JP2011102331A - Preventing and alleviating agent for dopamine fall in urine - Google Patents

Preventing and alleviating agent for dopamine fall in urine Download PDF

Info

Publication number
JP2011102331A
JP2011102331A JP2011032507A JP2011032507A JP2011102331A JP 2011102331 A JP2011102331 A JP 2011102331A JP 2011032507 A JP2011032507 A JP 2011032507A JP 2011032507 A JP2011032507 A JP 2011032507A JP 2011102331 A JP2011102331 A JP 2011102331A
Authority
JP
Japan
Prior art keywords
stress
group
pro
tripeptide
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011032507A
Other languages
Japanese (ja)
Inventor
Akihiro Masuyama
明弘 増山
Toshiaki Takano
俊明 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Soft Drinks Co Ltd
Original Assignee
Calpis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calpis Co Ltd filed Critical Calpis Co Ltd
Priority to JP2011032507A priority Critical patent/JP2011102331A/en
Publication of JP2011102331A publication Critical patent/JP2011102331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a preventing and alleviating agent for at least one of the dopamine fall in urine and the Fischer ratio reduction as can be continuously taken every day, contains no problem on the safeness, and can alleviate mental as well as physical symptom caused by stress. <P>SOLUTION: The agent is such a preventing and alleviating agent for at least one of the dopamine fall in urine and Fischer ratio reduction caused by a load of stress as contains Ile-Pro-Pro and/or Val-Pro-Pro as an effective ingredient. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ストレスにより生じる精神的・身体的症状を軽減しうる、尿中ドーパミン低下及びFischer比低下の少なくとも1つの予防及び軽減剤に関する。 The present invention relates to an agent for preventing and reducing at least one of urinary dopamine lowering and Fischer ratio lowering, which can reduce mental and physical symptoms caused by stress.

現代社会は、科学技術が高度化・複雑化し、社会情勢も激動する環境下になっており、人々は様々なストレスにさらされている。特に、国際化された社会においては、複雑な人間関係が形成されており、精神的ストレスが起因となって引き起こされる様々な症状について報告がなされている。   Modern society is in an environment where science and technology are becoming more sophisticated and complex, and the social situation is turbulent, and people are exposed to various stresses. In particular, in an internationalized society, complicated human relationships are formed, and various symptoms caused by mental stress have been reported.

精神的ストレスは、循環系、免疫系等に大きな影響を及ぼすとされている。しかし、ストレスの科学的概念及び定義は未だ明確でない点もあり、更に方法論的困難性も相俟って、ストレスの評価に関しては多くの問題が残されているが、近年、医学的見地からの検討がなされている。   Mental stress is said to have a great influence on the circulatory system, immune system, and the like. However, the scientific concept and definition of stress are still unclear, and combined with methodological difficulties, many problems remain regarding stress assessment. Consideration has been made.

例えば、ストレスを受けるとアンジオテンシンII等が増加し、ナトリウム再吸収による体内ナトリウムが過剰となり、血圧の上昇を引き起こすことが報告されている(非特許文献1)。さらに、このような知見を基に、高血圧治療薬として使用されているアンジオテンシン変換酵素阻害剤であるエナラプリル及びアラセプリルのストレスによる高血圧に対する効果が研究されている(非特許文献2)。しかし、ストレスの負荷は血圧の上昇を引き起こすのみではなく、様々な因子に影響を与え、高血圧の他に消化性潰瘍、虚血性心疾患、脳血管障害、高脂血症等の要因ともなると考えられている。従って、ストレスは高血圧の原因因子の一つであるとは考えられているが、逆に単に血圧の上昇を抑制させることによって抗ストレス効果が得られるとは考えられていない。 For example, it has been reported that when stressed, angiotensin II and the like increase, sodium in the body due to sodium reabsorption becomes excessive, and blood pressure is increased ( Non-patent Document 1 ). Furthermore, based on such knowledge, the effects of enalapril and araperil, which are angiotensin converting enzyme inhibitors used as antihypertensive drugs, on hypertension due to stress have been studied ( Non-patent Document 2 ). However, stress loading not only causes an increase in blood pressure but also affects various factors, and in addition to high blood pressure, it may be a factor such as peptic ulcer, ischemic heart disease, cerebrovascular disorder, and hyperlipidemia. It has been. Therefore, although stress is considered to be one of the causative factors of hypertension, it is not considered that an anti-stress effect can be obtained by simply suppressing an increase in blood pressure.

現在ストレスにより生じる精神的・身体的症状の軽減及び予防剤としては、精神安定剤、抗不安剤及び睡眠薬等の化学合成薬剤が使用されている。しかし、これらの薬剤は、習慣性や副作用の問題があり、ストレスにより生じる精神的、身体的症状予防の目的で日常的に使用するのは好ましくない。そこで、日常的に連用可能で、安全性の問題を含まない、ストレスにより生じる精神的・身体的症状の軽減及び予防効果を示す抗ストレス剤が求められ、開発が進められている。例えば、茶葉に含まれるL−テアニンを含む抗ストレス剤(特許文献1)、アンセリン、バレニン、n−メチルヒスチジン、τ−メチルヒスチジン等のイミダゾール化合物を含む抗ストレス組成物(特許文献2)、及びグルタチオンと抗酸化物質との組成物を含むストレス改善食品(特許文献3)等が提案されている。また、香りによるストレス解消効果についての報告(非特許文献3)もなされている。しかし、トリペプチドを用いることによる、ストレスにより生じる精神的・身体的症状軽減及び予防効果を有するという報告は、これまで認められていない。 Currently, chemo-synthetic drugs such as tranquilizers, anxiolytics and hypnotics are used as agents for reducing and preventing mental and physical symptoms caused by stress. However, these drugs have problems of habituation and side effects, and are not preferably used on a daily basis for the purpose of preventing mental and physical symptoms caused by stress. Therefore, an anti-stress agent that can be used on a daily basis and does not include safety problems and that has an effect to reduce and prevent mental and physical symptoms caused by stress has been demanded and is being developed. For example, an anti-stress composition containing L-theanine contained in tea leaves ( Patent Document 1 ), an anti-stress composition containing an imidazole compound such as anserine, valenin, n-methylhistidine, and τ-methylhistidine ( Patent Document 2 ), and A stress-improving food containing a composition of glutathione and an antioxidant ( Patent Document 3 ) has been proposed. Moreover, the report ( nonpatent literature 3 ) about the stress relieving effect by fragrance is also made. However, there have been no reports of the use of tripeptides to reduce and prevent mental and physical symptoms caused by stress.

