism 21d, the string 21e, and the damper 21f are housed in the cabinet 21h. The number of strings 21e and the number of contact points of the damper 21f vary depending on the sound range. The cabinet 21h, the frame, the wooden frame, the piece 21ea, the bearing 21eb, and other vibration parts that emit piano sound constitute the main body 21j. In the following description, a string, a hammer, a damper, and a main body indicate the configuration of the standard grand piano 21 and do not indicate the configuration included in the electronic musical instrument 1.

図2に示す楽音信号合成部100は、比較部101、ダンパモデルを対応する弦毎に計算するダンパモデル計算部102−1、102−2、ハンマモデルを計算するハンマモデル計算部103、弦モデルを弦毎に計算する弦モデル計算部104−1、104−2、本体モデルを計算する本体モデル計算部105、および空気モデルを計算する空気モデル計算部106を有する。   The musical tone signal synthesis unit 100 shown in FIG. 2 includes a comparison unit 101, damper model calculation units 102-1 and 102-2 that calculate a damper model for each corresponding string, a hammer model calculation unit 103 that calculates a hammer model, and a string model. String model calculation units 104-1 and 104-2 for calculating a string for each string, a body model calculation unit 105 for calculating a body model, and an air model calculation unit 106 for calculating an air model.

ダンパモデル計算部102−1、102−2は、ダンパモデルにより、ある弦21eの振動を計算する。弦モデル計算部104−1、104−2は、弦モデルにより、ある弦21eの振動を計算する。ハンマモデル計算部103、本体モデル計算部105および空気モデル計算部106は、それぞれハンマモデル、本体モデル、空気モデルにより、ある弦21eの振動を計算する。   The damper model calculation units 102-1 and 102-2 calculate the vibration of a certain string 21e using a damper model. The string model calculation units 104-1 and 104-2 calculate the vibration of a certain string 21e based on the string model. The hammer model calculation unit 103, the main body model calculation unit 105, and the air model calculation unit 106 calculate the vibration of a certain string 21e using the hammer model, the main body model, and the air model, respectively.

比較部101は、ダンパモデル計算部102−1、102−2に接続されている。ダンパモデル計算部102−1、102−2は、それぞれ、弦モデル計算部104−1、104−2に接続されている。ハンマモデル計算部103は、弦モデル計算部104−1,104−2の双方に接続されている。弦モデル計算部104−1、104−2は、本体モデル計算部105と接続されている。本体モデル計算部105は、空気モデル計算部106と接続されている。楽音信号は、空気モデル計算部106から出力される。   The comparison unit 101 is connected to the damper model calculation units 102-1 and 102-2. The damper model calculation units 102-1 and 102-2 are connected to the string model calculation units 104-1 and 104-2, respectively. The hammer model calculation unit 103 is connected to both the string model calculation units 104-1 and 104-2. The string model calculation units 104-1 and 104-2 are connected to the main body model calculation unit 105. The main body model calculation unit 105 is connected to the air model calculation unit 106. The musical sound signal is output from the air model calculation unit 106.

楽音信号合成部100の楽音信号合成処理によって得られる楽音信号は、特定の鍵において、対応する弦が2本である場合の物理モデルによるものである。即ち、本体モデルを計算する本体モデル計算部105に対して、弦モデルを計算する弦モデル計算部104−1、104−2が並列に接続されている。ここで、弦が3本以上であれば、本体モデル計算部105に対して、並列に接続される弦モデル計算部104−iw(iw=3,4,・・・)および弦モデルに接続されるダンパモデル計算部102−iw(iw=3,4,・・・)を増やせばよい。また、鍵が複数存在する場合には、鍵の数に応じて、ダンパモデル計算部102、ハンマモデル計算部103および弦モデル計算部104の組を増やして、各鍵に対応する弦モデル計算部104を本体モデル計算部105に接続すればよい。したがって、図2に示す楽音信号合成部100は、一般性を有している。   The musical tone signal obtained by the musical tone signal synthesizing process of the musical tone signal synthesizing unit 100 is based on a physical model in the case where there are two corresponding strings in a specific key. That is, the string model calculation units 104-1 and 104-2 for calculating the string model are connected in parallel to the main body model calculation unit 105 for calculating the main body model. Here, if there are three or more strings, the main body model calculation unit 105 is connected to the string model calculation unit 104-iw (iw = 3,4,...) And the string model connected in parallel. The damper model calculation unit 102-iw (iw = 3, 4,...) May be increased. When there are a plurality of keys, the number of the damper model calculation unit 102, the hammer model calculation unit 103, and the string model calculation unit 104 is increased according to the number of keys, and the string model calculation unit corresponding to each key 104 may be connected to the main body model calculation unit 105. Therefore, the tone signal synthesizer 100 shown in FIG. 2 has generality.

楽音信号合成部100における入力信号としては、制御部11によって生成される各信号であって、鍵盤部15aから出力される鍵の押込量を表す情報に応じて生成される信号(以下、入力信号1(e(nΔt))という)、鍵の押込速度および押込加速度を表す情報に応じて生成されるハンマ速度を表す信号(以下、入力信号2(V(nΔt))という)、ペダル部16から出力されるダンパペダルの踏込量を表す情報に応じて生成される信号(以下、入力信号3(e(nΔt))という)、シフトペダルの踏込量を表す情報に応じて生成される信号(以下、入力信号4(e(nΔt))という)の4信号である。これらの4信号はそれぞれ、離散時間軸(t=nΔt; n=0,1,2,・・・)上の信号として、上述した情報KS、KV、PSに基づいて楽音信号合成部100に入力されるものとする。なお、これらの4信号は、制御部11が記憶部12に記憶されている楽音制御データを読み出すことによって生成されるものであってもよい。 The input signal in the musical tone signal synthesis unit 100 is a signal generated by the control unit 11 and generated according to information indicating the key pressing amount output from the keyboard unit 15a (hereinafter referred to as an input signal). 1 (referred to as e K (nΔt)), a signal indicating a hammer speed generated according to information indicating the key pressing speed and the pressing acceleration (hereinafter referred to as input signal 2 (V H (nΔt))), pedal unit 16 is a signal generated according to information indicating the depression amount of the damper pedal output from 16 (hereinafter referred to as input signal 3 (e P (nΔt)), and a signal generated according to information indicating the depression amount of the shift pedal. (Hereinafter referred to as input signal 4 (e S (nΔt))). Each of these four signals is input to the tone signal synthesis unit 100 as a signal on a discrete time axis (t = nΔt; n = 0, 1, 2,...) Based on the information KS, KV, PS described above. Shall be. These four signals may be generated when the control unit 11 reads out the musical tone control data stored in the storage unit 12.

一方、楽音信号合成部100における出力信号としては、空気モデル計算部106から出力される「空気中の観測点における音圧」の波形を示す楽音信号(以下、楽音信号(P(nΔt))という)である。   On the other hand, the output signal in the musical sound signal synthesis unit 100 is a musical tone signal (hereinafter referred to as a musical tone signal (P (nΔt))) indicating a waveform of “sound pressure at an observation point in the air” output from the air model calculation unit 106. ).

まず、この例における楽音信号合成部100における楽音信号合成処理の物理モデルにおいては、以下に示す28の仮定がなされている。
(仮定1)重力は無視する。
(仮定2)軸力を受けて真っ直ぐに静止している状態(以下、静的平衡状態という)にある弦は細長い円柱形状であるものとする。
(仮定3)弦の太さは不変であるものとする。即ち、はり理論を採用するものとする。
(仮定4)弦の中心軸に垂直な断面は、変形後も平面を保ち、かつ中心軸に垂直であるものとする。即ち、ベルヌイ・オイラーの仮定を採用するものとする。
(仮定5)弦の振幅は小さいが、必ずしも微小ではないものとする。
(仮定6)弦は均質であるものとする。
(仮定7)弦の応力は、ひずみに比例する成分とひずみ速度に比例する成分の和として与えられるものとする。即ち、弦には内部粘性減衰(剛性比例粘性減衰ともいう)が働くものとする。
(仮定8)弦の軸方向には外部粘性減衰(質量比例粘性減衰ともいう)が働くものとする。
(仮定9)弦の一端は本体の一部であるベアリング上の点で支持され、他の一端は本体の一部である駒上の点で支持されているものとする。(弦は支持端において回転を拘束されないものとする。)
(仮定10)弦と空気との間の作用・反作用は無視する。
(仮定11)ハンマの弦に接触する部分(以下、ハンマ先端という)の形状は、円柱状であるものとし、その円柱の底面半径は無限小であるとし、その円柱の高さは他の弦と干渉しない程度であるものとする。
(仮定12)1個のハンマに対応する弦が複数本ある場合には、それらの弦の静的平衡状態における中心軸は、同一平面上にあるものとする。
(仮定13)1個のハンマに対応する弦が複数本ある場合には、その1個のハンマは、それらの弦の数と同じ数のハンマ先端を有するものとする。
(仮定14)ハンマ先端(円柱)の中心軸の方向は、静的平衡状態にある弦(円柱)の中心軸の方向に直交するものとする。
(仮定15)ハンマ重心は1つの直線上でのみ運動するものとする。
(仮定16)ハンマ重心の運動方向は、ハンマ先端(円柱)の中心軸の方向と静的平衡状態にある弦(円柱)の中心軸の方向の両方に直交するものとする。
(仮定17)ハンマの変形する方向は、ハンマ重心の運動方向に一致しているものとする。
(仮定18)ハンマの圧縮力-圧縮量関係式は、指数を正の実数とするべき関数で与えられるものとする。
(仮定19)ハンマ先端と弦表面との間には摩擦は無いものとする。
(仮定20)ハンマと空気との間の作用・反作用は無視する。
(仮定21)ダンパが備わっている弦については、弦の曲げ振動を静止させようとするダンパによる抵抗力が、弦の中心軸上の点(以下、止音点という)に作用するものとする。(仮定22)ダンパの抵抗力-速度関係式は、1次式で与えられるものとする。
(仮定23)本体の振幅は微小であるものとする。
(仮定24)本体は近似的に比例粘性減衰系として扱えるものとする。
(仮定25)本体が空気から受ける反作用は無視する。
(仮定26)空気は均質であるものとする。
(仮定27)空気の圧力-体積ひずみ関係式は、1次式で与えられるものとする。
(仮定28)空気は渦無しであるとする。
First, in the physical model of the musical tone signal synthesis process in the musical tone signal synthesis unit 100 in this example, the following 28 assumptions are made.
(Assumption 1) Gravity is ignored.
(Assumption 2) It is assumed that a string in a state where it is straightly stopped by receiving an axial force (hereinafter referred to as a static equilibrium state) has an elongated cylindrical shape.
(Assumption 3) The thickness of the string is assumed to be unchanged. That is, the beam theory is adopted.
(Assumption 4) The cross section perpendicular to the central axis of the chord is assumed to be flat after deformation and perpendicular to the central axis. That is, Bernoulli Euler's assumption is adopted.
(Assumption 5) The amplitude of the string is small but not necessarily very small.
(Assumption 6) The strings are assumed to be homogeneous.
(Assumption 7) The string stress is given as the sum of a component proportional to strain and a component proportional to strain rate. That is, it is assumed that internal viscous damping (also referred to as rigidity proportional viscous damping) acts on the string.
(Assumption 8) It is assumed that external viscous damping (also referred to as mass proportional viscous damping) acts in the axial direction of the string.
(Assumption 9) One end of the string is supported by a point on a bearing that is a part of the main body, and the other end is supported by a point on a piece that is a part of the main body. (The string shall not be constrained from rotating at the support end.)
(Assumption 10) The action / reaction between the string and air is ignored.
(Assumption 11) The shape of the portion that contacts the string of the hammer (hereinafter referred to as the tip of the hammer) is assumed to be cylindrical, the bottom radius of the cylinder is infinitesimal, and the height of the cylinder is the other string. To the extent that it does not interfere with.
(Assumption 12) When there are a plurality of strings corresponding to one hammer, the central axes of the strings in the static equilibrium state are on the same plane.
(Assumption 13) When there are a plurality of strings corresponding to one hammer, the one hammer has the same number of hammer tips as the number of the strings.
(Assumption 14) The direction of the central axis of the tip of the hammer (cylinder) is orthogonal to the direction of the central axis of the string (cylinder) in a static equilibrium state.
(Assumption 15) The center of gravity of the hammer moves only on one straight line.
(Assumption 16) The movement direction of the center of gravity of the hammer is orthogonal to both the direction of the central axis of the tip of the hammer (cylinder) and the direction of the central axis of the string (cylinder) in a static equilibrium state.
(Assumption 17) It is assumed that the direction in which the hammer deforms coincides with the movement direction of the center of gravity of the hammer.
(Assumption 18) The hammer compression force-compression amount relational expression is assumed to be given by a function whose exponent should be a positive real number.
(Assumption 19) It is assumed that there is no friction between the hammer tip and the string surface.
(Assumption 20) The action / reaction between the hammer and air is ignored.
(Assumption 21) For a string equipped with a damper, a resistance force by the damper that tries to stop the bending vibration of the string acts on a point on the central axis of the string (hereinafter referred to as a sound stop point). . (Assumption 22) The resistance force-speed relational expression of the damper is given by a linear expression.
(Assumption 23) The amplitude of the main body is assumed to be minute.
(Assumption 24) It is assumed that the main body can be treated approximately as a proportional viscous damping system.
(Assumption 25) The reaction that the main body receives from the air is ignored.
(Assumption 26) Air is assumed to be homogeneous.
(Assumption 27) It is assumed that the air pressure-volume strain relational expression is given by a linear expression.
(Assumption 28) It is assumed that the air has no vortex.

