JP2011097674A - Power supply device for electric vehicle - Google Patents

Power supply device for electric vehicle Download PDF

Info

Publication number
JP2011097674A
JP2011097674A JP2009246774A JP2009246774A JP2011097674A JP 2011097674 A JP2011097674 A JP 2011097674A JP 2009246774 A JP2009246774 A JP 2009246774A JP 2009246774 A JP2009246774 A JP 2009246774A JP 2011097674 A JP2011097674 A JP 2011097674A
Authority
JP
Japan
Prior art keywords
inverter
power supply
supply device
electric vehicle
filter capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246774A
Other languages
Japanese (ja)
Inventor
Hiroaki Otani
浩昭 尾谷
Hirotada Kira
浩忠 吉良
Tomoaki Ishikawa
倫章 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009246774A priority Critical patent/JP2011097674A/en
Publication of JP2011097674A publication Critical patent/JP2011097674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device for electric vehicle that prevents a CHS unit which controls a charge current of a filter capacitor from being enlarger or complicated, and prevents fuse meltdown and substation trip even if a ground fault occurs in an IGBT or the like in the CHS unit. <P>SOLUTION: The filter capacitor 8 is connected to a DC terminal of an inverter 12 in parallel therewith. The CHS unit 15 includes a charging resistor 9 of the filter capacitor 8 and a CHR short-circuit switch 10, and is connected between a DC terminal on the negative side of the inverter 12 and the ground. Since an overhead wire voltage is not directly applied to the CHS unit 15, a short-circuit current does not flow even if a ground fault occurs in the CHS unit 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、架線から供給される直流電力を3相交流電力に変換し、電気車に装備された機器に電力を供給する電気車用電源装置に関する。   The present invention relates to a power supply device for an electric vehicle that converts DC power supplied from an overhead wire into three-phase AC power and supplies the power to equipment installed in the electric vehicle.

一般に、電気車用電源装置においては、架線から電力を受け取り、電気車の照明や空調装置などに電源を供給する。この電気車用電源装置は、電圧検出器にて架線電圧の有無を取得し、電圧が印加されている場合に動作を開始する。   In general, in an electric vehicle power supply device, electric power is received from an overhead wire, and the electric power is supplied to an electric vehicle illumination, an air conditioner, and the like. This electric vehicle power supply device acquires the presence or absence of an overhead wire voltage with a voltage detector, and starts operation when a voltage is applied.

図3は、従来の電気車用電源装置の回路構成を示す図である。   FIG. 3 is a diagram showing a circuit configuration of a conventional electric vehicle power supply device.

架線1からパンタグラフ2を通して電気車用電源装置3に電力が供給され、電源装置3は車輪4等を介して接地されている。電気車用電源装置3は、過電流時の保護用ヒューズ5、接触器6、入力フィルタリアクトル7、チャージングスイッチ(CHS)ユニット15、入力フィルタコンデンサ(FC)8、インバータ12、交流フィルタ13、変圧器14等で構成される。変圧器14の二次側には、電気車の空調、照明などの負荷が接続される。   Electric power is supplied from the overhead line 1 to the power supply device 3 for the electric vehicle through the pantograph 2, and the power supply device 3 is grounded through the wheels 4 and the like. The electric vehicle power supply device 3 includes an overcurrent protection fuse 5, a contactor 6, an input filter reactor 7, a charging switch (CHS) unit 15, an input filter capacitor (FC) 8, an inverter 12, an AC filter 13, Consists of a transformer 14 and the like. The secondary side of the transformer 14 is connected to loads such as air conditioning and lighting of the electric vehicle.