特開平6−100442号公報Japanese Patent Laid-Open No. 6-100442 特開平9−20660号公報Japanese Patent Laid-Open No. 9-20660 特開平8−275752号公報JP-A-8-275752

茂原治ら:代謝,28,2,323,1991Osamu Mobara et al .: Metabolism, 28, 2, 323, 1991 The American Journal of Cardiology; 68, 15, 1362(1991),Internal Medicine; 32, 9, 691 (1993)The American Journal of Cardiology; 68, 15, 1362 (1991), Internal Medicine; 32, 9, 691 (1993) FRAGRANCE JOURNAL:1991−11,p44−49FRAGRANCE JOURNAL: 1991-11, p44-49

本発明の目的は、前記の社会的要請に対応し得る日常的に連用可能で、安全性の問題を含まない、ストレスにより生じる精神的・身体的症状を軽減しうる、尿中ドーパミン低下及びFischer比低下の少なくとも1つの予防及び軽減剤(以下、本発明の剤と言うことがある)を提供することにある。 An object of the present invention is to reduce urinary dopamine and Fischer, which can be used on a daily basis, which can respond to the above-mentioned social demands, can reduce mental and physical symptoms caused by stress, and does not include safety problems. The object is to provide at least one preventive and alleviating agent for reducing the ratio (hereinafter sometimes referred to as the agent of the present invention) .

本発明によれば、Ile-Pro-Pro及び/又はVal-Pro-Proを有効成分として含む、ストレス負荷により生じる、尿中ドーパミン低下及びFischer比低下の少なくとも1つの予防及び軽減剤が提供される。 According to the present invention, including, caused by stress, at least one of preventing and alleviating agent for reduction and Fischer ratio decreased urinary dopamine is providing Ile-Pro-Pro and / or Val-Pro-Pro as an active ingredient The

本発明の尿中ドーパミン低下及びFischer比低下の少なくとも1つの予防及び軽減剤は、前記トリペプチドを含むので、安全性が高く、毎日連続摂取することにより各種のストレスにより生じる精神的・身体的症状を軽減及び予防できる。 The at least one preventive and alleviating agent for lowering urinary dopamine and Fischer ratio of the present invention contains the above-mentioned tripeptide, so it is highly safe, and mental and physical symptoms caused by various stresses by daily continuous intake. kill at reducing and preventing.

本発明の剤は、トリペプチドとしてIle−Pro−Pro、Val−Pro−Pro(以下これらのトリペプチドをそれぞれIPP、VPPと略す)、及びこれらの混合物又はその塩含む Agents of the present invention (abbreviated hereinafter IPP these tripeptide respectively, and VPP) Ile -Pro-Pro, Val -Pro-Pro as a tripeptide, and mixtures thereof, or a salt thereof.

前記トリペプチドの塩としては、薬理学上許容される塩類、例えば塩酸塩、硫酸塩、リン酸塩等の無機酸塩、及びクエン酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、乳酸塩等の有機酸塩等を挙げることができる。   Examples of the salt of the tripeptide include pharmacologically acceptable salts such as inorganic acid salts such as hydrochloride, sulfate, and phosphate, and citrate, maleate, fumarate, tartrate, and lactate. And organic acid salts such as

前記トリペプチドを得る方法としては、微生物による発酵法、酵素加水分解法又は化学的合成法等を用いることができる。   As a method for obtaining the tripeptide, a fermentation method using microorganisms, an enzymatic hydrolysis method, a chemical synthesis method, or the like can be used.

前記微生物による発酵法は、前記トリペプチドに対応するアミノ酸配列、例えば配列Ile−Pro−Pro、Val−Pro−Pro等を含むペプチド及び/又は蛋白質を含む培地中で乳酸菌を培養することにより行うことができる。   The microorganism fermentation method is performed by culturing lactic acid bacteria in a medium containing an amino acid sequence corresponding to the tripeptide, for example, a peptide and / or protein containing the sequence Ile-Pro-Pro, Val-Pro-Pro, etc. Can do.

前記培地としては、前記トリペプチドに対応するアミノ酸配列を含むペプチド及び/又は蛋白質を含む食品素材を含むものを挙げることができる。前記食品素材としては、乳及び/又は乳カゼイン、とうもろこし、コーンタンパク、小麦、小麦タンパク、大豆、脱脂大豆、大豆蛋白等を挙げることができる。さらに、前記培地は必要に応じて酵母エキス、ビタミン類、ミネラル類等の他の成分を含むことができる。   Examples of the medium include a medium containing a food material containing a peptide and / or a protein containing an amino acid sequence corresponding to the tripeptide. Examples of the food material include milk and / or milk casein, corn, corn protein, wheat, wheat protein, soybean, defatted soybean, soybean protein and the like. Furthermore, the culture medium may contain other components such as yeast extract, vitamins, minerals as necessary.

前記乳酸菌としては、ラクトバチルス属の乳酸菌を用いることができる。例えば、ラクトバチルス・ヘルベチカス(Lactobacillus helveticus)、ラクトバチルス・デルブルキィ・サブスピーシーズ・ブルガリカス(Lactobacillus delbruekii subsp. bulgaricus)、ラクトバチルス・アシドフィラス(Lactobacillus acidophilus)、ラクトバチルス・ファーメンタム(Lactobacillus fermentum)、ラクトバチルス・カゼイ・サブスピーシーズ・カゼイ(Lactobacillus casei subsp. casei)等の乳酸菌を挙げることができる。具体的には、ラクトバチルス・ヘルベチカス ATCC55796、ラクトバチルス・デルブルキィ・サブスピーシーズ・ブルガリカス ATCC11842、ラクトバチルス・アシドフィラス ATCC4356、ラクトバチルス・ファーメンタム ATCC14931、ラクトバチルス・カゼイ・サブスピーシーズ・カゼイ ATCC393等の菌株を挙げることができる。   As the lactic acid bacteria, lactic acid bacteria belonging to the genus Lactobacillus can be used. For example, Lactobacillus helveticus, Lactobacillus delbruekii subsp. Bulgaricus, Lactobacillus acidophilus, Lactobacillus fermentum (um) Examples thereof include lactic acid bacteria such as Bacillus casei subspecies casei (Lactobacillus casei subsp. Casei). Specifically, Lactobacillus helveticus ATCC55796, Lactobacillus delbruki sub-species Bulgaricus ATCC 11842, Lactobacillus acidophilus ATCC 4356, Lactobacillus fermentum ATCC14931, Lactobacillus casei sub-species casei 39 Can be mentioned.