また、この例における弦の物体座標の表現には、右手系(x,y,z)を用いる。ここで、静的平衡状態にある弦の中心軸にx軸を一致させ、ベアリング側支持端を原点(0,0,0)とし、駒側支持端がx>0なる領域に含まれる様にx軸の方向を定め、ハンマ重心の打弦時運動方向をz軸の正方向と定める。また、本体および空気の物体座標の表現には、右手系(X,Y,Z)を用いる。時刻の進行(時間変数)はtで表す。   Further, the right-handed system (x, y, z) is used to represent the object coordinates of the string in this example. Here, the x axis is aligned with the central axis of the string in a static equilibrium state, the bearing side support end is the origin (0, 0, 0), and the piece side support end is included in the region where x> 0. The direction of the x-axis is determined, and the direction of movement of the hammer center of gravity when struck is determined as the positive direction of the z-axis. Further, the right-handed system (X, Y, Z) is used to represent the body and air object coordinates. Time progress (time variable) is represented by t.

以下、この例において説明する各パラメータを表す記号について説明する。   Hereinafter, symbols representing each parameter described in this example will be described.

以下の「数1」から「数5」については、各モデルの計算にあたって入力される情報である。「数1」は、時刻の進行に伴い変動するパラメータ(時間変動パラメータ)である。一方、「数2」から「数5」は、時刻の進行に伴う変動が無いパラメータ(時間不変パラメータ)であって、予め設定されるものである。   The following “Equation 1” to “Equation 5” are information input in the calculation of each model. “Equation 1” is a parameter (time variation parameter) that varies with time. On the other hand, “Equation 2” to “Equation 5” are parameters that do not vary with the progress of time (time invariant parameters) and are preset.

以下の「数1」は、演奏に関するパラメータ、即ち、楽音信号合成部100における入力信号に相当するものを示している。鍵、弦、ハンマ、ダンパ、本体は、それぞれ、標準的なグランドピアノ21の構成要素21a、21e、21c、21f、21jを示す。   The following “Equation 1” indicates a parameter relating to performance, that is, a parameter corresponding to an input signal in the musical tone signal synthesis unit 100. Keys, strings, hammers, dampers, and main bodies indicate the components 21a, 21e, 21c, 21f, and 21j of the standard grand piano 21, respectively.

Figure 2011103010
Figure 2011103010

以下の「数2」は、設計に関するパラメータである。   The following “Equation 2” is a parameter relating to design.

Figure 2011103010
Figure 2011103010

以下の「数3」は、本体の設計および空気中観測点の位置に関するパラメータである。   The following “Equation 3” is a parameter related to the design of the main body and the position of the observation point in the air.

Figure 2011103010
Figure 2011103010

以下の「数4」は、調律に関するパラメータである。   The following “Equation 4” is a parameter related to tuning.

Figure 2011103010
Figure 2011103010

以下の「数5」は、数値計算に関するパラメータである。   The following “Equation 5” is a parameter related to numerical calculation.

Figure 2011103010
Figure 2011103010

以下の「数6」は、各モデルの計算により出力される情報、即ち、楽音信号である。   The following “Equation 6” is information output by calculation of each model, that is, a musical tone signal.

Figure 2011103010
Figure 2011103010

以下の「数7」、「数8」、「数9」は、各モデルの計算上必要なその他のパラメータである。   The following “Equation 7”, “Equation 8”, and “Equation 9” are other parameters necessary for calculation of each model.

Figure 2011103010
Figure 2011103010

ここで、1個のハンマに対応する弦が1本の場合には、Z、X、Y、およびθが与えられると、βkk’は一意に定まる。1個のハンマに対応する弦が複数本ある場合には、Z、X、Yが与えられると、βkk’は一意に定まる。 Here, when there is one string corresponding to one hammer, β kk ′ is uniquely determined when Z B , X B , Y B , and θ H are given. When there are a plurality of strings corresponding to one hammer, β kk ′ is uniquely determined when Z B , X B , and Y B are given.

Figure 2011103010
Figure 2011103010

Figure 2011103010
Figure 2011103010

以下の「数10」は、上記各パラメータにおいて上付き文字として記載されているインデックスの説明である。   The following “Equation 10” is an explanation of an index described as a superscript in each parameter.

Figure 2011103010
Figure 2011103010

以下、この例における楽音信号合成部100の各部の処理内容について、図2を用いて順に説明する。なお、以後の説明においては、インデックスを全て書くと式が煩雑になって読みづらくなるため、説明上不可欠な場合を除いて、省略することとする。   Hereinafter, the processing contents of each unit of the tone signal synthesis unit 100 in this example will be described in order with reference to FIG. In the following description, if all the indexes are written, the formula becomes complicated and difficult to read.

また、変数e(t)、e(t)、e(t)には初期値(t=0における値)として「1」が設定されている。即ち、鍵(黒鍵15b、白鍵15c)の押し込み、ダンパペダル16a、シフトペダル16bの踏み込みはされていない状態として設定されている。また、その他の全ての「t」に関する変数には、初期値として「0」が設定されているものとする。 In addition, “1” is set as an initial value (value at t = 0) in the variables e K (t), e P (t), and e S (t). That is, the key (black key 15b, white key 15c) is not depressed, and the damper pedal 16a and shift pedal 16b are not depressed. Further, it is assumed that “0” is set as an initial value for all other variables relating to “t”.

比較部101は、入力される鍵押込量入力信号1(e(nΔt))およびダンパペダル踏込量入力信号3(e(nΔt))を取得し、小さい方の値をe(nΔt)として出力する。これは、以下の式(1)で表される。 The comparison unit 101 acquires the input key depression amount input signal 1 (e K (nΔt)) and the damper pedal depression amount input signal 3 (e P (nΔt)), and sets the smaller value as e D (nΔt). Output. This is expressed by the following formula (1).

Figure 2011103010
Figure 2011103010

ダンパモデル計算部102は、1番目の弦(iw=1)に対応するダンパについて計算するダンパモデル計算部102−1、2番目の弦(iw=2)に対応するダンパについて計算するダンパモデル計算部102−2を有する。以下の説明においては、弦のインデックスが異なるだけであるから、ダンパモデル計算部102として説明する。なお、弦が3本以上存在する場合には、上述したように、ダンパモデル計算部102−iw(iw=3,4,・・・)を弦(iw=3,4,・・・)に対応させて設ければよい。   The damper model calculation unit 102 calculates the damper model calculation unit 102-1 that calculates the damper corresponding to the first string (iw = 1), and the damper model calculation that calculates the damper corresponding to the first string (iw = 2). Part 102-2. In the following description, only the index of the string is different, so that the damper model calculation unit 102 will be described. When there are three or more strings, as described above, the damper model calculation unit 102-iw (iw = 3,4,...) Is replaced with the string (iw = 3,4,...). It may be provided in correspondence.

弦モデル計算部104は、1番目の弦(iw=1)について計算する弦モデル計算部104−1、2番目の弦(iw=2)について計算する弦モデル計算部104−2を有する。以下の説明においては、弦のインデックスが異なるだけであるから、弦モデル計算部104として説明する。なお、弦が3本以上存在する場合には、上述したように、弦モデル計算部104−iw(iw=3,4,・・・)を、本体モデル105に対して並列に設ければよい。(弦モデル計算部104の計算については、後述する。)   The string model calculation unit 104 includes a string model calculation unit 104-1 for calculating the first string (iw = 1) and a string model calculation unit 104-2 for calculating the first string (iw = 2). In the following description, the string model calculation unit 104 is described because only the string index is different. When there are three or more strings, the string model calculation unit 104-iw (iw = 3, 4,...) May be provided in parallel to the main body model 105 as described above. . (The calculation of the string model calculation unit 104 will be described later.)

ダンパモデル計算部102は、比較部101から出力されるeD(nΔt)、および後述するようにして弦モデル計算部104から出力されるuk(xD,nΔt)(k=1,3)を取得して、これらを用いて、以下に示す計算を行った結果得られるfDk(nΔt)を弦モデル計算部104に出力する。   The damper model calculation unit 102 acquires eD (nΔt) output from the comparison unit 101 and uk (xD, nΔt) (k = 1, 3) output from the string model calculation unit 104 as described later. Then, using these, fDk (nΔt) obtained as a result of the following calculation is output to the string model calculation unit 104.

以下、ダンパモデル計算部102における計算について説明する。   Hereinafter, the calculation in the damper model calculation unit 102 will be described.

初期状態におけるピアノの弦は、ダンパによって振動を抑制された状態にある。ピアノの鍵を押し込んでいくと、対応するダンパが対応する弦から徐々に離れ出し、やがて弦はダンパの抵抗から完全に解放され、ハンマによる打弦に備える。また、ピアノにおいては、鍵の押込量だけでなくダンパペダルの踏込量によってもダンパと弦との接触度合を変えることができ、音の止まり方や弦共鳴の度合をきめ細かく制御することができる。   The piano string in the initial state is in a state where vibration is suppressed by the damper. As the piano keys are pushed in, the corresponding dampers gradually move away from the corresponding strings and eventually the strings are completely released from the resistance of the dampers to prepare for hammering. In the piano, the degree of contact between the damper and the string can be changed not only by the key depression amount but also by the depression amount of the damper pedal, and the way of stopping the sound and the degree of string resonance can be finely controlled.

このようなピアノにおけるダンパのメカニズムは、以下の式(2)に示すダンパの抵抗力fDk(t)とダンパ変形量u(x,t)との関係式をもって簡潔に表現することができる。 The mechanism of the damper in such a piano can be expressed concisely by the relational expression between the resistance force f Dk (t) of the damper and the deformation amount u k (x D , t) of the damper shown in the following formula (2). it can.

Figure 2011103010
Figure 2011103010

この例においては、比較部101から出力されるe(nΔt)を式(2)に代入することで、ダンパの粘性係数に相当する量「b(nΔt)」を離散時間軸(t=nΔt; n=0,1,2,・・・)上で逐次変化させるというアイデアにより、自然楽器のピアノと同様な自然で連続的な止音および弦共鳴の制御を可能にしている。 In this example, by substituting e D (nΔt) output from the comparison unit 101 into the equation (2), an amount “b D e D (nΔt)” corresponding to the viscosity coefficient of the damper is changed to a discrete time axis ( (t = nΔt; n = 0, 1, 2,...), the idea of sequentially changing the sound is to enable natural and continuous stop and string resonance control similar to a natural musical instrument piano.

実際の計算において、式(2)は、後述する弦モデル計算部104における弦のモード毎の運動方程式(式(16)、式(18))の中に組み込まれる。以上が、ダンパモデル計算部102の説明である。   In the actual calculation, Expression (2) is incorporated into the equation of motion (Expression (16), Expression (18)) for each string mode in the string model calculation unit 104 described later. The above is the description of the damper model calculation unit 102.

