JP2011102282A - Optically active cyanohydrin compounds and process for producing the same - Google Patents

Optically active cyanohydrin compounds and process for producing the same Download PDF

Info

Publication number
JP2011102282A
JP2011102282A JP2009258736A JP2009258736A JP2011102282A JP 2011102282 A JP2011102282 A JP 2011102282A JP 2009258736 A JP2009258736 A JP 2009258736A JP 2009258736 A JP2009258736 A JP 2009258736A JP 2011102282 A JP2011102282 A JP 2011102282A
Authority
JP
Japan
Prior art keywords
group
substituent
general formula
optically active
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258736A
Other languages
Japanese (ja)
Other versions
JP5585979B2 (en
Inventor
Takeshi Okuma
毅 大熊
Nobuhito Kurono
暢仁 黒野
Masato Uemura
真人 植村
Hiroyuki Mori
浩幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Mitsubishi Rayon Co Ltd
Original Assignee
Hokkaido University NUC
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Mitsubishi Rayon Co Ltd filed Critical Hokkaido University NUC
Priority to JP2009258736A priority Critical patent/JP5585979B2/en
Publication of JP2011102282A publication Critical patent/JP2011102282A/en
Application granted granted Critical
Publication of JP5585979B2 publication Critical patent/JP5585979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optically active cyanohydrin compound and a process for producing the same. <P>SOLUTION: The optically active cyanohydrin compound is represented by formula (1) (wherein R<SB>1</SB>is a linear alkyl group which may have a branch; a cyclic alkyl group which may have a substituent, a linear alkenyl group which may have a branch, a cyclic alkenyl group which may have a substituent, an aryl group which may have a substituent or a heterocycle which may have a substituent; R<SB>2</SB>is hydrogen, an alkali metal, a hydrocarbon group which may have a substituent or a silyl group which may have a substituent; R<SB>3</SB>is an alkyl group, an alkenyl group, allyl group or an aryl group; and R<SB>1</SB>and R<SB>3</SB>may be linked to form a lactone). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学活性なシアノヒドリン化合物類およびその製造方法に関する。   The present invention relates to optically active cyanohydrin compounds and a method for producing the same.

シアノヒドリン類は、光学活性なα−ヒドロキシカルボン酸類、α−ヒドロキシアルデヒド類、β−アミノアルコール類などの有用物質合成において鍵となる中間体である。その代表的な合成法の一つとしてアルデヒド類及びケトン類の不斉シアノ化反応があり、反応剤としては容易に入手できるシアン化トリメチルシリルを用いるのが一般的である。シアノシリル化においては、触媒量のキラルなルイス酸やルイス塩基を用いる検討がなされ(J. Chem. Soc. Chem. Commun., 1973, p55-56およびChem. Ber., 1973, 106, p587-593参照)、高いエナンチオ選択性も報告されている。さらに、本発明者らは、シアノシリル化反応の触媒にリチウム塩等を用いることを既に提案している(特開2006-219457号公報参照)。   Cyanohydrins are key intermediates in the synthesis of useful substances such as optically active α-hydroxycarboxylic acids, α-hydroxyaldehydes, and β-aminoalcohols. One typical synthesis method is an asymmetric cyanation reaction of aldehydes and ketones, and trimethylsilyl cyanide, which is easily available, is generally used as a reactant. In cyanosilylation, studies using catalytic amounts of chiral Lewis acids and Lewis bases have been made (J. Chem. Soc. Chem. Commun., 1973, p55-56 and Chem. Ber., 1973, 106, p587-593). High enantioselectivity has also been reported. Furthermore, the present inventors have already proposed to use a lithium salt or the like as a catalyst for the cyanosilylation reaction (see JP-A-2006-219457).

しかしながら、上記したJ. Chem. Soc. Chem. Commun., 1973, p55-56およびChem. Ber., 1973, 106, p587-593に記載の技術の場合、多量((基質/触媒)で表される比が1〜100)の触媒を必要とする、触媒の調製が煩雑である、触媒が不安定である、カルボニル化合物に対してシアン化トリアルキルシリル化合物を過剰量用いる必要がある、反応後の後処理が煩雑である、等の問題がある。   However, in the case of the techniques described in J. Chem. Soc. Chem. Commun., 1973, p55-56 and Chem. Ber., 1973, 106, p587-593, expressed in large quantities ((substrate / catalyst)). A catalyst having a ratio of 1 to 100), the preparation of the catalyst is complicated, the catalyst is unstable, it is necessary to use an excess amount of a trialkylsilyl cyanide compound relative to the carbonyl compound, after the reaction There are problems such as complicated post-processing.

又、特開2006-219457号公報記載の技術の場合、触媒の調製は容易であり、触媒の安定性にも優れるが、高いエナンチオ選択性を有する光学活性な生成物が得られないという問題がある。すなわち、この技術においてはLiCl等のアキラルな塩だけを触媒として用いるため、生成物が全てラセミ体(すなわち0% ee)となる。   In the case of the technique described in JP-A-2006-219457, the preparation of the catalyst is easy and the stability of the catalyst is excellent, but there is a problem that an optically active product having high enantioselectivity cannot be obtained. is there. That is, in this technique, since only an achiral salt such as LiCl is used as a catalyst, all products are racemic (ie, 0% ee).

そこで、本発明者らは、上記従来の問題を解決すべく鋭意検討した結果、触媒の調製が容易で触媒の安定性も高く、かつ光学活性なシアノヒドリン化合物を得ることができるシアノ化触媒の製造に成功し、本願に先立ち特許出願した(WO2008-099965A1公報参照)。しかしながら、当該技術分野では、更に多様な構造を持つ光学活性シアノヒドリン化合物を製造することが望まれている。   Therefore, as a result of intensive studies to solve the above-mentioned conventional problems, the present inventors have produced a cyanation catalyst that is easy to prepare a catalyst, has high catalyst stability, and can obtain an optically active cyanohydrin compound. Succeeded, and filed a patent application prior to the present application (see WO2008-099965A1). However, in this technical field, it is desired to produce optically active cyanohydrin compounds having various structures.

特開2006-219457号公報JP 2006-219457 WO2008-099965A1WO2008-099965A1

J. Chem. Soc. Chem. Commun., 1973, p55-56およびChem. Ber., 1973, 106, p587-593J. Chem. Soc. Chem. Commun., 1973, p55-56 and Chem. Ber., 1973, 106, p587-593

本発明は、上記従来の問題を解決し、光学活性なシアノヒドリン化合物及びその製造方法を提供することを目的とする。   An object of the present invention is to solve the above conventional problems and provide an optically active cyanohydrin compound and a method for producing the same.

本発明者らは、光学活性なシアノヒドリン化合物を得るための基質について鋭意研究した結果、下記一般式(3)で表されるケトエステル化合物を用いることにより、光学活性なシアノヒドリン化合物を得ることができることを見出した。
すなわち、本発明の一実施形態は、下記一般式(1)で表される光学活性シアノヒドリン化合物である。
As a result of intensive studies on a substrate for obtaining an optically active cyanohydrin compound, the present inventors have found that an optically active cyanohydrin compound can be obtained by using a ketoester compound represented by the following general formula (3). I found it.
That is, one embodiment of the present invention is an optically active cyanohydrin compound represented by the following general formula (1).

一般式(1)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。また、R1とR3が結合してラクトンを形成してもよい。
本発明の好ましい実施形態は、上記一般式(1)におけるR2が水素原子である光学活性シアノヒドリン化合物である。
また、本発明の別の好ましい実施形態は、上記一般式(1)におけるR2がトリメチルシリル(TMS)である光学活性シアノヒドリン化合物である。
本発明の別の実施形態は、
In general formula (1), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, a substituent. The cyclic alkenyl group which may have a group, the aryl group which may have a substituent, or the heterocyclic ring which may have a substituent is shown. R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group which may have a substituent, or a silyl group which may have a substituent. R 3 represents an alkyl group, an alkenyl group, an allyl group, or an aryl group. R 1 and R 3 may be bonded to form a lactone.
A preferred embodiment of the present invention is an optically active cyanohydrin compound in which R 2 in the general formula (1) is a hydrogen atom.
Another preferred embodiment of the present invention is an optically active cyanohydrin compound in which R 2 in the general formula (1) is trimethylsilyl (TMS).
Another embodiment of the present invention is:

下記一般式(2)で表されるシアノ化触媒の存在下に、
(一般式(2)中、R4〜R7は同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい炭化水素基であって、R4とR5及び/又はR6とR7が置換基を有していてもよい炭素鎖環を形成してもよく;R8〜R11は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基であって、R8とR9及び/又はR10とR11が置換基を有していてもよい炭素鎖環を形成してもよく;R12およびR13は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基;W、X、Yは同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい結合鎖を表し、但し、X及び/又はYは存在しなくともよい;Mは金属又は金属イオンを示し、Mの各配位子はどのように配置されていてもよい)
下記一般式(3)
In the presence of a cyanation catalyst represented by the following general formula (2),
(In the general formula (2), R 4 to R 7 may be the same or different, and each may be a hydrocarbon group which may have a substituent, and R 4 and R 5 and / or R 6. And R 7 may form an optionally substituted carbon chain ring; R 8 to R 11 may be the same or different, and each may have a hydrogen atom or a substituent. A good hydrocarbon group, R 8 and R 9 and / or R 10 and R 11 may form an optionally substituted carbon chain ring; R 12 and R 13 may be the same or each Hydrocarbon groups which may be different and each may have a hydrogen atom or a substituent; W, X and Y may be the same or different and each may have a substituent Where X and / or Y may not be present; M represents a metal or metal ion; Each ligand may be arranged how)
The following general formula (3)

(一般式(3)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。)で表されるケトエステル化合物と、下記一般式(4) (In the general formula (3), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, A cyclic alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heterocyclic ring which may have a substituent, R 3 represents an alkyl group, an alkenyl group, an allyl. A keto ester compound represented by the following general formula (4):

(一般式(4)中、R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。)で表されるシアン化化合物とを反応させる工程;および
前記工程で得られた反応生成物中に金属化合物の塩を加え反応させる工程を含む、上記一般式(1)で表される光学活性シアノヒドリン化合物の製造方法である。
本発明の別の実施形態は、
(In General Formula (4), R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group which may have a substituent, or a silyl group which may have a substituent.) A method of producing an optically active cyanohydrin compound represented by the above general formula (1), comprising a step of reacting a compound with a compound; and a step of reacting a reaction product obtained in the step with a salt of a metal compound. is there.
Another embodiment of the present invention is:

下記一般式(2)で表されるシアノ化触媒と、金属化合物の塩とを反応させて得られるシアノ化触媒の存在下に、
(一般式(2)中、R4〜R7は同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい炭化水素基であって、R4とR5及び/又はR6とR7が置換基を有していてもよい炭素鎖環を形成してもよく;R8〜R11は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基であって、R8とR9及び/又はR10とR11が置換基を有していてもよい炭素鎖環を形成してもよく;R12およびR13は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基;W、X、Yは同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい結合鎖を表し、但し、X及び/又はYは存在しなくともよい;Mは金属又は金属イオンを示し、Mの各配位子はどのように配置されていてもよい)
下記一般式(3)
In the presence of a cyanation catalyst obtained by reacting a cyanation catalyst represented by the following general formula (2) with a salt of a metal compound,
(In the general formula (2), R 4 to R 7 may be the same or different, and each may be a hydrocarbon group which may have a substituent, and R 4 and R 5 and / or R 6. And R 7 may form an optionally substituted carbon chain ring; R 8 to R 11 may be the same or different, and each may have a hydrogen atom or a substituent. A good hydrocarbon group, R 8 and R 9 and / or R 10 and R 11 may form an optionally substituted carbon chain ring; R 12 and R 13 may be the same or each Hydrocarbon groups which may be different and each may have a hydrogen atom or a substituent; W, X and Y may be the same or different and each may have a substituent Where X and / or Y may not be present; M represents a metal or metal ion; Each ligand may be arranged how)
The following general formula (3)

(一般式(3)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。)
で表されるケトエステル化合物と、下記一般式(4)
(In the general formula (3), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, A cyclic alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heterocyclic ring which may have a substituent, R 3 represents an alkyl group, an alkenyl group, an allyl. A group or an aryl group.)
A ketoester compound represented by the following general formula (4):

(一般式(4)中、R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。)
で表されるシアン化化合物とを反応させる工程を含む、上記一般式(1)で表される光学活性シアノヒドリン化合物の製造方法である。
本発明の好ましい実施形態は、上記一般式(2)におけるMが二価ルテニウムである、上記一般式(1)で表される光学活性シアノヒドリン化合物の製造方法である。
また、本発明の別の好ましい実施形態は、上記一般式(2)におけるWが1,1'-ビナフチル基又は1,1'-ビフェニル基である、上記一般式(1)で表される光学活性シアノヒドリン化合物の製造方法である。
(In General Formula (4), R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group which may have a substituent, or a silyl group which may have a substituent.)
A process for producing an optically active cyanohydrin compound represented by the above general formula (1), which comprises a step of reacting with a cyanide compound represented by formula (1).
A preferred embodiment of the present invention is a method for producing an optically active cyanohydrin compound represented by the above general formula (1), wherein M in the above general formula (2) is divalent ruthenium.
Another preferred embodiment of the present invention is an optical system represented by the general formula (1), wherein W in the general formula (2) is a 1,1′-binaphthyl group or a 1,1′-biphenyl group. It is a manufacturing method of an active cyanohydrin compound.

本発明の好ましい態様によれば、光学活性なシアノヒドリン化合物が得られる。   According to a preferred embodiment of the present invention, an optically active cyanohydrin compound is obtained.

以下、本発明を詳細に説明する。
本発明の一実施形態は、上記一般式(1)で表される光学活性シアノヒドリン化合物である。まず、この一般式(1)で表される光学活性シアノヒドリン化合物の製造方法において用いられるシアノ化触媒について説明する。
本発明では、下記一般式(2)で表されるシアノ化触媒を用いてもよく、あるいは、第1の触媒としてこの一般式(2)で表されるシアノ化触媒を用い、第2の触媒として金属化合物の塩を用い、これらを反応させて得られたシアノ化触媒を用いてもよい。これらのシアノ化触媒は、本発明の光学活性なシアノヒドリン化合物を製造するための触媒として好適に用いられる。 以下、第1の触媒および第2の触媒の順に説明し、更に、これらを用いた光学活性シアノヒドリン化合物の製造方法について説明する。
<第1の触媒>
第1の触媒は、一般式(2)
Hereinafter, the present invention will be described in detail.
One embodiment of the present invention is an optically active cyanohydrin compound represented by the general formula (1). First, the cyanation catalyst used in the method for producing the optically active cyanohydrin compound represented by the general formula (1) will be described.
In the present invention, a cyanation catalyst represented by the following general formula (2) may be used, or a cyanation catalyst represented by the general formula (2) is used as the first catalyst, and the second catalyst is used. Alternatively, a metal compound salt may be used, and a cyanation catalyst obtained by reacting these may be used. These cyanation catalysts are suitably used as a catalyst for producing the optically active cyanohydrin compound of the present invention. Hereinafter, the first catalyst and the second catalyst will be described in this order, and a method for producing an optically active cyanohydrin compound using these will be described.
<First catalyst>
The first catalyst has the general formula (2)

で表される。
一般式(2)中、R4〜R7は同一又はそれぞれ異なっていてもよく、かつそれぞれ置換基を有していてもよい炭化水素基であって、R4とR5及び/又はR6とR7が置換基を有していてもよい炭素鎖環を形成してもよい。
4〜R7の具体例としては、アルキル、アルケニル、シクロアルキル、シクロアルケニル、アリール、フェニルアルキルなどの炭化水素基が挙げられる。特に、R4〜R7としてフェニル基、トリル基およびキシリル基が好ましい。R4〜R7が有する置換基の具体例としては、水素原子、アルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ基などが挙げられ、これらの基は許容される各種の置換基を有してもよい。特に、置換基として水素原子、p-メチル基および3,5−ジメチル基が好ましい。
It is represented by
In the general formula (2), R 4 to R 7 may be the same or different from each other, and each is a hydrocarbon group which may have a substituent, and R 4 and R 5 and / or R 6 And R 7 may form a carbon chain ring which may have a substituent.
Specific examples of R 4 to R 7 include hydrocarbon groups such as alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, and phenylalkyl. In particular, a phenyl group, a tolyl group, and a xylyl group are preferable as R 4 to R 7 . Specific examples of the substituent that R 4 to R 7 have include a hydrogen atom, alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano group, and the like. It may have various substituents. In particular, a hydrogen atom, a p-methyl group, and a 3,5-dimethyl group are preferable as a substituent.

