JP2011099213A - Structure of headrace for water gauge - Google Patents

Structure of headrace for water gauge Download PDF

Info

Publication number
JP2011099213A
JP2011099213A JP2009252970A JP2009252970A JP2011099213A JP 2011099213 A JP2011099213 A JP 2011099213A JP 2009252970 A JP2009252970 A JP 2009252970A JP 2009252970 A JP2009252970 A JP 2009252970A JP 2011099213 A JP2011099213 A JP 2011099213A
Authority
JP
Japan
Prior art keywords
water
river
water level
conduit
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009252970A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
寛 中村
Hironori Murakami
宏典 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009252970A priority Critical patent/JP2011099213A/en
Publication of JP2011099213A publication Critical patent/JP2011099213A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Barrages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a headrace for a water gauge capable of maintaining a measurement accuracy for the water level of a river by providing, to a headrace part, a member for preventing sediment and the like from easily flowing into the headrace for the water gauge. <P>SOLUTION: In this structure of the headrace for the water gauge, to conduct water from a river, a sea, a dam, or a lake to a position where the water gauge for measuring the water level of the river or the like is installed, one end forms the headrace part 1 opening at the bottom part of the river or the like and the other end forms a water level tower 2 which is vertically installed so as to form a water surface vertically moving according to a variation in the water level of the river or the like and in which the level gauge is installed. The headrace part 1 is provided with conductive pipes 7 which project from the bottom part into water and have conductive ports 9 at the upper ends, respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、河川、湖、海、ダムの水位を測定する水位計のための水位計用導水路構造に係り、特に河川水、湖水、海水、ダムの貯水と共に導水路内に流入し、堆積する土砂の量を抑制することができる水位計用導水路構造に関する。   The present invention relates to a water level meter conduit structure for a water level meter that measures the water level of rivers, lakes, seas, and dams. The present invention relates to a waterway structure for a water level meter that can suppress the amount of earth and sand that is generated.

河川等の水位を正確に計測することは、治水や利水、自然環境の保全・整備の観点から重要である。浸水等の水災害の防止、水資源の有効活用や河川の維持流量の確保等、河川等を総合的に管理するために、その水位は連続的に計測されている。水位の計測方法の一つとして、フロート式水位計が用いられる。そして、フロート式水位計を用いる際には、フロートが河川等の流れや波等の影響を受けることを防ぎ、より正確な水位を安定して測定できるように、下部が密閉された筒状体からなる防波管内にフロートを設置する方法がとられている。 Accurate measurement of water levels in rivers and the like is important from the viewpoint of flood control, water use, and conservation and maintenance of the natural environment. The water level is continuously measured in order to comprehensively manage rivers, such as prevention of water disasters such as inundation, effective utilization of water resources and securing of river maintenance flow rate. As one of the water level measurement methods, a float type water level gauge is used. And when using a float-type water level gauge, a cylindrical body with a sealed bottom so that the float is not affected by the flow or waves of rivers, etc., and more accurate water level can be measured stably. A method of installing a float in a breakwater tube made of

防波管の側面には、河川水等を取り込むための複数の孔が設けられており、これらの孔を通して河川水等が出入りする。しかし、河川水等が流入する時に、河川水等に含まれる土砂や浮遊物等も一緒に防波管内に流入し、防波管の下部に堆積していく。そして、その堆積量が増加すると、下方向へのフロートの移動が不可能となり、正確に測定できる水位が限定されてきてしまうという問題が生じていた。そこで、例えば、特許文献1の特開2007−78561号「フロート式水位計用防波管」などが提案されている。
特許文献1には、内部に堆積した土砂やゴミなどの堆積物を容易に排出することができるフロート式水位計用防波管が記載されている。
A plurality of holes for taking in river water and the like are provided on the side surface of the breakwater pipe, and river water and the like enter and exit through these holes. However, when river water or the like flows in, the earth and sand contained in the river water or the like also flows into the wave breaker and accumulates in the lower part of the wave breaker. And when the amount of accumulation increases, the movement of the float to the downward direction becomes impossible and the water level which can be measured correctly has been limited. In view of this, for example, Japanese Patent Application Laid-Open No. 2007-78561 “Float type water level gauge breaker tube” is proposed.
Patent Document 1 describes a float type water level gauge breaker tube that can easily discharge sediments such as earth and sand accumulated inside.

このような防波管は、港湾や河口等の比較的高い水位が維持される場所において、水面上部から水面下に挿入、設置される。防波管自体が海底や河床等の水底まで達するように設置されていない場合には、防波管が達していない低水位の部分については、フロートが移動することが出来ないので測定が不可能である。また、海底等に達するように防波管が設置されている場合であっても、防波管の下部には前述のように土砂等が堆積してしまうので、フロートは低水位部分に移動すること出来なくなる。よって、防波管を利用する方法は、低水位の測定が必要とされる河川の上流や中流等での水位の計測には適さない。   Such a breakwater tube is inserted and installed from the upper surface of the water surface to the lower surface of the water in a place where a relatively high water level is maintained, such as a harbor or an estuary. If the wave breaker itself is not installed to reach the bottom of the seabed, riverbed, etc., the low water level part where the wave breaker has not reached cannot be measured because the float cannot move. It is. Even when a breakwater pipe is installed so as to reach the seabed, etc., the sediment moves as described above at the bottom of the breakwater pipe, so the float moves to the low water level part. It becomes impossible. Therefore, the method using a breakwater tube is not suitable for measuring the water level in the upstream or middle stream of a river where low water level measurement is required.

そこで、河川の上流や中流における水位の計測には、防波管を用いるのではなく、水位計が備えられている水位塔内部へ、河川の水底部から河川水を導水するフロート式水位計用導水路構造が用いられる。
図6に従来のフロート式水位計用導水路構造を河川下流側から見た概略断面図を示す。フロート式水位計用導水路構造は、導水部1bと導水路3から構成される。河床4に設けられる導水部1bは、開孔部6を有する蓋状部材5からなり、導水路3に脱着自在に取り付けられている。地中に配設される導水路3の一端は、水位塔2として立設されている。
Therefore, for the measurement of the water level upstream and in the middle of the river, instead of using a breakwater tube, it is for a float type water level meter that guides the river water from the bottom of the river to the inside of the water level tower equipped with the water level meter. A conduit structure is used.
FIG. 6 shows a schematic cross-sectional view of a conventional float-type water level meter conduit structure viewed from the downstream side of the river. The water channel structure for a float type water level meter is composed of a water conduit 1 b and a water conduit 3. The water guide portion 1 b provided on the river bed 4 includes a lid-like member 5 having an opening 6 and is detachably attached to the water guide channel 3. One end of the water conduit 3 disposed in the ground is erected as a water level tower 2.