ハンマモデル計算部103は、入力信号2(V(nΔt))および入力信号4(e(nΔt))を取得し、また、後述するようにして弦モデル計算部104から出力されるu(x,nΔt)を取得し、これらを用いて、以下に示す計算を行った結果得られるf(nΔt)を弦モデル計算部104に出力する。 The hammer model calculation unit 103 acquires the input signal 2 (V H (nΔt)) and the input signal 4 (e S (nΔt)), and outputs u 1 output from the string model calculation unit 104 as described later. (X H , nΔt) is acquired, and using these, f H (nΔt) obtained as a result of the following calculation is output to the string model calculation unit 104.

以下、ハンマモデル計算部103における計算について説明する。   Hereinafter, the calculation in the hammer model calculation unit 103 will be described.

上述した物理モデルに関する仮定に、ニュートンの運動の法則を適用するとハンマの運動方程式は、式(3)のように書かれる。   When Newton's law of motion is applied to the assumptions regarding the physical model described above, Hammer's equation of motion is written as shown in Equation (3).

Figure 2011103010
Figure 2011103010

また、ハンマ先端が弦表面に及ぼす力とハンマ圧縮量の関係式は、式(4)のようになる。   The relational expression between the force exerted by the hammer tip on the string surface and the amount of compression of the hammer is as shown in Expression (4).

Figure 2011103010
Figure 2011103010

ただし、ハンマ先端が弦表面に接触しているときは式(5)、ハンマ先端が弦表面から離れているときは式(6)、(7)が適用される。   However, when the hammer tip is in contact with the string surface, the equation (5) is applied, and when the hammer tip is separated from the string surface, the equations (6) and (7) are applied.

Figure 2011103010
Figure 2011103010

いま、式(3)の右辺をf(t)、dw(t)/dtをv(t)とそれぞれ書くことにすれば、変数tに関する2階常微分方程式(式(3))は、次に示す前進オイラー公式と台形公式を用いることで、離散時間軸(t=nΔt; n=1,2,3,・・・)上で、式(8)に示すように数値的に解くことができる。 Now, if the right side of equation (3) is written as f (t) and dw H (t) / dt is written as v H (t), the second-order ordinary differential equation (equation (3)) for variable t is Then, by using the following forward Euler formula and trapezoid formula, a numerical solution is performed as shown in equation (8) on the discrete time axis (t = nΔt; n = 1, 2, 3,...). be able to.

Figure 2011103010
Figure 2011103010

即ち、「0」より大きいハンマ速度V((n−1)Δt)が与えられるとき、式(8)のv((n−1)Δt)、f((n−1)Δt)、w((n−1)Δt)に、それぞれV((n−1)Δt)、「0」、Wを代入することにより、ハンマ重心変位w(nΔt)が直ちに算出される。やがて、ハンマ接触の条件、即ち、式(5)が満たされるとき、式(4)より、弦モデルへの出力f [iw](nΔt)が算出される。 That is, when a hammer speed V H ((n−1) Δt) greater than “0” is given, v H ((n−1) Δt), f ((n−1) Δt) in equation (8), By substituting V H ((n−1) Δt), “0”, and W H for w H ((n−1) Δt), the hammer gravity center displacement w H (nΔt) is immediately calculated. Eventually, when the condition of the hammer contact, that is, the expression (5) is satisfied, the output f H [iw] (nΔt) to the string model is calculated from the expression (4).

さて、ピアノにおけるシフトペダルのメカニズムとは、それを踏み込むとハンマの位置が高音側へシフトし、ハンマの弦に接触する部分を変化させる、あるいは、ハンマと一部の弦との接触を不完全な状態にすることによって音色を制御するという機構であるが、この例においては、入力信号4(e [iS](nΔt))を式(4)に代入することにより、ハンマの弾性係数に相当する量K [iS](nΔt)を離散時間軸(t=nΔt; n=0,1,2,・・・)上で逐次変化させるというアイデアにより、自然楽器のピアノと同様な自然で連続的な音色の制御を可能にしている。以上が、ハンマモデル計算部103の説明である。 Now, what is the mechanism of a shift pedal in a piano? When you depress it, the position of the hammer shifts to the treble side, changing the part that contacts the string of the hammer, or incomplete contact between the hammer and some strings In this example, by substituting the input signal 4 (e S [iS] (nΔt)) into the equation (4), the elastic coefficient of the hammer is controlled. The equivalent amount K H e S [iS] (nΔt) is sequentially changed on the discrete time axis (t = nΔt; n = 0, 1, 2,. It enables natural and continuous tone control. The above is the description of the hammer model calculation unit 103.

弦モデル計算部104は、弦に及ぼす力となる、ダンパモデル計算部102から出力されるfDk(nΔt)(k=1,3)およびハンマモデル計算部103から出力されるf(nΔt)、また、後述するようにして本体モデル計算部105から出力されるuBk(nΔt)(k=1,2,3)をそれぞれ取得し、これらを用いて、以下に示す計算を行った結果得られるFBk(nΔt)(k=1,2,3)を本体モデル計算部105に出力し、また、u(x,nΔt)(k=1,3)をダンパモデル計算部102に出力する。 The string model calculation unit 104 outputs f Dk (nΔt) (k = 1, 3) output from the damper model calculation unit 102 and f H (nΔt) output from the hammer model calculation unit 103, which are forces acting on the strings. In addition, as described later, u Bk (nΔt) (k = 1, 2, 3) output from the main body model calculation unit 105 is acquired, and the results obtained by performing the following calculation using these are obtained. F Bk (nΔt) (k = 1, 2, 3) is output to the main body model calculation unit 105, and u k (x D , nΔt) (k = 1, 3) is output to the damper model calculation unit 102. To do.

以下、弦モデル計算部104における計算について説明する。   Hereinafter, calculation in the string model calculation unit 104 will be described.

上述した物理モデルに関する仮定において、ニュートンの運動の法則を適用すると弦の運動方程式は、式(9)、(10)、(11)のように書かれる。   When the Newton's law of motion is applied in the assumptions regarding the physical model described above, the equation of motion of the string is written as in equations (9), (10), and (11).

Figure 2011103010
Figure 2011103010

ただし、式(9)および式(11)において、有限振幅に起因する非線形項は、それによる効果が小さいため省略してある。同様に、式(10)において、ハンマが弦軸方向に与える力についても、それによる効果が小さいため省略してある。なお、式(9)はハンマ重心の運動方向に対応する弦の曲げ振動に、式(11)はハンマ重心の運動方向とは直交する方向に対応する弦の曲げ振動に、式(10)は弦の縦振動に、それぞれ対応している。   However, in the equations (9) and (11), the nonlinear term due to the finite amplitude is omitted because the effect due to this is small. Similarly, in the formula (10), the force applied by the hammer in the chord axis direction is omitted because the effect of the force is small. Equation (9) is the bending vibration of the string corresponding to the movement direction of the hammer center of gravity, Equation (11) is the bending vibration of the string corresponding to the direction orthogonal to the movement direction of the hammer gravity center, and Equation (10) is Corresponds to the vertical vibration of the strings.

また、弦の境界条件は、式(12)、(13)のように書かれる。   Moreover, the string boundary condition is written as shown in equations (12) and (13).

Figure 2011103010
Figure 2011103010

さて、従来より、両端を単純支持された弦(支持端が運動しない弦)の非定常振動問題を解くための方法として、「弦の変位」を「任意の時間関数を係数とするフーリエ正弦級数」で表すという方法が知られている(例えば参考文献1: D.E.Hall. Piano strings excitation. VI: Nonlinear modeling. J.Acoust.Soc.Am, Vol.92, No.1, pp.95-105,1992.)。   Conventionally, as a method for solving the unsteady vibration problem of strings that are simply supported at both ends (strings where the support ends do not move), `` string displacement '' is a Fourier sine series with an arbitrary time function as a coefficient. (For example, Reference 1: DEHall. Piano strings excitation. VI: Nonlinear modeling. J. Acoust. Soc. Am, Vol. 92, No. 1, pp. 95-105, 1992.).

これを式で書くと式(14)のようになる。   When this is written as an equation, equation (14) is obtained.

Figure 2011103010
Figure 2011103010

式(14)の正弦関数は、両端単純支持という境界条件に対応する弦の固有振動モードである。一方、ピアノがそうであるように弦の支持端が運動する場合には、弦の固有振動モードが簡単には求められないため、有限要素法や差分法のような空間的離散化を必要とする解法に頼るというのが一般的である。しかしながら、これらの解法(空間関数と時間関数が分離されていない解法)は、固有振動モードを用いる解法(空間関数と時間関数が分離されている解法)に比べ、数値計算の誤差が時間軸上で蓄積されやすいため、これらの解法を用いて長時間に及ぶ楽音を高い精度で合成することは困難である。   The sine function of Equation (14) is the natural vibration mode of the string corresponding to the boundary condition of simple support at both ends. On the other hand, when the support end of a string moves like a piano, the natural vibration mode of a string cannot be easily obtained, so spatial discretization such as the finite element method or the difference method is required. It is common to rely on a solution that does this. However, these solutions (solutions in which the spatial function and the time function are not separated) are more error-prone to numerical computations on the time axis than the solutions using the natural vibration mode (solutions in which the spatial function and the time function are separated). Therefore, it is difficult to synthesize musical sounds for a long time with high accuracy using these solutions.

ここでは、支持端が運動する場合の弦の非定常振動問題を高精度かつ高速に解く方法として、「弦の変位」を「任意の時間関数を係数とするフーリエ正弦級数」と「2つの支持端を結んだ直線の変位」との和によって表す、即ち、式(15)により表現するという新しいアイデアを提示する。   Here, as a method of solving the unsteady vibration problem of a string when the support end moves with high accuracy and high speed, “displacement of string” is “Fourier sine series with an arbitrary time function as a coefficient” and “two support We present a new idea that is expressed by the sum of “displacement of straight line connecting ends”, that is, expressed by equation (15).

Figure 2011103010
Figure 2011103010

このとき、式(15)は任意のtについて境界条件式(12)、(13)を満足している。なお、式(15)中の正弦関数は、厳密な意味での固有振動モードではないが、ここでは、便宜上、固有振動モードと呼ぶことにする。   At this time, Expression (15) satisfies the boundary condition expressions (12) and (13) for an arbitrary t. Note that the sine function in equation (15) is not a natural vibration mode in a strict sense, but here, for convenience, it will be referred to as a natural vibration mode.

偏微分方程式(式(9)、(10)、(11))に式(15)を代入してから、sin(ikπx/l)(ik=1,2,・・・,Mk; k=1,2,3)をそれぞれ掛けて区間「0≦x≦l」で積分すると、以下に示す2階常微分方程式(式(16)、(17)、(18))が導かれる。   After substituting equation (15) into the partial differential equation (equations (9), (10), (11)), sin (ikπx / l) (ik = 1, 2,..., Mk; k = 1 , 2, 3) and integrating in the interval “0 ≦ x ≦ l”, the following second-order ordinary differential equations (Equations (16), (17), (18)) are derived.

Figure 2011103010
Figure 2011103010

Figure 2011103010
Figure 2011103010

更に、弦のモード毎の運動方程式(式(16)、(17)、(18))は、双一次s-z変換を用いることによって、IK×IW [iK]×(2×M1 [iK]+M2 [iK])個(iK=1,2,・・・,IK)の並列化された2次IIR(Infinite Impulse Response)フィルタとして、それぞれ記述できるから、離散時間軸(t=nΔt; n=0,1,2,・・・)上で、Ak [iK][iW][mk](nΔt)(iK=1,2,・・・,IK; iW=1,2,・・・,IW [iK]; mk=1,2,・・・,Mk [iK]; k=1,2,3)の値を各モード毎に逐次算出することができる。ただし、各タイムステップにおいて、式(16)および式(18)の計算を式(17)の計算に先行させ、式(17)の右辺に含まれる非線形項Ak [mk](t) Ak [m'k](t)(k=1,3)を外力項のように扱うようにする。 Furthermore, the equation of motion for each string mode (Equations (16), (17), (18)) can be expressed as I K × I W [iK] × (2 × M 1 [iK ] by using a bilinear sz transform. ] + M 2 [iK] ) (i K = 1, 2,..., I K ) parallelized second-order IIR (Infinite Impulse Response) filters can be described respectively. nΔt; n = 0, 1, 2,..., A k [iK] [iW] [mk] (nΔt) (i K = 1, 2,..., I K ; i W = 1 , 2,..., I W [iK] ; m k = 1, 2,..., M k [iK] ; it can. However, in each time step, the calculation of Expression (16) and Expression (18) is preceded by the calculation of Expression (17), and the nonlinear term A k [mk] (t) A k included in the right side of Expression (17). [m'k] (t) (k = 1, 3) is treated like an external force term.