前記培養は、前記培地を加熱殺菌し所定の培養温度まで冷却後に、予め前培養しておいた乳酸菌スターターを添加することにより行うことができる。乳酸菌スターターの接種量は、培地1g当り乳酸菌数105−107個とするのが好ましい。培養温度は20−50℃、好ましくは30−45℃、培養時間は3−48時間、好ましくは6−24時間の範囲で行うことができる。乳酸菌数が108個/g以上及び乳酸酸度が1以上となった時点で、培養を終了することができる。得られた培養液中には、培地原料及び組成によるが、通常、IPP及び/又はVPPが約100−3000μg/kg含まれる。 The culture can be performed by adding a lactic acid bacteria starter that has been pre-cultured in advance after the medium is sterilized by heating and cooled to a predetermined culture temperature. The inoculated amount of lactic acid bacteria starter is preferably 10 5 -10 7 lactic acid bacteria per gram of medium. The culture temperature is 20-50 ° C., preferably 30-45 ° C., and the culture time is 3-48 hours, preferably 6-24 hours. The culture can be terminated when the number of lactic acid bacteria is 10 8 / g or more and the lactic acid acidity is 1 or more. The obtained culture broth usually contains about 100-3000 μg / kg of IPP and / or VPP, depending on the medium raw material and composition.

前記培養液は、そのまま、乳酸菌が生きている状態で本発明の抗ストレス剤として使用することができる。また、前記培養液を80℃達温等の条件にて加熱殺菌することにより、殺菌された状態で用いることもできる。さらに、凍結乾燥、噴霧乾燥、ドラムドライヤー乾燥等により粉末化した状態で使用することもできる。   The culture solution can be used as it is as the anti-stress agent of the present invention while the lactic acid bacteria are alive. Moreover, it can also be used in the sterilized state by heat-sterilizing the said culture liquid on conditions, such as 80 degreeC temperature rise. Furthermore, it can be used in a powdered state by freeze drying, spray drying, drum dryer drying or the like.

また、前記培養液は、トリペプチド成分を濃縮し精製してから本発明の抗ストレス剤として使用することができる。前記濃縮及び精製の方法としては、遠心された前記培養液の上清を取る方法が挙げられる。また取られた上清を、さらに電気透析、イオン交換樹脂処理、中空糸膜透析、逆浸透圧処理、疎水性カラムクロマトグラフィー等、又はこれらの組み合わせた処理に供することにより、さらに濃縮し精製された前記トリペプチドを得ることができる。   Further, the culture solution can be used as the antistress agent of the present invention after concentrating and purifying the tripeptide component. Examples of the concentration and purification method include a method of taking the supernatant of the centrifuged culture solution. Further, the collected supernatant is further concentrated and purified by subjecting it to electrodialysis, ion exchange resin treatment, hollow fiber membrane dialysis, reverse osmotic pressure treatment, hydrophobic column chromatography, or a combination thereof. The tripeptide can be obtained.

前記トリペプチドを得るための前記酵素加水分解法は、Ile−Pro−Pro、Val−Pro−Pro等の前記トリペプチドに対応するアミノ酸配列を含むペプチド及び/又は蛋白質を含む食品素材を、プロテイナーゼで処理し、さらにカルボキシペプチダーゼで処理することにより行うことができる。前記プロテイナーゼとしては、微生物由来のプロテイナーゼ、植物由来のプロテイナーゼ、動物由来のプロテイナーゼ等の各種のものを使用することができる。これらのプロテイナーゼは、公知の方法で調製することができる。また、前記カルボキシペプチダーゼとしては、微生物由来のカルボキシペプチダーゼ、植物由来のカルボキシペプチダーゼ、動物由来のカルボキシペプチダーゼ等の各種のものを使用することができる。これらのカルボキシペプチダーゼは、公知の方法で調製することができる。   The enzyme hydrolysis method for obtaining the tripeptide comprises a protein material containing a peptide and / or protein containing an amino acid sequence corresponding to the tripeptide such as Ile-Pro-Pro and Val-Pro-Pro. Treatment, and further treatment with carboxypeptidase. As said proteinase, various things, such as proteinase derived from microorganisms, proteinase derived from a plant, proteinase derived from an animal, can be used. These proteinases can be prepared by known methods. As the carboxypeptidase, various microorganisms such as carboxypeptidases derived from microorganisms, carboxypeptidases derived from plants, carboxypeptidases derived from animals, and the like can be used. These carboxypeptidases can be prepared by known methods.

前記トリペプチドを得るための化学的合成法は、公知の有機化学合成法により行うことができる。例えば、トリペプチドを構成するアミノ酸のアミノ基をフルオレニルメトキシカルボニル基で保護した後に、順次アミノ酸配列に従ってフルオレニルメトキシカルボニル基で保護したアミノ酸を常法に従い反応させてトリペプチド結合樹脂を得、さらに常法に従い樹脂を切り離してトリペプチドを精製することにより、前記トリペプチドを得ることができる。   The chemical synthesis method for obtaining the tripeptide can be performed by a known organic chemical synthesis method. For example, after protecting the amino group of the amino acid constituting the tripeptide with a fluorenylmethoxycarbonyl group, the amino acid protected with the fluorenylmethoxycarbonyl group is sequentially reacted according to the amino acid sequence according to a conventional method to obtain a tripeptide-binding resin. Furthermore, the tripeptide can be obtained by purifying the tripeptide by cleaving the resin according to a conventional method.

本発明の剤中の前記トリペプチドの含有割合は、後述する有効投与量のトリペプチドを投与しうる含有割合である限りにおいて特に限定されないが、0.001〜1重量%とすることができる。 Although the content rate of the said tripeptide in the agent of this invention is not specifically limited as long as it is a content rate which can administer the tripeptide of the effective dose mentioned later, It can be 0.001-1 weight%.

本発明の剤は、前記トリペプチドの他に、糖類、蛋白質、脂質、ビタミン、ミネラル、香料、色素等の他の添加剤を含むことができる。 The agent of the present invention may contain other additives such as sugars, proteins, lipids, vitamins, minerals, fragrances, and pigments in addition to the tripeptide.

本発明の剤は、ヒト又は動物に投与することができる。投与経路は、経口、静注等を挙げることができるが、経口投与が好ましい。 The agent of the present invention can be administered to humans or animals. Examples of the route of administration include oral and intravenous injection, and oral administration is preferred.

本発明の剤の有効投与量は、ヒトにおいてストレス軽減、予防等の本発明の効果を得るためには、前記トリペプチドとして、例えば経口投与の場合は通常0.1−40mg/体重kg・日の範囲とすることができるが、これを超える量を投与してもよい。 In order to obtain the effects of the present invention such as stress reduction and prevention in humans, the effective dose of the agent of the present invention is usually 0.1-40 mg / kg body weight / day in the case of oral administration, for example, in the case of oral administration. However, an amount exceeding this range may be administered.

本発明の剤を被検者に投与した場合、ストレスの負荷に応答して発生する血圧上昇、免疫機能の低下等の様々な生理的な指標の変化が、非投与時に比べて小さくなり、これらの指標がストレスが負荷されない場合の値に近いものとなる。このことより、本発明の剤は、被検者のストレスを低減する効果があると考えられる。 When the agent of the present invention is administered to a subject, changes in various physiological indices such as an increase in blood pressure and a decrease in immune function in response to stress load are smaller than those in the case of non-administration. The index is close to the value when no stress is applied. From this, it is considered that the agent of the present invention has an effect of reducing the stress of the subject.