4とR5(またはR6とR7)が炭素鎖環を形成する場合には、この炭素鎖上にアルキル、アルケニル、アリール、シクロアルキル、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ基等の許容される各種の置換基が置換されたものを用いてもよい。R4〜R7としては、フェニル、p-トリル、m-トリル、3,5-キシリル、p-tert-ブチルフェニル、p-メトキシフェニル、シクロペンチル、シクロヘキシル基が好ましい。 When R 4 and R 5 (or R 6 and R 7 ) form a carbon chain ring, alkyl, alkenyl, aryl, cycloalkyl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano on this carbon chain Those in which various permissible substituents such as a group are substituted may be used. R 4 to R 7 are preferably a phenyl, p-tolyl, m-tolyl, 3,5-xylyl, p-tert-butylphenyl, p-methoxyphenyl, cyclopentyl, or cyclohexyl group.

8〜R11は同一又はそれぞれ異なっていてもよく、かつそれぞれ水素原子又は置換基を有していてもよい炭化水素基であって、R8とR9及び/又はR10とR11が置換基を有していてもよい炭素鎖環を形成してもよい。
8〜R11の具体例としては、水素原子、アルキル、アルケニル、アルキニル、シクロアルキル、シクロアルケニル、アリール基が好ましい。特に、R8〜R11としては、R8とR10が水素原子であり、R9とR11がフェニル基であることが好ましい。
8〜R11が有する置換基の具体例としては、アルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ基などの許容される各種の置換基が挙げられる。特に、置換基として水素原子、メチル基、メトキシ基が好ましい。
R 8 to R 11 may be the same or different and each is a hydrocarbon group optionally having a hydrogen atom or a substituent, and R 8 and R 9 and / or R 10 and R 11 are You may form the carbon chain ring which may have a substituent.
Specific examples of R 8 to R 11 are preferably a hydrogen atom, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and aryl group. In particular, as R 8 to R 11 , R 8 and R 10 are preferably hydrogen atoms, and R 9 and R 11 are preferably phenyl groups.
Specific examples of the substituent that R 8 to R 11 have include various permissible substituents such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, and cyano group. In particular, a hydrogen atom, a methyl group, or a methoxy group is preferable as a substituent.

8とR9(またはR10とR11)が炭素鎖環を形成する場合には、この炭素鎖上にアルキル、アルケニル、アリール、シクロアルキル、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ基等の許容される各種の置換基が置換されたものを用いてもよい。R8〜R11として、R8とR10が水素原子であり、R9とR11がフェニル基であることが好ましい。 When R 8 and R 9 (or R 10 and R 11 ) form a carbon chain ring, alkyl, alkenyl, aryl, cycloalkyl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano on this carbon chain Those in which various permissible substituents such as a group are substituted may be used. As R 8 ~R 11, R 8 and R 10 are hydrogen atoms, it is preferred that R 9 and R 11 is a phenyl group.

12およびR13は同一又はそれぞれ異なっていてもよく、かつそれぞれ水素原子又は置換基を有していてもよい炭化水素基である。
12およびR13の具体例としては、水素原子、アルキル、アルケニル、シクロアルキル、シクロアルケニル、アリール、フェニルアルキルなどの炭化水素基が挙げられる。特に、R12およびR13として水素原子が好ましい。R12およびR13が有する置換基の具体例としては、アルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ基などの許容される各種の置換基が挙げられる。特に、置換基として水素原子、メチル基、メトキシ基が好ましい。
R 12 and R 13 may be the same or different, and each is a hydrogen atom or a hydrocarbon group optionally having a substituent.
Specific examples of R 12 and R 13 include hydrocarbon groups such as a hydrogen atom, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, and phenylalkyl. In particular, hydrogen atoms are preferable as R 12 and R 13 . Specific examples of the substituent that R 12 and R 13 have include various permissible substituents such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano group and the like. In particular, a hydrogen atom, a methyl group, or a methoxy group is preferable as a substituent.

一般式(2)におけるWの結合鎖としては、2価の炭化水素鎖(例えば、-CH2-、-(CH22-、-(CH23-、-(CH24-等の直鎖状炭化水素鎖;-CH2CH(CH3)-、-CH(CH3)CH(CH3)-などの分岐を有する炭化水素鎖;-C64-、-C610-などの環状炭化水素など)、2価のビナフチル、2価のビフェニル、2価のパラシクロファン、2価のビピリジン、2価の環状複素環などが挙げられる。このうち、置換基を有していてもよく2位または2'位がそれぞれホスフィンに結合した1,1'-ビナフチル基または1,1'-ビフェニル基が好ましい。また、これらの結合鎖は、アルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ基などの許容される各種の置換基をしていてもよく、置換基同士が炭素原子、酸素原子、窒素原子、硫黄原子などを介して結合していてもよい。またWは光学活性を有していることが好ましい。例えば、Wが1,1'-ビナフチル基を含む場合には、(R)-1,1'-ビナフチル基又は(S)-1,1'-ビナフチル基であることが好ましく、Wが1,1'-ビフェニル基を含む場合には(R)-1,1'-ビフェニル基又は(S)-1,1'-ビフェニル基であることが好ましい。 In the general formula (2), the W bond chain is a divalent hydrocarbon chain (for example, —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —. Linear hydrocarbon chains such as —CH 2 CH (CH 3 ) —, —CH (CH 3 ) CH (CH 3 ) —and other branched hydrocarbon chains; —C 6 H 4 —, —C 6 And cyclic hydrocarbons such as H 10- ), bivalent binaphthyl, divalent biphenyl, divalent paracyclophane, divalent bipyridine, divalent cyclic heterocycle and the like. Among these, a 1,1′-binaphthyl group or a 1,1′-biphenyl group, which may have a substituent and in which the 2-position or 2′-position is bonded to phosphine, is preferable. In addition, these bonding chains may have various permissible substituents such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano group, It may be bonded via a carbon atom, oxygen atom, nitrogen atom, sulfur atom or the like. W preferably has optical activity. For example, when W contains a 1,1′-binaphthyl group, it is preferably (R) -1,1′-binaphthyl group or (S) -1,1′-binaphthyl group, When it contains 1′-biphenyl group, it is preferably (R) -1,1′-biphenyl group or (S) -1,1′-biphenyl group.

なお、Wを含む2座配位子であるジホスフィン誘導体(R12P-W-PR34)がMに配位していることから、Wの好ましい具体例として、このジホスフィン誘導体を例示する。即ち、ジホスフィン誘導体としてはBINAP(2,2' -ビス(ジフェニルホスフィノ)-1,1'-ビナフチル)、TolBINAP(2,2' -ビス[(4-メチルフェニル)ホスフィノ] -1,1'-ビナフチル)、XylBINAP(2,2' -ビス[(3,5-ジメチルフェニル)ホスフィノ] -1,1'-ビナフチル)、2,2' -ビス[(4-t-ブチルフェニル)ホスフィノ] -1,1'-ビナフチル、2,2' -ビス[(4-イソプロピルフェニル)ホスフィノ] -1,1'-ビナフチル、2,2' -ビス[(ナフタレン-1-イル)ホスフィノ] -1,1'-ビナフチル、2,2' -ビス[(ナフタレン-2-イル)ホスフィノ] -1,1'-ビナフチル、BICHEMP(2,2' -ビス(ジシクロヘキシルホスフィノ)-6,6'-ジメチル-1,1' -ビフェニル)、BPPFA(1-[1,2-ビス-(ジフェニルホスフィノ)フェロセニル]エチルアミン)、CHIRAPHOS(2,3-ビス(ジフェニルホスフィノ)ブタン)、CYCPHOS(1-シクロヘキシル-1,2-ビス(ジフェニルホスフィノ)エタン)、DEGPHOS(1-置換-3,4-ビス(ジフェニルホスフィノ)ピロリジン)、DIOP(2,3-イソプロピリデン-2,3-ジヒドロキシ-1,4-ビス(ジフェニルホスフィノ)ブタン)、SKEWPHOS(2,4-ビス(ジフェニルホスフィノ)ペンタン)、DuPHOS(置換-1,2-ビス(ホスホラノ)ベンゼン)、DIPAMP(1,2-ビス[(o-メトキシフェニル)フェニルホスフィノ]エタン)NORPHOS(5,6-ビス(ジフェニルホスフィノ)-2-ノルボルネン)、PROPHOS(1,2-ビス(ジフェニルホスフィノ)プロパン)、PHANEPHOS(4,12-ビス(ジフェニルホスフィノ)-[2,2']-パラシクロファン)、置換-2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビピリジン、SEGPHOS((4,4' -ビ-1,3-ベンゾジオキソール)-5,5'-ジイル-ビス(ジフェニルホスフィノ))、BIFAP(2,2' -ビス(ジフェニルホスファニル)-1,1'-ビジベンゾフラニル)などが例示される。
特に、上記ジホスフィン誘導体としてBINAP(2,2' -ビス(ジフェニルホスフィノ)-1,1'-ビナフチル)、TolBINAP(2,2' -ビス[(4-メチルフェニル)ホスフィノ] -1,1'-ビナフチル)およびXylBINAP(2,2' -ビス[(3,5-ジメチルフェニル)ホスフィノ] -1,1'-ビナフチル)が好ましい。
In addition, since the diphosphine derivative (R 1 R 2 P—W—PR 3 R 4 ), which is a bidentate ligand containing W, is coordinated to M, as a preferred specific example of W, this diphosphine derivative is Illustrate. That is, as diphosphine derivatives, BINAP (2,2′-bis (diphenylphosphino) -1,1′-binaphthyl), TolBINAP (2,2′-bis [(4-methylphenyl) phosphino] -1,1 ′ -Binaphthyl), XylBINAP (2,2'-bis [(3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl), 2,2'-bis [(4-t-butylphenyl) phosphino]- 1,1′-binaphthyl, 2,2′-bis [(4-isopropylphenyl) phosphino] -1,1′-binaphthyl, 2,2′-bis [(naphthalen-1-yl) phosphino] -1,1 '-Binaphthyl, 2,2'-bis [(naphthalen-2-yl) phosphino] -1,1'-binaphthyl, BICHEMP (2,2'-bis (dicyclohexylphosphino) -6,6'-dimethyl-1 , 1'-biphenyl), BPPFA (1- [1,2-bis- (diphenylphosphino) ferrocenyl] Tilamine), CHIRAPHOS (2,3-bis (diphenylphosphino) butane), CYCPHOS (1-cyclohexyl-1,2-bis (diphenylphosphino) ethane), DEGPHOS (1-substituted-3,4-bis (diphenyl) Phosphino) pyrrolidine), DIOP (2,3-isopropylidene-2,3-dihydroxy-1,4-bis (diphenylphosphino) butane), SKEWPHOS (2,4-bis (diphenylphosphino) pentane), DuPHOS (Substituted-1,2-bis (phosphorano) benzene), DIPAMP (1,2-bis [(o-methoxyphenyl) phenylphosphino] ethane) NORPHOS (5,6-bis (diphenylphosphino) -2-norbornene ), PROPHOS (1,2-bis (diphenylphosphino) propane), PHANEPHOS (4,12-bis (diphenylphosphino)-[2,2 ′]-paracyclophane), substituted-2,2′-bis Diphenylphosphino) -1,1′-bipyridine, SEGPHOS ((4,4′-bi-1,3-benzodioxole) -5,5′-diyl-bis (diphenylphosphino)), BIFAP (2 , 2′-bis (diphenylphosphanyl) -1,1′-bidibenzofuranyl) and the like.
In particular, the diphosphine derivatives are BINAP (2,2′-bis (diphenylphosphino) -1,1′-binaphthyl), TolBINAP (2,2′-bis [(4-methylphenyl) phosphino] -1,1 ′. -Binaphthyl) and XylBINAP (2,2′-bis [(3,5-dimethylphenyl) phosphino] -1,1′-binaphthyl) are preferred.

一般式(2)におけるXおよびYは同一又はそれぞれ異なっていてもよく、かつそれぞれ置換基を有していてもよい結合鎖である。但し、X及び/又はYは存在しなくともよい。
XおよびYの具体例としては、2価の炭化水素鎖(例えば、-CH2-、-(CH22-、-(CH23-、-(CH24-等の直鎖状炭化水素鎖;-CH2CH(CH3)-、-CH(CH3)CH(CH3)-などの分岐を有する炭化水素鎖;-C64-、-C610-などの環状炭化水素など)、2価の環状複素環、ヘテロ原子、ヘテロ原子を含むアルキル鎖などが挙げられる。
なお、X及び/又はYが存在しない場合とは、例えば以下の一般式(II)の化合物のように、C=とC(R5)R6とが直接結合しているような場合をいう。
X and Y in the general formula (2) are the same or different from each other, and each is a bonding chain that may have a substituent. However, X and / or Y may not be present.
Specific examples of X and Y include divalent hydrocarbon chains (eg, straight chain such as —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, etc. Hydrocarbon chain having branches such as —CH 2 CH (CH 3 ) —, —CH (CH 3 ) CH (CH 3 ) —; —C 6 H 4 —, —C 6 H 10 — and the like And a divalent heterocyclic ring, a hetero atom, an alkyl chain containing a hetero atom, and the like.
The case where X and / or Y does not exist means a case where C = and C (R 5 ) R 6 are directly bonded, for example, as in the compound of the following general formula (II). .

一般式(2)におけるMは金属又は金属イオンを示す。Mの具体例としては、Ru、Fe、Pd、Rh、Coなどが挙げられる。特に、Mとして二価ルテニウムが好ましい。
一般式(2)中、Mの各配位子がどのように配置されていてもよいということは、Mに結合しているN、P、O、Oの位置が任意であることを意味する。例えば、式(I)においてOとOがMをはさんで向かい合っているが、例えば、OとN、OとPが向かい合った配置でもよい。
第1の触媒の具体例としては、例えば、一般式(II)
M in the general formula (2) represents a metal or a metal ion. Specific examples of M include Ru, Fe, Pd, Rh, and Co. In particular, M is preferably divalent ruthenium.
In general formula (2), the fact that each ligand of M may be arranged means that the positions of N, P, O, and O bonded to M are arbitrary. . For example, in the formula (I), O and O face each other across M, but, for example, an arrangement in which O and N and O and P face each other may be used.
Specific examples of the first catalyst include, for example, the general formula (II)

で表される化合物(Ru[(S)-phenylglycine]2[(S)-binap])が挙げられる。
第1の触媒の製造方法としては、WO2008-099965A1に記載の方法を挙げることができる。
(Ru [(S) -phenylglycine] 2 [(S) -binap]).
Examples of the method for producing the first catalyst include the method described in WO2008-099965A1.