弦が弦支持端に及ぼす力と支持端変位との関係式は、式(28)、(29)のように書かれる。   The relational expression between the force exerted by the string on the string support end and the support end displacement is written as in Expressions (28) and (29).

Figure 2011103010
Figure 2011103010

更に、式(28)、(29)に式(15)を代入することによって、式(30)、(31)が導かれる。ただし、非線形項と回転慣性に関する項は省略した。   Further, by substituting equation (15) into equations (28) and (29), equations (30) and (31) are derived. However, the terms related to nonlinear terms and rotational inertia were omitted.

Figure 2011103010
Figure 2011103010

式(30)、(31)を次に示す本体−弦物理座標変換式(式(32))に代入することによって得られる式に、前述の方法で算出されたAk [mk](nΔt)(mk=1,2,・・・,Mk; k=1,2,3)の値を代入すれば、弦が弦支持端に及ぼす力FBk [iB](nΔt)、即ち、弦モデル計算部104から本体モデル計算部105への出力を算出することができる。 A k [mk] (nΔt) calculated by the method described above is substituted into the equation obtained by substituting equations (30) and (31) into the following body-string physical coordinate conversion equation (equation (32)). If the value of (m k = 1, 2,..., M k ; k = 1, 2, 3) is substituted, the force F Bk [iB] (nΔt) exerted on the string support end by the string, that is, the string An output from the model calculation unit 104 to the main body model calculation unit 105 can be calculated.

Figure 2011103010
Figure 2011103010

また、打弦点および止音点の変位は、式(15)より得られる式(33)、(34)にAk [mk](nΔt)(mk=1,2,・・・,Mk; k=1,2,3)の値を代入することによって算出される。 In addition, the displacement of the string hitting point and the sound stopping point is expressed as A k [mk] (nΔt) (m k = 1, 2,..., M in Equations (33) and (34) obtained from Equation (15). k ; calculated by substituting the values of k = 1, 2, 3).

Figure 2011103010
Figure 2011103010

ここで得られたu1(xH,nΔt)は、ハンマモデル計算部103に出力され、式(5)へ再帰的に代入される。同様に、uk(xD [iD],nΔt)は、ダンパモデル計算部102に出力され、式(2)を介して、再び、弦モデル計算部104における式(16)、(18)へ再帰的に代入される。以上が、弦モデル計算部104の説明である。 The u 1 (x H , nΔt) obtained here is output to the hammer model calculation unit 103 and is recursively substituted into Equation (5). Similarly, u k (x D [iD] , nΔt) is output to the damper model calculation unit 102, and again returns to equations (16) and (18) in the string model calculation unit 104 via equation (2). Assigned recursively. The above is the description of the string model calculation unit 104.

本体モデル計算部105は、弦モデル計算部104から出力されるFBk(nΔt)を取得し、これを用いて、以下に示す計算を行った結果得られるA(nΔt)を空気モデル計算部106に出力する。 The main body model calculation unit 105 acquires F Bk (nΔt) output from the string model calculation unit 104, and uses this to calculate A C (nΔt) obtained as a result of the following calculation. The data is output to 106.

以下、本体モデル計算部105における計算について説明する。   Hereinafter, the calculation in the main body model calculation unit 105 will be described.

上述した物理モデルに関する仮定により、本体の運動方程式は、弦モデルからの出力FBk [iK] [iW] [iB](t)(iK=1,2,・・・,IK; iW=1,2,・・・,IW [iK]; iB=0,1; k=1,2,3)を入力とする以下のようなモード毎の2階常微分方程式(式(35))として記述することができる。 Due to the assumptions regarding the physical model described above, the equation of motion of the body is the output F Bk [iK] [iW] [iB] (t) (i K = 1, 2,..., I K ; i W ; = 1, 2,..., I W [iK] ; i B = 0, 1; k = 1, 2, 3) as input, the following second-order ordinary differential equation (formula (35 )).

Figure 2011103010
Figure 2011103010

ところで、ピアノの本体は、木材や金属などから構成されるが、このうち、木材は「低周波成分に比べ高周波成分の振動減衰能が大きい」という特徴を有しており、このことがピアノ(あるいは木材で本体を構成された楽器)特有の「耳に心地よく温かい響き」の原因ともなっている。このような木材の音響的性質は、木材を「弾性係数と構造減衰係数の両方に3次元直交異方性を有する材料」としてモデル化することによって説明することができる(例えば参考文献2:日本機械学会(編) 先端複合材料,pp.68-70. 技報堂出版,1990.)。   By the way, the main body of the piano is made of wood, metal, etc. Among them, wood has the feature that “the vibration damping ability of the high frequency component is larger than the low frequency component”, and this is the piano ( It is also the cause of the “sound that is comfortable in the ears and warm” that is peculiar to a musical instrument whose main body is made of wood. Such acoustic properties of wood can be explained by modeling wood as “a material having three-dimensional orthotropic anisotropy in both elastic modulus and structural damping coefficient” (for example, Reference 2: Japan). Society of Mechanical Engineers (ed.) Advanced Composite Materials, pp.68-70.

「弾性係数と構造減衰係数の両方に3次元直交異方性を有する材料」を含むように構成された本体モデルは、一般構造減衰系(非比例構造減衰系、あるいは、一般ヒステリシス減衰系ともいう)となるため、実固有値解析によって減衰行列を対角化することができない(参考文献3)が、ここでは、減衰行列の非対角項を無視することによって、近似的に比例構造減衰系(比例ヒステリシス減衰系ともいう)とみなすことにする。
(参考文献3:長松昭男 モード解析. 培風館,1985.)
The main body model configured to include “a material having three-dimensional orthogonal anisotropy in both elastic modulus and structural damping coefficient” is also called a general structural damping system (non-proportional structural damping system or general hysteresis damping system). Therefore, the attenuation matrix cannot be diagonalized by real eigenvalue analysis (Reference 3), but here, by ignoring the off-diagonal terms of the attenuation matrix, the proportional structure damping system ( It is also referred to as a proportional hysteresis damping system).
(Reference 3: Akio Nagamatsu mode analysis. Bafukan, 1985)

更に、比例構造減衰系を比例粘性減衰系で近似する、即ち、「モード構造減衰係数/2」でモード減衰比を表すこととする。このとき、式(35)に含まれる固有角振動数、モード減衰比、固有振動モードは、任意3次元形状の本体に対し、商用の有限要素法ソフトを用いた実固有値解析を行うことによって算出することができる。ここで、モード減衰比は、近似的モード減衰比というべきものであるが、ここでは、便宜上、単にモード減衰比ということとする。   Further, the proportional damping system is approximated by a proportional viscous damping system, that is, the mode damping ratio is expressed by “mode structure damping coefficient / 2”. At this time, the natural angular frequency, the mode damping ratio, and the natural vibration mode included in the equation (35) are calculated by performing real eigenvalue analysis using a commercial finite element method software on an arbitrary three-dimensional body. can do. Here, the mode damping ratio should be an approximate mode damping ratio, but here, it is simply referred to as a mode damping ratio for convenience.

本体のモード毎の運動方程式(式(35))も、弦と同様に、双一次s-z変換を用いることによって、M個の並列化された2次IIRフィルタとして、それぞれ記述できるから、離散時間軸(t=nΔt; n=0,1,2,・・・)上で、AC [m](nΔt)(m=1,2,・・・,M )の値をモード毎に逐次算出することができ、空気モデル計算部106に出力される。 Since the equation of motion (Equation (35)) for each mode of the main body can be described as M parallel second-order IIR filters by using the bilinear sz transform, like the strings, the discrete time axis (T = nΔt; n = 0, 1, 2,...) The value of A C [m] (nΔt) (m = 1, 2,..., M) is sequentially calculated for each mode. And is output to the air model calculation unit 106.

弦支持端の変位は、上述の方法で算出されたAC [m](nΔt)(m=1,2,・・・,M )の値を、物理座標−モード座標変換式(式(36))を介して、弦−物理座標変換式(式(37))に代入することによって算出できる。 For the displacement of the string support end, the value of A C [m] (nΔt) (m = 1, 2,..., M) calculated by the above method is used as the physical coordinate-mode coordinate conversion formula (formula (36 )), The value can be calculated by substituting into the string-physical coordinate conversion formula (formula (37)).

Figure 2011103010
Figure 2011103010

ここで得られたuBk [iB](nΔt)は、弦モデル計算部104へ出力され、式(16)、(17)、(18)および式(30)、(31)、(33)、(34)に再帰的に代入される。以上が、本体モデル計算部105の説明である。 U Bk [iB] (nΔt) obtained here is output to the string model calculation unit 104, and the equations (16), (17), (18) and the equations (30), (31), (33), It is recursively assigned to (34). The above is the description of the main body model calculation unit 105.

空気モデル計算部106は、本体モデル計算部105から出力されるA(nΔt)を取得し、これを用いて、以下に示す計算を行った結果得られるP(nΔt)を出力する。 The air model calculation unit 106 acquires A C (nΔt) output from the main body model calculation unit 105, and outputs P (nΔt) obtained as a result of performing the following calculation using this.

以下、空気モデル計算部106における計算について説明する。   Hereinafter, calculation in the air model calculation unit 106 will be described.

任意形状の3次元構造物から放射される空気中の任意の観測点における非定常音圧は、原理的には、次式に示すような方法、即ち、構造物の全表面を十分に細かい音響放射要素(境界要素)に分割した上で、「構造物の各音響放射要素の速度と空気中の観測点における音圧との間のインパルス応答関数」と「構造物の各音響放射要素の速度」との畳み込み積分を要素毎に行い、それらの総和を計算するという方法(式(38))によって算出することができる。   In principle, the unsteady sound pressure at an arbitrary observation point in the air radiated from a three-dimensional structure having an arbitrary shape is obtained by a method as shown in the following equation, that is, a sufficiently fine acoustic wave on the entire surface of the structure. After dividing into radiating elements (boundary elements), "impulse response function between the velocity of each acoustic radiating element of the structure and the sound pressure at the observation point in the air" and "velocity of each acoustic radiating element of the structure Is calculated for each element by the convolution integration with the element, and the total sum thereof is calculated (formula (38)).

Figure 2011103010
Figure 2011103010

しかしながら、高品質な疑似ピアノ音を合成するために必要な本体の音響放射要素数Iは通常膨大な数になるため、式(38)の計算には膨大な時間を要してしまうことになる。そこで、式(38)に式(39)、(40)を代入して、固有振動モードM個の総和を計算する順番と音響放射要素数I個の総和を計算する順番を入れ替える、即ち、式(41)のような計算を行うことにする。 However, to become a normal huge number acoustic radiating elements number I G of the body necessary to synthesize a high-quality pseudo piano sounds, that the calculation of equation (38) it takes a lot of time Become. Therefore, the formula in equation (38) (39), (40) by substituting, changing the order of calculating the order and acoustic radiation element number I G number of the sum to calculate the natural vibration mode of M sum, i.e., A calculation such as the equation (41) will be performed.

Figure 2011103010
Figure 2011103010

Figure 2011103010
Figure 2011103010

高品質な疑似ピアノ音を合成するために必要な本体の固有振動モード数Mは、音響放射要素数Iに比べ、普通は、はるかに小さいから、式(38)のかわりに式(41)を用いる、即ち、「本体の各音響放射要素の速度と空気中の観測点における音圧との間のインパルス応答」(式(40)左辺において「t」は「nΔt」(n=0,1,・・・,N[iP]−1))ではなく、「本体の各固有振動モードのモード座標上での速度と空気中の観測点における音圧との間のインパルス応答」(式(42)左辺において「t」は「nΔt」(n=0,1,・・・,N[iP]−1))を予め計算しておくことによって、疑似ピアノ音の合成に要する時間を飛躍的に短縮させることができる。 Natural vibration mode number M of the body necessary to synthesize a high-quality pseudo piano sound, as compared to the acoustic radiating element number I G, normally, since much smaller, formula instead of formula (38) (41) That is, “impulse response between the velocity of each acoustic radiating element of the main body and the sound pressure at the observation point in the air” (“t” is “nΔt” (n = 0, 1 on the left side of Equation (40)). ,..., N [iP] -1)), but not "impulse response between the velocity on the mode coordinates of each natural vibration mode of the main body and the sound pressure at the observation point in the air" (formula (42 ) In the left side, “t” is “nΔt” (n = 0, 1,..., N [iP] −1)) is calculated in advance, thereby dramatically increasing the time required for synthesizing the pseudo piano sound. It can be shortened.