機能性食品は、前記本発明の剤を含む。 The functional food contains the agent of the present invention .

機能性食品中の前記剤の含有割合は、特に限定されないが、0.001〜0.1重量%とすることができる。 Content of the previous SL agent functionality in food is not particularly limited, it can be set to 0.001 to 0.1 wt%.

機能性食品の摂取量は、通常前記トリペプチドとして0.1−40mg/体重kg・日の範囲とすることにより、好ましい本発明の効果を得ることができるが、これを超える量を摂取してもよい。 The intake of the functional food is usually in the range of 0.1-40 mg / kg body weight / day as the above-mentioned tripeptide, whereby a preferable effect of the present invention can be obtained. Also good.

機能性食品は、ヨーグルト、乳性乳酸菌飲料、チーズ、酸乳配合の加工飲食品、健康食品、粉末及び顆粒状食品、錠剤等の形態とすることができる。 The functional food can be in the form of yogurt, milky lactic acid bacteria beverages, cheese, processed foods and drinks containing sour milk, health foods, powdered and granular foods, tablets and the like.

本発明の剤及び機能性食品の有効成分である前記トリペプチドは、長年にわたり飲食され、食経験されているものであり、既に安全性は証明されていると考えてよい。 The tripeptide, which is an active ingredient of the agent of the present invention and functional food, has been eaten, eaten and eaten for many years, and it may be considered that safety has already been proven.

以下実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
脱脂粉乳9gを水100gに溶解し、115℃、20分間殺菌した後、室温まで冷却してラクトバチルス・ヘルベティカスATCC−8205を1白金耳接種し、37℃で24時間培養を行って、1次スターター(乳酸菌数5×108個/ml、pH3.5)を調製した。次いで、90℃達温殺菌した脱脂乳(固形分9重量%)2kgに、1次スターターを80g接種した後に、37℃、24時間培養を行い、これを2次スターターとした。次に、脱脂粉乳4.5kgを水50kgに溶解し、90℃達温殺菌した後室温まで冷却して、前記2次スターターを2kg接種し、37℃で24時間培養を行い、発酵乳56kgを得た。得られた発酵乳中には、全量中の含有量としてIPPが5.4mg、VPPが9.5mgの割合で含有されていた。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
Example 1
9 g of skim milk powder is dissolved in 100 g of water, sterilized at 115 ° C. for 20 minutes, cooled to room temperature, inoculated with 1 platinum ear of Lactobacillus helveticus ATCC-8205, cultured at 37 ° C. for 24 hours, and primary A starter (5 × 10 8 lactic acid bacteria / ml, pH 3.5) was prepared. Subsequently, 80 g of the primary starter was inoculated into 2 kg of skim milk (solid content: 9% by weight) sterilized at 90 ° C., and then cultured at 37 ° C. for 24 hours. This was used as the secondary starter. Next, 4.5 kg of skimmed milk powder is dissolved in 50 kg of water, sterilized at 90 ° C., cooled to room temperature, inoculated with 2 kg of the secondary starter, cultured at 37 ° C. for 24 hours, and fermented milk of 56 kg Obtained. The obtained fermented milk contained IPP at a rate of 5.4 mg and VPP at a rate of 9.5 mg as the total content.

実施例2
実施例1にて得られた発酵乳6kgを10N水酸化ナトリウム水溶液を用いてpH7.3に調整した後、イオン交換樹脂(商品名Amberlite XAD-2、オルガノ社製)1リットルを加え、更に蒸留水を加えて全量を20kgとした。撹拌器にて90分間撹拌後、吸引濾過器により樹脂を濾別し、濾過器フィルター上の樹脂を蒸留水20kgにて洗浄した後に樹脂を回収した。この回収樹脂にメタノール0.8kgを加えて撹拌器にて30分間撹拌した。次にナイロンウール(200メッシュ)を用いて濾過し、さらに硬質濾紙で吸引濾過後、濾液をエバポレーターにて55℃、減圧濃縮し精製濃縮液200gを得た。この精製濃縮液にイオン交換樹脂(商品名Amberlite IRA-400(OH型)、オルガノ社製)250mlを加え、10分間撹拌した後に、硬質濾紙にて吸引濾過して得られた濾液を1N塩酸溶液にてpH7に調整後、真空凍結乾燥した。得られた精製乾燥物を5mlの蒸留水にて均一に溶解し、カラム(商品名Sephadex G-25、ファルマシア社製)に供し、蒸留水にて溶出し、トリペプチド溶出画分を回収し、真空凍結乾燥してトリペプチド精製画分粉末50mgを得た。この精製画分粉末50mg中には、IPPが0.6mg、VPPが1.0mg含有されていた。
Example 2
After adjusting 6 kg of fermented milk obtained in Example 1 to pH 7.3 using 10N aqueous sodium hydroxide solution, 1 liter of ion exchange resin (trade name Amberlite XAD-2, manufactured by Organo) was added, and further distilled. Water was added to make a total of 20 kg. After stirring for 90 minutes with a stirrer, the resin was filtered off with a suction filter, and the resin on the filter was washed with 20 kg of distilled water, and then the resin was recovered. To this recovered resin, 0.8 kg of methanol was added and stirred with a stirrer for 30 minutes. Next, it filtered using nylon wool (200 mesh), and also suction-filtered with the hard filter paper, Then, the filtrate was concentrate | evaporated under reduced pressure at 55 degreeC with the evaporator, and 200g of refinement | purification concentrates were obtained. To this purified concentrate, 250 ml of an ion exchange resin (trade name: Amberlite IRA-400 (OH type), manufactured by Organo) was added and stirred for 10 minutes, and then the filtrate obtained by suction filtration with a hard filter paper was treated with a 1N hydrochloric acid solution. The solution was adjusted to pH 7 with lyophilization in vacuo. The obtained purified dried product is uniformly dissolved in 5 ml of distilled water, applied to a column (trade name Sephadex G-25, manufactured by Pharmacia), eluted with distilled water, and the tripeptide elution fraction is collected. The peptide was freeze-dried to obtain 50 mg of tripeptide purified fraction powder. In 50 mg of this purified fraction powder, 0.6 mg of IPP and 1.0 mg of VPP were contained.