フロート式水位計用導水路構造は、導水部1bに開孔部6を有しているので、河川水は開孔部6を通して河川流路8と導水路3内を自由に出入りできる。そのため、導水路3の水位塔部分(水位塔部3a)内に形成される水面12は、河川水位13の変動に伴って河川水位13と同一の高さの水面を維持するように上下し、常に河川水位13と同一の高さに形成される。水位塔2には、水面12に浮かんだフロート9が水面12の高さ変動に追従して上下するように、フロート式水位計10が備えられている。よって、フロート式水位計10を用いて水位塔部3a内に形成された水面12の高さを計測することにより、河川水位13を計測することが出来る。
特開2007−78561号
Since the water channel structure for the float type water level gauge has the opening 6 in the water guide 1 b, river water can freely enter and exit the river channel 8 and the water channel 3 through the hole 6. Therefore, the water surface 12 formed in the water level tower portion (water level tower portion 3a) of the water conduit 3 goes up and down so as to maintain the same water level as the river water level 13 with the fluctuation of the river water level 13, It is always formed at the same height as the river water level 13. The water level tower 2 is provided with a float-type water level gauge 10 so that the float 9 floating on the water surface 12 moves up and down following the height fluctuation of the water surface 12. Therefore, the river water level 13 can be measured by measuring the height of the water surface 12 formed in the water level tower portion 3a using the float type water level gauge 10.
JP 2007-78561 A

図7は、従来のフロート式水位計用導水路構造の導水部1bと導水路3内の堆積物20bの関係を模式的に表した説明図であり、(a)は左岸側から見た断面図を示し、(b)は河川下流側から見た断面図を示す。図7(a)に示すように、導水部1bは、開孔部6を上向きにして河床4と同一の高さになるように設けられる。そのため、河川上流から流送される土砂20a等の流下物は、開孔部6から導水路3内に落下し、又は、河川水と共に流入し、堆積していく。特に河床材料を構成するような径の大きい礫や粗砂等が、下流側に移動する際に、開孔部6から容易に落下して導水路3内に入ってしまうので、堆積物20bの量は短期間に増加し、礫等が大量に含まれることとなる。導水路3内の堆積物20bの量が増加すると、図7(b)に示すように、導水路3が堆積物20bにより閉塞されてしまうので、水位塔部3aへの河川水の出入りが妨げられる。そのため、水位塔部3a内に形成される水面12の、河川水位13変動への追従性が悪くなり、正確な水位が測れなくなるという問題が生じてしまっていた。   FIG. 7 is an explanatory view schematically showing the relationship between the water guide section 1b of the conventional water channel structure for float type water level gauge and the deposit 20b in the water guide path 3, and (a) is a cross section seen from the left bank side. A figure is shown, (b) shows sectional drawing seen from the river downstream. As shown in FIG. 7A, the water guide portion 1 b is provided so as to have the same height as the river bed 4 with the opening portion 6 facing upward. Therefore, the falling material such as earth and sand 20a sent from the upstream of the river falls into the water conduit 3 from the opening 6 or flows in along with the river water and accumulates. In particular, gravel or coarse sand having a large diameter that constitutes a riverbed material easily falls from the opening 6 and enters the water conduit 3 when moving to the downstream side. The amount will increase in a short time and will contain a large amount of gravel. When the amount of the sediment 20b in the water conduit 3 increases, the water conduit 3 is blocked by the sediment 20b as shown in FIG. 7 (b), thus preventing the river water from entering and exiting the water level tower 3a. It is done. Therefore, the followability of the water surface 12 formed in the water level tower portion 3a to the fluctuation of the river water level 13 is deteriorated, resulting in a problem that an accurate water level cannot be measured.

このように、フロート式水位計用導水路構造においても防波管を使用した場合と同様に、流下物の導水路3内への流入・堆積が問題となる。しかし、防波管を有さない構造なので、特許文献1に記載の技術は適用できず、定期的に蓋状部材5を外して、堆積物20bを取り除く作業が行われる。しかし、堆積物20bには径の大きい礫や粗砂等が大量に含まれるため、スコップ等を用いて多人数によって行わなければならず、長時間の作業であり、経済的にも負担が掛かるものであった。また、河川流路8内に入って長時間の作業を行わなければならないので、危険を伴うものでもあった。   As described above, in the float-type water level meter conduit structure, inflow and accumulation of the flowing-down substance into the conduit 3 becomes a problem as in the case where the breakwater pipe is used. However, since the structure does not have a wave breaker, the technique described in Patent Document 1 cannot be applied, and the operation of removing the deposit 20b by periodically removing the lid-like member 5 is performed. However, since the sediment 20b contains a large amount of large-diameter gravel, coarse sand, etc., it must be performed by a large number of people using a scoop or the like, which is a long time operation and is economically burdensome. It was a thing. Moreover, since it must enter the river channel 8 and work for a long time, it was dangerous.

本発明は、上述した問題点を解決するために提案されたものである。すなわち本発明の目的は、水位計用導水路内に容易に土砂等が流入することを抑制する部材を導水部に設けることにより、水位塔内に形成される水面の、河川水位変動に対する追従性の悪化を軽減し、河川水位の計測精度を保つことができる水位計用導水路構造を提供することにある。   The present invention has been proposed to solve the above-described problems. That is, an object of the present invention is to provide a member that suppresses sediment and the like from easily flowing into the waterway for the water level gauge in the water conveyance section, thereby allowing the water surface formed in the water level tower to follow the fluctuation of the river water level. Is to provide a waterway structure for a water level gauge that can reduce the deterioration of the water level and maintain the measurement accuracy of the river water level.