式(43)に含まれるH[iP][iG](ω)、即ち、「本体の各音響放射要素の速度と空気中の観測点における音圧との間の周波数応答関数」は、任意3次元形状の本体に対し、商用の境界要素法ソフトを用いた周波数応答解析を離散周波数軸上で行うことによって算出することができる。また、式(42)は一般的なIFFT(Inverse Fast Fourier Transform)演算によって計算することができる。 H [iP] [iG] (ω) included in the equation (43), that is, “the frequency response function between the velocity of each acoustic radiation element of the main body and the sound pressure at the observation point in the air” is arbitrary 3 It can be calculated by performing frequency response analysis using a commercial boundary element method software on a dimensional shape main body on a discrete frequency axis. Further, the equation (42) can be calculated by a general IFFT (Inverse Fast Fourier Transform) operation.

式(41)に含まれる微分係数、即ち、「本体の各固有振動モードのモード座標上での速度」は、本体モデルより出力されるAC [m](nΔt)(m=1,2,・・・,M)、即ち、「本体の各固有振動モードのモード座標上での変位」を数値的に微分することによって、式(41)に含まれる積分は一般的なFIR(Finite Impulse Response)フィルタの方法によって、計算することができる。 The differential coefficient included in the equation (41), that is, the “velocity on the mode coordinates of each natural vibration mode of the main body” is A C [m] (nΔt) (m = 1, 2, .., M), that is, by integrating numerically differentiating “displacement of each natural vibration mode of the main body on the mode coordinates”, the integral included in the equation (41) is a general FIR (Finite Impulse Response). ) It can be calculated by the filter method.

かくして、式(41)より、空気モデルからの出力信号、即ち、離散時間軸(t=nΔt; n=0,1,2,・・・)上における音圧P[iP](nΔt)(iP=1,2,・・・,IP)を逐次算出し、楽音信号として出力することができる。 Thus, from the equation (41), the output signal from the air model, that is, the sound pressure P [iP] (nΔt) (i on the discrete time axis (t = nΔt; n = 0, 1, 2,...) P = 1, 2,..., I P ) can be calculated sequentially and output as a musical sound signal.

ここで、式(41)中の畳み込み演算を時間領域ではなく周波数領域で行う「高速畳み込み」と呼ばれている手法を用いることによって、更に飛躍的な高速化をはかることができる。以上が、楽音信号合成部100の構成の説明である。   Here, by using a technique called “high-speed convolution” in which the convolution calculation in Expression (41) is performed in the frequency domain instead of the time domain, the speed can be further dramatically increased. The above is the description of the configuration of the tone signal synthesizer 100.

このように、楽音信号合成部100は、楽器全体が3次元的に振動することによって生み出される豊かで立体的な響き、中低音域の弦を強打したときに聴こえるリンギングサウンド、鍵押し込み深さやペダル踏み込み深さに連動した多彩な音楽的ニュアンスなど、自然楽器のピアノ音が有する特質をリアルに表現する擬似ピアノ音を生成することができる。また、それらの特質を自然楽器のピアノと同じように、制御することが可能となる。   In this way, the tone signal synthesis unit 100 has a rich and three-dimensional sound produced by three-dimensional vibration of the entire instrument, a ringing sound that can be heard when a string in the middle / low range is struck, a key press depth and a pedal. It is possible to generate a pseudo piano sound that realistically expresses the characteristics of a natural instrument piano sound, such as various musical nuances linked to the depth of depression. In addition, these characteristics can be controlled in the same way as a natural musical instrument piano.

具体的には、以下のようなものがある。例えば、弦長(=弦支持点間の距離)あるいは打弦比(=「弦長」/「ベアリング側弦支持端と打弦点との距離」)などのパラメータを
変更することにより、リンギングサウンドのレベルをコントロールすることが可能となる。以下では、特に、このリンギングサウンドについて、式(17)を用いて説明する。ただし、ここでは説明を理解しやすくするために、式(17)において、弦支持端の変位、弦y方向の変位および弦の内部粘性減衰係数を省略した式(44)に従って説明することとする。
Specifically, there are the following. For example, by changing parameters such as chord length (= distance between chord support points) or striking ratio (= “string length” / “distance between bearing side chord support end and strut point”), ringing sound It becomes possible to control the level. In the following, this ringing sound will be described in particular using equation (17). However, in order to make the explanation easy to understand, in the equation (17), the description will be made according to the equation (44) in which the displacement of the string support end, the displacement in the string y direction, and the internal viscous damping coefficient of the string are omitted. .

Figure 2011103010
Figure 2011103010

式(44)は、弦の縦振動第i2次固有振動の運動方程式であるが、右辺を周期的外力とみなすことにより、1自由度粘性減衰強制振動系の運動方程式として考えることができる。よく知られているように、この方程式の一般解は、減衰する自由振動解(斉次方程式の一般解)と持続する強制振動解(非斉次方程式の特解)の和によって構成されるが、強制振動解の性質とは、系が周期的外力の振動数で振動し、その振動数が系の固有振動数に近づくにつれ振幅が大きくなり、一致すると共振するというものである。いま、弦の曲げ振動に関する各固有振動が調和振動であると仮定する、即ち、式(45)のように書くことにする。 Equation (44) is an equation of motion of the longitudinal vibration of the string i second- order natural vibration. By considering the right side as a periodic external force, it can be considered as an equation of motion of a one-degree-of-freedom viscous damping forced oscillation system. As is well known, the general solution of this equation is composed of the sum of a damped free vibration solution (a general solution of homogeneous equations) and a sustained forced vibration solution (a special solution of inhomogeneous equations). The property of the forced vibration solution is that the system vibrates at a frequency of a periodic external force, the amplitude increases as the frequency approaches the natural frequency of the system, and resonates when they coincide. Now, it is assumed that each natural vibration related to the bending vibration of the string is a harmonic vibration, that is, it is written as in Expression (45).

Figure 2011103010
Figure 2011103010

このとき、式(44)の右辺{ }内は、式(46)として導かれる。   At this time, the inside of the right side {} of Expression (44) is derived as Expression (46).

Figure 2011103010
Figure 2011103010

いま、i2を固定して、式(46)に含まれる項cos2π(f1 [m1]+f1 [m1+i2])tがつくる系列に着目し、「この系列の第(2m1+i2)次振動数f1 [m1]+f1 [m1+i2]の倍音系列周波数からのずれ」を計算すると、i2が小さいとき、その値が、「曲げ振動第(2m1+i2)次固有振動数f1 [2m1+i2]の倍音系列周波数からのずれ」の約1/4であることが確認できる。自然楽器のピアノ音を分析することにより「ピアノの部分音の系列には、倍音系列からの周波数のずれが主系列の約1/4である副系列が存在する」ことが知られており、従って前記項がつくる系列こそが前記副系列にあてはまる。なお、i2が大きくなるにつれ、この“ずれ量”は少しずつ大きくなる。 Now, with i 2 fixed, paying attention to the sequence formed by the term cos2π (f 1 [m1] + f 1 [m1 + i2] ) t included in the equation (46), “the second (2m 1 + i of this sequence) 2 ) When the deviation of the secondary frequency f 1 [m1] + f 1 [m1 + i2] from the harmonic series frequency is calculated, when i 2 is small, the value is “bending vibration number (2m 1 + i 2 )”. It can be confirmed that the frequency is about 1/4 of the deviation from the harmonic sequence frequency of the second natural frequency f 1 [2m1 + i2] . By analyzing the piano sound of a natural instrument, it is known that "the partial sequence of piano has a sub-sequence whose frequency deviation from the harmonic sequence is about 1/4 of the main sequence" Therefore, the sequence created by the term applies to the subsequence. As i 2 increases, this “deviation amount” gradually increases.

また、式(46)に含まれる項cos2π(f1 [m1]+f1 [i2m1])tがつくる系列も上記副系列の形成に寄与していること、ただし、その寄与度は先の項よりも小さいことが理解できる。 In addition, the sequence formed by the term cos2π (f 1 [m1] + f 1 [i2 −m1 ] ) t included in Equation (46) also contributes to the formation of the subsequence, provided that the degree of contribution is first. It can be understood that it is smaller than the term.

式(44)に式(46)を代入した式は、副系列の第(2m1+i2)次の振動数f1 [m1]+f1 [m1+i2]が弦の縦振動の第i2次固有振動数に一致したとき共振現象が起こることを表している。これは、自然楽器のピアノ音が有する特徴的な現象である、「ピアノの部分音の系列には、倍音系列からの周波数のずれが主系列の約1/4である副系列が存在する」ことに加えて、「副系列の奇数次部分音の周波数が、弦の縦振動の奇数次固有振動数に一致するとき、又は、副系列の偶数次部分音の周波数が、弦の縦振動の偶数次固有振動数に一致するとき、副系列部分音のレベルが増大し、これがリンギングサウンドとなる」こと、より分析的な表現に変えると「弦の曲げ振動の奇数次固有振動数と偶数次固有振動数の和が、弦の縦振動の奇数次固有振動数に一致するとき、又は、弦の曲げ振動の1組の奇数次固有振動数の和、あるいは、1組の偶数次固有振動数の和が弦の縦振動の偶数次固有振動数に一致するとき、リンギングサウンドが生成される」こと(参考文献4)に対する、数学的な説明を与えるものである。
(参考文献4: J.Ellis. Longitudinal model in piano strings: Results of new research. Piano Technicians journal, pp.16-23, May 1998.)
The formula obtained by substituting the formula (46) into the formula (44) is that the (2m 1 + i 2 ) th order frequency f 1 [m1] + f 1 [m1 + i2] of the subsequence is the i th of the longitudinal vibration of the string. resonance phenomenon when matching the secondary natural frequency represents that occur. This is a characteristic phenomenon of the piano sound of a natural instrument, “There are sub-sequences in the partial sequence of pianos whose frequency deviation from the harmonic sequence is about 1/4 of the main sequence” In addition, “when the frequency of the odd-order partial sound of the sub-sequence matches the odd-order natural frequency of the longitudinal vibration of the string, or the frequency of the even-order partial sound of the sub-sequence is When it matches the even-order natural frequency, the level of the sub-sequence partial sound increases and this becomes a ringing sound. When the sum of the natural frequencies matches the odd-order natural frequency of the longitudinal vibration of the string, or the sum of a set of odd-order natural frequencies of the bending vibration of the string, or a set of even-order natural frequencies Ringing sound when the sum of is equal to the even natural frequency of the longitudinal vibration of the string. For but generated "it (reference 4) and gives a mathematical description.
(Reference 4: J. Ellis. Longitudinal model in piano strings: Results of new research. Piano Technicians journal, pp.16-23, May 1998.)

更に、「リンリン」、「ヒンヒン」といった唸り現象については、例えば、副系列第15(=7+8=2×7+1)次と副系列第15(=6+9=2×6+3)次とでは、振動数が僅かに異なるために、その振動数差が唸りを生むとして説明することができる。なお、式(44)に含まれる項cos2π(f1 [m1]−f1 [m1+i2])tおよびcos2π(f1 [m1]−f1 [i2m1])tは、曲げ振動の固有振動数よりも僅かに高い周波数を有する部分音の存在を示すものである。 Furthermore, with respect to the roaring phenomenon such as “Rin Ling” and “Hin Hin”, for example, the frequency of the sub-sequence 15th (= 7 + 8 = 2 × 7 + 1) order and the sub-sequence 15th (= 6 + 9 = 2 × 6 + 3) order is Since it is slightly different, it can be explained that the difference in frequency produces a sag. Incidentally, the formula terms contained in (44) cos2π (f 1 [ m1] -f 1 [m1 + i2]) t and cos2π (f 1 [m1] -f 1 [i2 - m1]) t is a bending vibration This indicates the presence of a partial sound having a frequency slightly higher than the natural frequency.