実施例3
IPP、VPPを以下に示す有機化学合成法により合成した。合成は島津製作所製のペプチド自動合成装置(PSSM−8型)を用いた固相法によって行った。固相担体としてベンジルオキシベンジルアルコールタイプのポリスチレン樹脂であって、アミノ基をフルオレニルメトキシカルボニル基(以下Fmocと略す)で保護されたプロリンが結合した樹脂20μmolを使用した。前記アミノ酸配列に従って、アミノ基がFmoc基で保護されたFmoc−Ile、Fmoc−Pro及びFmoc−Valを100μmolづつ、常法に従い、ペプチド配列通り順次反応させてペプチド結合樹脂を得た。次にこのペプチド結合樹脂を1mlの反応液(1重量%エタンジチオール、5重量%アニソール、94重量%トリフルオロ酢酸)に懸濁し、室温で2時間反応させてペプチドを樹脂から切離し、同時に側鎖保護基を外した。次に反応混合液をガラスフィルターで濾過した後、無水エーテル10mlを加えて精製したペプチドを沈殿させて、3000回転、5分間遠心して分離した。その沈殿を無水エーテルにて数回洗浄した後、窒素ガスを吹き付けて乾燥した。このようにして得られた未精製の合成ペプチド全量を、0.1N塩酸水溶液2mlに溶解した後に、全量を、以下の条件に従いC18の逆層カラムを用いたHPLCで、以下の条件に従って精製した。
Example 3
IPP and VPP were synthesized by the organic chemical synthesis method shown below. The synthesis was performed by a solid phase method using an automatic peptide synthesizer (PSSM-8 type) manufactured by Shimadzu Corporation. As a solid phase carrier, 20 μmol of a benzyloxybenzyl alcohol type polystyrene resin, to which a proline protected with a fluorenylmethoxycarbonyl group (hereinafter abbreviated as Fmoc) was bonded, was used. According to the amino acid sequence, Fmoc-Ile, Fmoc-Pro, and Fmoc-Val in which the amino group was protected with the Fmoc group were reacted in order of 100 μmol in accordance with the peptide sequence according to a conventional method to obtain a peptide binding resin. Next, this peptide-bonded resin is suspended in 1 ml of a reaction solution (1% by weight ethanedithiol, 5% by weight anisole, 94% by weight trifluoroacetic acid), reacted at room temperature for 2 hours to cleave the peptide from the resin, and simultaneously the side chain The protecting group was removed. Next, the reaction mixture was filtered through a glass filter, and 10 ml of anhydrous ether was added to precipitate the purified peptide, which was separated by centrifugation at 3000 rpm for 5 minutes. The precipitate was washed several times with anhydrous ether and then dried by blowing nitrogen gas. The total amount of the unpurified synthetic peptide thus obtained was dissolved in 2 ml of 0.1N aqueous hydrochloric acid solution, and then the total amount was purified by HPLC using a C18 reverse layer column according to the following conditions according to the following conditions. did.

ポンプ:形式L6200インテリジェントポンプ(日立製作所)
検出機:形式L4000UV検出器(日立製作所)にて215nmの紫外部吸収を検出
カラム:マイクロボンダスフェアー5μC18(ウォーターズ社製)
溶出液:A液;0.1重量%TFA水溶液、B液;0.1重量%TFA入りアセトニトリル(B/A+B)×100(%):0→40%(60分)
流速:1ml/分
最大吸収を示した溶出画分を分取し、これを凍結乾燥することにより目的とする合成ペプチドIPP及びVPPをそれぞれ2.1g、0.9mg得た。精製ペプチドを全自動タンパク質一次構造分析装置(形式PPSQ−10、島津製作所製)により、ペプチドのN末端から分析し、さらにアミノ酸分析装置(形式800シリーズ、日本分光社製)にて分析した結果、設計通りであることが確認できた。
Pump: Model L6200 Intelligent Pump (Hitachi)
Detector: Model L4000 UV detector (Hitachi) detects UV absorption at 215 nm Column: Microbonder sphere 5 μC 18 (Waters)
Eluent: A solution; 0.1 wt% TFA aqueous solution, B solution; acetonitrile containing 0.1 wt% TFA (B / A + B) x 100 (%): 0 → 40% (60 minutes)
Flow rate: 1 ml / min The elution fraction showing the maximum absorption was collected and lyophilized to obtain 2.1 g and 0.9 mg of the objective synthetic peptides IPP and VPP, respectively. As a result of analyzing the purified peptide from the N-terminal of the peptide with a fully automatic protein primary structure analyzer (model PPSQ-10, manufactured by Shimadzu Corporation), and further analyzing with an amino acid analyzer (format 800 series, manufactured by JASCO Corporation), It was confirmed that it was as designed.

実施例4
雄ウィスター系ラット(体重300g程度)24匹を、1週間予備飼育した。予備飼育期間中及び実験期間中は、固形飼料(商品名CE−2、日本クレア製)を制限食として与え、水は自由摂取とした。
Example 4
Twenty-four male Wistar rats (body weight of about 300 g) were bred for one week. During the preliminary breeding period and the experiment period, solid feed (trade name CE-2, manufactured by CLEA Japan) was given as a restricted diet, and water was freely consumed.

予備飼育終了後、ラットを(1)ストレス無負荷−生理食塩水投与群、(2)ストレス負荷−生理食塩水投与群、(3)ストレス負荷−VPP、IPP投与群の3群に分け(各群8匹)、(2)群及び(3)群の動物に、低温室(4℃)に1日につき4時間入れる寒冷ストレスを9日間負荷した。   After completion of the pre-breeding, the rats were divided into three groups: (1) no stress-saline group, (2) stress-saline group, (3) stress-VPP, IPP group (each The animals in groups 8), (2) and (3) were subjected to 9 days of cold stress, which was placed in a cold room (4 ° C.) for 4 hours per day.

10日目に、試料として、(1)及び(2)群のラットには生理食塩水1mlを、(3)群には実施例3の方法により合成したIPP及びVPPを各3mg/kg体重の濃度になるように溶解した生理食塩水1mlを、経口ゾンデにて胃内に強制投与した。投与後、(2)群及び(3)群のラットに4時間の寒冷ストレスを負荷し、ストレス負荷終了の2時間後に、無加温、非観血値的ラット血圧計(形式:PE−300型、シーエスアイ社製)を用いてtail-cuff法にて、各群のラットの血圧を測定した。   On the 10th day, as samples, 1 ml of physiological saline was given to the rats of the groups (1) and (2), and 3 mg / kg body weight of IPP and VPP synthesized by the method of Example 3 was given to the group (3). 1 ml of physiological saline dissolved to a concentration was forcibly administered into the stomach with an oral sonde. After the administration, the rats of groups (2) and (3) were subjected to 4 hours of cold stress, and 2 hours after the end of the stress loading, non-warming, non-invasive rat blood pressure monitor (form: PE-300) The blood pressure of each group of rats was measured by tail-cuff method using a mold, manufactured by CSI.