<第2の触媒>
第2の触媒は、金属化合物の塩であり、好ましくは、リチウム、ナトリウム、カリウム、セシウム、マグネシウム及びランタノイドの群から選ばれる1種以上の塩、及び/又はアンモニウム塩から選ばれる。第2の触媒は、第1の触媒の共触媒である。
リチウムの塩としては、LiOR (R:アルキル、アルケニル又はアリール)、LiR (R:アルキル、アルケニル又はアリール)、ハロゲン化リチウム(LiF, LiCl, LiBr, LiI)、LiClO4、Li(OTf)、Li(OAc)、LiCN、Li2CO3等が挙げられるが、その他の塩でもよい。又、上記特開2006-219457号公報に記載のリチウム塩を用いることもできる(特開2006-219457号公報の段落0008)。特に、LiOC6H5、LiCl及びLiClO4が好ましい。
ナトリウム、カリウム、セシウムの塩としては、上記したリチウム塩に対応するものを用いることができる。マグネシウムの塩としてはマグネシウムトリフラートが挙げられ、ランタノイドの塩としては、イッテルビウムトリフラートが挙げられる。アンモニウム塩としては、例えば塩化テトラブチルアンモニウム等の有機アンモニウム塩が挙げられる。
本発明で用いることができるシアノ化触媒の一態様は、アキラルな塩(第2の触媒)に加え、光学活性な錯体(第1の触媒)も触媒に用いるため、光学活性な生成物を得ることができる。一方、LiCl等のアキラルな塩だけを触媒として用いる場合(例えば特開2006-219457号公報記載の触媒)、生成物は全てラセミ体(すなわち0% ee)となる。
すなわち、LiCl等のアキラルな塩だけを触媒とするとアキラルな反応が生じるが、本発明においては不斉反応を生じさせることができる。
<Second catalyst>
The second catalyst is a salt of a metal compound, and is preferably selected from one or more salts selected from the group of lithium, sodium, potassium, cesium, magnesium and lanthanoids, and / or ammonium salts. The second catalyst is a cocatalyst of the first catalyst.
Examples of the lithium salt include LiOR (R: alkyl, alkenyl or aryl), LiR (R: alkyl, alkenyl or aryl), lithium halide (LiF, LiCl, LiBr, LiI), LiClO 4 , Li (OTf), Li (OAc), LiCN, Li 2 CO 3 and the like can be mentioned, but other salts may be used. Further, the lithium salt described in JP-A-2006-219457 can also be used (paragraph 0008 of JP-A-2006-219457). In particular, LiOC 6 H 5 , LiCl and LiClO 4 are preferable.
As the salt of sodium, potassium, and cesium, those corresponding to the lithium salt described above can be used. Magnesium salts include magnesium triflate, and lanthanoid salts include ytterbium triflate. Examples of the ammonium salt include organic ammonium salts such as tetrabutylammonium chloride.
In one embodiment of the cyanation catalyst that can be used in the present invention, since an optically active complex (first catalyst) is also used as a catalyst in addition to an achiral salt (second catalyst), an optically active product is obtained. be able to. On the other hand, when only an achiral salt such as LiCl is used as a catalyst (for example, a catalyst described in JP-A-2006-219457), all products are racemic (ie, 0% ee).
That is, when only an achiral salt such as LiCl is used as a catalyst, an achiral reaction occurs, but an asymmetric reaction can be caused in the present invention.

<光学活性シアノヒドリン化合物の製造方法>
本発明の別の実施形態は、第1の触媒の存在下、上記一般式(3)で表されるケトエステル化合物と、R2CN(一般式(4))で表されるシアン化化合物とを反応させる工程およびこの工程で得られた反応生成物中に第2の触媒を加え反応させる工程を有する、下記一般式(1)で表される光学活性シアノヒドリン化合物の製造方法である。 更に、本発明の別の実施形態は、第1の触媒と第2の触媒を反応させて得られた触媒の存在下、上記一般式(3)で表されるケトエステル化合物と、上記一般式(4)で表されるシアン化化合物とを反応させる工程を有する、下記一般式(1)で表される光学活性シアノヒドリン化合物の製造方法である。
<Method for producing optically active cyanohydrin compound>
In another embodiment of the present invention, a ketoester compound represented by the general formula (3) and a cyanide compound represented by R 2 CN (general formula (4)) are present in the presence of the first catalyst. This is a method for producing an optically active cyanohydrin compound represented by the following general formula (1), which comprises a step of reacting and a step of adding a second catalyst to the reaction product obtained in this step. Furthermore, another embodiment of the present invention provides a keto ester compound represented by the above general formula (3) in the presence of a catalyst obtained by reacting a first catalyst and a second catalyst, and the above general formula ( 4) A method for producing an optically active cyanohydrin compound represented by the following general formula (1), which comprises a step of reacting with a cyanide compound represented by 4).

一般式(1)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。また、R1とR3が結合してラクトンを形成してもよい。 In general formula (1), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, a substituent. The cyclic alkenyl group which may have a group, the aryl group which may have a substituent, or the heterocyclic ring which may have a substituent is shown. R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group which may have a substituent, or a silyl group which may have a substituent. R 3 represents an alkyl group, an alkenyl group, an allyl group, or an aryl group. R 1 and R 3 may be bonded to form a lactone.

1における環状アルキル基、環状アルケニル基、アリール基、あるいは複素環は、更にアルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ等の許容される各種の置換基を有していてもよい。
1における鎖状アルキル基としては、例えばメチル、エチル、プロピル、n−ブチル等の分岐を有さないものや、イソプロピル、sec−ブチル等の分岐を有するものなどが挙げられる。
1における環状アルキル基としては、シクロペンチル、シクロヘキシル等が挙げられる。
1におけるアルケニル基としては、例えばエテニル基、プロペニル基、ブテニル基、プロペニル基などが挙げられる。
1におけるアリール基としては、例えばフェニル、トリル、キシリル、ナフチル等が挙げられる。
1における複素環としては、例えばピロール、チオフェン、フラン、ピラゾール、イミダゾール、チアゾール、オキサゾール等の5員環骨格を有するものや、ピリジン、ピリミジン、ピリダジン等の6員環骨格を有するものが挙げられる。
The cyclic alkyl group, cyclic alkenyl group, aryl group, or heterocyclic ring in R 1 is further various permissible substituents such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano and the like. You may have.
Examples of the chain alkyl group for R 1 include those having no branch such as methyl, ethyl, propyl, and n-butyl, and those having a branch such as isopropyl and sec-butyl.
Examples of the cyclic alkyl group for R 1 include cyclopentyl and cyclohexyl.
Examples of the alkenyl group for R 1 include an ethenyl group, a propenyl group, a butenyl group, and a propenyl group.
Examples of the aryl group for R 1 include phenyl, tolyl, xylyl, naphthyl and the like.
Examples of the heterocyclic ring in R 1 include those having a 5-membered ring skeleton such as pyrrole, thiophene, furan, pyrazole, imidazole, thiazole, and oxazole, and those having a 6-membered ring skeleton such as pyridine, pyrimidine, and pyridazine. .

3におけるアルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチルなどが挙げられる。
3におけるアルケニル基としては、例えばエテニル基、プロペニル基、ブテニル基、プロペニル基などが挙げられる。
3におけるアリール基としては、例えばフェニル、トリル、キシリル、ナフチル等が挙げられる。
Examples of the alkyl group for R 3 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like.
Examples of the alkenyl group for R 3 include an ethenyl group, a propenyl group, a butenyl group, and a propenyl group.
Examples of the aryl group for R 3 include phenyl, tolyl, xylyl, naphthyl and the like.

2におけるアルカリ金属としては、例えば、Li、Na、Kなどが挙げられる。
2における炭化水素基としては、脂肪族、脂環族の飽和又は不飽和の炭化水素基、単環の芳香族もしくは芳香脂肪族の炭化水素、多環の芳香族もしくは芳香脂肪族の炭化水素などが挙げられる。又、これらの炭化水素基に更にアルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ等の許容される各種の置換基を有していてもよい。また、R2におけるシリル基に更にアルキル、アルケニル、シクロアルキル、アリール、アルコキシ、エステル、アシルオキシ、ハロゲン原子、ニトロ、シアノ等の許容される各種の置換基を有していてもよい。
炭化水素基の具体例としては、例えば、アルキル、アルケニル、シクロアルキル、シクロアルケニル、フェニル、トリル、キシリル、ナフチル、フェニルアルキル等が挙げられる。
シリル基の具体例としては、トリメチルシリル、ジ−t−ブチルメチルシリル、ジフェニル−t−ブチルシリルなどが挙げられる。
Examples of the alkali metal in R 2 include Li, Na, K, and the like.
Examples of the hydrocarbon group for R 2 include aliphatic, alicyclic saturated or unsaturated hydrocarbon groups, monocyclic aromatic or araliphatic hydrocarbons, polycyclic aromatic or araliphatic hydrocarbons. Etc. Further, these hydrocarbon groups may further have various permissible substituents such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano and the like. Further, the silyl group in R 2 may further have various permissible substituents such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyloxy, halogen atom, nitro, cyano and the like.
Specific examples of the hydrocarbon group include alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, tolyl, xylyl, naphthyl, phenylalkyl and the like.
Specific examples of the silyl group include trimethylsilyl, di-t-butylmethylsilyl, diphenyl-t-butylsilyl and the like.

基質であるケトエステル化合物としては、下記一般式(3)で表される化合物(式中、R1及びR3は一般式(1)と同義である)を用いることができる。
基質であるケトエステル化合物の代表例としては、以下の化合物などが挙げられるが、これらに限定されるものではない。
As the ketoester compound which is a substrate, a compound represented by the following general formula (3) (wherein R 1 and R 3 have the same meaning as in general formula (1)) can be used.
Representative examples of the ketoester compound as a substrate include the following compounds, but are not limited thereto.

シアン化化合物としては、R2CN(式中、R2は一般式(1)と同義である)を用いることができる。
なお、原料であるシアン化化合物(R2CN)としては、NaCNやKCNなどを用いることができる。従って、この場合、R2は、NaやKなどのアルカリ金属であってもよい。
The cyanide compound, (wherein, R 2 is Formula (1) as synonymous) R 2 CN can be used.
In addition, as the cyanide compound (R 2 CN) that is a raw material, NaCN, KCN, or the like can be used. Accordingly, in this case, R 2 may be an alkali metal such as Na or K.

本発明におけるシアノ化触媒に対するケトエステル化合物のモル比S/C(Sは基質であるケトエステル化合物、Cは触媒)は1〜1000000が好ましく、1〜100000がより好ましい。また、ケトエステル化合物に対するシアン化化合物のモル比は1〜3が好ましく、1〜1.3がより好ましい。   The molar ratio S / C of the ketoester compound to the cyanation catalyst in the present invention (S is a ketoester compound as a substrate, and C is a catalyst) is preferably 1 to 1,000,000, and more preferably 1 to 100,000. Further, the molar ratio of the cyanide compound to the ketoester compound is preferably 1 to 3, and more preferably 1 to 1.3.

シアノヒドリン化合物を製造するためのシアノ化反応は、アルゴンなどの不活性雰囲気下、常圧で行うのが好ましい。
また、シアノ化反応は、無溶媒であっても反応溶媒中であっても進行する。反応溶媒としては、トルエン、キシレンなどの芳香族炭化水素溶媒、ペンタン、ヘキサンなどの脂肪族炭化水素溶媒、塩化メチレンなどのハロゲン含有炭化水素溶媒、t−ブチルメチルエーテル、テトラヒドロフラン(THF)などのエーテル系溶媒、アセトニトリル、N,N−ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン、ジメチルスルホキサイド(DMSO)などヘテロ原子を含む溶媒が挙げられる。なお、本発明におけるシアノ化触媒を溶解させて反応に用いる際、上記したのと同様の溶媒を用いることができる。
The cyanation reaction for producing the cyanohydrin compound is preferably performed at normal pressure under an inert atmosphere such as argon.
Further, the cyanation reaction proceeds even in the absence of a solvent or in a reaction solvent. Examples of the reaction solvent include aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as pentane and hexane, halogen-containing hydrocarbon solvents such as methylene chloride, ethers such as t-butyl methyl ether and tetrahydrofuran (THF). Examples thereof include solvents containing heteroatoms such as system solvents, acetonitrile, N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone, dimethylsulfoxide (DMSO) and the like. In addition, when the cyanation catalyst in this invention is dissolved and used for reaction, the same solvent as mentioned above can be used.

反応温度は特に限定されないが、-78〜50℃が好ましく、-70〜40℃がより好ましい。反応時間は基質の種類などによって異なるが、多くの場合は1分〜12時間の範囲である。反応終了後に反応混合液からシアノヒドリン化合物を採取する方法としては、蒸留や抽出を採用すればよい。
シアノヒドリン化合物は、上述したシアノ化触媒の存在下、ケトエステル化合物とシアン化化合物とを反応させることにより対応するシアノヒドリン化合物を製造することができる。具体的には、例えば、ケトエステル化合物とシアン化化合物を入れた容器へ、シアノ化触媒を有機溶媒に溶解して得た触媒溶液又はシアノ化触媒の固形物(触媒固形物)を加えて撹拌することにより、ケトエステル化合物とシアン化化合物とを反応させることができる。
ここで、ケトエステル化合物が油状の場合、ケトエステル化合物とシアン化化合物とを入れた無溶媒の容器へ、触媒溶液又は触媒固形物を加えて反応させてもよい。また、ケトエステル化合物が固体の場合、ケトエステル化合物とシアン化化合物と反応溶媒とを入れた容器へ、触媒溶液又は触媒固形物を加えて反応させてもよい。
Although reaction temperature is not specifically limited, -78-50 degreeC is preferable and -70-40 degreeC is more preferable. The reaction time varies depending on the type of substrate, but in many cases it is in the range of 1 minute to 12 hours. As a method for collecting the cyanohydrin compound from the reaction mixture after completion of the reaction, distillation or extraction may be employed.
A cyanohydrin compound can be produced by reacting a ketoester compound with a cyanide compound in the presence of the above-described cyanation catalyst. Specifically, for example, a catalyst solution obtained by dissolving a cyanation catalyst in an organic solvent or a solid matter of a cyanation catalyst (catalyst solid matter) is added to a container containing a ketoester compound and a cyanide compound and stirred. Thus, the ketoester compound and the cyanide compound can be reacted.
Here, when the ketoester compound is oily, the catalyst solution or the catalyst solid may be added and reacted in a solventless container containing the ketoester compound and the cyanide compound. When the ketoester compound is a solid, the catalyst solution or the catalyst solid may be added to the container containing the ketoester compound, the cyanide compound, and the reaction solvent for reaction.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(A)分析方法
(i)ヘリウムキャリアガスを用いてShimadzuGC−17AまたはGC−2010装置により、ガスクロマトグラフィー(GC)分析を実施した。
(ii)JEOL JNM−EX270またはJNM−A400分光計によりNMRスペクトルを得た。
(iii)DEPT実験によって炭素多重度を測定した。
(iv)JASCO FT/IR−4100分光光度計でIRスペクトルを記録した。
(v)JASCO DIP−360偏光計で旋光度を測定した。
(vi)シリカゲル60N(63〜210μm;関東化学株式会社)でシリカゲルカラムクロマトグラフィーを実施した。
(vii)Merckシリカゲル60PF254(Merck Ltd)で分取薄層クロマトグラフィーを実施した。
(viii)北海道大学機器分析センターにおいて質量分析測定を実施した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
(A) Analysis method (i) Gas chromatography (GC) analysis was performed with a Shimadzu GC-17A or GC-2010 apparatus using helium carrier gas.
(Ii) NMR spectra were obtained with a JEOL JNM-EX270 or JNM-A400 spectrometer.
(Iii) Carbon multiplicity was measured by DEPT experiment.
(Iv) IR spectrum was recorded with JASCO FT / IR-4100 spectrophotometer.
(V) The optical rotation was measured with a JASCO DIP-360 polarimeter.
(Vi) Silica gel column chromatography was performed on silica gel 60N (63 to 210 μm; Kanto Chemical Co., Inc.).
(Vii) Preparative thin layer chromatography was performed on Merck silica gel 60PF 254 (Merck Ltd).
(Viii) Mass spectrometric measurement was performed at the Hokkaido University Instrument Analysis Center.

(B)出発原料の調製
下記構造式で表されるケトエステル1aおよび1bは市販品を入手できる。その他のケトエステルは既知の方法により合成した。
(B) Preparation of starting material Ketoesters 1a and 1b represented by the following structural formulas are commercially available. Other ketoesters were synthesized by known methods.