さて、弦の材料定数を固定して考えるとき、式(20)より、弦の縦振動固有振動数は、弦長にのみ依存する。なお、ピアノの低音域に通常使用される、巻弦(鋼鉄の芯線に銅線が巻かれている弦)については、この限りではない。   When the material constant of the string is fixed, the natural frequency of the longitudinal vibration of the string depends only on the string length from the equation (20). Note that this is not the case for wound strings (strings in which a copper wire is wound around a steel core wire) that is normally used in the bass range of a piano.

標準的な88鍵ピアノのおよそ第30鍵からおよそ第40鍵までの音域においては、弦長の設定が原因となって、副系列第15(=7+8=2×7+1)次の振動数と弦の縦振動基本固有振動数が近接している場合がある。そのような場合でも、打弦比を「7」または「8」に設定することで、リンギングサウンドの過剰なレベル増大を回避することができる。   In the range of about 30th to 40th keys of a standard 88-key piano, the frequency and string of the 15th (= 7 + 8 = 2 × 7 + 1) th sub-sequence are caused by the setting of the string length. In some cases, the fundamental natural frequency of the vertical vibration is close. Even in such a case, setting the stringing ratio to “7” or “8” can avoid an excessive increase in ringing sound level.

なぜならば、副系列第15(=7+8=2×7+1)次は、曲げ振動の第7次固有振動と第8次固有振動による生成物であるが、打弦比を「7」または「8」に設定すると曲げ振動の第「7」次または第「8」次の固有振動は欠落してしまうため、副系列第15(=7+8=2×7+1)次は生成されないからである。この場合でも、依然として副系列第15(=6+9=2×6+3)次などは存在するが、これらが縦振動の基本固有振動と共振することは無い。なお、自然楽器のピアノ音の時間周波数分析を行うと、副系列と一致しない場合の縦振動の固有振動のピーク(これは、式(17)において右辺を「0」とした場合の自由振動解に相当する)は、急速に減衰してしまい、持続的なものとしては観測されない。この減衰の原因としては、弦支持部での摩擦による部分が大きいものと推測される。本発明の弦モデルにおいては、「弦全体に分布する外部摩擦」、即ち、式(10)における外部粘性減衰係数bを含む項で、「弦支持部における局所的な外部摩擦」を代用している。   This is because the 15th (= 7 + 8 = 2 × 7 + 1) th subsequence is a product of the 7th and 8th natural vibrations of the bending vibration, but the stringing ratio is “7” or “8”. This is because the “7” th order or “8th” order natural vibration of the bending vibration is lost, and the 15th (= 7 + 8 = 2 × 7 + 1) th subsequence is not generated. Even in this case, the fifteenth (= 6 + 9 = 2 × 6 + 3) order of the subsequence still exists, but these do not resonate with the fundamental natural vibration of the longitudinal vibration. When the time frequency analysis of the piano sound of a natural instrument is performed, the peak of the natural vibration of the longitudinal vibration when it does not coincide with the subsequence (this is the free vibration solution when the right side is set to “0” in equation (17)). ) Rapidly decays and is not observed as persistent. As a cause of this attenuation, it is presumed that a portion due to friction at the string support portion is large. In the string model of the present invention, “external friction distributed over the entire string”, that is, a term including the external viscous damping coefficient b in Expression (10), and “local external friction in the string support portion” is substituted. Yes.

以上、リンギングサウンドの発生メカニズムとそのレベルを制御する設計因子(弦長、打弦比)について説明したが、弦の縦振動そのものは、空気中に音響を放射する能力をほとんど持ち合わせていないから、リンギングサウンドが音として聴こえるためには、いま説明した「弦の非線形(有限振幅)振動機構」に加え、「弦と本体との3次元連成振動機構」(「弦の本体に対する取り付け角度」や「駒の形状」などの設計因子がこれに含まれる)および「本体の3次元音響放射機構」(「駒の形状」はこれにも含まれる)の考慮が不可欠であることは言うまでもない。   As described above, the generation mechanism of ringing sound and the design factors (string length, string striking ratio) that control the level have been explained, but the vertical vibration of the string itself has little ability to radiate sound in the air. In order for the ringing sound to be heard as a sound, in addition to the “string non-linear (finite amplitude) vibration mechanism” just described, the “three-dimensional coupled vibration mechanism between the string and the body” (“attachment angle of the string to the body”) Needless to say, design factors such as “frame shape” are included) and “three-dimensional acoustic radiation mechanism of the main body” (including “frame shape” is also included).

ところで、自然楽器のピアノの開発現場において、ピアノ音の改良とは、ピアノという複雑なシステムの全体最適解を求めることに他ならないが、従来行われてきた試行錯誤的方法による最適解の模索は、ピアノのような多くの設計因子と誤差因子(天然材料の物性のばらつきや整音など人間による作業のばらつきなど)を有する巨大な音響構造体にとっては、特に、効率が悪い。本発明は、ピアノの仕様(原因)と音(結果)との因果関係を定量的に明らかにするものであるから、設計シミュレータとしてピアノ開発効率の向上にも貢献するものである。上記に加え、物理モデルによる楽音合成方法の利点は、現実のシミュレーションを超えた超自然的効果(例えば、現実には製作が困難な著しく大きなピアノなど)を仮想的に生成できる点にある。   By the way, in the development field of natural instrument pianos, the improvement of piano sound is nothing but finding the overall optimal solution of a complex system called the piano. This is particularly inefficient for a huge acoustic structure having many design factors and error factors, such as pianos, which have variations in physical properties of natural materials and variations in work by humans such as sounding. Since the present invention quantitatively clarifies the causal relationship between the specification (cause) and the sound (result) of the piano, it contributes to the improvement of piano development efficiency as a design simulator. In addition to the above, an advantage of the musical sound synthesis method based on the physical model is that a supernatural effect (for example, a remarkably large piano that is difficult to produce in reality) can be virtually generated.

<第2実施形態>
図4は、本発明の第2実施形態に係る電子楽器1Aの構成を示すブロック図である。電子楽器1Aは、例えば、電子ピアノであり、制御部11A、記憶部12A、ユーザ操作部13A、演奏操作部15Aおよび放音部17Aを有している。これらの各部は、バス18Aを介して互いに接続されている。ユーザ操作部13A、放音部17Aおよびバス18Aは、第1実施形態に係る電子楽器1におけるユーザ操作部13、放音部17およびバス18と同様な機能を有するため、説明を省略する。
Second Embodiment
FIG. 4 is a block diagram showing a configuration of an electronic musical instrument 1A according to the second embodiment of the present invention. The electronic musical instrument 1A is, for example, an electronic piano, and includes a control unit 11A, a storage unit 12A, a user operation unit 13A, a performance operation unit 15A, and a sound emission unit 17A. These units are connected to each other via a bus 18A. Since the user operation unit 13A, the sound emission unit 17A, and the bus 18A have the same functions as the user operation unit 13, the sound emission unit 17, and the bus 18 in the electronic musical instrument 1 according to the first embodiment, description thereof is omitted.

演奏操作部15Aは、第1実施形態における演奏操作部15とは異なり、シフトペダル16bが取り除かれている。そのため、ペダル位置センサ16Acは、ダンパペダル16aの踏込量を検出する。演奏操作部15Aにおける他の構成は、第1実施形態における演奏操作部15と同様な機能を有するため、説明を省略する。   Unlike the performance operation unit 15 in the first embodiment, the performance operation unit 15A has the shift pedal 16b removed. Therefore, the pedal position sensor 16Ac detects the depression amount of the damper pedal 16a. Other configurations in the performance operation unit 15A have the same functions as those of the performance operation unit 15 in the first embodiment, and thus the description thereof is omitted.

記憶部12Aは、第1実施形態における記憶部12とは異なり、ハンマ先端が弦表面に及ぼす力f(t)を記憶している。この値は、第1実施形態におけるシフトペダル16bが踏込まれていない状態(レスト位置)における値を示す。 Unlike the storage unit 12 in the first embodiment, the storage unit 12A stores the force f H (t) exerted by the hammer tip on the string surface. This value indicates a value in a state where the shift pedal 16b in the first embodiment is not depressed (rest position).

制御部11Aは、第1実施形態における制御部11とは異なり、制御プログラムを実行して実現される楽音信号合成部100のうち、ハンマモデル計算部103を用いない楽音信号合成部100Aを実現する。   Unlike the control unit 11 in the first embodiment, the control unit 11A realizes a tone signal synthesis unit 100A that does not use the hammer model calculation unit 103 among the tone signal synthesis units 100 realized by executing a control program. .

図5は、楽音信号合成部100Aの構成を示すブロック図である。図5に示すように、楽音信号合成部100Aには、ハンマモデル計算部103がない。弦モデル計算部104A−1、104A−2は、ハンマモデル計算部103から出力されるf(t)を取得するのではなく、記憶部12Aに記憶されたf(t)を取得する。楽音信号合成部100Aにおける他の構成については、第1実施形態における楽音信号合成部100と同様の機能を有するため、説明を省略する。 FIG. 5 is a block diagram showing the configuration of the tone signal synthesizer 100A. As shown in FIG. 5, the musical tone signal synthesis unit 100A does not have the hammer model calculation unit 103. Chord model calculation unit 104A-1,104A-2 does not acquire the f H (t) which is output from the hammer model calculation unit 103 obtains the f H (t) stored in the storage unit 12A. Other configurations in the musical tone signal synthesis unit 100A have the same functions as those of the musical tone signal synthesis unit 100 in the first embodiment, and thus description thereof is omitted.

上述のように、第2実施形態における電子楽器1Aは、ペダルとしてダンパペダル16aだけを備えている電子ピアノの場合を想定したものである。   As described above, the electronic musical instrument 1A according to the second embodiment is assumed to be an electronic piano including only the damper pedal 16a as a pedal.

<第3実施形態>
図6は、本発明の第3実施形態に係る電子楽器1Bの構成を示すブロック図である。電子楽器1Bは、例えば、電子ピアノであり、制御部11B、記憶部12B、ユーザ操作部13B、演奏操作部15Bおよび放音部17Bを有している。これらの各部は、バス18Bを介して互いに接続されている。ユーザ操作部13B、放音部17Bおよびバス18Bは、第1実施形態に係る電子楽器1におけるユーザ操作部13、放音部17およびバス18と同様な機能を有するため、説明を省略する。
<Third Embodiment>
FIG. 6 is a block diagram showing a configuration of an electronic musical instrument 1B according to the third embodiment of the present invention. The electronic musical instrument 1B is, for example, an electronic piano, and includes a control unit 11B, a storage unit 12B, a user operation unit 13B, a performance operation unit 15B, and a sound emission unit 17B. These units are connected to each other via a bus 18B. Since the user operation unit 13B, the sound emission unit 17B, and the bus 18B have the same functions as the user operation unit 13, the sound emission unit 17, and the bus 18 in the electronic musical instrument 1 according to the first embodiment, the description thereof is omitted.

演奏操作部15Bは、第1実施形態における演奏操作部15とは異なり、ダンパペダル16aが取り除かれている。そのため、ペダル位置センサ16Bcは、シフトペダル16bの踏込量を検出する。演奏操作部15Bにおける他の構成は、第1実施形態における演奏操作部15と同様な機能を有するため、説明を省略する。   Unlike the performance operation unit 15 in the first embodiment, the performance operation unit 15B has the damper pedal 16a removed. Therefore, the pedal position sensor 16Bc detects the depression amount of the shift pedal 16b. Other configurations in the performance operation unit 15B have the same functions as those of the performance operation unit 15 in the first embodiment, and thus description thereof is omitted.

記憶部12Bは、第1実施形態における記憶部12とは異なり、ダンパの抵抗力fDk(t)を記憶している。この値は、第1実施形態におけるダンパペダル16aが踏込まれていない状態(レスト位置)における値を示す。 Unlike the storage unit 12 in the first embodiment, the storage unit 12B stores the resistance force f Dk (t) of the damper. This value indicates a value when the damper pedal 16a in the first embodiment is not depressed (rest position).

制御部11Bは、第1実施形態における制御部11とは異なり、制御プログラムを実行して実現される楽音信号合成部100のうち、比較部101およびダンパモデル計算部102−1、102−2を用いない楽音信号合成部100Bを実現する。   Unlike the control unit 11 in the first embodiment, the control unit 11B includes the comparison unit 101 and the damper model calculation units 102-1 and 102-2 in the musical sound signal synthesis unit 100 realized by executing the control program. An unused tone signal synthesis unit 100B is realized.