血圧の測定結果を表1に示す。表1に示すように、ストレスを負荷した(2)群では、ストレスを負荷していない(1)群に比べ、収縮期血圧、拡張期血圧共に高くなっていた。VPP及びIPPを投与した(3)群では、生理食塩水を投与した(2)群に比べ、収縮期血圧、拡張期血圧共に低くなっており、血圧の値がストレスを負荷していない(1)群に近くなっていた。   Table 1 shows the blood pressure measurement results. As shown in Table 1, both the systolic blood pressure and the diastolic blood pressure were higher in the stressed (2) group than in the non-stressed (1) group. In group (3) to which VPP and IPP were administered, both systolic blood pressure and diastolic blood pressure were lower than in group (2) to which physiological saline was administered, and the value of blood pressure was not stressed (1 ) It was close to the group.

Figure 2011102331
Figure 2011102331

寒冷ストレス負荷前後の血圧の変動を表2に示す。表2に示すように、ストレスを負荷した(2)群では、ストレスを負荷していない(1)群に比べ、収縮期血圧、拡張期血圧共に有意に上昇していた。VPP及びIPPを投与した(3)群では、生理食塩水を投与した(2)群に比べ、収縮期血圧、拡張期血圧共に上昇が抑制されており、収縮期血圧では有意差が認められた。以上の結果から、IPP及びVPPを投与することにより、ストレス負荷後における血圧上昇を抑制する効果が得られることが確認された。   Table 2 shows changes in blood pressure before and after the cold stress load. As shown in Table 2, both the systolic blood pressure and the diastolic blood pressure were significantly increased in the stressed (2) group compared to the non-stressed (1) group. In the group (3) administered with VPP and IPP, the increase in both systolic blood pressure and diastolic blood pressure was suppressed as compared with the group (2) administered with physiological saline, and a significant difference was observed in the systolic blood pressure. . From the above results, it was confirmed that administration of IPP and VPP provides an effect of suppressing an increase in blood pressure after stress loading.

Figure 2011102331
Figure 2011102331

実施例5
雄ウィスター系ラット(体重300g程度)24匹を1週間予備飼育した。予備飼育期間中及び実験期間中においては、固形試料(CE−2、日本クレア製)を制限食にて与え、水は自由摂取とした。
Example 5
Twenty-four male Wistar rats (body weight of about 300 g) were bred for one week. During the preliminary breeding period and the experiment period, a solid sample (CE-2, manufactured by CLEA Japan) was given on a restricted diet, and water was freely consumed.

予備飼育終了後、ラットを(1)生理食塩水投与群、(2)VPP投与群及び(3)IPP投与群の3群に分けた(各群8匹)。(1)群−(3)群のラットを、実施例4と同様に低温室(4℃)に1日につき4時間入れ、9日間寒冷ストレスを負荷した。   After the completion of the preliminary breeding, the rats were divided into three groups: (1) a physiological saline administration group, (2) a VPP administration group, and (3) an IPP administration group (each group was 8 animals). (1) Group- (3) Group rats were placed in a cold room (4 ° C.) for 4 hours per day in the same manner as in Example 4 and subjected to cold stress for 9 days.

10日目に、試料として、(1)群は生理食塩水1mlを、並びに(2)群及び(3)群にはそれぞれ実施例3の方法により合成したVPP 3mg/kg体重又はIPP 3mg/kg体重となるよう溶解した生理食塩水1mlを、経口ゾンデにて胃内に強制投与した。投与後、(1)群−(3)群のラットについて、実施例4と同様に4時間の寒冷ストレスを負荷し、血圧を測定した。   On the 10th day, as a sample, (1) group had 1 ml of physiological saline, and (2) and (3) groups had VPP 3 mg / kg body weight or IPP 3 mg / kg synthesized by the method of Example 3, respectively. 1 ml of physiological saline dissolved to obtain body weight was forcibly administered into the stomach with an oral sonde. After the administration, the rats in groups (1) to (3) were subjected to 4 hours of cold stress in the same manner as in Example 4 and blood pressure was measured.

血圧の測定結果を表3に示す。表3に示すように、トリペプチドを投与した(2)及び(3)群では、生理食塩水を投与した(1)群に比べ、収縮期血圧、拡張期血圧共に有意に低くなっており、トリペプチドを投与することによりストレス負荷後における血圧上昇を抑制する効果が得られることが認められた。   Table 3 shows the blood pressure measurement results. As shown in Table 3, in the groups (2) and (3) administered with the tripeptide, both systolic blood pressure and diastolic blood pressure were significantly lower than those in the group (1) administered with physiological saline, It was recognized that the effect of suppressing the increase in blood pressure after stress loading can be obtained by administering the tripeptide.

Figure 2011102331
Figure 2011102331

実施例6
試料として、(1)群は生理食塩水2mlを、並びに(2)群及び(3)群にはそれぞれ実施例1で得た発酵乳5ml/kg体重又は実施例2で得たトリペプチド精製画分粉末150mg/kgを生理食塩水に溶解し2mlとしたものを用いた他は実施例5と同様に試験を行い、試料投与、ストレス負荷後に血圧を測定した。
Example 6
As a sample, the group (1) contains 2 ml of physiological saline, and the groups (2) and (3) contain 5 ml / kg body weight of fermented milk obtained in Example 1 or a purified tripeptide obtained in Example 2, respectively. The test was conducted in the same manner as in Example 5 except that 150 ml / kg of the powder powder was dissolved in physiological saline to make 2 ml, and blood pressure was measured after sample administration and stress loading.

血圧の測定結果を表4に示す。表4に示す通り、発酵乳を投与した(2)群及びトリペプチド精製画分粉末を投与した(3)群と、生理食塩水を投与した(1)群とを比べると、収縮期血圧、拡張期血圧ともに(1)群より(2)群及び(3)群の方が低くなっており、発酵乳及びトリペプチド精製画分を投与することにより、ストレス負荷後における血圧上昇を抑制する効果が得られることが認められた。   Table 4 shows the blood pressure measurement results. As shown in Table 4, when comparing (2) group administered fermented milk and (3) group administered tripeptide purified fraction powder with (1) group administered physiological saline, systolic blood pressure, Both diastolic blood pressure is lower in groups (2) and (3) than in group (1), and by administering fermented milk and a purified tripeptide fraction, the effect of suppressing an increase in blood pressure after stress loading Was found to be obtained.

Figure 2011102331
Figure 2011102331

実施例7
雄ウィスター系ラット(体重300g程度)24匹を1週間予備飼育した。予備飼育期間中は、固形飼料(商品名CE−2、日本クレア製)を制限食として与え、水は自由摂取とした。
Example 7
Twenty-four male Wistar rats (body weight of about 300 g) were bred for one week. During the preliminary breeding period, solid feed (trade name CE-2, manufactured by CLEA Japan) was given as a restricted diet, and water was freely consumed.

予備飼育終了後、ラットを(1)ストレス無負荷−生理食塩水投与群、(2)ストレス負荷−生理食塩水投与群、(3)ストレス負荷−VPP、IPP投与群の3群に分け(各群8匹)、(2)群及び(3)群の動物に、金網拘束ケージに入れ呼吸ができるように頭部が水面から出るようにして頭部より下を25℃の水槽に浸すことにより、水浸拘束ストレスを1日について6時間、5日間連続して負荷した。ストレス負荷期間中は、固形飼料(商品名CE−2、日本クレア製)及び水を自由摂取させた。   After completion of the pre-breeding, the rats were divided into three groups: (1) no stress-saline group, (2) stress-saline group, (3) stress-VPP, IPP group (each 8 animals), (2) and (3) animals were immersed in a 25 ° C. water bath under the head so that the head would come out of the water surface so that they could breathe in a wire mesh restraint cage. Water immersion restraint stress was applied continuously for 6 hours for 5 days per day. During the stress loading period, solid feed (trade name CE-2, manufactured by Nippon Claire) and water were freely ingested.

各ラットには、ストレス負荷開始日より負荷終了日まで5日間連続して試料を投与した。試料としては、(1)及び(2)群には生理食塩水1mlを、(3)群には実施例3の方法により合成したIPP及びVPPを各3mg/kg体重の濃度になるように溶解した生理食塩水1mlを、経口ゾンデにて胃内に強制投与した。   Each rat was administered the sample for 5 consecutive days from the stress load start date to the load end date. As a sample, 1 ml of physiological saline was dissolved in the groups (1) and (2), and IPP and VPP synthesized by the method of Example 3 were dissolved in the group (3) to a concentration of 3 mg / kg body weight. 1 ml of the physiological saline was forcibly administered into the stomach with an oral sonde.

ストレス負荷2日目から3日目にかけて代謝ケージにて尿を採取し、尿中のカテコールアミン、インドールアミンをHPLCを用いて分析した。カラムは日本分光社製シリカ逆層カラム(商品名「カテコールパック」)を、検出装置はesa社製電気化学検出器(商品名「クーロケム」)を使用した。   Urine was collected in the metabolic cage from the second to third days of stress loading, and urinary catecholamine and indoleamine were analyzed using HPLC. As the column, a silica reverse layer column (trade name “Catechol Pack”) manufactured by JASCO Corporation was used, and as the detection device, an electrochemical detector (trade name “Kurochem”) manufactured by esa Corporation was used.

ストレス負荷最終日のストレス負荷終了後、断頭によりマウスを屠殺し血液を採取し、胸腺及び脾臓を摘出した。血清については、アミノ酸分析装置(形式800シリーズ、日本分光社製)にてアミノ酸組成を測定し、Fischer比(分枝鎖アミノ酸/芳香族アミノ酸のモル比)を算出した。胸腺及び肝臓は重量を測定し、脾臓については以下の方法により脾臓細胞を調製し、脾臓細胞のインターロイキン2産生能及びマイトジェン反応性を測定した。   After the end of stress loading on the last day of stress loading, the mice were killed by decapitation, blood was collected, and the thymus and spleen were removed. For serum, the amino acid composition was measured with an amino acid analyzer (type 800 series, manufactured by JASCO Corporation), and the Fischer ratio (molar ratio of branched chain amino acid / aromatic amino acid) was calculated. Thymus and liver were weighed, and for spleen, spleen cells were prepared by the following method, and spleen cells were measured for interleukin 2 production ability and mitogen reactivity.

(脾臓細胞の調製)
摘出した脾臓をホモジェナイザーで細かく破砕し、低張処理することによって赤血球を除去し、2%牛胎児血清(FCS)含有MEMで洗浄後、10%FCS含有RPM1640培地に細胞数が1×107となるように浮遊させ、遊離浮遊細胞液を作成した。
(Preparation of spleen cells)
The excised spleen is finely crushed with a homogenizer and treated with hypotonic treatment to remove erythrocytes. After washing with 2% fetal calf serum (FCS) -containing MEM, the number of cells is 1 × 10 in 10% FCS-containing RPM1640 medium. A free floating cell solution was prepared by suspending to 7 .

(インターロイキン2産生能の測定)
調製した前記脾臓細胞2.5×106個、コンカナバリンA(ConA)5μg/ml、及び10%FCSを含むRPM1640培地を調製し、24時間培養し、その上清中のインターロイキン2量を測定した。インターロイキン2量はインターロイキン2反応性細胞株の増殖を指標としたバイオアッセイにより測定した。
(Measurement of interleukin 2 production ability)
An RPM1640 medium containing the prepared spleen cells 2.5 × 10 6 , concanavalin A (ConA) 5 μg / ml, and 10% FCS is prepared, cultured for 24 hours, and the amount of interleukin 2 in the supernatant is measured. did. The amount of interleukin 2 was measured by a bioassay using the growth of an interleukin 2-reactive cell line as an index.

(マイトジェン反応性)
ConA又はポークウィートマイトジェン(PWM)をマイトジェンとし、これらのいずれか一方の5μg/ml、調製した前記脾臓細胞5×106個、及び10%FCSを含むRPM1640培地を調製し、24時間培養し、24時間後の細胞数をMTT(3-(4,5-dimethylthiazoil-2-yl)-2,5-diphenyltetrazoliumbromide)の取り込みを指標とした吸光度により測定し、マイトジェンを含まない時の細胞数に対する比率で表した。
(Mitogen reactivity)
RPMA 1640 medium containing ConA or pork wheat mitogen (PWM) as a mitogen and containing 5 μg / ml of either of these, 5 × 10 6 spleen cells prepared above, and 10% FCS is prepared, and cultured for 24 hours. The number of cells after 24 hours was measured by absorbance using MTT (3- (4,5-dimethylthiazoil-2-yl) -2,5-diphenyltetrazoliumbromide) uptake as an index, and the ratio to the number of cells without mitogen Expressed in

表5にストレス負荷2日目から3日目の尿中ノルアドレナリン、ドーパミンの排泄量を示す。表5に示すように、ストレスを負荷した(2)群ではストレスを負荷していない(1)群に比べ、尿中ノルアドレナリン、ドーパミンの排泄量が有意に低下していた。トリペプチドを投与した(3)群では、生理食塩水を投与した(2)群に比べ、尿中ノルアドレナリン、ドーパミン排泄量共に低下が抑えられる傾向にあった。従って、IPP、VPPはストレス負荷した後の尿中ノルアドレナリン、ドーパミン排泄量の低下を抑制する効果を有することが認められた。   Table 5 shows the amount of excretion of urinary noradrenaline and dopamine from the second day to the third day of stress loading. As shown in Table 5, the excretion amounts of urinary noradrenaline and dopamine were significantly reduced in the stressed (2) group compared to the non-stressed (1) group. In the group (3) administered with the tripeptide, a decrease in both urinary noradrenaline and dopamine excretion tended to be suppressed as compared to the group (2) administered with physiological saline. Therefore, it was recognized that IPP and VPP have an effect of suppressing a decrease in urinary noradrenaline and dopamine excretion after stress loading.

Figure 2011102331
Figure 2011102331

表6に屠殺後の血清アミノ酸のFischer比を示す。表6に示すように、ストレスを負荷した(2)群ではストレスを負荷していない(1)群に比べ、Fischer比が有意に低くなっていたが、トリペプチドを投与した(3)群では、生理食塩水を投与した(2)群に比べ、Fischer比が有意に高くなっていた。   Table 6 shows the Fischer ratio of serum amino acids after sacrifice. As shown in Table 6, the Fischer ratio was significantly lower in the stressed (2) group than in the non-stressed (1) group, but in the (3) group administered the tripeptide The Fischer ratio was significantly higher than that of the group (2) to which physiological saline was administered.

Figure 2011102331
Figure 2011102331

表7に屠殺後の胸腺及び脾臓の重量を示した。ストレスを負荷した(2)群ではストレスを負荷していない(1)群に比べ、胸腺、脾臓共に重量が大きく低下していた。トリペプチドを投与した(3)群では、若干ではあるが胸腺重量及び脾臓重量が生理食塩水を投与した(2)群に比べ高い傾向を示した。   Table 7 shows the weight of the thymus and spleen after sacrifice. In the stressed (2) group, both the thymus and spleen were significantly reduced in weight compared to the non-stressed (1) group. In the group (3) to which the tripeptide was administered, the thymus weight and spleen weight were slightly higher than those in the group (2) to which the physiological saline was administered.

Figure 2011102331
Figure 2011102331

表8に脾臓細胞のマイトジェン反応性を、表9に脾臓細胞のインターロイキン2産生能を示す。ストレスを負荷した(2)群ではストレスを負荷していない(1)群に比べ、マイトジェン反応性の低下とインターロイキン2産生能の低下傾向が認められたが、トリペプチドを投与した(3)群では、生理食塩水を投与した(2)群に比べ、マイトジェン反応性の上昇とインターロイキン産生能が上昇傾向が認められた。   Table 8 shows the mitogen reactivity of spleen cells, and Table 9 shows the ability of spleen cells to produce interleukin-2. In the stress-loaded group (2), compared with the non-stressed group (1), the mitogen reactivity decreased and the interleukin 2 production ability decreased, but the tripeptide was administered (3) In the group, the mitogen reactivity increased and the interleukin production ability tended to increase as compared with the group (2) administered with physiological saline.

Figure 2011102331
Figure 2011102331

Figure 2011102331
Figure 2011102331

これらの結果より、IPP、VPPの投与は、ストレスの負荷による血中アミノ酸のバランス(Fischer比)の変化、胸腺や脾臓の萎縮、脾臓細胞反応性の低下等の免疫機能指標の低下に対し抑制効果を有することが認められた。   From these results, administration of IPP and VPP suppresses changes in immune function indicators such as changes in blood amino acid balance (Fischer ratio), thymus and spleen atrophy, and decreased spleen cell reactivity due to stress. It was found to have an effect.

Claims (1)

Ile-Pro-Pro及び/又はVal-Pro-Proを有効成分として含む、ストレス負荷により生じる、尿中ドーパミン低下及びFischer比低下の少なくとも1つの予防及び軽減剤Ile-Pro-Pro and / or Val-Pro-Pro including as an active ingredient, caused by stress, at least one of preventing and alleviating agent for reduction and Fischer ratio decreased urinary dopamine.
JP2011032507A 2011-02-17 2011-02-17 Preventing and alleviating agent for dopamine fall in urine Pending JP2011102331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032507A JP2011102331A (en) 2011-02-17 2011-02-17 Preventing and alleviating agent for dopamine fall in urine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032507A JP2011102331A (en) 2011-02-17 2011-02-17 Preventing and alleviating agent for dopamine fall in urine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26242297A Division JP4727770B2 (en) 1997-09-26 1997-09-26 At least one alleviating agent for lowering urinary catecholamine, lowering urinary noradrenaline, lowering urinary dopamine and lowering Fischer ratio

Publications (1)

Publication Number Publication Date
JP2011102331A true JP2011102331A (en) 2011-05-26

Family

ID=44192804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032507A Pending JP2011102331A (en) 2011-02-17 2011-02-17 Preventing and alleviating agent for dopamine fall in urine

Country Status (1)

Country Link
JP (1) JP2011102331A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727770B2 (en) * 1997-09-26 2011-07-20 カルピス株式会社 At least one alleviating agent for lowering urinary catecholamine, lowering urinary noradrenaline, lowering urinary dopamine and lowering Fischer ratio

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727770B2 (en) * 1997-09-26 2011-07-20 カルピス株式会社 At least one alleviating agent for lowering urinary catecholamine, lowering urinary noradrenaline, lowering urinary dopamine and lowering Fischer ratio

Similar Documents

Publication Publication Date Title
JP4727770B2 (en) At least one alleviating agent for lowering urinary catecholamine, lowering urinary noradrenaline, lowering urinary dopamine and lowering Fischer ratio
Korhonen et al. Bioactive peptides: Production and functionality
Kamau et al. Functional significance of bioactive peptides derived from milk proteins
Korhonen Bioactive components in bovine milk
Korhonen Bioactive milk proteins and peptides: from science to functional applications
US9289461B2 (en) Reducing the risk of autoimmune disease
JPWO2007080962A1 (en) Anti-inflammatory composition and method for producing anti-inflammatory composition
HoSoNo et al. Impact of fermented milk on human health: cholesterol‐lowering and immunomodulatory properties of fermented milk
CN114468046A (en) Composition with effects of dispelling effects of alcohol, protecting liver and protecting stomach
JP4718534B2 (en) Fischer ratio decrease inhibitor
CN117042761A (en) Composition for enhancing physiological efficacy of lactic acid bacteria
JP2011102331A (en) Preventing and alleviating agent for dopamine fall in urine
Singh et al. Potential of novel bioactive peptides as functional food ingredients in preventing cardiovascular disease
JP5292632B2 (en) Heart failure preventive agent
JP4242293B2 (en) Composition for increasing bone strengthening and bone formation
US20230180778A1 (en) Milk fermentation process
TWI412372B (en) Agents for preventing cardiac failure
MXPA00002839A (en) Antistress agents and functional foods
TWI414305B (en) Agents for preventing renal failure
TWI343260B (en) Novel antihypertensive peptide and use thereof
JP2008266259A (en) Fat accumulation inhibitor
JP2013043839A (en) Hypotensive composition originated in fish protein, and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305