上記の目的を達成するための本発明の第1の態様の水位計用導水路構造は、河川、海、ダム、湖の水位を測定する水位計の設置位置まで河川等から導水するために、一端が河川等の水底部において開口する導水部(1)で、他端が河川等の水位変動に追従して上下する水面を形成するために立設し、かつ、水位計が設置された水位塔(2)となった水位計用導水路構造において、前記導水部(1)に、水底部から水中に向けて突出し、上端部に通水口(9)を有する通水管(7)が設けられていることを特徴とする。   In order to achieve the above object, the water level conduit for the water level meter according to the first aspect of the present invention is used to guide water from a river or the like to the installation position of a water level meter that measures the water level of a river, sea, dam, or lake. Water level (1) with one end open at the bottom of a river or the like, and the other end standing to form a water surface that rises and falls following changes in the water level of a river, etc. In the water channel structure for the water level meter that is a tower (2), the water conduit (1) is provided with a water conduit (7) that projects from the bottom of the water toward the water and has a water inlet (9) at the upper end. It is characterized by.

本発明の第2の態様の水位計用導水路構造は、第1の態様において、前記通水管(7)を通水管(7)の立ち上がり軸回りに回動可能な構造とし、水流の変化に伴って水流抵抗を低減させるように動くことで、通水口(9)が河川等の水の流水方向に対面しないようにしたことを特徴とする。   In the first aspect, the water conduit structure for the water level gauge according to the second aspect of the present invention has a structure that allows the water pipe (7) to be rotated around the rising axis of the water pipe (7), thereby changing the water flow. Accordingly, the water flow port (9) is prevented from facing the flowing direction of water such as a river by moving so as to reduce the water flow resistance.

本発明の第3の態様の水位計用導水路構造は、第2の態様において、前記通水管(7)に、通水管(7)の立ち上がり軸を含み、かつ、前記通水口と交差する方向に伸長する平板状のフィンを設けたことを特徴とする。   The water level meter conduit structure of the third aspect of the present invention, in the second aspect, includes a direction in which the water pipe (7) includes a rising axis of the water pipe (7) and intersects the water inlet. The present invention is characterized in that a flat plate-like fin is provided.

本発明の第4の態様の水位計用導水路構造は、第2の態様又は第3の態様において、前記通水管(7)がL字状であり、平常時に通水口(9)が下流方向を向いて開口するように設置したことを特徴とする。   In the second aspect or the third aspect, the water conduit for the water level meter according to the fourth aspect of the present invention is such that the water pipe (7) is L-shaped and the water inlet (9) is in the downstream direction at normal times. It is installed so that it may open and face.

本発明の第5の態様の水位計用導水路構造は、第2から第4のいずれか一つの態様において、前記通水管(7)に、通水口(9)の下部に流水方向と平行となる方向に伸長する遮断部材(15)が取り付けたことを特徴とする。   In any one of the second to fourth aspects, the water level meter conduit structure of the fifth aspect of the present invention is parallel to the water flow direction at the lower part of the water inlet (9) in the water pipe (7). A blocking member (15) extending in a direction is attached.

本発明の水位計用導水路構造の導水部には、水底部から水中に向けて突出し、通水口を上部に有する通水管を備えている。このような通水管を設置することにより、河川等の水の流路と水位計用導水路構造の導水路内との河川水等の自由な出入りを確保しつつ、導水路内に土砂や浮遊物(木屑やゴミ等)が流入・堆積するのを防ぐことができるものである。   The water guide portion of the water level guide conduit structure of the present invention is provided with a water pipe that protrudes from the water bottom portion toward the water and has a water inlet at the top. By installing such water pipes, earth and sand and floating in the water channel can be secured while ensuring free access of river water between the water channel of the river and the water channel of the water level meter. It can prevent inflow and accumulation of objects (wood chips, garbage, etc.).

河川の場合、上流から流送される土砂(流砂)は、その移動形式により、三つに分類される。河床近傍を転動、滑動、躍動する流砂(掃流砂)、流れの流送能力に応じて河床から浮遊したり、沈降したりする流砂(浮遊砂)、シルト・粘土等の細かい粒子からなり流水中に取り込まれ、沈殿することなく流下していく流砂(ウォッシュロード)である。また、河床材料である河床上で静止している砂粒子や掃流砂は、流れの鉛直方向の乱れに起因する力を受けると、河床から水中に取り込まれ、浮遊砂となる。
海、ダム、湖においても、河川水の流入や潮の干満や波の流れ等によって、河川の場合と同じような土砂の移動が起こる。
In the case of a river, earth and sand (sediment) sent from upstream is classified into three types according to the movement type. Flowing sand consisting of fine particles such as silt and clay, floating sand that flows, slides, and swells in the vicinity of the river bed (swivel sand), floats from the river bed depending on the flow capability of the flow (floating sand), and sediment. It is a sand that is taken in and flows down without settling (wash load). Moreover, when sand particles and scavenging sand that are stationary on the river bed material are subjected to the force caused by the vertical disturbance of the flow, they are taken into the water from the river bed and become floating sand.
In seas, dams, and lakes, sediment movement similar to rivers occurs due to inflow of river water, tides and wave flows.

本発明の水位計用導水路構造においては、河川水等を導水するための通水口が通水管の上端部にあり、河床等の水底部から離れた場所に位置する。そのため、河床等の水底部近傍を転動等しながら移動する掃流砂が、通水口を通して導水路内へ流入・堆積することを防ぐことができる。また、通水口を流水方向に対面しないように開口させれば、浮遊砂・浮遊物の導水路内への流入・堆積も抑制することも可能となる。そして、流砂等の堆積が抑制されることにより、河川水位変動に追従する水位塔内の水面の上下動が導水路内の堆積物によって妨げられるのを防ぎ、河川水位の計測精度を保つことができる。   In the water level meter conduit structure of the present invention, the water inlet for introducing river water or the like is located at the upper end of the water pipe and is located away from the water bottom such as the river bed. Therefore, it is possible to prevent the sweeping sand that moves while rolling near the bottom of the riverbed or the like from flowing into and accumulating into the water channel through the water inlet. In addition, if the water inlet is opened so as not to face the flowing water direction, it is also possible to suppress the inflow and accumulation of suspended sand and suspended matter in the water conduit. In addition, by suppressing sedimentation of liquid sand, etc., it is possible to prevent the vertical movement of the water surface in the water level tower following the river water level fluctuation from being hindered by sediments in the water conduit, and to maintain the measurement accuracy of the river water level. it can.

さらに、土砂等の流入・堆積が抑制されることにより、従来行ってきた導水路内の堆積物の取除き作業のスパンを長くとることが可能となり、経済的な負担を軽減することができる。また、前述のように礫や粗砂等(掃流砂・浮遊砂)の流入・堆積が抑えられるため、主に細砂、粘土やシルト(ウォッシュロード)からなる堆積物を除去すればよい。よって、河川等の流路内でスコップ等を用いた作業をする必要がなく、水位塔側からエアを吹いて堆積物を取除くことができるので、取除き作業が容易であり、作業の危険性も少ない。作業時間も短縮できる。   Furthermore, by suppressing the inflow and accumulation of earth and sand, it is possible to increase the span of the conventional removal work of the sediment in the water conduit, and the economic burden can be reduced. Moreover, since the inflow and accumulation of gravel, coarse sand, etc. (sweeping sand / floating sand) can be suppressed as described above, it is only necessary to remove deposits mainly composed of fine sand, clay and silt (wash load). Therefore, it is not necessary to work with a scoop etc. in the flow path of rivers, etc., and air can be blown from the water level tower side to remove deposits. There is little nature. Work time can be shortened.

本発明の実施例1の水位計用導水路構造を河川下流側から見た概略断面図である。It is the schematic sectional drawing which looked at the conduit structure for water level gauges of Example 1 of the present invention from the river downstream side. 本発明の実施例1の導水部を模式的に表した説明図である。It is explanatory drawing which represented the water conveyance part of Example 1 of this invention typically. 実施例1のその他の例であり、略逆J字状の通水管7bの概略断面図を示す。It is another example of Example 1, and shows schematic sectional drawing of the substantially reverse J-shaped water flow pipe 7b. 本発明の実施例2の水位計用導水路構造の通水管の動作を模式的に表したもので(a)は正面図、(b)は側面図、(c)は平面図である。The operation | movement of the water flow pipe of the waterway structure for water level gauges of Example 2 of this invention is represented typically, (a) is a front view, (b) is a side view, (c) is a top view. 本発明の実施例3の水位計用導水路構造の導水部1aであり、(a)は左岸側から見た側面図であり、(b)は正面図である。It is the water conveyance part 1a of the water channel structure for water level gauges of Example 3 of this invention, (a) is the side view seen from the left bank side, (b) is a front view. 従来のフロート式水位計用導水路構造を河川下流側から見た概略断面図である。It is the schematic sectional drawing which looked at the conventional water channel structure for float type water level gauges from the river downstream side. 従来のフロート式水位計用導水路構造の導水部と導水路内の堆積物の関係を模式的に表した説明図であり、(a)は左岸側から見た断面図を示し、(b)は河川下流側から見た断面図を示す。It is explanatory drawing which represented typically the relationship between the water guide part of the conventional water channel structure for float type water level gauges, and the deposit in a water channel, (a) shows sectional drawing seen from the left bank side, (b) Shows a cross-sectional view seen from the downstream side of the river.

本発明の水位計用導水路構造は、上端部に通水口を有する通水管を導水部に備えることにより、河川等の水の出入りを妨げることなく、流砂等が導水路内へ流入・堆積することを抑制するものである。   The conduit structure for a water level meter according to the present invention is provided with a water conduit having a water inlet at the upper end portion thereof, so that sand flows and the like flows into and accumulates in the water conduit without hindering the flow of water in a river or the like. This is what suppresses this.

以下、本発明の好ましい実施の形態を河川の場合について図面に基づいて説明する。
図1は実施例1の水位計用導水路構造を河川下流側から見た概略断面図であり、図2は、実施例1の導水部を模式的に表した説明図である。
Hereinafter, a preferred embodiment of the present invention will be described based on the drawings for a river.
FIG. 1 is a schematic cross-sectional view of a water level meter conduit structure of Example 1 as viewed from the downstream side of a river, and FIG. 2 is an explanatory diagram schematically showing a water conduit part of Example 1.

図1に示すように、実施例1の水位計用導水路構造は、河川下流側に向けて通水口を開口させたL字状の通水管を導水部に配設した水位計用導水路構造である。
実施例1の水位計用導水路構造は、その一端が河川等の水底部において開口する導水部1aで、他端が河川等の水位変動に追従して上下する水面を形成するために立設する水位塔2を構成している、導水路3を備えた構造である。導水部1aは、水底部である河床4に設けられた蓋状部材5と、一端を蓋状部材5の開孔部6に配設された略逆L字状の通水管7aを備える。通水管7aは、河川流路8側に突出するように備えられ、通水口9を河川下流側に向けて開口している。導水路3は、地下を通り川岸の所要の位置で地中から鉛直方向上向きに屈曲され、測定に必要な高さを有するような水位塔2を構成するように立設される。水位塔2には、フロート10を有するフロート式水位計11が備えられている。なお、水底部とは、図1に示す河床4のような平坦な部分に限らず、水底から岸方向に向かって傾斜して行く部分も含む。
As shown in FIG. 1, the water level meter conduit structure of Example 1 is a water level meter conduit structure in which an L-shaped water pipe having a water passage opening toward the downstream side of the river is disposed in the water conduit. It is.
The conduit structure for the water level meter of the first embodiment is standing in order to form a water surface that has one end opened at the bottom of a river or the like, and the other end follows a water level change such as a river. It is the structure provided with the water conduit 3 which comprises the water level tower 2 to perform. The water guide portion 1 a includes a lid-like member 5 provided on the river bed 4, which is a water bottom, and a substantially inverted L-shaped water pipe 7 a having one end disposed in the opening 6 of the lid-like member 5. The water flow pipe 7a is provided so as to protrude toward the river flow path 8 and opens the water flow opening 9 toward the downstream side of the river. The water guide channel 3 is erected so as to constitute a water level tower 2 that is bent vertically upward from the ground at a required position on the river bank through the basement and has a height necessary for measurement. The water level tower 2 is provided with a float type water level gauge 11 having a float 10. In addition, a water bottom part is not restricted to a flat part like the river bed 4 shown in FIG. 1, but the part which inclines toward the shore direction from a water bottom is also included.

通水管7aは、河川流路8に対して開口した通水口9を有するので、河川水は通水管7aを通り河川流路8と導水路3内を出入り自在に移動できる。導水された河川水により、導水路3の水位塔2内に配設される部分(水位塔部3a)に形成された水面12は、河川水位13の変動に伴って、河川水位13と同一の高さを維持するように上下するので、常に河川水位13と同一の高さになる。また、フロート10は水面12の高さ変動に追従して上下する。よって、水位塔部3a内に形成された水面12の高さをフロート式水位計11で計測することにより、河川の流れや渦の影響を受けずに正確な河川水位13を安定して計測することが出来る。   Since the water pipe 7a has the water inlet 9 opened with respect to the river flow path 8, river water can freely move in and out of the river flow path 8 and the water conduit 3 through the water pipe 7a. The water level 12 formed in the portion (water level tower portion 3a) disposed in the water level tower 2 of the water channel 3 by the introduced river water is the same as the river water level 13 as the river water level 13 fluctuates. Since it goes up and down to maintain the height, it is always the same height as the river water level 13. The float 10 moves up and down following the height fluctuation of the water surface 12. Therefore, by measuring the height of the water surface 12 formed in the water level tower portion 3a with the float type water level meter 11, the accurate river water level 13 can be stably measured without being affected by the flow or vortex of the river. I can do it.

河川においては、上流から流砂や浮遊物等の流下物が河川水の流れに乗って運ばれてくる。前述のように導水部1aに通水管7aが備えられていない場合は、開孔部6が河床4と同一の高さにあり、その孔が上向きであるために、それらの流下物が直接開孔部6から導水路3内に落下する。そのため、短期間で堆積物の量が増えて導水路3は閉塞してしまい、河川水位13の変動に対する水面12の追従性が悪化し、正確な水位を計測することができなくなってしまうという問題が生じていた。   In rivers, falling sediments such as sediment and suspended solids are carried on the river water from upstream. As described above, when the water conduit 1a is not provided in the water guide section 1a, the opening 6 is at the same height as the river bed 4 and the hole is facing upward, so that the flow-through is directly opened. It falls into the water conduit 3 from the hole 6. For this reason, the amount of sediment increases in a short period of time, and the water conduit 3 is blocked, the followability of the water surface 12 to the fluctuation of the river water level 13 is deteriorated, and the accurate water level cannot be measured. Has occurred.

図2には、流砂20aを構成する、掃流砂21と浮遊砂22とウォッシュロード23を模式的に示している。図2に示すように、河川水が出入りする通水口9を、河川流路8側に突出させた通水管7aの上端部に配置させることにより、河床4に沿って河床4近傍を移動する掃流砂21が導水路3内へ落下するのを防ぐことができる。さらに、掃流砂21の量が増え、通水口9近くを移動する場合でも、掃流砂21は下流方向に移動するので、通水管7aの通水口9を河川下流側に向けることにより、通水口9への流入をより効果的に抑制できる。また、通水管7aの上流側付近の河床4から供給され、下流方向に浮遊して移動する浮遊砂22についても、通水口9を河川下流側に向けることにより、水流に乗って直接流入することを妨げることができる。   In FIG. 2, the sweeping sand 21, the floating sand 22, and the wash load 23 which comprise the flowing sand 20a are shown typically. As shown in FIG. 2, the water inlet 9 through which river water enters and exits is arranged at the upper end of the water pipe 7 a that protrudes toward the river channel 8, so that the sweep that moves in the vicinity of the river bed 4 along the river bed 4 is performed. The falling sand 21 can be prevented from falling into the water conduit 3. Further, even when the amount of the scavenging sand 21 increases and moves near the water inlet 9, the scavenging sand 21 moves in the downstream direction. Therefore, by directing the water inlet 9 of the water conduit 7a toward the downstream side of the river, the water inlet 9 Can be more effectively suppressed. In addition, the floating sand 22 supplied from the river bed 4 near the upstream side of the water conduit 7a and floating and moving in the downstream direction can directly flow in on the water flow by directing the water inlet 9 toward the downstream side of the river. Can be disturbed.

その結果、導水路3内の堆積物20bの増加による、河川水位13変動に対する水面12の追従性の悪化を防ぐことができ、河川水位13の計測精度を保つことが可能となる。また、通水管7aを設けることにより、堆積物20bの量が低減するので、導水路3内の堆積物20b除去作業の時間を短縮、あるいは、除去作業のスパンを長く取ることが可能となる。さらに礫や粗砂からなる比較的大きな径を有する掃流砂21や浮遊砂22の流入・堆積を防げるので、堆積物20bは主として粘土やシルト等(ウォッシュロード23)から構成され、除去作業が容易となる。   As a result, it is possible to prevent deterioration of the followability of the water surface 12 with respect to fluctuations in the river water level 13 due to an increase in the sediment 20b in the water conduit 3, and the measurement accuracy of the river water level 13 can be maintained. Moreover, since the amount of the deposit 20b is reduced by providing the water pipe 7a, it is possible to shorten the time for removing the deposit 20b in the water conduit 3 or to increase the span of the removing operation. Further, since the inflow and accumulation of the scavenging sand 21 and floating sand 22 having a relatively large diameter made of gravel and coarse sand can be prevented, the sediment 20b is mainly composed of clay, silt, etc. (wash load 23), and the removal work is easy. It becomes.

導水部1aに備えられる通水管7aの形状は、略逆L字状に限らず、水底部から水中に向けて突出し、上端部に通水口を有する通水管であれば良い。図3は、実施例1のその他の例であり、略逆J字状の通水管7bの概略断面図を示す。   The shape of the water pipe 7a provided in the water guide section 1a is not limited to a substantially inverted L shape, and may be any water pipe that protrudes from the water bottom portion toward the water and has a water passage at the upper end portion. FIG. 3 is another example of the first embodiment, and shows a schematic cross-sectional view of a substantially inverted J-shaped water pipe 7b.

図3に示すように通水管7bは略逆J字状であり、通水管7bの通水口9側に鉛直方向に伸びる端部71を有していることで効果的に流砂等の流入を防ぐことができるものである。
通水管7bは通水口9が水流方向に対面していないので、通水管7b内の端部71における水の流れは、河川の水流の影響をほとんど受けない。そして、急激な河川水位の変化がない限り、通水管7b内の通水口9から入った水は、端部71をゆっくり移動する。そのため、河川水と共に通水口9に流入した流砂20a等は、端部71において鉛直方向上向きに移動する間(通水管7bの湾曲部分を通過する前)に、砂粒子に作用する重力の方が水流による力より大きくなったことにより沈降して行くため、図3に示すように導水路内に流入することを抑制することができる。
As shown in FIG. 3, the water pipe 7b has a substantially inverted J shape, and has an end portion 71 extending in the vertical direction on the water inlet 9 side of the water pipe 7b, thereby effectively preventing inflow of sand and the like. It is something that can be done.
Since the water passage 9 does not face the water flow direction in the water pipe 7b, the water flow at the end 71 in the water pipe 7b is hardly affected by the water flow of the river. As long as there is no sudden change in the river water level, the water that has entered from the water inlet 9 in the water pipe 7b slowly moves through the end 71. Therefore, the gravity sand that acts on the sand particles while flowing into the water inlet 9 together with the river water moves upward in the vertical direction at the end 71 (before passing through the curved portion of the water pipe 7b). Since it sinks by becoming larger than the force by a water flow, as shown in FIG. 3, it can suppress flowing in into a water conduit.

通水口9の形状は円形に限らず、また、通水管7の形状も円筒状に限らない。河川水が自由に出入りできる形状であればよい。通水口9の大きさや河床からの高さについては、測定が必要となる河川等の水位を考慮しなければならないが、設置する場所における水底の土砂や流下物の種類や量によって様々に設定することができる。   The shape of the water flow opening 9 is not limited to a circle, and the shape of the water flow pipe 7 is not limited to a cylindrical shape. Any shape that allows river water to freely enter and exit is acceptable. As for the size of the water inlet 9 and the height from the river bed, it is necessary to consider the water level of the river, etc. that needs to be measured. be able to.

導水路3の形状は、河川水を水位塔部3aに導水できる形状のものであれば良く、限定されない。渇水状態が想定される場所においては、導水路3内に空気が流入することが考えられるので、導水路3の水平方向に埋設された地中部(3b)においては、水位塔2側から導水部1a側に向かって高くなるように、天井部を傾斜させることが望ましい。地中部3b内に流入・滞留していた空気が、フロート9が浮かべられている水位塔2の方向に流れ、気泡となって水位塔部3aを上昇すると、水面12が不安定になり正確な水位が計れなくなるからである。また、導水路3の導水部1a下方に位置する部分(3c)は、集砂部を設けるなど、その容積を大きくすれば、導水路3内が堆積物20bにより閉塞されてしまうことをより長い期間防ぐことが出来る。   The shape of the water conduit 3 is not limited as long as it has a shape capable of guiding river water to the water level tower 3a. In places where drought conditions are assumed, it is conceivable that air flows into the water conduit 3. Therefore, in the underground portion (3 b) embedded in the horizontal direction of the water conduit 3, the water guide portion from the water level tower 2 side. It is desirable to incline the ceiling so as to increase toward the 1a side. When the air flowing in and staying in the underground part 3b flows in the direction of the water level tower 2 where the float 9 is floated and becomes a bubble and rises in the water level tower part 3a, the water surface 12 becomes unstable and accurate. This is because the water level cannot be measured. Further, the portion (3c) located below the water guide portion 1a of the water guide passage 3 is longer that the inside of the water guide passage 3 is blocked by the deposit 20b if the volume is increased, for example, by providing a sand collecting portion. The period can be prevented.

実施例2の水位計用導水路構造は、フィンを備えたL字状の通水管7dを導水部1aの開孔部6に回動可能に配設したものである。図4は実施例2の水位計用導水路構造の通水管7dの動作を模式的に表したもので(a)は正面図、(b)は側面図、(c)は平面図である。   In the water channel structure for the water level meter of the second embodiment, an L-shaped water conduit 7d having fins is rotatably disposed in the opening 6 of the water conduit 1a. 4A and 4B schematically show the operation of the water conduit 7d of the water conduit structure for the water level gauge of Example 2, where FIG. 4A is a front view, FIG. 4B is a side view, and FIG. 4C is a plan view.

通水管7dは、導水部1aにおいて回動可能な構造となっており、図4(a)、(b)に示すように、L字状の通水管にその屈曲部の隙間を埋めるように略三角形平板形状のフィン14が固設させたものである。図4(c)に示すように、通水管7dは川の流向が変化すると流れに対する抵抗を低減させるように回動する。河川の流れが速い場合であれば、フィン14がなくても、通水管は流体抵抗を軽減するように、通水口9を水の流れていく方向に向けるように動くが、川の流れが遅い場合には、その動きは鈍くなる。しかし、フィン14を固設してあるため、通水管7dは水流の変化に従って容易に、かつ、素早く動けるようになる。   The water conduit 7d has a structure that can rotate in the water conduit 1a. As shown in FIGS. 4 (a) and 4 (b), the L-shaped water conduit is substantially filled with a gap between the bent portions. Triangular flat fins 14 are fixed. As shown in FIG. 4 (c), the water conduit 7d rotates so as to reduce the resistance to the flow when the flow direction of the river changes. If the flow of the river is fast, even if there is no fin 14, the water pipe moves so that the water inlet 9 is directed in the direction of water flow so as to reduce fluid resistance, but the flow of the river is slow. In some cases, the movement becomes dull. However, since the fins 14 are fixed, the water pipe 7d can move easily and quickly according to the change of the water flow.

河川の流れは乱流であり、河川の流量、流速、河床の形状等様々な要因が絡み合い、渦を形成する等、複雑に変化する。また、河川流路内に突出している通水管7dに起因して、カルマン渦や馬蹄形渦等が生じたりもする。通水管7dを導水部1aに回動可能に取り付ければ、このような河川の複雑な流れ及びその流れの変化に対応するように、通水管7dの開口部(通水口9)の向きを常に水流方向に対面しない方向に向けることができる。その結果、掃流砂等の流下物が流れ込むことをより効率的に防ぐことが可能となる。   The river flow is turbulent, and various factors such as the river flow rate, flow velocity, and river bed shape are intertwined to form complex vortices. In addition, a Karman vortex, a horseshoe vortex, or the like may occur due to the water pipe 7d protruding into the river channel. If the water pipe 7d is pivotally attached to the water guide section 1a, the direction of the opening (the water inlet 9) of the water pipe 7d is always changed to correspond to such a complicated flow of the river and the change of the flow. It can be directed in a direction that does not face the direction. As a result, it is possible to more efficiently prevent the falling material such as the sweeping sand from flowing in.

通水管7dの形状は、L字状に限らない。通水口9を流水方向に対面しないように回動可能に配設できるものであれば良い。また、フィンの形状や位置も、通水管7dが水流の変化に伴って容易に回動するためのものであれば本実施例の形状等に限られない。   The shape of the water flow pipe 7d is not limited to the L shape. What is necessary is just to be able to arrange | position so that the water flow opening 9 may turn so that it may not face in a flowing water direction. Also, the shape and position of the fins are not limited to the shape of the present embodiment as long as the water pipe 7d can be easily rotated with a change in the water flow.

図5は実施例3の水位計用導水路構造の導水部1aであり、(a)は左岸側から見た側面図であり、(b)は正面図を示す。実施例1の水位計用導水路構造と通水管の形状のみが異なるものである。   5A and 5B show the water guide portion 1a of the water level indicator conduit structure of Example 3, wherein FIG. 5A is a side view seen from the left bank side, and FIG. 5B is a front view. Only the shape of the water conduit is different from the water conduit structure for the water level gauge of the first embodiment.

図5に示すように、本実施例の通水管7eは、通水口9と蓋状部材5の間に遮断部材15が設けられている。遮断部材15は、板状であって、長手方向が直線になるように鉛直方向上向きに凸状に湾曲したものである。遮断部材15の一端には平面視略円形の貫通孔があり、通水管7eに嵌め込むように配設され、遮断部材15の長手方向の中央部は、通水管7eの通水口9下部の周面に接している。   As shown in FIG. 5, in the water conduit 7 e of this embodiment, a blocking member 15 is provided between the water inlet 9 and the lid-like member 5. The blocking member 15 has a plate shape and is curved in a convex shape upward in the vertical direction so that the longitudinal direction is a straight line. One end of the blocking member 15 has a through hole having a substantially circular shape in plan view, and is disposed so as to be fitted into the water pipe 7e. The central portion of the blocking member 15 in the longitudinal direction is the periphery of the lower part of the water inlet 9 of the water pipe 7e. It touches the surface.

豪雨などにより、河川の流れが速くなると河床から供給される浮遊砂22の量が増える。しかし、通水管7eの通水口9の下方に遮断部材15を備えれば、遮断部材15が覆いとなるので、図5(a)に示すように、通水管7e付近の河床から供給される浮遊砂22が、通水口9に近づき、通水口9から通水管7e内へ流入することを防ぐことができる。また、遮断部材15は河床近傍で躍動等する掃流砂21が流れ込むことも妨げることができる。よって、通水口9の河床4からの高さは低くても浮遊砂22や掃流砂21の流入を防ぐ効果が得られることから、河川の水位13が低い場所においても計測が可能である。   When the river flows faster due to heavy rain, the amount of suspended sand 22 supplied from the riverbed increases. However, if the blocking member 15 is provided below the water inlet 9 of the water pipe 7e, the water blocking member 15 is covered. Therefore, as shown in FIG. 5A, the floating supplied from the river bed in the vicinity of the water pipe 7e. It is possible to prevent the sand 22 from approaching the water inlet 9 and flowing into the water pipe 7e from the water inlet 9. In addition, the blocking member 15 can also prevent the sweeping sand 21 that swells in the vicinity of the river bed from flowing. Therefore, even if the height of the water inlet 9 from the river bed 4 is low, the effect of preventing the inflow of the floating sand 22 and the scavenging sand 21 can be obtained. Therefore, measurement is possible even in a place where the water level 13 of the river is low.

遮断部材15の上面は前述のように湾曲していることが望ましい。河川水等の流れが遅くなったときには、流砂20a等が遮断部材15上に沈積していく。遮断部材15上に堆積した流砂20a等は通水口9を塞いだり、通水口9から導水路内に流入したりする。しかし、図5(b)に示すように湾曲形状であれば、流砂20aは遮断部材15上から転がり落ちるので、堆積することを防ぐことができる。さらに、本実施例の遮断部材15は、その形状から前述のフィンの役割も兼ねる。
遮断部材15は、板状に限られず、浮遊砂22や掃流砂21の流入を防ぐ効果が得られる形状であればよい。例えば、遮断部材を、遮断部材15の鉛直方向下側から蓋状部材5までの空間をも塞ぐ略半円柱形の形状とし、蓋状部材5に直接配設すれば、通水口9の下方には土砂等が堆積しない。河床材料自体がないので、通水口9付近を流れる浮遊砂22や掃流砂21の量自体を少なくすることができる。
The upper surface of the blocking member 15 is preferably curved as described above. When the flow of river water or the like becomes slow, the sediment 20a or the like is deposited on the blocking member 15. Flowing sand 20a and the like deposited on the blocking member 15 block the water inlet 9 and flow into the water conduit from the water inlet 9. However, if it is a curved shape as shown in FIG.5 (b), since the flowing sand 20a rolls off from on the interruption | blocking member 15, it can prevent that it accumulates. Further, the blocking member 15 of this embodiment also serves as the above-described fin due to its shape.
The blocking member 15 is not limited to a plate shape, but may be any shape that can prevent the floating sand 22 and the flowing sand 21 from flowing in. For example, if the blocking member has a substantially semi-cylindrical shape that also covers the space from the lower side in the vertical direction of the blocking member 15 to the lid-like member 5 and is disposed directly on the lid-like member 5, There is no sediment. Since there is no riverbed material itself, it is possible to reduce the amount of floating sand 22 and scavenging sand 21 flowing near the water inlet 9.

実施例1から3に記載の通水管は、設置箇所の環境、流速、逆流の有無等を考慮して、種々組み合わせて使用することも可能である。
また、河川等の水位計測に限られず、海、ダム、湖の水位、水力発電の水路の水位等、水位計用導水路構造が設けられる所であれば、様々な水位の計測に適用できる。また、水位の計測には、フロート式水位計以外に、超音波式水位計やレーザ式水位計等を用いることが可能である。
The water pipes described in Examples 1 to 3 can be used in various combinations in consideration of the environment of the installation location, the flow velocity, the presence or absence of backflow, and the like.
Moreover, the present invention is not limited to the measurement of water levels in rivers and the like, and can be applied to measurement of various water levels as long as a water level meter conduit structure such as the water level of seas, dams, lakes, and hydroelectric power generation channels is provided. In addition to the float type water level meter, an ultrasonic water level meter, a laser type water level meter, or the like can be used for measuring the water level.

1a,b 導水部
2 水位塔
3 導水路
7a〜e 通水管
9 通水口
12 水位塔内部に形成される水面
13 河川水位
1a, b Water transfer section 2 Water level tower 3 Water transfer paths 7a to e Water pipe 9 Water inlet 12 Water surface formed inside the water level tower 13 River water level

Claims (5)

河川、海、ダム、湖の水位を測定する水位計の設置位置まで河川等から導水するために、一端が河川等の水底部において開口する導水部(1)で、他端が河川等の水位変動に追従して上下する水面を形成するために立設し、かつ、水位計が設置された水位塔(2)となった水位計用導水路構造において、
前記導水部(1)に、水底部から水中に向けて突出し、上端部に通水口(9)を有する通水管(7)を設けた、ことを特徴とする水位計用導水路構造。
In order to conduct water from a river, etc. to the position where a water level gauge that measures the water level of rivers, seas, dams, lakes, etc., one end is a water conveyance section (1) that opens at the bottom of the river, etc., and the other end is the water level of a river, etc. In the waterway structure for the water level gauge, which is erected to form a water surface that rises and falls following the fluctuation, and has become a water level tower (2) where the water level gauge is installed,
A water conduit structure for a water level meter, characterized in that the water conduit (1) is provided with a water conduit (7) protruding from the bottom of the water toward the water and having a water inlet (9) at the upper end.
前記通水管(7)を通水管(7)の立ち上がり軸回りに回動可能な構造とし、水流の変化に伴って水流抵抗を低減させるように動くことで、通水口(9)が河川等の水の流水方向に対面しないようにした、ことを特徴とする請求項1に記載の水位計用導水路構造。   The water pipe (7) is structured to be rotatable around the rising axis of the water pipe (7), and moves so as to reduce the water flow resistance in accordance with the change of the water flow, so that the water inlet (9) is connected to a river or the like. 2. The conduit structure for a water level meter according to claim 1, wherein the water channel is configured not to face in the direction of water flow. 前記通水管(7)に、通水管(7)の立ち上がり軸を含み、かつ、前記通水口と交差する方向に伸長する平板状のフィンを設けた、ことを特徴とする請求項2に記載の水位計用導水路構造。   The flat pipe-like fin which includes the rising axis of the water pipe (7) and extends in a direction intersecting with the water inlet is provided in the water pipe (7). Water conduit structure for water level gauge. 前記通水管(7)がL字状であり、通水口(9)が下流方向を向いて開口するように設置した、ことを特徴とする請求項2又は3に記載の水位計用導水路構造。   The water level meter conduit structure according to claim 2 or 3, characterized in that the water pipe (7) is L-shaped and the water inlet (9) is installed to open in the downstream direction. . 前記通水管(7)に、通水口(9)の下部に流水方向と平行となる方向に伸長する遮断部材(15)が取り付けた、ことを特徴とする請求項2乃至4のいずれか一項に記載の水位計用導水路構造。   The blocking pipe (7) extended in the direction parallel to a flowing water direction was attached to the said water pipe (7) at the lower part of the water flow opening (9), The any one of Claim 2 thru | or 4 characterized by the above-mentioned. The waterway structure for the water level meter described in 1.
JP2009252970A 2009-11-04 2009-11-04 Structure of headrace for water gauge Withdrawn JP2011099213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252970A JP2011099213A (en) 2009-11-04 2009-11-04 Structure of headrace for water gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252970A JP2011099213A (en) 2009-11-04 2009-11-04 Structure of headrace for water gauge

Publications (1)

Publication Number Publication Date
JP2011099213A true JP2011099213A (en) 2011-05-19

Family

ID=44190609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252970A Withdrawn JP2011099213A (en) 2009-11-04 2009-11-04 Structure of headrace for water gauge

Country Status (1)

Country Link
JP (1) JP2011099213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097089B1 (en) * 2019-04-10 2020-04-03 한국바이오이엔지 주식회사 Water level measurement device for river
CN111617524A (en) * 2020-06-22 2020-09-04 河南黄河水文勘测设计院 Float type water level self-recording platform desilting basin structure and dredging method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097089B1 (en) * 2019-04-10 2020-04-03 한국바이오이엔지 주식회사 Water level measurement device for river
CN111617524A (en) * 2020-06-22 2020-09-04 河南黄河水文勘测设计院 Float type water level self-recording platform desilting basin structure and dredging method thereof

Similar Documents

Publication Publication Date Title
CA2777313C (en) Shaft power plant
US9109571B2 (en) Shaft power plant
JP2016519233A (en) Lost sand restoration fixed structure unit, structure and restoration method
Sharma et al. Experimental study on vertical velocity and submergence depth near Piano Key weir
JP2008274728A (en) Hinged sluice gate
GB2488809A (en) Buoyant weir
Dreyer Investigating the influence of low-level outlet shape on the scour cone formed during pressure flushing of sediments in hydropower plant reservoirs
JP2011099213A (en) Structure of headrace for water gauge
KR200418822Y1 (en) Water-power generating apparatus
Nishihata et al. Topography change due to the Dec 2004 Indian Ocean Tsunami—Field and numerical study at Kirinda port, Sri Lanka
KR20070093225A (en) Water-power generating method and apparatus
Sui et al. An experimental study into local scour in a channel caused by a 90 bend
Camino et al. Use of a stacked drop manhole for energy dissipation: A case study in Edmonton, Alberta
JP2002167740A (en) Hydraulic power generating method
Zuo et al. Seabed deposition and erosion change and influence factors in the Yangshan Deepwater Port over the years
Bratko et al. Water intake structures for hydropower
Hudson The impact of sediment on open channel flow measurement in selected UK experimental basins
Rachelly et al. Bed-Load Diversion with a Vortex Tube System
Mustaffa et al. Dealing with Supercritical Flow in Culvert
Karimi Chahartaghi et al. Experimental study on local scour downstream of arced piano-key weirs
Belikov et al. Use of Accumulation Basins to Reduce Silting of Reservoirs of Hydroelectric Power Plants Located on Mountain Rivers
Schneider et al. Determination of parameters for venting turbidity currents through a reservoir
CN111197302B (en) Energy dissipation structure of water delivery hole
CN112257139B (en) Riverway mathematical model pier generalization method based on glass water tank test data
Van der Spuy Hydraulic optimisation of a postulated sediment flushing system in low-level dam outlets

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120117

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108