図7は、楽音信号合成部100Bの構成を示すブロック図である。図7に示すように、楽音信号合成部100Bには、比較部101およびダンパモデル計算部102−1、102−2がない。弦モデル計算部104B−1、104B−2は、ダンパモデル計算部102から出力されるfDk(t)を取得するのではなく、記憶部12Bに記憶されたfDk(t)を取得する。楽音信号合成部100Bにおける他の構成については、第1実施形態における楽音信号合成部100と同様の機能を有するため、説明を省略する。 FIG. 7 is a block diagram showing the configuration of the tone signal synthesizer 100B. As shown in FIG. 7, the tone signal synthesis unit 100B does not include the comparison unit 101 and the damper model calculation units 102-1 and 102-2. Chord model calculation unit 104B-1,104B-2 does not acquire the f Dk output from the damper model calculation section 102 (t), we obtain the stored f Dk (t) in the storage unit 12B. Other configurations in the musical tone signal synthesis unit 100B have the same functions as those in the musical tone signal synthesis unit 100 in the first embodiment, and thus description thereof is omitted.

上述のように、第3実施形態における電子楽器1Bは、ペダルとしてシフトペダル16bだけを備えている電子ピアノの場合を想定したものである。   As described above, the electronic musical instrument 1B according to the third embodiment is assumed to be an electronic piano provided with only the shift pedal 16b as a pedal.

<第4実施形態>
図8は、本発明の第4実施形態に係る電子楽器1Cの構成を示すブロック図である。電子楽器1Cは、例えば、電子ピアノであり、制御部11C、記憶部12C、ユーザ操作部13C、演奏操作部15Cおよび放音部17Cを有している。これらの各部は、バス18Cを介して互いに接続されている。ユーザ操作部13C、放音部17Cおよびバス18Cは、第1実施形態に係る電子楽器1におけるユーザ操作部13、放音部17およびバス18と同様な機能を有するため、説明を省略する。
<Fourth embodiment>
FIG. 8 is a block diagram showing a configuration of an electronic musical instrument 1C according to the fourth embodiment of the present invention. The electronic musical instrument 1C is, for example, an electronic piano, and includes a control unit 11C, a storage unit 12C, a user operation unit 13C, a performance operation unit 15C, and a sound emission unit 17C. These units are connected to each other via a bus 18C. Since the user operation unit 13C, the sound emission unit 17C, and the bus 18C have the same functions as the user operation unit 13, the sound emission unit 17, and the bus 18 in the electronic musical instrument 1 according to the first embodiment, description thereof is omitted.

演奏操作部15Cは、第1実施形態における演奏操作部15とは異なり、ペダル部16が取り除かれている。そのため、ペダル位置センサも存在しない。演奏操作部15Cにおける他の構成は、第1実施形態における演奏操作部15と同様な機能を有するため、説明を省略する。   Unlike the performance operation unit 15 in the first embodiment, the performance operation unit 15C has the pedal unit 16 removed. Therefore, there is no pedal position sensor. Other configurations in the performance operation unit 15C have the same functions as those of the performance operation unit 15 in the first embodiment, and thus description thereof is omitted.

記憶部12Cは、第1実施形態における記憶部12とは異なり、ダンパの抵抗力fDk(t)、およびハンマ先端が弦表面に及ぼす力f(t)を記憶している。これら値は、第1実施形態におけるダンパペダル16aおよびシフトペダル16bが踏込まれていない状態(レスト位置)における値を示す。 Unlike the storage unit 12 in the first embodiment, the storage unit 12C stores the resistance force f Dk (t) of the damper and the force f H (t) exerted by the hammer tip on the string surface. These values indicate values when the damper pedal 16a and the shift pedal 16b are not depressed (rest position) in the first embodiment.

制御部11Cは、第1実施形態における制御部11とは異なり、制御プログラムを実行して実現される楽音信号合成部100のうち、比較部101、ダンパモデル計算部102−1、102−2、およびハンマモデル計算部103を用いない楽音信号合成部100Cを実現する。   Unlike the control unit 11 in the first embodiment, the control unit 11C includes a comparison unit 101, damper model calculation units 102-1 and 102-2, among the musical sound signal synthesis units 100 realized by executing a control program. And the musical tone signal synthesis unit 100C that does not use the hammer model calculation unit 103 is realized.

図9は、楽音信号合成部100Cの構成を示すブロック図である。図9に示すように、楽音信号合成部100Cには、比較部101、ダンパモデル計算部102−1、102−2およびハンマモデル計算部103がない。弦モデル計算部104C−1、104C−2は、ダンパモデル計算部102から出力されるfDk(t)およびハンマモデル計算部103から出力されるf(t)を取得するのではなく、記憶部12Cに記憶されたfDk(t)およびf(t)を取得する。楽音信号合成部100Cにおける他の構成については、第1実施形態における楽音信号合成部100と同様の機能を有するため、説明を省略する。 FIG. 9 is a block diagram showing the configuration of the tone signal synthesizer 100C. As shown in FIG. 9, the tone signal synthesis unit 100C does not include the comparison unit 101, the damper model calculation units 102-1 and 102-2, and the hammer model calculation unit 103. The string model calculation units 104C-1 and 104C-2 do not acquire f Dk (t) output from the damper model calculation unit 102 and f H (t) output from the hammer model calculation unit 103, but store them. F Dk (t) and f H (t) stored in the unit 12C are acquired. The other configuration of the tone signal synthesis unit 100C has the same function as that of the tone signal synthesis unit 100 in the first embodiment, and a description thereof will be omitted.

上述のように、第3実施形態における電子楽器1Cは、ダンパペダル16aおよびシフトペダル16bを備えていない電子ピアノの場合を想定したものである。   As described above, the electronic musical instrument 1C according to the third embodiment is assumed to be an electronic piano that does not include the damper pedal 16a and the shift pedal 16b.

以上、本発明の実施形態について説明したが、本発明は以下のように、さまざまな態様で実施可能である。   As mentioned above, although embodiment of this invention was described, this invention can be implemented in various aspects as follows.

<変形例1>
上述した実施形態においては、例えば、鍵盤部15a、ペダル部16の操作に応じて発音させる電子楽器1として機能させるために、リアルタイムに楽音信号合成処理を行っていたが、楽音制御データに応じて発音させる場合などにおいては、非リアルタイム処理としてもよい。
<Modification 1>
In the above-described embodiment, for example, in order to function as the electronic musical instrument 1 that generates sound in response to the operation of the keyboard unit 15a and the pedal unit 16, the musical tone signal synthesis processing is performed in real time, but according to the musical tone control data. In the case of generating sound, non-real time processing may be used.

この場合には、例えば、1曲分の楽音制御データを用いて、「楽器本体の各固有振動モードのモード座標上での速度の時間軸上変動データ」の算出を先に行っておき、そのデータと「本体の各固有振動モードのモード座標上での速度と空気中の観測点における音圧との間のインパルス応答または周波数応答のデータ」との畳み込み演算を後から行うということもできる。これは、観測点の位置のみ変更した場合の楽音合成が容易に行えることを意味する。   In this case, for example, using the musical tone control data for one song, the “variation data on the time axis of the speed on the mode coordinates of each natural vibration mode of the instrument body” is calculated first, It can also be said that the convolution calculation of the data and “data of impulse response or frequency response between the velocity on the mode coordinates of each natural vibration mode of the main body and the sound pressure at the observation point in the air” is performed later. This means that tone synthesis can be easily performed when only the position of the observation point is changed.

<変形例2>
上述した実施形態においては、楽音信号合成処理は、ピアノの音を模擬した楽音信号を合成処理するものであったが、ピアノに限らず、振動する弦と、弦を支持し、弦の振動が伝達されることによって空気中に音響を放射する本体とを有する3次元構造の楽器であれば、どのような楽器(例えば、チェンバロ、琴、ギターなど)であってもよい。なお、琴のように弦が張られた両端の間に柱(ピアノの駒に相当)が設けられるような場合には、弦支持端の一端は柱となる。
<Modification 2>
In the embodiment described above, the tone signal synthesis process is a synthesis process of a tone signal simulating a piano sound. However, the tone signal synthesis process is not limited to a piano, and supports strings that vibrate and strings. Any musical instrument (eg, harpsichord, koto, guitar, etc.) may be used as long as it has a three-dimensional structure having a main body that emits sound into the air by being transmitted. When a column (corresponding to a piano piece) is provided between both ends of a string that is stretched like a koto, one end of the string support end is a column.

<変形例3>
上述した実施形態における制御プログラムは、磁気記録媒体(磁気テープ、磁気ディスクなど)、光記録媒体(光ディスクなど)、光磁気記録媒体、半導体メモリなどのコンピュータ読取り可能な記録媒体に記憶した状態で提供し得る。また、ネットワークと接続可能な通信部を設け、インターネットのようなネットワーク経由でダウンロードさせることも可能である。
<Modification 3>
The control program in the above-described embodiment is provided in a state stored in a computer-readable recording medium such as a magnetic recording medium (magnetic tape, magnetic disk, etc.), an optical recording medium (optical disk, etc.), a magneto-optical recording medium, or a semiconductor memory. Can do. It is also possible to provide a communication unit that can be connected to a network and download it via a network such as the Internet.

1…電子楽器、11,11A,11B,11C…制御部、11a…CPU、11b…DSP、11c…ROM、11d…RAM、11e…信号インターフェイス、11f…内部バス、12,12A,12B,12C…記憶部、13,13A,13B,13C…ユーザ操作部、13a…操作パネル、13b…マウス、13c…操作スイッチ、13d…キーボード、14…表示部、15,15A,15B,15C…演奏操作部、15a…鍵盤部、15b…黒鍵、15c…白鍵、15d…鍵位置センサ、15e…鍵速度センサ、16…ペダル部、16a…ダンパペダル、16b…シフトペダル、16c,16Ac,16Bc…ペダル位置センサ、17,17A,17B,17C…放音部、17a…デジタルアナログ変換器、17b…スピーカ、18,18A,18B,18C…バス、21…グランドピアノ、21a…鍵、21b…鍵盤、21c…ハンマ、21d…アクション機構、21e…弦、21ea…駒、21eb…ベアリング、21f…ダンパ、21h…キャビネット、21j…本体、100,100A,100B,100C…楽音信号合成部、101…比較部、102−1、102−2…ダンパモデル計算部、103…ハンマモデル計算部、104−1,104A−1,104B−1,104C−1,104−2,104A−2,104B−2,104C−2…弦モデル計算部、105…本体モデル計算部、106…空気モデル計算部 DESCRIPTION OF SYMBOLS 1 ... Electronic musical instrument, 11, 11A, 11B, 11C ... Control part, 11a ... CPU, 11b ... DSP, 11c ... ROM, 11d ... RAM, 11e ... Signal interface, 11f ... Internal bus, 12, 12A, 12B, 12C ... Storage unit 13, 13A, 13B, 13C ... User operation unit, 13a ... Operation panel, 13b ... Mouse, 13c ... Operation switch, 13d ... Keyboard, 14 ... Display unit, 15, 15A, 15B, 15C ... Performance operation unit, 15a ... Keyboard part, 15b ... Black key, 15c ... White key, 15d ... Key position sensor, 15e ... Key speed sensor, 16 ... Pedal part, 16a ... Damper pedal, 16b ... Shift pedal, 16c, 16Ac, 16Bc ... Pedal position sensor , 17, 17A, 17B, 17C ... sound emitting part, 17a ... digital-analog converter, 17b ... speaker, 18 18A, 18B, 18C ... bus, 21 ... grand piano, 21a ... key, 21b ... keyboard, 21c ... hammer, 21d ... action mechanism, 21e ... string, 21ea ... piece, 21eb ... bearing, 21f ... damper, 21h ... cabinet, 21j ... Main unit, 100, 100A, 100B, 100C ... Music signal synthesis unit, 101 ... Comparison unit, 102-1 and 102-2 ... Damper model calculation unit, 103 ... Hammer model calculation unit, 104-1, 104A-1, 104B-1, 104C-1, 104-2, 104A-2, 104B-2, 104C-2 ... string model calculation unit, 105 ... body model calculation unit, 106 ... air model calculation unit

Claims (10)