下記構造式(但し、Ar=C65)で表されるルテニウム錯体(S,S,S)−3aは従来報告されている方法により調製した。
A ruthenium complex (S, S, S) -3a represented by the following structural formula (where Ar = C 6 H 5 ) was prepared by a conventionally reported method.

上記構造式(但し、Ar=3,5−(CH3)263)で表されるルテニウム錯体:Ru[(S)−phenylglycine]2[(S)−キシリル−binap][(S,S,S)−3b]を下記のように合成した。
アルゴン(99.99%の純度)の供給系に連結された乾燥した100mLのシュレンク管(Schlenk tube)(すべての装置は使用前に55℃オーブンで乾燥した)に、テフロン(登録商標)(Teflon)コーティングした磁気撹拌子とガラス製のストッパーを取り付けた。容器に[RuCl2(ベンゼン)]2(Aldrich Co.から入手)(90mg、0.18ミリモル)および(S)−キシリル−BINAP(Strem Chemicals,Inc.から入手)(250mg、0.34ミリモル)を入れ、気層部をアルゴンで置換した。アルゴン雰囲気下、シリンジでN,N−ジメチルホルムアミド(DMF)(無水DMF(99.5%純度)を関東化学株式会社から入手し、使用前に凍結融解サイクルに3回かけて脱ガスした)(6mL)を導入した。赤褐色の懸濁液を100℃で10分間撹拌し、得られたBINAP−Ru(II)錯体を含む透明赤褐色溶液を25℃に冷却した。
Ruthenium complex represented by the above structural formula (where Ar = 3,5- (CH 3 ) 2 C 6 H 3 ): Ru [(S) -phenylglycine] 2 [(S) -xylyl-binap] [(S , S, S) -3b] was synthesized as follows.
A dry 100 mL Schlenk tube connected to a supply system of argon (99.99% purity) (all equipment was dried in an oven at 55 ° C. prior to use) was added to Teflon (Teflon). ) A coated magnetic stir bar and glass stopper were attached. [RuCl 2 (benzene)] 2 (obtained from Aldrich Co.) (90 mg, 0.18 mmol) and (S) -xylyl-BINAP (obtained from Strem Chemicals, Inc.) (250 mg, 0.34 mmol) The gas layer was replaced with argon. N, N-dimethylformamide (DMF) (anhydrous DMF (99.5% purity) was obtained from Kanto Chemical Co., Inc. and degassed by three freeze-thaw cycles before use) with a syringe in an argon atmosphere) ( 6 mL) was introduced. The reddish brown suspension was stirred at 100 ° C. for 10 minutes, and the resulting clear reddish brown solution containing the BINAP-Ru (II) complex was cooled to 25 ° C.

別の乾燥した50mLのシュレンク管にナトリウム(S)−フェニルグリシネート(Acros Co.から入手)(205mg、1.18ミリモル)とメタノール(無水メタノール(99.9%純度)を関東化学株式会社から入手)(10mL)を入れ、その溶液を凍結融解サイクルに3回かけて脱ガスした。アルゴン雰囲気下、これを、シリンジで上記のBINAP−Ru(II)錯体のDMF溶液に移し、得られた淡赤色溶液を25℃で12時間撹拌した。強く撹拌しながら、この溶液に水(30mL)を加え、黄色がかった橙色の固体を沈澱させた。ろ過した後、集めた固体を酢酸エチル(50mL)に溶解した。その溶液を3分量の50mLの水で洗浄し、次いで50mlの飽和食塩水で洗浄した後、MgSO4で乾燥した。セライト(celite)パッドでろ過した後、その溶液を減圧下(0.4mmHg)で濃縮して黄色がかった橙色の固体を得た。その粗生成物を分取TLC(シリカゲル、溶離液;酢酸エチル)で精製した。得られた黄色の固体をEt2O(5mL)とペンタン(95mL)の混合液で再沈澱させ、続いてろ過し、減圧下で乾燥してルテニウム錯体(S,S,S)−3bを淡黄色粉末として得た(255mg、66%収率); 1H NMR (400 MHz, CDCl3): δ= 1.80 (s, 12H, CH3 of xylyl moiety), 2.23 (brs, 2H, NHH), 2.42 (s, 12H, CH3 of xylyl moiety), 3.17 (brs, 2H, NHH), 3.70 (t, 2H, J = 7.8 Hz, 2PhCH), 5.95 (s, 2H, aromatic H), 6.24 (d, 2H, J = 8.8 Hz, aromatic H), 6.66 (brs, 4H, aromatic H), 6.72 (m, 4H, aromatic H), 6.80 (m, 2H, aromatic H), 7.107.19 (m, 10H, aromatic H), 7.407.85 ppm (m, 8H, aromatic H), 8.13 (m, 2H, aromatic H); 31P NMR (161.7 MHz, CDCl3): δ= 52.3 ppm (s); ESI-MS: m/z calcd for C68H64N2O4P2Ru: 1136.34 ([M]+); found: 1136.33. In a separate 50 mL Schlenk tube, sodium (S) -phenylglycinate (obtained from Acros Co.) (205 mg, 1.18 mmol) and methanol (anhydrous methanol (99.9% purity) from Kanto Chemical Co., Inc.) (Acquired) (10 mL) was added and the solution was degassed for 3 freeze-thaw cycles. Under an argon atmosphere, this was transferred to the DMF solution of the above BINAP-Ru (II) complex with a syringe, and the resulting pale red solution was stirred at 25 ° C. for 12 hours. With vigorous stirring, water (30 mL) was added to the solution to precipitate a yellowish orange solid. After filtration, the collected solid was dissolved in ethyl acetate (50 mL). The solution was washed with 3 portions of 50 mL of water, then with 50 ml of saturated brine, and dried over MgSO 4 . After filtration through a celite pad, the solution was concentrated under reduced pressure (0.4 mmHg) to give a yellowish orange solid. The crude product was purified by preparative TLC (silica gel, eluent; ethyl acetate). The resulting yellow solid was reprecipitated with a mixture of Et 2 O (5 mL) and pentane (95 mL), then filtered and dried under reduced pressure to obtain ruthenium complex (S, S, S) -3b as a pale salt. Obtained as a yellow powder (255 mg, 66% yield); 1 H NMR (400 MHz, CDCl 3 ): δ = 1.80 (s, 12H, CH 3 of xylyl moiety), 2.23 (brs, 2H, NHH), 2.42 (s, 12H, CH 3 of xylyl moiety), 3.17 (brs, 2H, NHH), 3.70 (t, 2H, J = 7.8 Hz, 2PhCH), 5.95 (s, 2H, aromatic H), 6.24 (d, 2H , J = 8.8 Hz, aromatic H), 6.66 (brs, 4H, aromatic H), 6.72 (m, 4H, aromatic H), 6.80 (m, 2H, aromatic H), 7.107.19 (m, 10H, aromatic H ), 7.407.85 ppm (m, 8H, aromatic H), 8.13 (m, 2H, aromatic H); 31 P NMR (161.7 MHz, CDCl 3 ): δ = 52.3 ppm (s); ESI-MS: m / z calcd for C 68 H 64 N 2 O 4 P 2 Ru: 1136.34 ([M] + ); found: 1136.33.

(C)不斉シアノシリル化(S/C=1,000)の概略手順
メチルベンゾイルホルメート(1a)のシアノシリル化を、以下の反応式に示すように行った。
ルテニウム錯体(S,S,S)−3a(5.1mg、5.0ミリモル)をテフロン(登録商標)コーティングした磁気撹拌子を備えた500mLのシュレンクフラスコ(Schlenk flask)に加えた。そのシュレンクフラスコ中の空気をアルゴン(99.99%の純度)で置換した。t−C49OCH3(無水tBuOMe(99.5%純度)を関東化学株式会社から入手)(50mL)、メチルベンゾイルホルメート(1a)(0.82g、5.0ミリモル)およびC65OLi(Li2CO3をAldrich Co.,Ltd.から入手)(50μL、1.0ミリモル)の100mM−THF溶液(THF(99.5%純度)を関東化学株式会社から入手)をシュレンクフラスコに加え、その混合物を30分間撹拌した。得られた黄色の溶液を−60℃に冷却した。次いで(CH33SiCN(和光純薬工業株式会社から入手した(CH33SiCNを、使用前に蒸留して精製した)(0.99g、10.0ミリモル)を15分間かけて滴下し、その混合物を18時間撹拌した。減圧下、大気温度でその溶媒と揮発性化合物を蒸発させた後、その残留物をヘキサン(100mL)に懸濁させた。その懸濁液をセライトパッドでろ過し、減圧下、大気温度で濃縮した。その残留物を単蒸留により精製して、以下に示す化合物番号2a(1.27g、収率;97%、光学純度;99%e.e.)を無色油状物として得た。
(C) General Procedure for Asymmetric Cyanosilylation (S / C = 1,000) Cyanosilylation of methylbenzoylformate (1a) was performed as shown in the following reaction formula.
Ruthenium complex (S, S, S) -3a (5.1 mg, 5.0 mmol) was added to a 500 mL Schlenk flask equipped with a Teflon-coated magnetic stir bar. The air in the Schlenk flask was replaced with argon (99.99% purity). t-C 4 (obtain anhydrous tBuOMe (99.5% purity) from Kanto Chemical Co., Ltd.) H 9 OCH 3 (50mL) , methyl benzoyl formate (1a) (0.82g, 5.0 mmol) and C 6 Schlenk H 5 OLi (Li 2 CO 3 obtained from Aldrich Co., Ltd.) (50 μL, 1.0 mmol) in 100 mM THF solution (THF (99.5% purity) obtained from Kanto Chemical Co., Inc.) Added to the flask and the mixture was stirred for 30 minutes. The resulting yellow solution was cooled to -60 ° C. Then (CH 3) 3 SiCN (obtained from Wako Pure Chemical Industries, Ltd. to (CH 3) 3 SiCN, and purified by distillation before use) (0.99 g, 10.0 mmol) dropwise over 15 minutes And the mixture was stirred for 18 hours. After evaporating the solvent and volatile compounds at ambient temperature under reduced pressure, the residue was suspended in hexane (100 mL). The suspension was filtered through a celite pad and concentrated at ambient temperature under reduced pressure. The residue was purified by simple distillation to obtain the following compound number 2a (1.27 g, yield: 97%, optical purity: 99% ee) as a colorless oil.

沸点;116〜119℃/1mmHg;IR(KBr非希釈(neat))2958、1767、1451、1255、1148、870、850cm-11H NMR(400MHz,CDCl3):δ0.26(s,9H,Si(CH33),3.79(s,3H,OCH3),7.40−7.45(m,3H,芳香族),7.63−7.67(m,2H,芳香族);13C NMR(100MHz,CDCl3):δ0.66(CH3),54.0(CH3),74.8(C),117.9(C),125.5(CH),128.8(CH),129.8(CH),136.4(C),167.5(C);HRMS(EI+),m/z(M+)計算値263.0978,実測値263.0970;元素分析 C1317NO3Siの計算値:C,59.29,H,6.51,N,5.32.実測値:C,59.23,H,6.45,N,5.25;キラルGC分析:カラム、InertCap CHIRAMIX(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、0.5℃/分の速度で70℃から135℃へ昇温;少量成分のtR、133.5分(0.5%);主成分のtR、134.7分(99.5%);[α]D 24 24.00°(c 1.127、CH3Cl) Boiling point: 116-119 ° C./1 mmHg; IR (KBr neat) 2958, 1767, 1451, 1255, 1148, 870, 850 cm −1 ; 1 H NMR (400 MHz, CDCl 3 ): δ 0.26 (s, 9H, Si (CH 3) 3 ), 3.79 (s, 3H, OCH 3), 7.40-7.45 (m, 3H, aromatic), 7.63-7.67 (m, 2H, Aromatic); 13 C NMR (100 MHz, CDCl 3 ): δ 0.66 (CH 3 ), 54.0 (CH 3 ), 74.8 (C), 117.9 (C), 125.5 (CH) , 128.8 (CH), 129.8 (CH), 136.4 (C), 167.5 (C); HRMS (EI + ), m / z (M + ) calculated value 263.0978, measured value 263.0970; calcd elemental analysis C 13 H 17 NO 3 Si: C, 5 .29, H, 6.51, N, 5.32. Found: C, 59.23, H, 6.45, N, 5.25; Chiral GC analysis: column, InertCap CHIRAMIX (0.25 mm x 30 m); carrier gas helium (100 kPa): column temperature, 0.5 Temperature rise from 70 ° C to 135 ° C at a rate of ° C / min; minor component t R , 133.5 minutes (0.5%); major component t R , 134.7 minutes (99.5%); α] D 24 24.00 ° (c 1.127, CH 3 Cl)

以下に示すような出発原料およびシアノ化触媒を使用し、以下に示すような製造条件を用いた以外は、化合物番号2aと同様にして様々な光学活性シアノヒドリン化合物を製造した。
Various optically active cyanohydrin compounds were produced in the same manner as Compound No. 2a except that the starting materials and cyanation catalyst shown below were used and the production conditions shown below were used.

(D)不斉シアノシリル化生成物の分析データ
上記で製造した光学活性シアノヒドリン化合物の分析データを以下に示す。
(R)−(+)−メチル2−シアノ−2−フェニル−2−トリメチルシリルオキシアセテート(化合物番号2a)
98%収率;
無色油状物;
116〜119℃/1mmHg(バルブ/バルブ(bulb−to−bulb));
IR(KBr)2958,1767,1451,1255,1198,1148,870,850,cm-1
1H NMR(400MHz,CDCl3):δ0.26(s,9H,Si(CH33),3.79(s,3H,OCH3),7.40−7.45(m,3H,芳香族),7.63−7.67(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.66(CH3),54.0(CH3),74.8(C),117.9(C),125.5(CH),128.8(CH),129.8(CH),136.4(C),167.5(C);
HRMS(EI+),m/z(M+)計算値263.0978,実測値263.0970;
元素分析:C1317NO3Siの計算値:C,59.29,H,6.51,N,5.32.実測値:C,59.23,H,6.45,N,5.25;
キラルGC分析:カラム、InertCap CHIRAMIX(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、0.5℃/分の速度で70℃から135℃へ加熱;少量成分のtR、133.5分(0.5%);主成分のtR、134.7分(99.5%);
[α]D 24 24.00°(c 1.127、CHCl3)、99%ee。
(D) Analytical data of asymmetric cyanosilylation product The analytical data of the optically active cyanohydrin compound produced above is shown below.
(R)-(+)-Methyl 2-cyano-2-phenyl-2-trimethylsilyloxyacetate (Compound No. 2a)
98% yield;
Colorless oil;
116-119 ° C./1 mmHg (bulb-to-bulb);
IR (KBr) 2958, 1767, 1451, 1255, 1198, 1148, 870, 850, cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.26 (s, 9H, Si (CH 3 ) 3 ), 3.79 (s, 3H, OCH 3 ), 7.40-7.45 (m, 3H, Aromatic), 7.63-7.67 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.66 (CH 3 ), 54.0 (CH 3 ), 74.8 (C), 117.9 (C), 125.5 (CH), 128.8 (CH), 129.8 (CH), 136.4 (C), 167.5 (C);
HRMS (EI + ), m / z (M + ) calculated 263.0978, found 263.0970;
Elemental analysis: Calculated for C 13 H 17 NO 3 Si: C, 59.29, H, 6.51, N, 5.32. Found: C, 59.23, H, 6.45, N, 5.25;
Chiral GC analysis: column, InertCap CHIRAMIX (0.25 mm × 30 m); carrier gas helium (100 kPa): column temperature, heated from 70 ° C. to 135 ° C. at a rate of 0.5 ° C./min; minor component t R , 133 0.5 min (0.5%); t R of the main component, 134.7 min (99.5%);
[Α] D 24 24.00 ° (c 1.127, CHCl 3 ), 99% ee.

(+)−エチル2−シアノ−2−フェニル−2−トリメチルシリルオキシアセテート(化合物番号2b)
97%収率;
無色油状物;
90〜93℃/0.9mmHg(バルブ/バルブ);
IR(KBr)2963,1763,1450,1255,1195,1148,880,848,cm-1
1H NMR(400MHz,CDCl3):δ0.27(s,9H,Si(CH33),1.24(t,3H,J=7.1Hz,CH3),4.16−4.31(m,2H,CH2),7.39−7.43(m,3H,芳香族),7.64−7.67(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.70(CH3),13.8(CH3)63.4(CH2),74.9(C),118.0(C),125.5(CH),128.7(CH),129.7(CH),136.5(C),167.0(C);
HRMS(EI+),m/z(M+)計算値277.1134,実測値277.1127;
キラルGC分析:カラム、InertCap CHIRAMIX(0.25mm×30m);キャリアガスヘリウム(100kPa);カラム温度、0.6℃/分の速度で70℃から150℃へ加熱;少量成分のtR、122.7分(6.2%);主成分のtR、123.6分(93.8%);
[α]D 21 15.72°(c 1.052、CHCl3)、87%ee。
(+)-Ethyl 2-cyano-2-phenyl-2-trimethylsilyloxyacetate (Compound No. 2b)
97% yield;
Colorless oil;
90-93 ° C./0.9 mmHg (valve / valve);
IR (KBr) 2963, 1763, 1450, 1255, 1195, 1148, 880, 848, cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.27 (s, 9H, Si (CH 3 ) 3 ), 1.24 (t, 3H, J = 7.1 Hz, CH 3 ), 4.16-4. 31 (m, 2H, CH 2 ), 7.39-7.43 (m, 3H, aromatic), 7.64-7.67 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.70 (CH 3 ), 13.8 (CH 3 ) 63.4 (CH 2 ), 74.9 (C), 118.0 (C), 125.5 (CH), 128.7 (CH), 129.7 (CH), 136.5 (C), 167.0 (C);
HRMS (EI + ), m / z (M + ) calculated value 277.1134, actual value 277.1127;
Chiral GC analysis: column, InertCap CHIRAMIX (0.25 mm × 30 m); carrier gas helium (100 kPa); column temperature, heated from 70 ° C. to 150 ° C. at a rate of 0.6 ° C./min; minor component t R , 122 7 minutes (6.2%); t R of the main component, 123.6 minutes (93.8%);
[Α] D 21 15.72 ° (c 1.052, CHCl 3 ), 87% ee.

(+)−イソプロピル2−シアノ−2−フェニル−2−トリメチルシリルオキシアセテート(化合物番号2c)
94%収率;
無色油状物;
87℃/0.1mmHg(バルブ/バルブ);
IR(KBr−非希釈(neat))2983,1759,1451,1254,1195,1149,1102,876,847cm-1
1H NMR(400MHz,CDCl3):δ0.28(s,9H,Si(CH33),1.15(d,3H,J=6.34Hz,CH3),1.29(d,3H,J=6.34Hz,CH3),5.01(七重線,1H,J=6.34Hz,CH),7.40−7.42(m,3H,芳香族),7.63−7.66(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.77(CH3),21.2(CH3),21.4(CH3),71.7(CH),75.0(C),118.1(C),125.4(CH),128.6(CH),129.6(CH),136.6(C),166.5(C);
HRMS(ESI+),m/z(M+Na+)計算値314.1188,実測値314.1184;
元素分析:C1317NO3Siの計算値:C,61.82,H,7.26,N,4.81.実測値:C,61.80,H,7.34,N,4.79;
キラルGC分析:カラム、CP−Chirasil−Dex(0.32mm×25m);キャリアガスヘリウム(72kPa);カラム温度、0.3℃/分の速度で70℃から110℃へ加熱;少量成分のtR、117.5分(25.4%);主成分のtR、119.2分(74.6%);
[α]D 26 5.95°(c 1.061、CHCl3)、49%ee。
(+)-Isopropyl 2-cyano-2-phenyl-2-trimethylsilyloxyacetate (Compound No. 2c)
94% yield;
Colorless oil;
87 ° C./0.1 mmHg (valve / valve);
IR (KBr—neat) 2983, 1759, 1451, 1254, 1195, 1149, 1102, 876, 847 cm −1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.28 (s, 9H, Si (CH 3 ) 3 ), 1.15 (d, 3H, J = 6.34 Hz, CH 3 ), 1.29 (d, 3H, J = 6.34Hz, CH 3 ), 5.01 ( septet, 1H, J = 6.34Hz, CH ), 7.40-7.42 (m, 3H, aromatic), 7.63- 7.66 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.77 (CH 3 ), 21.2 (CH 3 ), 21.4 (CH 3 ), 71.7 (CH), 75.0 (C), 118. 1 (C), 125.4 (CH), 128.6 (CH), 129.6 (CH), 136.6 (C), 166.5 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 314.1188, found 314.1184;
Elemental analysis: Calculated value of C 13 H 17 NO 3 Si: C, 61.82, H, 7.26, N, 4.81. Found: C, 61.80, H, 7.34, N, 4.79;
Chiral GC analysis: column, CP-Chirasil-Dex (0.32 mm × 25 m); carrier gas helium (72 kPa); column temperature, heated from 70 ° C. to 110 ° C. at a rate of 0.3 ° C./min; R , 117.5 min (25.4%); main component t R , 119.2 min (74.6%);
[Α] D 26 5.95 ° (c 1.061, CHCl 3 ), 49% ee.

(−)−tert−ブチル2−シアノ−2−フェニル−2−トリメチルシリルオキシアセテート(化合物番号2d)
97%収率;
無色油状物;
125℃/0.08mmHg(バルブ/バルブ);
IR(KBr−非希釈)2979, 1758, 1371, 1255, 1147, 880, 845cm-1;
1H NMR(400MHz,CDCl3):δ0.28(s,9H,Si(CH33),1.40(s,9H,CH3),7.38−7.40(m,3H,芳香族),7.62−7.64(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.77(CH3),27.4(CH3),75.1(C),84.7(C),118.3(C),125.4(CH),128.5(CH),129.4(CH),136.8(C),165.7(C);
HRMS(ESI+),m/z(M+Na+)計算値328.1345,実測値328.1340;
キラルGC分析:カラム、CP−Chirasil−Dex(0.32mm×25m);キャリアガスヘリウム(72kPa);カラム温度、0.4℃/分の速度で70℃から120℃へ加熱;少量成分のtR、104.1分(76.6%);主成分のtR、105.5分(23.4%);
[α]D 26 −18.81°(c 1.092、CHCl3)、53%ee。
残りIR、旋光度
(−)-Tert-butyl 2-cyano-2-phenyl-2-trimethylsilyloxyacetate (Compound No. 2d)
97% yield;
Colorless oil;
125 ° C./0.08 mmHg (valve / valve);
IR (KBr-undiluted) 2979, 1758, 1371, 1255, 1147, 880, 845 cm -1;
1 H NMR (400 MHz, CDCl 3 ): δ 0.28 (s, 9H, Si (CH 3 ) 3 ), 1.40 (s, 9H, CH 3 ), 7.38-7.40 (m, 3H, Aromatic), 7.62-7.64 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.77 (CH 3 ), 27.4 (CH 3 ), 75.1 (C), 84.7 (C), 118.3 (C), 125.4 (CH), 128.5 (CH), 129.4 (CH), 136.8 (C), 165.7 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated value 328.1345, found value 328.1340;
Chiral GC analysis: column, CP-Chirasil-Dex (0.32 mm × 25 m); carrier gas helium (72 kPa); column temperature, heated from 70 ° C. to 120 ° C. at a rate of 0.4 ° C./min; R , 104.1 min (76.6%); t R of the main component, 105.5 min (23.4%);
[Α] D 26 -18.81 ° (c 1.092, CHCl 3 ), 53% ee.
Remaining IR, optical rotation

(+)−メチル2−シアノ−2−(2−メチルフェニル)−2−トリメチルシリルオキシアセテート(化合物番号2e)
98%収率;
無色油状物;
110℃/0.1mmHg(バルブ/バルブ);
IR(KBr−非希釈)2957,1765,1254,1190,1136,873,849cm-1
1H NMR(400MHz,CDCl3):δ0.24(s,9H,Si(CH33),2.39(s,3H,CH3),3.82(s,3H,OCH3),7.18−7.32(m,3H,芳香族),7.68(dd,1H,J=1.4,6.2Hz,芳香族);
13C NMR(100MHz,CDCl3):δ0.73(CH3),19.8(CH3)54.0(CH3),75.5(C),117.5(C),126.2(CH),126.9(CH),129.6(CH),132.4(CH),134.1(C),136.2(C),167.4(C);
HRMS(ESI+),m/z(M+Na+)計算値300.1026,実測値300.1028;
元素分析:C1419NO3Siの計算値:C,60.62,H,6.90,N,5.05.実測値:C,60.63,H,6.78,N,5.02;
キラルHPLC分析:カラム、CHIRALPAK IC;溶離液、ヘキサン:2−プロパノール=99:1;流量0.5mL/分;カラム温度、40℃;検出、UV220nm;少量成分のtR、10.5分(2.8%);主成分のtR、11.3分(97.2%);
[α]D 26 28.92°(c 0.998、CHCl3)、94%ee。
(+)-Methyl 2-cyano-2- (2-methylphenyl) -2-trimethylsilyloxyacetate (Compound No. 2e)
98% yield;
Colorless oil;
110 ° C./0.1 mmHg (valve / valve);
IR (KBr-undiluted) 2957, 1765, 1254, 1190, 1136, 873, 849 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.24 (s, 9H, Si (CH 3 ) 3 ), 2.39 (s, 3H, CH 3 ), 3.82 (s, 3H, OCH 3 ), 7.18-7.32 (m, 3H, aromatic), 7.68 (dd, 1H, J = 1.4, 6.2 Hz, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.73 (CH 3 ), 19.8 (CH 3 ) 54.0 (CH 3 ), 75.5 (C), 117.5 (C), 126.2 (CH), 126.9 (CH), 129.6 (CH), 132.4 (CH), 134.1 (C), 136.2 (C), 167.4 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 300.1026, found 300.1028;
Elemental analysis: Calculated value of C 14 H 19 NO 3 Si: C, 60.62, H, 6.90, N, 5.05. Found: C, 60.63, H, 6.78, N, 5.02;
Chiral HPLC analysis: column, CHIRALPAK IC; eluent, hexane: 2-propanol = 99: 1; flow rate 0.5 mL / min; column temperature, 40 ° C .; detection, UV 220 nm; minor component t R , 10.5 min ( 2.8%); main component t R , 11.3 minutes (97.2%);
[Α] D 26 28.92 ° (c 0.998, CHCl 3 ), 94% ee.

(+)−メチル2−シアノ−2−(3−メチルフェニル)−2−トリメチルシリルオキシアセテート(化合物番号2f)
97%収率;
無色油状物;
95℃/0.07mmHg(バルブ/バルブ);
IR(KBr−非希釈)2957,1767,1255,1167,1141,871,848cm-1
1H NMR(400MHz,CDCl3):δ0.26(s,9H,Si(CH33),2.39(s,3H,CH3),3.79(s,3H,OCH3),7.19−7.31(m,2H,芳香族),7.44(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.72(CH3),21.5(CH3)54.0(CH3),74.9(C),118.0(C),122.6(CH),126.0(CH),128.7(CH),130.5(CH),136.2(C),138.7(C),167.6(C);
HRMS(ESI+),m/z(M+Na+)計算値300.1026,実測値300.1028;
元素分析:C1419NO3Siの計算値:C,60.62,H,6.90,N,5.05.実測値:C,60.59,H,6.72,N,4.96;
キラルGC分析:カラム、CHIRALDEX G−TA(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、0.2℃/分の速度で50℃から150℃へ加熱;少量成分のtR、317.4分(1.5%);主成分のtR、319.8分(98.5%);
[α]D 25 25.30°(c 1.015、CHCl3)、97%ee。
(+)-Methyl 2-cyano-2- (3-methylphenyl) -2-trimethylsilyloxyacetate (Compound No. 2f)
97% yield;
Colorless oil;
95 ° C./0.07 mmHg (valve / valve);
IR (KBr-undiluted) 2957, 1767, 1255, 1167, 1141, 871, 848 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.26 (s, 9H, Si (CH 3 ) 3 ), 2.39 (s, 3H, CH 3 ), 3.79 (s, 3H, OCH 3 ), 7.19-7.31 (m, 2H, aromatic), 7.44 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.72 (CH 3 ), 21.5 (CH 3 ) 54.0 (CH 3 ), 74.9 (C), 118.0 (C), 122.6 (CH), 126.0 (CH), 128.7 (CH), 130.5 (CH), 136.2 (C), 138.7 (C), 167.6 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 300.1026, found 300.1028;
Elemental analysis: Calculated value of C 14 H 19 NO 3 Si: C, 60.62, H, 6.90, N, 5.05. Found: C, 60.59, H, 6.72, N, 4.96;
Chiral GC analysis: column, CHIRALDEX G-TA (0.25 mm × 30 m); carrier gas helium (100 kPa): column temperature, heating from 50 ° C. to 150 ° C. at a rate of 0.2 ° C./min; minor component t R 317.4 min (1.5%); main component t R , 319.8 min (98.5%);
[Α] D 25 25.30 ° (c 1.015, CHCl 3 ), 97% ee.

(+)−メチル2−シアノ−2−(4−メチルフェニル)−2−トリメチルシリルオキシアセテート(化合物番号2g)
92%収率;
無色油状物;
90℃/0.09mmHg(バルブ/バルブ);
IR(KBr−非希釈)2957,1767,1255,1183,1148,874,849cm-1
1H NMR(400MHz,CDCl3):δ0.25(s,9H,Si(CH33),2.37(s,3H,CH3),3.78(s,3H,OCH3),7.21(d,2H,J=8.2Hz,芳香族),7.52(d,2H,J=8.2Hz,芳香族);
13C NMR(100MHz,CDCl3):δ0.72(CH3),21.2(CH3),54.0(CH3),74.8(C),118.0(C),125.5(CH),129.5(CH),133.5(C),139.9(C),167.6(C);
HRMS(ESI+),m/z(M+Na+)計算値300.1032 実測値300.1018;
元素分析:C1419NO3Siの計算値:C,60.62,H,6.90,N,5.05.実測値:C,60.62,H,6.74,N,5.03;
キラルHPLC分析:カラム、CHIRALPAK AD−H;溶離液、ヘキサン:2−プロパノール=99:1;流量0.5mL/分;カラム温度、40℃;検出、UV254nm;主成分のtR、6.4分(97.8%);少量成分のtR、7.0分(2.2%);
[α]D 27 27.08°(c 1.203、CHCl3)、95%ee。
(+)-Methyl 2-cyano-2- (4-methylphenyl) -2-trimethylsilyloxyacetate (Compound No. 2g)
92% yield;
Colorless oil;
90 ° C./0.09 mmHg (valve / bulb);
IR (KBr-undiluted) 2957, 1767, 1255, 1183, 1148, 874, 849 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ0.25 (s, 9H, Si (CH 3 ) 3 ), 2.37 (s, 3H, CH 3 ), 3.78 (s, 3H, OCH 3 ), 7.21 (d, 2H, J = 8.2 Hz, aromatic), 7.52 (d, 2H, J = 8.2 Hz, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.72 (CH 3 ), 21.2 (CH 3 ), 54.0 (CH 3 ), 74.8 (C), 118.0 (C), 125. 5 (CH), 129.5 (CH), 133.5 (C), 139.9 (C), 167.6 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 300.1032 found 300.1018;
Elemental analysis: Calculated value of C 14 H 19 NO 3 Si: C, 60.62, H, 6.90, N, 5.05. Found: C, 60.62, H, 6.74, N, 5.03;
Chiral HPLC analysis: column, CHIRALPAK AD-H; eluent, hexane: 2-propanol = 99: 1; flow rate 0.5 mL / min; column temperature, 40 ° C .; detection, UV254 nm; main component t R , 6.4 Minute (97.8%); minor component t R , 7.0 minutes (2.2%);
[Α] D 27 27.08 ° (c 1.203, CHCl 3 ), 95% ee.

(+)−メチル2−シアノ−2−(3−クロロフェニル)−2−トリメチルシリルオキシアセテート(化合物番号2h)
97%収率;
無色油状物;
100℃/0.05mmHg(バルブ/バルブ);
IR(KBr−非希釈)2958, 1769, 1474, 1426, 1256, 1196, 1155, 851, 769cm-1
1H NMR(400MHz,CDCl3):δ0.29(s,9H,Si(CH33),3.81(s,3H,OCH3),7.33−7.40(m,2H,芳香族),7.54(dt,1H,J=1.8,7.3Hz,芳香族),7.63(t,1H,J=1.8Hz,芳香族);
13C NMR(100MHz,CDCl3):δ0.66(CH3),54.3(CH3),74.2(C),117.5(C),123.7(CH),125.7(CH),130.0(CH),130.1(CH),134.9(C),138.3(C),167.1(C);
HRMS(ESI+),m/z(M+Na+)計算値320.0480,実測値320.0479;
元素分析:C1316ClNO3Siの計算値:C,52.43,H,5.42,N,4.70,Cl,11.90.実測値:C,52.28,H,5.26,N,4.77,Cl,11.97;
キラルGC分析:カラム、CHIRALDEX G−TA(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、0.3℃/分の速度で70℃から140℃へ加熱;主成分のtR、194.1分(98.9%);少量成分のtR、196.0分(1.1%);[α]D 27 13.48°(c 1.031、CHCl3)、98%ee。
(+)-Methyl 2-cyano-2- (3-chlorophenyl) -2-trimethylsilyloxyacetate (Compound No. 2h)
97% yield;
Colorless oil;
100 ° C./0.05 mmHg (valve / bulb);
IR (KBr—undiluted) 2958, 1769, 1474, 1426, 1256, 1196, 1155, 851, 769 cm −1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.29 (s, 9H, Si (CH 3 ) 3 ), 3.81 (s, 3H, OCH 3 ), 7.33-7.40 (m, 2H, Aromatic), 7.54 (dt, 1H, J = 1.8, 7.3 Hz, aromatic), 7.63 (t, 1H, J = 1.8 Hz, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.66 (CH 3 ), 54.3 (CH 3 ), 74.2 (C), 117.5 (C), 123.7 (CH), 125.7 (CH), 130.0 (CH), 130.1 (CH), 134.9 (C), 138.3 (C), 167.1 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 320.0480, found 320.0479;
Elemental analysis: C 13 H 16 ClNO 3 Si Calculated: C, 52.43, H, 5.42 , N, 4.70, Cl, 11.90. Found: C, 52.28, H, 5.26, N, 4.77, Cl, 11.97;
Chiral GC analysis: column, CHIRALDEX G-TA (0.25 mm × 30 m); carrier gas helium (100 kPa): column temperature, heated from 70 ° C. to 140 ° C. at a rate of 0.3 ° C./min; main component t R 194.1 min (98.9%); minor component t R , 196.0 min (1.1%); [α] D 27 13.48 ° (c 1.031, CHCl 3 ), 98% ee.

(+)−メチル2−シアノ−2−(4−クロロフェニル)−2−トリメチルシリルオキシアセテート(化合物番号2i)
98%収率;
無色油状物;
103℃/0.07mmHg(バルブ/バルブ);
IR(KBr−非希釈)2958,1768,1490,1255,1198,1153,1094,872,851cm-1
1H NMR(400MHz,CDCl3):δ0.28(s,9H,Si(CH33),3.80(s,3H,OCH3),7.37−7.40(m,2H,芳香族),7.57−7.61(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.68(CH3),54.2(CH3),74.3(C),117.6(C),127.0(CH),129.0(CH),134.9(C),135.9(C),167.2(C);
HRMS(ESI+),m/z(M+Na+)計算値320.0486,実測値320.0496;
元素分析:C1419NO3Siの計算値:C,52.43,H,5.42,N,4.70,Cl,11.90.実測値:C,52.48,H,5.29,N,4.66,Cl,11.93;
キラルGC分析:カラム、CHIRALDEX G−TA(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、0.5℃/分の速度で50℃から160℃へ加熱;主成分のtR、218.2分(98.9%);少量成分のtR、220.6分(1.1%);
[α]D 25 22.19°(c 1.326、CHCl3)、98%ee。
(+)-Methyl 2-cyano-2- (4-chlorophenyl) -2-trimethylsilyloxyacetate (Compound No. 2i)
98% yield;
Colorless oil;
103 ° C./0.07 mmHg (valve / bulb);
IR (KBr-undiluted) 2958, 1768, 1490, 1255, 1198, 1153, 1094, 872, 851 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.28 (s, 9H, Si (CH 3 ) 3 ), 3.80 (s, 3H, OCH 3 ), 7.37-7.40 (m, 2H, Aromatic), 7.57-7.61 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.68 (CH 3 ), 54.2 (CH 3 ), 74.3 (C), 117.6 (C), 127.0 (CH), 129.0 (CH), 134.9 (C), 135.9 (C), 167.2 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 320.0486, found 320.0496;
Elemental analysis: Calculated value of C 14 H 19 NO 3 Si: C, 52.43, H, 5.42, N, 4.70, Cl, 11.90. Found: C, 52.48, H, 5.29, N, 4.66, Cl, 11.93;
Chiral GC analysis: column, CHIRALDEX G-TA (0.25 mm × 30 m); carrier gas helium (100 kPa): column temperature, heated from 50 ° C. to 160 ° C. at a rate of 0.5 ° C./min; main component t R 218.2 minutes (98.9%); minor component t R , 220.6 minutes (1.1%);
[Α] D 25 22.19 ° ( c 1.326, CHCl 3), 98% ee.

(+)−メチル2−シアノ−2−(4−トリフルオロメチルフェニル)−2−トリメチルシリルオキシアセテート(化合物番号2j)
92%収率;
無色油状物;
101℃/0.23mmHg(バルブ/バルブ);
IR(KBr−非希釈)2961, 1770, 1327, 1257, 1172, 1132, 1070, 873, 849cm-1
1H NMR(400MHz,CDCl3):δ0.30 (s, 9H, Si(CH3)3), 3.81 (s, 3H, OCH3), 7.69 (d, 2H, J = 8.61 Hz, aromatic H), 7.80 (d, 2H, J = 8.61 Hz, aromatic H); 13C NMR (100 MHz, CDCl3): δ 0.59 (CH3), 54.3 (CH3), 74.4 (C), 117.6 (C), 123.6 (q, C, 1JC-F = 272.8 Hz), 125.8 (q, CH, 3JC-F = 3.49 Hz), 126.1 (CH), 132.0 (q, C, 2JC-F = 32.4 Hz), 140.2 (C), 167.0 (C)
HRMS(ESI+),m/z(M+Na+)計算値354.0744,実測値354.0754;
元素分析:C1419NO3Siの計算値:C, 50.74, H, 4.87, N, 4.23.実測値:C, 50.47, H, 4.79, N, 4.20;
キラルGC分析:カラム、CHIRALDEX G−TA(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、3℃/分の速度で50℃から170℃へ加熱;主成分のtR、35.4分(96.2%);少量成分のtR、35.7分(3.8%);
[α]D 26 12.71° (c 0.990, CHCl3)、92%ee。
(+)-Methyl 2-cyano-2- (4-trifluoromethylphenyl) -2-trimethylsilyloxyacetate (Compound No. 2j)
92% yield;
Colorless oil;
101 ° C./0.23 mmHg (valve / bulb);
IR (KBr-undiluted) 2961, 1770, 1327, 1257, 1172, 1132, 1070, 873, 849 cm −1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.30 (s, 9H, Si (CH 3 ) 3 ), 3.81 (s, 3H, OCH 3 ), 7.69 (d, 2H, J = 8.61 Hz, aromatic H) , 7.80 (d, 2H, J = 8.61 Hz, aromatic H); 13 C NMR (100 MHz, CDCl 3 ): δ 0.59 (CH 3 ), 54.3 (CH 3 ), 74.4 (C), 117.6 (C), 123.6 (q, C, 1 J CF = 272.8 Hz), 125.8 (q, CH, 3 J CF = 3.49 Hz), 126.1 (CH), 132.0 (q, C, 2 J CF = 32.4 Hz), 140.2 (C ), 167.0 (C)
HRMS (ESI + ), m / z (M + Na + ) calculated value 354.0744, measured value 354.0754;
Elemental analysis: Calculated value of C 14 H 19 NO 3 Si: C, 50.74, H, 4.87, N, 4.23. Actual value: C, 50.47, H, 4.79, N, 4.20;
Chiral GC analysis: column, CHIRALDEX G-TA (0.25 mm × 30 m); carrier gas helium (100 kPa): column temperature, heated from 50 ° C. to 170 ° C. at a rate of 3 ° C./min; main component t R , 35 4 minutes (96.2%); minor component t R , 35.7 minutes (3.8%);
[α] D 26 12.71 ° (c 0.990, CHCl 3 ), 92% ee.

(+)−メチル2−シアノ−2−(4−メトキシェニル)−2−トリメチルシリルオキシアセテート(化合物番号2k)
96%収率;
無色油状物;
112℃/0.06mmHg(バルブ/バルブ);
IR(KBr−非希釈)2958,2838,1765,1509,1254,872,846cm-1
1H NMR(400MHz,CDCl3):δ0.24(s,9H,Si(CH33),3.78(s,3H,OCH3),3.82(s,3H,OCH3),6.92(m,2H,芳香族),7.55(m,2H,芳香族);
13C NMR(100MHz,CDCl3):δ0.69(CH3),53.9(CH3),55.3(CH3),74.5(C),114.1(CH),118.0(C),127.0(CH),128.3(C),160.6(C),167.6(C);
HRMS(ESI+),m/z(M+Na+)計算値316.0981,実測値316.0991;
元素分析:C1419NO3Siの計算値:C,57.31,H,6.53,N,4.77.実測値:C,57.11,H,6.41,N,4.70;
キラルHPLC分析:カラム、CHIRALPAK AD−H;溶離液、ヘキサン:2−プロパノール=99:1;流量0.2mL/分;カラム温度、40℃;検出、UV254nm;主成分のtR、24.1分(97.6%);少量成分のtR、26.1分(2.4%);[α]D 26 29.81°(c 1.270、CHCl3)、95%ee。
(+)-Methyl 2-cyano-2- (4-methoxyenyl) -2-trimethylsilyloxyacetate (Compound No. 2k)
96% yield;
Colorless oil;
112 ° C./0.06 mmHg (valve / valve);
IR (KBr-undiluted) 2958, 2838, 1765, 1509, 1254, 872, 846 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.24 (s, 9H, Si (CH 3 ) 3 ), 3.78 (s, 3H, OCH 3 ), 3.82 (s, 3H, OCH 3 ), 6.92 (m, 2H, aromatic), 7.55 (m, 2H, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.69 (CH 3 ), 53.9 (CH 3 ), 55.3 (CH 3 ), 74.5 (C), 114.1 (CH), 118. 0 (C), 127.0 (CH), 128.3 (C), 160.6 (C), 167.6 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 316.0981, found 316.0991;
Elemental analysis: Calculated value of C 14 H 19 NO 3 Si: C, 57.31, H, 6.53, N, 4.77. Found: C, 57.11, H, 6.41, N, 4.70;
Chiral HPLC analysis: column, CHIRALPAK AD-H; eluent, hexane: 2-propanol = 99: 1; flow rate 0.2 mL / min; column temperature, 40 ° C .; detection, UV254 nm; main component t R , 24.1 Min (97.6%); minor component t R , 26.1 min (2.4%); [α] D 26 29.81 ° (c 1.270, CHCl 3 ), 95% ee.

(+)−メチル2−シアノ−2−(ナフト−2−イル)−2−トリメチルシリルオキシアセテート(化合物番号2l)
97%収率;
無色油状物;129℃/0.07mmHg(バルブ/バルブ);
IR(KBr−非希釈)3059,2957,2901,1767,1256,1173,1138,874,849cm-1
1H NMR(400MHz,CDCl3):δ0.29(s,9H,Si(CH33),3.78(s,3H,OCH3),7.52−7.56(m,2H,芳香族),7.67−7.70(dd,1H,J=1.8,8.6Hz,芳香族),7.83−7.93(m,3H,芳香族),8.16(d,1H,J=1.8Hz,芳香族);
13C NMR(100MHz,CDCl3):δ0.79(CH3),54.1(CH3),75.1(C),118.0(C),122.4(CH),125.4(CH),126.9(CH),127.3(CH),127.7(CH),128.5(CH),128.9(CH),132.7(C),133,6(C),133.7(C),167.5(C);
HRMS(ESI+),m/z(M+Na+)計算値336.1032,実測値336.1034;
元素分析:C1719NO3Siの計算値:C,65.15,H,6.11,N,4.47.実測値:C,65.30,H,6.19,N,4.25;
キラルHPLC分析:カラム、CHIRALPAK AD−H;溶離液、ヘキサン:2−プロパノール=99:1;流量0.5mL/分;カラム温度、40℃;検出、UV254nm;主成分のtR、9.1分(99.0%);少量成分のtR、10.4分(1.0%);
[α]D 24 48.89°(c 0.995、CHCl3)、98%ee。
(+)-Methyl 2-cyano-2- (naphth-2-yl) -2-trimethylsilyloxyacetate (Compound No. 2l)
97% yield;
Colorless oil; 129 ° C./0.07 mmHg (bulb / bulb);
IR (KBr-undiluted) 3059, 2957, 2901, 1767, 1256, 1173, 1138, 874, 849 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.29 (s, 9H, Si (CH 3 ) 3 ), 3.78 (s, 3H, OCH 3 ), 7.52 to 7.56 (m, 2H, Aromatic), 7.67-7.70 (dd, 1H, J = 1.8, 8.6 Hz, aromatic), 7.83-7.93 (m, 3H, aromatic), 8.16 ( d, 1H, J = 1.8 Hz, aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.79 (CH 3 ), 54.1 (CH 3 ), 75.1 (C), 118.0 (C), 122.4 (CH), 125.4 (CH), 126.9 (CH), 127.3 (CH), 127.7 (CH), 128.5 (CH), 128.9 (CH), 132.7 (C), 133, 6 ( C), 133.7 (C), 167.5 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 336.1032, found 336.1034;
Elemental analysis: Calculated value of C 17 H 19 NO 3 Si: C, 65.15, H, 6.11, N, 4.47. Found: C, 65.30, H, 6.19, N, 4.25;
Chiral HPLC analysis: column, CHIRALPAK AD-H; eluent, hexane: 2-propanol = 99: 1; flow rate 0.5 mL / min; column temperature, 40 ° C .; detection, UV254 nm; main component t R , 9.1 Minute (99.0%); minor component t R , 10.4 minutes (1.0%);
[Α] D 24 48.89 ° (c 0.995, CHCl 3 ), 98% ee.

(+)−メチル2−シアノ−2−(フル−3−イル)−2−トリメチルシリルオキシアセテート(化合物番号2m)
94%収率;
無色油状物;113℃/0.50mmHg(バルブ/バルブ);
IR(KBr−非希釈)3153, 2959, 1771, 1255, 1168, 1146, 873, 849;1H NMR (400 MHz, CDCl3): δ0.25 (s, 9H, Si(CH3)3), 1.55 (s, 3H), OCH3), 6.52 (dd, 1H, J = 0.91, 1.81 Hz, 芳香族H), 7.42 (dd, 1H, J = 1.81, 1.81 Hz, 芳香族H), 7.66 (dd, 1H, J = 0.91, 1.81 Hz, 芳香族H); 13C NMR (100 MHz, CDCl3): δ0.70 (CH3), 54.1 (CH3), 69.2 (C), 108.5 (CH), 117.4 (C), 123.6 (C), 141.1 (CH), 144.1 (CH), 166.9 (C);HRMS(ESI+),m/z(M+Na+)計算値276.0663,実測値276.0669;キラルHPLC分析:カラム、CHIRALPAK AD−H;溶離液、ヘキサン:2−プロパノール=99:1;流量0.2mL/分;カラム温度、40℃;検出、UV254nm;主成分のtR、16.7分(95.7%);少量成分のtR、15.0分(4.3%);
[α]D 27 21.64°(c 0.975、CHCl3)、92%ee。
(+)-Methyl 2-cyano-2- (fur-3-yl) -2-trimethylsilyloxyacetate (Compound No. 2m)
94% yield;
Colorless oil; 113 ° C./0.50 mmHg (bulb / bulb);
IR (KBr-undiluted) 3153, 2959, 1771, 1255, 1168, 1146, 873, 849; 1 H NMR (400 MHz, CDCl 3 ): δ0.25 (s, 9H, Si (CH 3 ) 3 ), 1.55 (s, 3H), OCH 3 ), 6.52 (dd, 1H, J = 0.91, 1.81 Hz, aromatic H), 7.42 (dd, 1H, J = 1.81, 1.81 Hz, aromatic H), 7.66 (dd , 1H, J = 0.91, 1.81 Hz, Aromatic H); 13 C NMR (100 MHz, CDCl 3 ): δ0.70 (CH 3 ), 54.1 (CH 3 ), 69.2 (C), 108.5 (CH), 117.4 (C), 123.6 (C), 141.1 (CH), 144.1 (CH), 166.9 (C); HRMS (ESI + ), m / z (M + Na + ) calculated value 276.0663, actual value 276.0669; chiral HPLC analysis: Column, CHIRALPAK AD-H; eluent, hexane: 2-propanol = 99: 1; flow rate 0.2 mL / min; column temperature, 40 ° C .; detection, UV254 nm; main component t R , 16.7 min (95. 7%); minor component t R , 15.0 minutes (4.3%);
[Α] D 27 21.64 ° (c 0.975, CHCl 3 ), 92% ee.

(+)−メチル2−シアノ−2−(チエン−2−イル)−2−トリメチルシリルオキシアセテート(化合物番号2n)
99%収率;
無色油状物;
87℃/0.45mmHg(バルブ/バルブ);
IR(KBr−非希釈)2959,1770,1436,1255,1134,867,849cm-1
1H NMR(400MHz,CDCl3):δ0.26(s,9H,Si(CH33),3.86(s,3H,OCH3),7.00(dd,1H,J=3.85,5.21Hz,芳香族),7.33(dd,1H,J=1.14,3.85Hz,芳香族),7.37(dd,1H,J=1.14,5.21Hz,芳香族);
13C NMR(100MHz,CDCl3):δ0.56(CH3),54.3(CH3),71.9(C),117.3(C),126.7(CH),127.0(CH),127.8(CH),139.9(C),166.7(C);
HRMS(ESI+),m/z(M+Na+)計算値292.0440,実測値292.0431;
元素分析:C1115NO3SSiの計算値:C,49.04,H,5.61,N,5.20,S,11.90.実測値:C,48.67,H,5.38,N,5.22,S,11.74;
キラルGC分析:カラム、InertCap CHIRAMIX(0.25mm×30m);キャリアガスヘリウム(100kPa):カラム温度、0.6℃/分の速度で70℃から160℃へ加熱;主成分のtR、141.2分(95.8%);
[α]D 27 28.32°(c 1.020、CHCl3)、91%ee。
(+)-Methyl 2-cyano-2- (thien-2-yl) -2-trimethylsilyloxyacetate (Compound No. 2n)
99% yield;
Colorless oil;
87 ° C./0.45 mmHg (valve / valve);
IR (KBr-undiluted) 2959, 1770, 1436, 1255, 1134, 867, 849 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.26 (s, 9H, Si (CH 3 ) 3 ), 3.86 (s, 3H, OCH 3 ), 7.00 (dd, 1H, J = 3. 85, 5.21 Hz, aromatic), 7.33 (dd, 1 H, J = 1.14, 3.85 Hz, aromatic), 7.37 (dd, 1 H, J = 1.14, 5.21 Hz, Aromatic);
13 C NMR (100 MHz, CDCl 3 ): δ 0.56 (CH 3 ), 54.3 (CH 3 ), 71.9 (C), 117.3 (C), 126.7 (CH), 127.0 (CH), 127.8 (CH), 139.9 (C), 166.7 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 292.0440, found 292.0431;
Elemental analysis: C 11 H 15 NO 3 SSi Calculated: C, 49.04, H, 5.61 , N, 5.20, S, 11.90. Found: C, 48.67, H, 5.38, N, 5.22, S, 11.74;
Chiral GC analysis: column, InertCap CHIRAMIX (0.25 mm × 30 m); carrier gas helium (100 kPa): column temperature, heated from 70 ° C. to 160 ° C. at a rate of 0.6 ° C./min; main component t R , 141 2 minutes (95.8%);
[Α] D 27 28.32 ° (c 1.020, CHCl 3 ), 91% ee.

(−)−メチル2−シアノ−3,3−ジメチル−2−トリメチルシリルオキシブチレート(化合物番号2o)
94%収率;
無色油状物;
103℃/0.07mmHg(バルブ/バルブ);
IR(KBr−非希釈)2962,1762,1255,1149,876,846cm-1
1H NMR(400MHz,CDCl3):δ0.23(s,9H,Si(CH33),1.07(s,9H,CH3),3.84(s,3H,OCH3);
13C NMR(100MHz,CDCl3):δ0.29(CH3),24.7(CH3),40.2(C),53.1(CH3),80.1(C),118.0(C),167.8(C);
HRMS(ESI+),m/z(M+Na+)計算値266.1188,実測値266.1198;
キラルGC分析:カラム、CP−Chirasil−Dex(0.32mm×25m);キャリアガスヘリウム(72kPa):カラム温度、2.0℃/分の速度で50℃から110℃へ加熱;主成分のtR、22.3分(96.8%);少量成分のtR、22.5分(3.2%);
[α]D 23 −8.32°(c 1.019、CHCl3)、94%ee。
(−)-Methyl 2-cyano-3,3-dimethyl-2-trimethylsilyloxybutyrate (Compound No. 2o)
94% yield;
Colorless oil;
103 ° C./0.07 mmHg (valve / bulb);
IR (KBr-undiluted) 2962, 1762, 1255, 1149, 876, 846 cm -1 ;
1 H NMR (400 MHz, CDCl 3 ): δ 0.23 (s, 9H, Si (CH 3 ) 3 ), 1.07 (s, 9H, CH 3 ), 3.84 (s, 3H, OCH 3 );
13 C NMR (100 MHz, CDCl 3 ): δ 0.29 (CH 3 ), 24.7 (CH 3 ), 40.2 (C), 53.1 (CH 3 ), 80.1 (C), 118. 0 (C), 167.8 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated 266.1188, found 266.1198;
Chiral GC analysis: column, CP-Chirasil-Dex (0.32 mm × 25 m); carrier gas helium (72 kPa): column temperature, heated from 50 ° C. to 110 ° C. at a rate of 2.0 ° C./min; R , 22.3 minutes (96.8%); minor component t R , 22.5 minutes (3.2%);
[Α] D 23 -8.32 ° ( c 1.019, CHCl 3), ee 94%.

(−)−メチル2−シアノ−2−シクロヘキシル−2−トリメチルシリルオキシアセテート(化合物番号2p)
98%収率;
無色油状物;119 °C/0.2 mmHg(バルブ/バルブ);
IR(KBr−非希釈)2935, 2857, 1766, 1255, 1168, 852;
1H NMR(400MHz,CDCl3):δ0.23 (s, 9H, Si(CH3)3), 1.11−1.29 (m, 5H), 1.65−1.95 (m, 6H), 3.84 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3): δ0.51 (CH3), 25.6 (CH2), 25.7 (CH2), 26.2 (CH2), 26.8 (CH2), 46.9 (CH), 53.4 (CH3), 77.1 (C), 117.7 (C), 168.4 (C);
HRMS(ESI+),m/z(M+Na+)計算値292.1339,実測値292.1346;
キラルHPLC分析:カラム、CHIRALPAK IC;溶離液、ヘキサン:2−プロパノール=99:1;流量0.5mL/分;カラム温度、40℃;検出、UV220nm;主成分のtR、9.9分(92.4%);少量成分のtR、9.3分(7.6%);
[α]D 27 −1.58° (c 0.997, CHCl3)、85% ee.
(−)-Methyl 2-cyano-2-cyclohexyl-2-trimethylsilyloxyacetate (Compound No. 2p)
98% yield;
Colorless oil; 119 ° C / 0.2 mmHg (bulb / bulb);
IR (KBr-undiluted) 2935, 2857, 1766, 1255, 1168, 852;
1 H NMR (400 MHz, CDCl 3 ): δ0.23 (s, 9H, Si (CH 3 ) 3 ), 1.11-1.29 (m, 5H), 1.65-1.95 (m, 6H), 3.84 (s, 3H, OCH 3 ); 13 C NMR (100 MHz, CDCl 3 ): δ0.51 (CH 3 ), 25.6 (CH 2 ), 25.7 (CH 2 ), 26.2 (CH 2 ), 26.8 (CH 2 ), 46.9 (CH ), 53.4 (CH 3 ), 77.1 (C), 117.7 (C), 168.4 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated value 292.1339, actual value 292.1346;
Chiral HPLC analysis: column, CHIRALPAK IC; eluent, hexane: 2-propanol = 99: 1; flow rate 0.5 mL / min; column temperature, 40 ° C .; detection, UV 220 nm; main component t R , 9.9 min ( 92.4%); minor component t R , 9.3 minutes (7.6%);
[α] D 27 −1.58 ° (c 0.997, CHCl 3 ), 85% ee.

(−)−メチル2−シアノ−2−(シクロヘキセン−1−イル)−2−トリメチルシリルオキシアセテート(化合物番号2q)
98%収率;
無色油状物;107 °C/0.1 mmHg(バルブ/バルブ);
IR(KBr−非希釈)2937, 1765, 1254, 875, 850 cm-1
1H NMR (400 MHz, CDCl3): δ0.26 (s, 9H, Si(CH3)3), 1.54−1.69 (m, 4H, CH2), 1.92−2.12 (m, 4H), 3.84 (s, 3H, OCH3), 6.22−6.24 (m, 1H); 13C NMR (100 MHz, CDCl3): δ0.70 (CH3), 21.6 (CH2), 22.2 (CH2), 23.1 (CH2), 25.1 (CH2), 53.7 (CH3), 76.4 (C), 117.4 (C), 127.9 (CH), 133.0 (C), 167.5 (C);
HRMS(ESI+),m/z(M+Na+)計算値290.1183,実測値290.1189;
キラルHPLC分析:カラム、CHIRALPAK IC;溶離液、ヘキサン:2−プロパノール=99:1;流量0.2mL/分;カラム温度、40℃;検出、UV230nm;主成分のtR、27.5分(98.4%);少量成分のtR、26.0分(1.6%);
[α]D 26 31.07° (c 0.970, CHCl3);、97%ee。
(−)-Methyl 2-cyano-2- (cyclohexen-1-yl) -2-trimethylsilyloxyacetate (Compound No. 2q)
98% yield;
Colorless oil; 107 ° C / 0.1 mmHg (bulb / bulb);
IR (KBr—undiluted) 2937, 1765, 1254, 875, 850 cm −1 ;
1 H NMR (400 MHz, CDCl 3 ): δ0.26 (s, 9H, Si (CH 3 ) 3 ), 1.54-1.69 (m, 4H, CH 2 ), 1.92−2.12 (m, 4H), 3.84 ( s, 3H, OCH 3 ), 6.22-6.24 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ0.70 (CH 3 ), 21.6 (CH 2 ), 22.2 (CH 2 ), 23.1 ( CH 2 ), 25.1 (CH 2 ), 53.7 (CH 3 ), 76.4 (C), 117.4 (C), 127.9 (CH), 133.0 (C), 167.5 (C);
HRMS (ESI + ), m / z (M + Na + ) calculated value 290.1183, actual value 290.1189;
Chiral HPLC analysis: column, CHIRALPAK IC; eluent, hexane: 2-propanol = 99: 1; flow rate 0.2 mL / min; column temperature, 40 ° C .; detection, UV 230 nm; main component t R , 27.5 min ( 98.4%); minor component t R , 26.0 minutes (1.6%);
[α] D 26 31.07 ° (c 0.970, CHCl 3 ); 97% ee.

Claims (5)

一般式(1)で表される光学活性シアノヒドリン化合物。
(一般式(1)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。また、R1とR3が結合してラクトンを形成してもよい。)
An optically active cyanohydrin compound represented by the general formula (1).
(In the general formula (1), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, A cyclic alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heterocyclic ring which may have a substituent, R 2 represents a hydrogen atom, an alkali metal, a substituent R 3 represents an alkyl group, an alkenyl group, an allyl group, or an aryl group, and represents a hydrocarbon group that may have a group or a silyl group that may have a substituent, and R 1 and R 3 may combine to form a lactone.)
下記一般式(2)で表されるシアノ化触媒の存在下に、
(一般式(2)中、R4〜R7は同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい炭化水素基であって、R4とR5及び/又はR6とR7が置換基を有していてもよい炭素鎖環を形成してもよく;R8〜R11は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基であって、R8とR9及び/又はR10とR11が置換基を有していてもよい炭素鎖環を形成してもよく;R12およびR13は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基;W、X、Yは同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい結合鎖を表し、但し、X及び/又はYは存在しなくともよい;Mは金属又は金属イオンを示し、Mの各配位子はどのように配置されていてもよい)
下記一般式(3)
(一般式(3)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。)
で表されるケトエステル化合物と、下記一般式(4)
(一般式(4)中、R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。)
で表されるシアン化化合物とを反応させる工程;および
前記工程で得られた反応生成物中に金属化合物の塩を加え反応させる工程を含む、請求項1に記載の光学活性シアノヒドリン化合物の製造方法。
In the presence of a cyanation catalyst represented by the following general formula (2),
(In the general formula (2), R 4 to R 7 may be the same or different, and each may be a hydrocarbon group which may have a substituent, and R 4 and R 5 and / or R 6. And R 7 may form an optionally substituted carbon chain ring; R 8 to R 11 may be the same or different, and each may have a hydrogen atom or a substituent. A good hydrocarbon group, R 8 and R 9 and / or R 10 and R 11 may form an optionally substituted carbon chain ring; R 12 and R 13 may be the same or each Hydrocarbon groups which may be different and each may have a hydrogen atom or a substituent; W, X and Y may be the same or different and each may have a substituent Where X and / or Y may not be present; M represents a metal or metal ion; Each ligand may be arranged how)
The following general formula (3)
(In the general formula (3), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, A cyclic alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heterocyclic ring which may have a substituent, R 3 represents an alkyl group, an alkenyl group, an allyl. A group or an aryl group.)
A ketoester compound represented by the following general formula (4):
(In General Formula (4), R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group which may have a substituent, or a silyl group which may have a substituent.)
The method for producing an optically active cyanohydrin compound according to claim 1, comprising a step of reacting with a cyanide compound represented by the formula: and a step of reacting a metal compound salt added to the reaction product obtained in the step. .
下記一般式(2)で表されるシアノ化触媒と、金属化合物の塩とを反応させて得られるシアノ化触媒の存在下に、
(一般式(2)中、R4〜R7は同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい炭化水素基であって、R4とR5及び/又はR6とR7が置換基を有していてもよい炭素鎖環を形成してもよく;R8〜R11は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基であって、R8とR9及び/又はR10とR11が置換基を有していてもよい炭素鎖環を形成してもよく;R12およびR13は同一又はそれぞれ異なっていてもよく、それぞれ水素原子又は置換基を有していてもよい炭化水素基;W、X、Yは同一又はそれぞれ異なっていてもよく、それぞれ置換基を有していてもよい結合鎖を表し、但し、X及び/又はYは存在しなくともよい;Mは金属又は金属イオンを示し、Mの各配位子はどのように配置されていてもよい)
下記一般式(3)
(一般式(3)中、R1は分岐を有していてもよい鎖状アルキル基、置換基を有していてもよい環状アルキル基、分岐を有していてもよい鎖状アルケニル基、置換基を有していてもよい環状アルケニル基、置換基を有していてもよいアリール基、又は置換基を有していてもよい複素環を示す。R3はアルキル基、アルケニル基、アリル基、又はアリール基を示す。)
で表されるケトエステル化合物と、下記一般式(4)
(一般式(4)中、R2は水素原子、アルカリ金属、置換基を有していてもよい炭化水素基又は置換基を有していてもよいシリル基を表す。)
で表されるシアン化化合物とを反応させる工程を含む、請求項1に記載の光学活性シアノヒドリン化合物の製造方法。
In the presence of a cyanation catalyst obtained by reacting a cyanation catalyst represented by the following general formula (2) with a salt of a metal compound,
(In the general formula (2), R 4 to R 7 may be the same or different, and each may be a hydrocarbon group which may have a substituent, and R 4 and R 5 and / or R 6. And R 7 may form an optionally substituted carbon chain ring; R 8 to R 11 may be the same or different, and each may have a hydrogen atom or a substituent. A good hydrocarbon group, R 8 and R 9 and / or R 10 and R 11 may form an optionally substituted carbon chain ring; R 12 and R 13 may be the same or each Hydrocarbon groups which may be different and each may have a hydrogen atom or a substituent; W, X and Y may be the same or different and each may have a substituent Where X and / or Y may not be present; M represents a metal or metal ion; Each ligand may be arranged how)
The following general formula (3)
(In the general formula (3), R 1 is a chain alkyl group which may have a branch, a cyclic alkyl group which may have a substituent, a chain alkenyl group which may have a branch, A cyclic alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heterocyclic ring which may have a substituent, R 3 represents an alkyl group, an alkenyl group, an allyl. A group or an aryl group.)
A ketoester compound represented by the following general formula (4):
(In General Formula (4), R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group which may have a substituent, or a silyl group which may have a substituent.)
The manufacturing method of the optically active cyanohydrin compound of Claim 1 including the process with which the cyanide compound represented by these is made to react.
一般式(2)におけるMが二価ルテニウムである請求項2または3に記載の光学活性シアノヒドリン化合物の製造方法。   The method for producing an optically active cyanohydrin compound according to claim 2 or 3, wherein M in the general formula (2) is divalent ruthenium. 一般式(2)におけるWが1,1'-ビナフチル基又は1,1'-ビフェニル基である請求項2から4のいずれかに記載の光学活性シアノヒドリン化合物の製造方法。   The method for producing an optically active cyanohydrin compound according to any one of claims 2 to 4, wherein W in the general formula (2) is a 1,1'-binaphthyl group or a 1,1'-biphenyl group.
JP2009258736A 2009-11-12 2009-11-12 Optically active cyanohydrin compounds and method for producing the same Expired - Fee Related JP5585979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258736A JP5585979B2 (en) 2009-11-12 2009-11-12 Optically active cyanohydrin compounds and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258736A JP5585979B2 (en) 2009-11-12 2009-11-12 Optically active cyanohydrin compounds and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011102282A true JP2011102282A (en) 2011-05-26
JP5585979B2 JP5585979B2 (en) 2014-09-10

Family

ID=44192792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258736A Expired - Fee Related JP5585979B2 (en) 2009-11-12 2009-11-12 Optically active cyanohydrin compounds and method for producing the same

Country Status (1)

Country Link
JP (1) JP5585979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816536B1 (en) 2011-12-13 2018-01-10 동우 화인켐 주식회사 Electrochromic device and method of manufacturing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1928438A1 (en) * 1968-06-06 1969-12-11 Geigy Ag J R Process for the preparation of new tetrazole derivatives
US3622569A (en) * 1969-08-05 1971-11-23 R & L Molecular Research Ltd 6-(2-aryl-3-azido-and-3-amino-methyl-isocrotonamido)penicillanic acids
JPS5334729A (en) * 1976-09-14 1978-03-31 Sagami Chem Res Center Preparation of alpha-siloxy-alpha-cyanocarboxylic acid esters
JPS5522669A (en) * 1978-07-14 1980-02-18 Bayer Ag Ammonium salt of alphaaketocarboxylic acid* method of putting out amine therefrom and coating composition thereof
JPS55104223A (en) * 1979-02-02 1980-08-09 Givaudan & Cie Sa Manufacture of alphaahydroxycarbonyl compound
JPS59184171A (en) * 1983-03-30 1984-10-19 バイエル・アクチエンゲゼルシヤフト 5-membered nitrogen-containing heterocyclic compounds, manufacture and use as noxious organism repellent
JPH02273682A (en) * 1989-03-07 1990-11-08 Beecham Group Plc Novel compound, its production and remedy composite containing it
JPH05140040A (en) * 1991-11-14 1993-06-08 Sagami Chem Res Center Production of beta-gamma-unsaturated-alpha-ketocarboxylic acid derivative
JP2000506120A (en) * 1996-02-13 2000-05-23 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Beta-thiopropionyl-amino acids and their use as beta-lactamase inhibitors
WO2001012590A1 (en) * 1999-08-13 2001-02-22 Monsanto Technology Llc Oxyme amides and hydrazone amides having fungicidal activity
JP2003509441A (en) * 1999-09-16 2003-03-11 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Fluorescent maleimide and its use
WO2006138656A2 (en) * 2005-06-17 2006-12-28 Bristol-Myers Squibb Company Bicyclic heterocycles as cannabinoid-1 receptor modulators
WO2008099965A1 (en) * 2007-02-14 2008-08-21 National University Corporation Hokkaido University Cyanation catalyst and method for producing optically active cyanhydrin compound using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1928438A1 (en) * 1968-06-06 1969-12-11 Geigy Ag J R Process for the preparation of new tetrazole derivatives
US3622569A (en) * 1969-08-05 1971-11-23 R & L Molecular Research Ltd 6-(2-aryl-3-azido-and-3-amino-methyl-isocrotonamido)penicillanic acids
JPS5334729A (en) * 1976-09-14 1978-03-31 Sagami Chem Res Center Preparation of alpha-siloxy-alpha-cyanocarboxylic acid esters
JPS5522669A (en) * 1978-07-14 1980-02-18 Bayer Ag Ammonium salt of alphaaketocarboxylic acid* method of putting out amine therefrom and coating composition thereof
JPS55104223A (en) * 1979-02-02 1980-08-09 Givaudan & Cie Sa Manufacture of alphaahydroxycarbonyl compound
JPS59184171A (en) * 1983-03-30 1984-10-19 バイエル・アクチエンゲゼルシヤフト 5-membered nitrogen-containing heterocyclic compounds, manufacture and use as noxious organism repellent
JPH02273682A (en) * 1989-03-07 1990-11-08 Beecham Group Plc Novel compound, its production and remedy composite containing it
JPH05140040A (en) * 1991-11-14 1993-06-08 Sagami Chem Res Center Production of beta-gamma-unsaturated-alpha-ketocarboxylic acid derivative
JP2000506120A (en) * 1996-02-13 2000-05-23 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Beta-thiopropionyl-amino acids and their use as beta-lactamase inhibitors
WO2001012590A1 (en) * 1999-08-13 2001-02-22 Monsanto Technology Llc Oxyme amides and hydrazone amides having fungicidal activity
JP2003509441A (en) * 1999-09-16 2003-03-11 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Fluorescent maleimide and its use
WO2006138656A2 (en) * 2005-06-17 2006-12-28 Bristol-Myers Squibb Company Bicyclic heterocycles as cannabinoid-1 receptor modulators
WO2008099965A1 (en) * 2007-02-14 2008-08-21 National University Corporation Hokkaido University Cyanation catalyst and method for producing optically active cyanhydrin compound using the same

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
JPN6014015070; NICEWICZ, D. A.,ET AL.: '"Enantioselective Cyanation/Brook Rearrangement/C-Acylation Reactions of Acylsilanes Catalyzed by Ch' JOURNAL OF ORGANIC CHEMISTRY VOL.69,NO.20, 2004, PP.6548-6555 *
JPN6014015072; GARCIA RUANO,J. L.,ET AL.: '"New Strategy for the Asymmetric Synthesis of Phenyl Ketone Cyanohydrins: Quaternization of Cyanohyd' JOURNAL OF ORGANIC CHEMISTRY VOL.70,NO.18, 2005, PP.7346-7352 *
JPN6014015074; LI,F.,ET AL.: '"Chiral Lewis Base Catalyzed Enantioselective Acetylcyanation of alpha-Oxo Esters"' EUROPEAN JOURNAL OF ORGANIC CHEMISTRY NO.23, 2009, PP.3917-3922 *
JPN6014015076; LEWBART,M. L.,ET AL.: '"Detailed Study of Oxidative Esterification and Elimination Reactions Undergone by a Steroidal 17alpha-' JOURNAL OF PHARMACEUTICAL SCIENCES VOL.79,NO.5, 1990, PP.373-378 *
JPN6014015078; TAKAHASHI,T.,ET AL.: '"Total Synthesis of Neu5Ac via Alkylation of 2-Alkoxy-2-cyanoacetate with a Sugar-Derived Bromide"' SYNLETT NO.9, 1997, PP.1065-1066 *
JPN6014015080; WANG,X.,ET AL.: '"Catalytic cyanosilylation of ketones with simple phosphonium salt"' TETRAHEDRON LETTERS VOL.48,NO.34, 2007, PP.6010-6013 *
JPN6014015082; WILKINSON,H. S.,ET AL.: '"A New Lithium Alkoxide Accelerated Diastereoselective Cyanation of Ketones"' ORGANIC LETTERS VOL.3,NO.4, 2001, PP.553-556 *
JPN6014015084; XIN,L.,ET AL.: '"Tandem Carbon-Carbon Bond Constructions via Catalyzed Cyanation/Brook Rearrangement/C-Acylation Rea' ORGANIC LETTERS VOL.4,NO.17, 2002, PP.2957-2960 *
JPN6014015087; SUTHERLAND,A. J.,ET AL.: '"Synthesis of C-D-ring analogs of the azasteroid A25822"' JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1: ORGANIC AND BIO-ORGANIC CHEMISTRY NO.4, 1996, PP.349-354 *
JPN6014015089; DUAN,H.-F.,ET AL.: '"Enantioselective Rhodium-Catalyzed Addition of Arylboronic Acids to alpha-Ketoesters"' ANGEWANDTE CHEMIE, INTERNATIONAL EDITION VOL.47,NO.23, 2008, PP.4351-4353 *
JPN6014015090; DUBOIS,J. E.,ET AL.: '"Metathetical Transposition of Bis-tert-alkyl ketones. 1. A Model for a Study of Group Migration"' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY VOL.98,NO.22, 1976, PP.6993-6999 *
JPN6014015091; KATRITZKY,A. R.,ET AL.: '"Alternative Preparation of alpha-Keto esters from Acid Chlorides"' ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL VOL.27,NO.4, 1995, PP.457-462 *
JPN6014015092; AMMADI,F.,ET AL.: '"Synthesis of alpha-Cyano-beta-fluoro-alpha-hydroxyesters"' SYNTHETIC COMMUNICATIONS VOL.23,NO.17, 1993, PP.2389-2395 *
JPN6014015093; OLEINIK,I. V.,ET AL.: '"Chemical Properties of Ylidene Derivatives of Azines. 6. Nitration of Aryl(alkyl)-substituted (Dihy' SIBIRSKII KHIMICHESKII ZHURNAL NO.4, 1992, PP.117-124 *
JPN6014015094; ACHMATOWICZ,O., Jr.,ET AL.: '"Synthesis of Ethoxalyl Cyanide, a Novel Hheterodieno- and Heteroenophile"' TETRAHEDRON VOL.38,NO.9, 1982, PP.1299-1302 *
JPN6014015095; SEVENO,A.,ET AL.: '"Dimerization of alpha-Cyanoesters by Iodosobenzene Diacetate"' TETRAHEDRON LETTERS NO.38, 1977, PP.3349-3352 *
JPN6014015096; HUDHOMME,P.,ET AL.: '"Synthesis of Multifunctional Carbon Compounds Derived from N-Protected 2-Cyanoglycinates"' TETRAHEDRON VOL.46,NO.15, 1990, PP.5263-5272 *
JPN6014015097; IWATSUKI,S.,ET AL.: '"Synthesis and Polymerization of 7-Alkoxycarbonyl-7-cyano-1,4-benzoquinone Methides"' MACROMOLECULES VOL.26,NO.6, 1993, PP.1213-1220 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816536B1 (en) 2011-12-13 2018-01-10 동우 화인켐 주식회사 Electrochromic device and method of manufacturing the same

Also Published As

Publication number Publication date
JP5585979B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5685071B2 (en) Novel ruthenium complex and method for producing optically active alcohol compound using the same as catalyst
Korff et al. Preparation of chiral triarylphosphines by Pd-catalysed asymmetric P–C cross-coupling
EP1206427B1 (en) Chiral ligands, transition-metal complexes thereof and uses thereof in asymmetric reactions
JP2003522162A (en) Chiral ferrocene phosphines and their use in asymmetric catalysis
Hou et al. Chiral ferrocenyl phosphine-phosphoramidite ligands for Cu-catalyzed asymmetric conjugate reduction of α, β-unsaturated esters
Bert et al. Chiral imidate–ferrocenylphosphanes: synthesis and application as P, N-ligands in iridium (i)-catalyzed hydrogenation of unfunctionalized and poorly functionalized olefins
Widhalm et al. A modular approach to a new class of phosphinohydrazones and their use in asymmetric allylic alkylation reactions
Widhalm et al. Chiral ferrocene derivatives containing a 2, 2′-bridged binaphthyl moiety
WO2022156320A1 (en) Method for preparing chiral alkyl compounds by asymmetric hydrogenation reaction of iron complex catalysts catalysing olefins
WO2012137460A1 (en) Novel ruthenium complex and process for producing optically active alcohol compound using same as catalyst
CN110494439B (en) Chiral biphenyl diphosphine ligand and preparation method thereof
EP1595888A1 (en) Cycloolefin phosphine ligands and their use in catalysis
JP5585979B2 (en) Optically active cyanohydrin compounds and method for producing the same
WO2012111737A1 (en) Novel compound, novel ligand, novel transition metal complexes, and catalysts consisting of novel transition metal complexes
US20050250951A1 (en) Chiral C2-symmetric biphenyls, their preparation and also metal complexes in which these ligands are present and their use as catalysts in chirogenic syntheses
JP5266495B2 (en) Cyanation catalyst and method for producing optically active cyanohydrin compounds using the same
US6583305B1 (en) Ferrocene-based diphosphonites for asymmetrical catalysis
WO2014038666A1 (en) Process for producing optically active amine
US20080139822A1 (en) Novel optically active biaryl phosphorus compound and production process thereof
JP5552716B2 (en) Optically active β-ketonitrile compound and process for producing the same
JP2008201760A (en) Optically active spiro compound and its production method
JP2013082638A (en) Optically active aminonitrile compound and method of producing the same
Lu et al. Synthesis of modified H4-BINOL ligands and their applications in the asymmetric addition of diethylzinc to aromatic aldehydes
JP2012031119A (en) Axially chiral isoquinoline derivative, its production method, and asymmetric synthesis method
JP4902952B2 (en) Chiral phosphane for use in asymmetric synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5585979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140711

LAPS Cancellation because of no payment of annual fees