このような電気車用電源装置では、入力フィルタコンデンサ8に電荷を蓄積する際に、突入電流を抑制するため、一定時間は抵抗9を介してコンデンサ8に架線電圧が供給される回路構成としている。電荷が蓄積された後、抵抗9を短絡する回路部があり、この部分は例えばCHSユニットと呼ばれる。CHSユニット15内には、上記短絡動作や逆流阻止のための半導体素子及び抵抗が設けられている。すなわちCHSユニット15は、図3に示すように、CHR短絡スイッチ(CHS)10及び逆流阻止ダイオード(BD)11等の半導体素子、及びFC充電用抵抗器(CHR)9を含んでいる。この半導体素子には、GTOやサイリスタ、IGBTなどを用いるのが一般的である。   Such an electric vehicle power supply device has a circuit configuration in which an overhead line voltage is supplied to the capacitor 8 through the resistor 9 for a certain period of time in order to suppress an inrush current when electric charge is accumulated in the input filter capacitor 8. . There is a circuit part that short-circuits the resistor 9 after the electric charge is accumulated, and this part is called, for example, a CHS unit. The CHS unit 15 is provided with a semiconductor element and a resistor for the short circuit operation and the backflow prevention. That is, as shown in FIG. 3, the CHS unit 15 includes semiconductor elements such as a CHR short-circuit switch (CHS) 10 and a backflow blocking diode (BD) 11, and an FC charging resistor (CHR) 9. As this semiconductor element, GTO, thyristor, IGBT, or the like is generally used.

短絡スイッチ10として使用されるIGBTには、圧接型IGBTとモジュール型IGBTがある。CHSユニット15に内蔵する短絡スイッチ10として、モジュール型のIGBTを用いる場合、過電圧、過電流などによりモジュール型IGBTが故障すると、IGBTの内部配線とCHSユニット15のフレームがショートすることがある。   IGBTs used as the short-circuit switch 10 include a pressure contact type IGBT and a module type IGBT. When a module type IGBT is used as the shorting switch 10 built in the CHS unit 15, if the module type IGBT fails due to overvoltage, overcurrent, etc., the internal wiring of the IGBT and the frame of the CHS unit 15 may be short-circuited.

図4はIGBTを2回路有するモジュール型IGBTを示す図であり、(a)は概観図、(b)は(a)に示すIGBTの内部配線の様子を示す図である。尚、図4(b)の右側のIGBT回路では、短絡故障により配線及び端子などが破壊されている様子が示されている。   4A and 4B are diagrams showing a module type IGBT having two IGBTs. FIG. 4A is a schematic view, and FIG. 4B is a diagram showing a state of internal wiring of the IGBT shown in FIG. Note that the IGBT circuit on the right side of FIG. 4B shows a state in which wiring and terminals are destroyed due to a short circuit failure.

このような短絡故障が発生した際、CHSユニット15が、絶縁せずに電気車用電源装置に取付けられていたり、絶縁耐圧レベルが低かった場合は、電気車用電源装置の地絡となり、ヒューズ溶断、変電所のトリップに至る可能性がある。ここで変電所のトリップとは、架線に過電流が流れ、過電流保護のために、変電所の遮断スイッチがOFFする状態を示す。   When such a short-circuit failure occurs, if the CHS unit 15 is attached to the electric vehicle power supply without being insulated, or if the withstand voltage level is low, it becomes a ground fault of the electric vehicle power supply, and the fuse It may lead to fusing and substation trips. Here, the trip of the substation indicates a state in which an overcurrent flows through the overhead line and the cutoff switch of the substation is turned off for overcurrent protection.

地絡へ至るメカニズムの一例を示すと次のようになる。すなわち、モジュール型IGBTの端子部分と、銅プレート(モジュールのケース下にある取付用の板で、CHSユニットフレームに取り付けられる部分)の間には、元々絶縁抵抗が数十MΩ〜数百MΩ以上あったものが、品質劣化により数kΩ程度と著しく低下する。すると、端子、銅プレート、CHSユニットフレームと接続される。フレームからは電源装置箱枠、車両、レールすなわちアースと接続されることから、結局、IGBTの端子が直接アースに繋がったことになるため、地絡故障となる。   An example of the mechanism leading to a ground fault is as follows. That is, between the terminal part of the module type IGBT and the copper plate (the part of the mounting plate under the module case, which is attached to the CHS unit frame), the insulation resistance is originally several tens MΩ to several hundreds MΩ or more. What is present is significantly reduced to about several kΩ due to quality degradation. Then, it connects with a terminal, a copper plate, and a CHS unit frame. Since the frame is connected to the power supply box frame, the vehicle, the rail, that is, the ground, the terminal of the IGBT is directly connected to the ground, resulting in a ground fault.

電源装置の地絡とならない様にCHSユニットを絶縁取付け、すなわち絶縁性を十分高くして装置に取付ける場合、JISの規定により、2.25U+2000Vの耐圧が必要となる。つまり、定格電圧Uが1500Vの場合、5375Vの絶縁耐圧が必要となる。この様に絶縁耐圧を高くする場合、絶縁構造の複雑化や、絶縁物の大型化、空間を広げることによるCHSユニットの大型化など、コスト・大きさに悪影響を与えるものとなっていた。   When the CHS unit is insulated and attached to the device with sufficiently high insulation so as not to cause a ground fault of the power supply device, a withstand voltage of 2.25 U + 2000 V is required according to JIS regulations. That is, when the rated voltage U is 1500V, a dielectric breakdown voltage of 5375V is required. When the dielectric strength is increased in this way, the cost and size are adversely affected, such as the complexity of the insulating structure, the size of the insulator, and the size of the CHS unit by expanding the space.

そこで本発明は、CHSユニットの大型化・複雑化を伴うことなく、CHSユニット内のIGBT等で地絡が発生しても、ヒューズ溶断・変電所トリップに至ることのない電気車用電源装置を提供することを目的とする。   Accordingly, the present invention provides a power supply device for an electric vehicle that does not cause a fuse fusing and a substation trip even if a ground fault occurs in an IGBT or the like in the CHS unit without increasing the size and complexity of the CHS unit. The purpose is to provide.

上記課題を解決するために、本発明の一実施例にかかる電気車用電源装置は、架線から直流電力が供給され、該直流電力を3相交流電力に変換するインバータと、前記インバータの直流側端子に並列に接続されたフィルタコンデンサと、前記インバータの負側直流端子と接地間に接続され、装置の起動時、前記フィルタコンデンサに充電電流を供給する充電用抵抗器と、前記充電用抵抗器に並列に接続され、前記フィルタコンデンサが充電された後、前記充電用抵抗器を短絡する半導体短絡スイッチとを具備する。前記半導体短絡スイッチは例えばモジュール型IGBTであって、このIGBTはCHSユニット内に設けられる。   In order to solve the above problems, a power supply device for an electric vehicle according to an embodiment of the present invention includes an inverter that is supplied with DC power from an overhead wire and converts the DC power into three-phase AC power, and a DC side of the inverter. A filter capacitor connected in parallel to the terminal, a charging resistor connected between the negative DC terminal of the inverter and the ground, and supplying a charging current to the filter capacitor when the device is started, and the charging resistor And a semiconductor shorting switch that short-circuits the charging resistor after the filter capacitor is charged. The semiconductor short-circuit switch is, for example, a module type IGBT, and this IGBT is provided in the CHS unit.

フィルタコンデンサの充電電流を制御するCHSユニットの大型化・複雑化を伴うことなく、CHSユニット内のIGBT等で地絡が発生しても、ヒューズ溶断・変電所トリップに至ることのない電気車用電源装置が提供される。   For electric vehicles that do not lead to fusing and substation trips even if a ground fault occurs in an IGBT in the CHS unit without increasing the size and complexity of the CHS unit that controls the charging current of the filter capacitor A power supply is provided.

本発明による電気車用電源装置の第1実施例の構成を示すブロック図である。It is a block diagram which shows the structure of 1st Example of the power supply device for electric vehicles by this invention. 図2は、本発明による電気車用電源装置の第2実施例の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a second embodiment of the electric vehicle power supply device according to the present invention. 従来の電気車用電源装置の回路構成を示す図である。It is a figure which shows the circuit structure of the conventional electric vehicle power supply device. IGBTを2回路有するモジュール型IGBTを示す図である。It is a figure which shows the module type IGBT which has two IGBTs.

以下、本発明に係る電気車用電源装置の実施例について、図面を参照して説明する。   Embodiments of an electric vehicle power supply apparatus according to the present invention will be described below with reference to the drawings.

図1は、本発明による電気車用電源装置の第1実施例の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a first embodiment of a power supply device for an electric vehicle according to the present invention.

(構成)
変電所(図示されず)から架線1及びパンタグラフ2を通して電気車用電源装置3に直流電力が供給される。電気車用電源装置3は、この直流電力を例えば60Hz、630Vの3相交流電力に変換して、空調などの補機に交流電力を供給する。電源装置3は車輪4等を介して接地されている。
(Constitution)
DC power is supplied from a substation (not shown) to the electric vehicle power supply device 3 through the overhead wire 1 and the pantograph 2. The electric vehicle power supply device 3 converts the DC power into, for example, 60 Hz, 630 V three-phase AC power, and supplies the AC power to an auxiliary machine such as an air conditioner. The power supply device 3 is grounded via a wheel 4 or the like.

電気車用電源装置3において、架線から供給された電力は、過電流時の保護用ヒューズ5、接触器6、入力フィルタリアクトル7を介してインバータ12に供給される。インバータ12の直流端子には、入力フィルタコンデンサ(FC)8が並列に接続され、交流端子はそれぞれ交流フィルタ13を介して変圧器14の一次側に接続される。変圧器14の2次側は空調などの負荷に接続される。インバータ12の負側直流端子はCHSユニット15を介して接地されている。   In the electric vehicle power supply device 3, the electric power supplied from the overhead wire is supplied to the inverter 12 through the protective fuse 5, the contactor 6, and the input filter reactor 7 at the time of overcurrent. An input filter capacitor (FC) 8 is connected in parallel to the DC terminal of the inverter 12, and the AC terminal is connected to the primary side of the transformer 14 via the AC filter 13. The secondary side of the transformer 14 is connected to a load such as air conditioning. The negative DC terminal of the inverter 12 is grounded via the CHS unit 15.

CHSユニット15は、FC充電用抵抗器(CHR)9、CHR短絡スイッチ(CHS)10、逆流阻止ダイオード(BD)11で構成されている。CHS10としては、絶縁ゲートバイポーラトランジスタ(IGBT)等の半導体素子が用いられる。尚、CHSユニット15をCHS10及びBD11で構成し、このユニットにCHR9を外付けすることもある。   The CHS unit 15 includes an FC charging resistor (CHR) 9, a CHR short-circuit switch (CHS) 10, and a backflow prevention diode (BD) 11. As the CHS 10, a semiconductor element such as an insulated gate bipolar transistor (IGBT) is used. The CHS unit 15 is composed of the CHS 10 and the BD 11, and the CHR 9 may be externally attached to this unit.

従来は図3のように、CHSユニット15はインバータ12に対して架線側に接続していたが、本実施例では図1のように接地側に接続される。   Conventionally, as shown in FIG. 3, the CHS unit 15 is connected to the overhead line side with respect to the inverter 12, but in this embodiment, it is connected to the ground side as shown in FIG.

(作用)
本実施例では、CHSユニット15をインバータ12の接地側に接続したため、コンデンサ8とインバータ12により、CHSユニット15に架線電圧が直接印加されない。従って、CHSユニット15を電気車用電源装置3に絶縁取付けしなくても、CHSユニット15内のCHS10やBD11の故障により、CHSユニット15が地絡した場合に、架線1から接地への短絡電流が流れることはない。従って、電源装置3に過大な電流が流れることはなく、ヒューズ溶断や変電所トリップには至らない。
(Function)
In this embodiment, since the CHS unit 15 is connected to the ground side of the inverter 12, no overhead voltage is directly applied to the CHS unit 15 by the capacitor 8 and the inverter 12. Therefore, even if the CHS unit 15 is not insulatedly attached to the electric vehicle power supply device 3, if the CHS unit 15 is grounded due to a failure of the CHS 10 or BD 11 in the CHS unit 15, the short-circuit current from the overhead wire 1 to the ground Will not flow. Therefore, an excessive current does not flow through the power supply device 3, and the fuse does not blow or the substation trip occurs.

以上説明したように本発明の一実施例によれば、CHSユニット15の絶縁取付けの必要がないため、絶縁構造の複雑化や、CHSユニット・車体間の絶縁物の大型化、空間を広げるためのCHSユニット大型化などの必要がなくなり、小型化、コスト低減を図ることが可能となる。   As described above, according to one embodiment of the present invention, since it is not necessary to install the CHS unit 15 in an insulating manner, the insulating structure is complicated, the insulator between the CHS unit and the vehicle body is enlarged, and the space is expanded. Therefore, it is not necessary to increase the size of the CHS unit, and the size and cost can be reduced.

また装置始動時に、フィルタコンデンサ8に電荷が蓄積されていない場合、従来は抵抗CHR9に架線電圧が印加される。そのため、抵抗CHR9としては高耐圧の抵抗器を使用する必要があった。しかし本実施例では、CHSユニットが架線に直接接続されないため、CHR9の耐圧を低く抑えることが可能となる。   Further, when no charge is accumulated in the filter capacitor 8 at the time of starting the apparatus, conventionally, an overhead line voltage is applied to the resistor CHR9. Therefore, it is necessary to use a high breakdown voltage resistor as the resistor CHR9. However, in this embodiment, since the CHS unit is not directly connected to the overhead wire, the breakdown voltage of the CHR 9 can be kept low.

次に、本発明の第2実施例について説明する。   Next, a second embodiment of the present invention will be described.

図2は、本発明による電気車用電源装置の第2実施例の構成を示すブロック図である。   FIG. 2 is a block diagram showing the configuration of a second embodiment of the electric vehicle power supply device according to the present invention.

(構成)
この第2実施例は、上記実施例1に対して、CHSユニット短絡用の接触器16を追加したものである。接触器16はCHSユニット15に並列に接続される。また接触器16はb接点、すなわち非動作時にクローズする接点である。
(Constitution)
In the second embodiment, a contactor 16 for short-circuiting the CHS unit is added to the first embodiment. The contactor 16 is connected to the CHS unit 15 in parallel. The contactor 16 is a b contact, that is, a contact that closes when not operating.

(作用)
電気車用電源装置3を動作させるまで、接触器6はオープン、接触器16はクローズとなっている。電気車用電源装置3の動作を開始するとき、接触器6をクローズする前に、接触器16をオープンとする。
(Function)
Until the electric vehicle power supply device 3 is operated, the contactor 6 is open and the contactor 16 is closed. When the operation of the electric vehicle power supply device 3 is started, the contactor 16 is opened before the contactor 6 is closed.

本発明の第2実施例によれば、第1実施例の構成に接触器16を追加することにより、インバータ12のN側(負側直流端子)の電位を接地(車輪4)とすることが可能となり、インバータ12の電位が浮いた状態とならなくなる。従って装置が稼動していない時、コンデンサ8の高電圧が長時間維持されることを防止でき、例えば点検時に、作業者の安全を確保できる。   According to the second embodiment of the present invention, by adding the contactor 16 to the configuration of the first embodiment, the potential on the N side (negative DC terminal) of the inverter 12 can be grounded (wheel 4). This becomes possible, and the potential of the inverter 12 does not become floating. Therefore, when the apparatus is not in operation, the high voltage of the capacitor 8 can be prevented from being maintained for a long time, and for example, the safety of the operator can be ensured during inspection.

以上の説明はこの発明の実施の形態であって、この発明の装置及び方法を限定するものではなく、様々な変形例を容易に実施することができるものである。例えば本発明の構成は、前述したように車両の照明、空調などの電源装置のみでなく、主電動機を駆動する駆動装置(VVVFインバータ)にも適用できることは明らかである。   The above description is an embodiment of the present invention, and does not limit the apparatus and method of the present invention, and various modifications can be easily implemented. For example, it is obvious that the configuration of the present invention can be applied not only to a power supply device for vehicle illumination and air conditioning as described above, but also to a drive device (VVVF inverter) for driving a main motor.

1…架線、2…パンタグラフ、3…電気車用電源装置、4…車輪等、5…ヒューズ、6…接触器、7…入力フィルタリアクトル、8…入力フィルタコンデンサ(FC)、9…FC充電用抵抗器(CHR)、10…CHR短絡スイッチ(CHS)、11…逆流阻止ダイオード(BD)、12…インバータ、13…交流フィルタ、14…変圧器、15…CHSユニット、16…接触器。   DESCRIPTION OF SYMBOLS 1 ... Overhead wire, 2 ... Pantograph, 3 ... Electric vehicle power supply device, 4 ... Wheel etc. 5 ... Fuse, 6 ... Contactor, 7 ... Input filter reactor, 8 ... Input filter capacitor (FC), 9 ... For FC charge Resistor (CHR), 10 ... CHR short circuit switch (CHS), 11 ... Backflow blocking diode (BD), 12 ... Inverter, 13 ... AC filter, 14 ... Transformer, 15 ... CHS unit, 16 ... Contactor.

Claims (5)

架線から直流電力が供給され、該直流電力を3相交流電力に変換するインバータと、
前記インバータの直流側端子に並列に接続されたフィルタコンデンサと、
前記インバータの負側直流端子と接地間に接続され、装置の起動時、前記フィルタコンデンサに充電電流を供給する充電用抵抗器と、
前記充電用抵抗器に並列に接続され、前記フィルタコンデンサが充電された後、前記充電用抵抗器を短絡する半導体短絡スイッチと、
を具備することを特徴とする電気車用電源装置。
An inverter that is supplied with DC power from an overhead wire and converts the DC power into three-phase AC power;
A filter capacitor connected in parallel to the DC side terminal of the inverter;
A charging resistor connected between the negative DC terminal of the inverter and the ground, and supplying a charging current to the filter capacitor at the time of starting the device;
A semiconductor short-circuit switch that is connected in parallel to the charging resistor and shorts the charging resistor after the filter capacitor is charged;
An electric vehicle power supply device comprising:
架線から直流電力が供給され、該直流電力を3相交流電力に変換するインバータと、
前記インバータの直流側端子に並列に接続されたフィルタコンデンサと、
IGBTと逆流阻止ダイオードの直列回路で構成され、前記インバータの負側直流端子と接地間に接続されたCHSユニットと、
前記IGBTに並列に接続され、装置の起動時、前記フィルタコンデンサに充電電流を供給する充電用抵抗器と、
を具備することを特徴とする電気車用電源装置。
An inverter that is supplied with DC power from an overhead wire and converts the DC power into three-phase AC power;
A filter capacitor connected in parallel to the DC side terminal of the inverter;
A CHS unit comprising a series circuit of an IGBT and a reverse current blocking diode, connected between the negative DC terminal of the inverter and the ground;
A charging resistor connected in parallel to the IGBT and for supplying a charging current to the filter capacitor at the start-up of the device;
An electric vehicle power supply device comprising:
架線から直流電力が供給され、該直流電力を3相交流電力に変換するインバータと、
前記インバータの直流側端子に並列に接続されたフィルタコンデンサと、
IGBTと充電用抵抗器の並列回路及び該並列回路に直列に接続された逆流阻止ダイオードで構成され、前記インバータの負側直流端子と接地間に接続されたCHSユニットと、
を具備することを特徴とする電気車用電源装置。
An inverter that is supplied with DC power from an overhead wire and converts the DC power into three-phase AC power;
A filter capacitor connected in parallel to the DC side terminal of the inverter;
A CHS unit comprising a parallel circuit of an IGBT and a charging resistor, and a reverse current blocking diode connected in series to the parallel circuit, and connected between the negative DC terminal of the inverter and the ground;
An electric vehicle power supply device comprising:
インバータの架線側直流端子にフィルタコンデンサ充電用抵抗器が接続される電気車用電源装置比べ、絶縁耐圧が低い充電用抵抗器が使用されていることを特徴とする請求項1乃至3のいずれか1項に記載の電気車用電源装置。   4. A charging resistor having a lower withstand voltage than that of an electric vehicle power supply device in which a filter capacitor charging resistor is connected to a DC terminal on the overhead line side of the inverter is used. 2. The electric vehicle power supply device according to item 1. 前記インバータの負側直流端子と接地間に接続された接触器を更に具備することを特徴とする請求項1乃至3のいずれか1項に記載の電気車用電源装置。   The electric vehicle power supply device according to any one of claims 1 to 3, further comprising a contactor connected between the negative DC terminal of the inverter and the ground.
JP2009246774A 2009-10-27 2009-10-27 Power supply device for electric vehicle Pending JP2011097674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246774A JP2011097674A (en) 2009-10-27 2009-10-27 Power supply device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246774A JP2011097674A (en) 2009-10-27 2009-10-27 Power supply device for electric vehicle

Publications (1)

Publication Number Publication Date
JP2011097674A true JP2011097674A (en) 2011-05-12

Family

ID=44113998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246774A Pending JP2011097674A (en) 2009-10-27 2009-10-27 Power supply device for electric vehicle

Country Status (1)

Country Link
JP (1) JP2011097674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108009A (en) * 2016-12-27 2018-07-05 飛宏科技股▲ふん▼有限公司Phihong Technology Co., Ltd. Smart power distribution system for charge stand

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180503A (en) * 1985-02-05 1986-08-13 Toyoda Autom Loom Works Ltd Motor controller for traveling in electric railcar
JPS63220763A (en) * 1987-03-07 1988-09-14 Tokin Corp Rush current limiting circuit for dc/ac inverter
JPH03150022A (en) * 1989-10-17 1991-06-26 Philips Gloeilampenfab:Nv Feeding device
JPH11215841A (en) * 1998-01-30 1999-08-06 Toshiba Corp Power supply for electric car
JP2006067732A (en) * 2004-08-27 2006-03-09 Toshiba Corp Electric vehicle controlling device
JP2006149043A (en) * 2004-11-18 2006-06-08 Terasaki Electric Co Ltd Interlock device of distribution panel
JP2008131675A (en) * 2006-11-16 2008-06-05 Toyota Industries Corp Power supply apparatus and leakage detecting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180503A (en) * 1985-02-05 1986-08-13 Toyoda Autom Loom Works Ltd Motor controller for traveling in electric railcar
JPS63220763A (en) * 1987-03-07 1988-09-14 Tokin Corp Rush current limiting circuit for dc/ac inverter
JPH03150022A (en) * 1989-10-17 1991-06-26 Philips Gloeilampenfab:Nv Feeding device
JPH11215841A (en) * 1998-01-30 1999-08-06 Toshiba Corp Power supply for electric car
JP2006067732A (en) * 2004-08-27 2006-03-09 Toshiba Corp Electric vehicle controlling device
JP2006149043A (en) * 2004-11-18 2006-06-08 Terasaki Electric Co Ltd Interlock device of distribution panel
JP2008131675A (en) * 2006-11-16 2008-06-05 Toyota Industries Corp Power supply apparatus and leakage detecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108009A (en) * 2016-12-27 2018-07-05 飛宏科技股▲ふん▼有限公司Phihong Technology Co., Ltd. Smart power distribution system for charge stand

Similar Documents

Publication Publication Date Title
US8612073B2 (en) Electric vehicle inverter apparatus and protection method therefor
US8615339B2 (en) Control device of electric vehicles
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
CN109075581B (en) Battery disconnection circuit and method for controlling battery disconnection circuit
JP7290965B2 (en) Electric vehicle power supply system
EP2544346A1 (en) Load driving device
KR101974144B1 (en) Apparatus and method for recovering electricity remained in waste battery of electric car
US11351869B2 (en) Alternating-current charging device for a motor vehicle
KR102649871B1 (en) Power supply device with fuel cell device and method of voltage drop in fuel cell device
KR20240018596A (en) DC vehicle charging circuit comprising a transistor and reverse diode to block fault current caused by the charging station varistor
WO2018123917A1 (en) Circuit system for railroad vehicle
KR102493181B1 (en) Disconnect device for interrupting direct current in the current path and for on-board electrical systems in vehicles
JP2011097674A (en) Power supply device for electric vehicle
JP2004112929A (en) Ac-dc converter
JP3742253B2 (en) Vehicle power supply device
US11701971B2 (en) Three-phase AC motor drive device, rail vehicle equipped with same, and three-phase AC motor drive method
JP4003255B2 (en) Protective device for electric device for vehicle
JP2012029481A (en) Power supply device for electric vehicle
JPH11355905A (en) Interruption system for power converter
JP2010040348A (en) Opening/closing method of dc power supply and device for the same
CN107431365B (en) Electricity storage device
JP2019050652A (en) Power conversion device
CN110661331A (en) AC-DC converter
JP7301684B2 (en) power conversion system
JP2000316232A (en) Protective device for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112