少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号合成方法であって、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する3つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動、前記第2曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算過程と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算過程と
を備えることを特徴とする楽音信号合成方法。
A musical tone signal composition for generating a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string supporting end that supports the string in accordance with performance information that is input. A method,
First information representing a force exerted on the string calculated according to the performance information is acquired, and three equations of motion having an interaction through the string support end, wherein the first information is used. A first equation of motion representing a first bending vibration of the string in the first direction, a second equation of motion representing a second bending vibration of the string in a direction different from the first direction, and a longitudinal direction of the string A string model calculation process for calculating second information indicating the first bending vibration, the second bending vibration, and the longitudinal vibration of the string based on a third equation of motion representing vibration;
A musical sound signal synthesis method comprising: calculating a musical sound signal based on the second information.
前記第3運動方程式は、前記第1曲げ振動及び前記第2曲げ振動を用いて表されている
ことを特徴とする請求項1に記載の楽音信号合成方法。
The music signal synthesis method according to claim 1, wherein the third equation of motion is expressed using the first bending vibration and the second bending vibration.
少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号合成方法であって、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算過程と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算過程と
を備えることを特徴とする楽音信号合成方法。
A musical tone signal composition for generating a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string supporting end that supports the string in accordance with performance information that is input. A method,
First information representing a force exerted on the string calculated according to the performance information is acquired, and two equations of motion having an interaction through the string support end, wherein the first information is used. Based on the first equation of motion representing the first bending vibration of the string in the first direction and the third equation of motion representing the longitudinal vibration of the string, the first bending vibration and the longitudinal vibration of the string are shown. A string model calculation process for calculating second information;
A musical sound signal synthesis method comprising: calculating a musical sound signal based on the second information.
少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号合成方法であって、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式に基づいて、前記弦の第1曲げ振動および前記第2曲げ振動を示す第2の情報を算出する弦モデル計算過程と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算過程と
を備えることを特徴とする楽音信号合成方法。
A musical tone signal composition for generating a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string supporting end that supports the string in accordance with performance information that is input. A method,
First information representing a force exerted on the string calculated according to the performance information is acquired, and two equations of motion having an interaction through the string support end, wherein the first information is used. Based on a first equation of motion representing a first bending vibration of the string in the first direction and a second equation of motion representing a second bending vibration of the string in a direction different from the first direction, A string model calculation process for calculating second information indicating the first bending vibration of the string and the second bending vibration;
A musical sound signal synthesis method comprising: calculating a musical sound signal based on the second information.
コンピュータに、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成させるプログラムであって、
前記コンピュータを、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する3つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動、前記第2曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段
として機能させるためのプログラム。
Causing a computer to generate a musical tone signal of a sound emitted from a musical instrument having a string that vibrates under a force applied in at least a first direction and a string support end that supports the string in accordance with input performance information A program,
The computer,
First information representing a force exerted on the string calculated according to the performance information is acquired, and three equations of motion having an interaction through the string support end, wherein the first information is used. A first equation of motion representing a first bending vibration of the string in the first direction, a second equation of motion representing a second bending vibration of the string in a direction different from the first direction, and a longitudinal direction of the string A string model calculating means for calculating second information indicating the first bending vibration, the second bending vibration and the longitudinal vibration of the string based on a third equation of motion representing vibration;
The program for functioning as a musical tone signal calculation means for calculating the musical tone signal based on the second information.
コンピュータに、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成させるプログラムであって、
前記コンピュータを、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段
として機能させるためのプログラム。
Causing a computer to generate a musical tone signal of a sound emitted from a musical instrument having a string that vibrates under a force applied in at least a first direction and a string support end that supports the string in accordance with input performance information A program,
The computer,
First information representing a force exerted on the string calculated according to the performance information is acquired, and two equations of motion having an interaction through the string support end, wherein the first information is used. Based on the first equation of motion representing the first bending vibration of the string in the first direction and the third equation of motion representing the longitudinal vibration of the string, the first bending vibration and the longitudinal vibration of the string are shown. A string model calculating means for calculating second information;
The program for functioning as a musical tone signal calculation means for calculating the musical tone signal based on the second information.
コンピュータに、少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成させるプログラムであって、
前記コンピュータを、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式に基づいて、前記弦の第1曲げ振動および前記第2曲げ振動を示す第2の情報を算出する弦モデル計算手段と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段
として機能させるためのプログラム。
Causing a computer to generate a musical tone signal of a sound emitted from a musical instrument having a string that vibrates under a force applied in at least a first direction and a string support end that supports the string in accordance with input performance information A program,
The computer,
First information representing a force exerted on the string calculated according to the performance information is acquired, and two equations of motion having an interaction through the string support end, wherein the first information is used. Based on a first equation of motion representing a first bending vibration of the string in the first direction and a second equation of motion representing a second bending vibration of the string in a direction different from the first direction, A string model calculating means for calculating second information indicating the first bending vibration of the string and the second bending vibration;
The program for functioning as a musical tone signal calculation means for calculating the musical tone signal based on the second information.
少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号生成装置であって、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する3つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動、前記第2曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段と
を具備することを特徴とする楽音信号生成装置。
Generation of a musical tone signal for generating a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string supporting end that supports the string in accordance with input performance information A device,
First information representing a force exerted on the string calculated according to the performance information is acquired, and three equations of motion having an interaction through the string support end, wherein the first information is used. A first equation of motion representing a first bending vibration of the string in the first direction, a second equation of motion representing a second bending vibration of the string in a direction different from the first direction, and a longitudinal direction of the string A string model calculating means for calculating second information indicating the first bending vibration, the second bending vibration and the longitudinal vibration of the string based on a third equation of motion representing vibration;
A musical tone signal generating device comprising: musical tone signal calculating means for calculating the musical tone signal based on the second information.
少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号生成装置であって、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記弦の縦振動を表す第3運動方程式に基づいて、前記弦の第1曲げ振動および前記縦振動を示す第2の情報を算出する弦モデル計算手段と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段と
を具備することを特徴とする楽音信号生成装置。
Generation of a musical tone signal for generating a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string supporting end that supports the string in accordance with input performance information A device,
First information representing a force exerted on the string calculated according to the performance information is acquired, and two equations of motion having an interaction through the string support end, wherein the first information is used. Based on the first equation of motion representing the first bending vibration of the string in the first direction and the third equation of motion representing the longitudinal vibration of the string, the first bending vibration and the longitudinal vibration of the string are shown. A string model calculating means for calculating second information;
A musical tone signal generating device comprising: musical tone signal calculating means for calculating the musical tone signal based on the second information.
少なくとも第1の方向から力を及ぼされて振動する弦と、前記弦を支持する弦支持端とを有する楽器から発せられる音の楽音信号を、入力される演奏情報に応じて生成する楽音信号生成装置であって、
前記演奏情報に応じて算出される前記弦に及ぼす力を表す第1の情報を取得し、前記弦支持端を介した相互作用を有する2つの運動方程式であって、前記第1の情報を用いた前記第1の方向の前記弦の第1曲げ振動を表す第1運動方程式、および前記第1の方向とは異なる方向の前記弦の第2曲げ振動を表す第2運動方程式に基づいて、前記弦の第1曲げ振動および前記第2曲げ振動を示す第2の情報を算出する弦モデル計算手段と、
前記第2の情報に基づいて、前記楽音信号を算出する楽音信号計算手段と
を具備することを特徴とする楽音信号生成装置。
Generation of a musical tone signal for generating a musical tone signal of a sound emitted from a musical instrument having a string that vibrates by being exerted a force from at least a first direction and a string supporting end that supports the string in accordance with input performance information A device,
First information representing a force exerted on the string calculated according to the performance information is acquired, and two equations of motion having an interaction through the string support end, wherein the first information is used. Based on a first equation of motion representing a first bending vibration of the string in the first direction and a second equation of motion representing a second bending vibration of the string in a direction different from the first direction, A string model calculating means for calculating second information indicating the first bending vibration of the string and the second bending vibration;
A musical tone signal generating device comprising: musical tone signal calculating means for calculating the musical tone signal based on the second information.
JP2011013339A 2009-06-03 2011-01-25 Music signal synthesis method, program, and music signal synthesis apparatus Expired - Fee Related JP5605239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013339A JP5605239B2 (en) 2009-06-03 2011-01-25 Music signal synthesis method, program, and music signal synthesis apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009134512 2009-06-03
JP2009134512 2009-06-03
JP2011013339A JP5605239B2 (en) 2009-06-03 2011-01-25 Music signal synthesis method, program, and music signal synthesis apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010128124A Division JP5728832B2 (en) 2009-06-03 2010-06-03 Music signal synthesis method, program, and music signal synthesis apparatus

Publications (2)

Publication Number Publication Date
JP2011103010A true JP2011103010A (en) 2011-05-26
JP5605239B2 JP5605239B2 (en) 2014-10-15

Family

ID=43592563

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010128124A Active JP5728832B2 (en) 2009-06-03 2010-06-03 Music signal synthesis method, program, and music signal synthesis apparatus
JP2010269767A Active JP5598291B2 (en) 2009-06-03 2010-12-02 Music signal synthesis method, program, and music signal synthesis apparatus
JP2011013339A Expired - Fee Related JP5605239B2 (en) 2009-06-03 2011-01-25 Music signal synthesis method, program, and music signal synthesis apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010128124A Active JP5728832B2 (en) 2009-06-03 2010-06-03 Music signal synthesis method, program, and music signal synthesis apparatus
JP2010269767A Active JP5598291B2 (en) 2009-06-03 2010-12-02 Music signal synthesis method, program, and music signal synthesis apparatus

Country Status (1)

Country Link
JP (3) JP5728832B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181994A (en) * 1989-12-12 1991-08-07 Yamaha Corp Musical tone synthesizing device
JPH0683363A (en) * 1992-09-02 1994-03-25 Yamaha Corp Electronic musical instrument
WO2008012412A2 (en) * 2006-07-28 2008-01-31 Modartt Device for producing signals representative of sounds of a keyboard and stringed instrument

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722727B2 (en) * 1989-10-27 1998-03-09 ヤマハ株式会社 Electronic musical instrument
JPH07210157A (en) * 1994-01-24 1995-08-11 Kawai Musical Instr Mfg Co Ltd Electronic instrument
JPH1063270A (en) * 1996-08-13 1998-03-06 Yamaha Corp Musical sound synthesizer
JP2820205B2 (en) * 1997-02-27 1998-11-05 ヤマハ株式会社 Music synthesizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181994A (en) * 1989-12-12 1991-08-07 Yamaha Corp Musical tone synthesizing device
JPH0683363A (en) * 1992-09-02 1994-03-25 Yamaha Corp Electronic musical instrument
WO2008012412A2 (en) * 2006-07-28 2008-01-31 Modartt Device for producing signals representative of sounds of a keyboard and stringed instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014016574; 橋本智樹,他1名: 'ピアノ音の物理シミュレーション-弦・駒・響板の連成解析をめざして-' 情報処理学会研究報告 Vol.2000,No.19, 20000217, p1-6, 社団法人情報処理学会 *

Also Published As

Publication number Publication date
JP5598291B2 (en) 2014-10-01
JP5605239B2 (en) 2014-10-15
JP5728832B2 (en) 2015-06-03
JP2011013673A (en) 2011-01-20
JP2011043862A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5605192B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
CN101908333B (en) Method for synthesizing tone signal and tone signal generating system
JP5261385B2 (en) A device for generating a signal representing the sound of a keyboard string instrument
Chabassier et al. Modeling and simulation of a grand piano
Giordano et al. Physical modeling of the piano
Jiolat et al. Toward a physical model of the clavichord
JP5614108B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP5614109B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP5716369B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP5716370B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP6372124B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP5664185B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP5605239B2 (en) Music signal synthesis method, program, and music signal synthesis apparatus
JP6736930B2 (en) Electronic musical instrument and sound signal generation method
JP5935252B2 (en) Electronic keyboard instrument
Poirot et al. On the influence of non-linear phenomena on perceived interactions in percussive instruments
Papiotis et al. KETTLE: A REAL-TIME MODEL FOR ORCHES-TRAL TIMPANI
JP2023143837A (en) Musical sound signal synthesis method, musical sound signal synthesizer and program
Rucz et al. A coupled 3D finite element model of the sound production by mallet percussion instruments
Inacio A modal method for the simulation of nonlinear dynamical systems with application to bowed musical intruments
JP2011013674A5 (en)
Toguchi et al. Research into the generation of sound effects using a cellular automaton
Rossing Hammered Strings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5605239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees