JP2011096367A - Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate - Google Patents

Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate Download PDF

Info

Publication number
JP2011096367A
JP2011096367A JP2009246011A JP2009246011A JP2011096367A JP 2011096367 A JP2011096367 A JP 2011096367A JP 2009246011 A JP2009246011 A JP 2009246011A JP 2009246011 A JP2009246011 A JP 2009246011A JP 2011096367 A JP2011096367 A JP 2011096367A
Authority
JP
Japan
Prior art keywords
glass substrate
substrate
glass
solar cell
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246011A
Other languages
Japanese (ja)
Inventor
Yasuhide Matsumoto
泰英 松本
Hiroshi Kuraseko
浩志 倉世古
Nobuaki Orita
伸昭 折田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009246011A priority Critical patent/JP2011096367A/en
Publication of JP2011096367A publication Critical patent/JP2011096367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate capable of improving utilization efficiency of light in an optical element such as a solar cell or a light-emitting element, and a manufacturing method of the glass substrate. <P>SOLUTION: The glass substrate includes a structure with periodical repeating projections and grooves in a length direction on at least one surface, and with a haze rate of wavelengths from 300 nm to 800 nm to be 30% or more. At least on a surface of a glass base material, a structure periodically repeating projections and grooves is formed, then the glass base material is heated to extend into a length direction of the projections and grooves. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ガラス基板、太陽電池、有機EL素子及びガラス基板の製造方法に関する。   The present invention relates to a glass substrate, a solar cell, an organic EL element, and a method for producing a glass substrate.

太陽電池基板や発光体、ディスプレイ用の基板においては、ガラス基板の表面に、光の波長と同等のサイズの周期的な凹凸構造(テクスチャ構造)を形成する粗面処理を行うことが行われている。太陽電池用基板においては、凹凸構造により入射光が散乱し、光の利用効率が高まる。また、発光体やディスプレイにおいては、有機EL素子等の発光素子から放出される光が凹凸構造により散乱され、外部へ放出される効率が高まる。   In solar cell substrates, light emitters, and display substrates, a rough surface treatment is performed to form a periodic uneven structure (texture structure) having a size equivalent to the wavelength of light on the surface of a glass substrate. Yes. In the solar cell substrate, incident light is scattered by the concavo-convex structure, and the light use efficiency is increased. Moreover, in a light-emitting body and a display, the light emitted from light emitting elements, such as an organic EL element, is scattered by a concavo-convex structure, and the efficiency of discharge | released outside increases.

基板を粗面処理する方法としては、サンドブラストによる方法、粗研磨による方法、ダイシングによる方法、化学的エッチングによる方法等がある(例えば、特許文献1、2参照)。   As a method for roughening the substrate, there are a sand blast method, a rough polishing method, a dicing method, a chemical etching method, and the like (for example, see Patent Documents 1 and 2).

特表2004−506330号公報JP-T-2004-506330 特許第4049329号公報Japanese Patent No. 4049329

ところで、凹凸構造のピッチを光の波長程度にすることで、より光の利用効率が高くなる。しかしながら、上記の粗面処理方法では、局所表面を見た場合には表面粗さが大きくなる。その結果、太陽電池用基板としては、半導体薄膜のカバレッジ不足により、変換効率が低下するという問題がある。また、電極パターニングにおいてレーザー光を用いる場合には、レーザー光が散乱されて電極が断線・ショートするおそれがある。   By the way, by making the pitch of the concavo-convex structure about the wavelength of light, the light utilization efficiency becomes higher. However, in the above rough surface processing method, the surface roughness increases when the local surface is viewed. As a result, the solar cell substrate has a problem that the conversion efficiency decreases due to insufficient coverage of the semiconductor thin film. Further, when laser light is used in electrode patterning, the laser light may be scattered and the electrode may be disconnected or short-circuited.

本発明の課題は、太陽電池や発光素子等の光学素子において、光の利用効率を改善することができるガラス基板やこれを用いた太陽電池や有機EL素子、及びガラス基板の製造方法を提供することである。   The subject of this invention provides the manufacturing method of the glass substrate which can improve the utilization efficiency of light in optical elements, such as a solar cell and a light emitting element, a solar cell using this, an organic EL element, and a glass substrate. That is.

以上の課題を解決するため、請求項1に係る発明は、少なくとも一面の長手方向に、突条と条溝との周期的な繰り返し構造を有するガラス基板であって、波長300nm〜800nmのヘイズ率が30%以上であることを特徴とする。   In order to solve the above problems, the invention according to claim 1 is a glass substrate having a periodic repeating structure of protrusions and grooves in the longitudinal direction of at least one surface, and has a haze ratio of a wavelength of 300 nm to 800 nm. Is 30% or more.

請求項2に記載の発明は、少なくとも一面の長手方向に、突条と条溝との周期的な繰り返し構造を有するガラス基板であって、前記突条と条溝とのピッチが200nm〜10μm、前記突条の頂部と前記条溝の底部との段差が2μm以下であることを特徴とする。   The invention described in claim 2 is a glass substrate having a periodic repeating structure of ridges and grooves in the longitudinal direction of at least one surface, wherein the pitch between the ridges and grooves is 200 nm to 10 μm, The step between the top of the protrusion and the bottom of the groove is 2 μm or less.

請求項3に記載の発明は、請求項1または2に記載のガラス基板であって、観察領域1μm以下において、前記突条の頂部と前記条溝の底部との間の算術平均粗さ(Ra)は、2nm以下であることを特徴とする。 Invention of Claim 3 is the glass substrate of Claim 1 or 2, Comprising: In observation area | region 1 micrometer 2 or less, arithmetic mean roughness (the top part of the said protrusion and the bottom part of the said groove | channel) ( Ra) is characterized by being 2 nm or less.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載のガラス基板であって、前記ガラス基板は厚さが0.3mm以下であることを特徴とする。   Invention of Claim 4 is a glass substrate as described in any one of Claims 1-3, Comprising: The said glass substrate is 0.3 mm or less, It is characterized by the above-mentioned.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載のガラス基板を用いたことを特徴とする太陽電池である。   The invention according to claim 5 is a solar cell using the glass substrate according to any one of claims 1 to 4.

請求項6に記載の発明は、請求項1〜4のいずれか一項に記載のガラス基板を、基板または封止材に用いたことを特徴とする有機EL素子である。   The invention according to claim 6 is an organic EL element characterized by using the glass substrate according to any one of claims 1 to 4 as a substrate or a sealing material.

請求項7に記載の発明は、請求項1〜4のいずれか一項に記載のガラス基板を製造する製造方法であって、ガラス母材の少なくとも一面に、突条と条溝との周期的な繰り返し構造を形成し、次に、前記ガラス母材を加熱して前記突条及び前記条溝の長さ方向に延伸することを特徴とする。   Invention of Claim 7 is a manufacturing method which manufactures the glass substrate as described in any one of Claims 1-4, Comprising: At least one surface of a glass base material is periodic with a protrusion and a groove | channel. A repeating structure is formed, and then the glass base material is heated and stretched in the length direction of the protrusions and the grooves.

本発明によれば、ガラス基板の凹凸形状により入射光を散乱させることができ、光の利用効率が高まる。また、発光素子から放出される光が凹凸構造により散乱されるため、外部へ放出される効率が高まる。   According to the present invention, incident light can be scattered by the uneven shape of the glass substrate, and the light utilization efficiency is increased. In addition, since light emitted from the light emitting element is scattered by the uneven structure, efficiency of being emitted to the outside is increased.

ガラス母材の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of a glass base material. 図1の拡大写真である。It is an enlarged photograph of FIG. 延伸後のガラス基板の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the glass substrate after extending | stretching. 図3の一部拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 延伸後のガラス基板の30μm×30μmの範囲を示す原子間力顕微鏡(AFM)による観察像である。It is an observation image by the atomic force microscope (AFM) which shows the range of 30 micrometers x 30 micrometers of the glass substrate after extending | stretching. 延伸後のガラス基板の500nm×500nmの範囲を示す原子間力顕微鏡(AFM)による観察像である。It is an observation image by an atomic force microscope (AFM) which shows the range of 500 nm x 500 nm of the glass substrate after extending | stretching. 延伸後のガラス基板の100nm×100nmの範囲を示す原子間力顕微鏡(AFM)による観察像である。It is an observation image by an atomic force microscope (AFM) which shows the range of 100 nm x 100 nm of the glass substrate after extending | stretching. 延伸後のガラス基板の30μm×30μmの範囲を原子間力顕微鏡(AFM)により構成した3次元画像である。It is the three-dimensional image which comprised the range of 30 micrometers x 30 micrometers of the glass substrate after extending | stretching with the atomic force microscope (AFM). 本発明に係るガラス基板11を用いた太陽電池10を示す図である。It is a figure which shows the solar cell 10 using the glass substrate 11 which concerns on this invention. 全光線透過率を示すグラフである。It is a graph which shows a total light transmittance. 散乱光線透過率を示すグラフである。It is a graph which shows a scattered light transmittance. ヘイズ率を示すグラフである。It is a graph which shows a haze rate. 本発明に係るガラス基板21を用いたボトムエミッション構造の有機EL素子20Aを示す断面図である。It is sectional drawing which shows the organic EL element 20A of the bottom emission structure using the glass substrate 21 which concerns on this invention. 図13のXIV部の拡大図である。It is an enlarged view of the XIV part of FIG. 本発明に係るガラス基板21を用いたトップエミッション構造の有機EL素子20Bを示す断面図である。It is sectional drawing which shows the organic EL element 20B of the top emission structure using the glass substrate 21 which concerns on this invention. 図15のXVI部の拡大図である。It is an enlarged view of the XVI part of FIG.

以下、本発明の実施形態について詳細に説明する。
本発明に係る延伸前のガラス母材には、石英ガラスやホウ珪酸ガラス等を用いることができる。
ガラス母材に突条と条溝との周期的な繰り返し構造(凹凸形状)を形成するには、例えば、ガラス表面の突条となる部分にマスキングを施し、次いでサンドブラストをガラス表面に対して行うことにより、マスキングを施さなかった部分に条溝を形成する方法がある。あるいは、粗研磨、ダイシング等の機械的加工による方法、ウェットエッチング、ドライエッチング等の化学的加工による方法等を用いてもよい。
Embodiments of the present invention are described in detail below.
Quartz glass, borosilicate glass, etc. can be used for the glass base material before extending | stretching which concerns on this invention.
In order to form a periodic repetitive structure (irregular shape) of protrusions and grooves on the glass base material, for example, masking is performed on the protrusions on the glass surface, and then sandblasting is performed on the glass surface. Thus, there is a method of forming a groove in a portion that has not been masked. Alternatively, a method by mechanical processing such as rough polishing or dicing, a method by chemical processing such as wet etching or dry etching, or the like may be used.

上記の凹凸形状を形成したガラス母材に対し、形成された突条及び条溝の長さ方向に延伸を行うことで、本発明に係るガラス基板が製造される。延伸の温度はガラス母材の材質により適宜変更され、軟化点〜軟化点よりも500℃高い温度の範囲内に設定して行う。軟化点〜軟化点よりも200℃高い温度の範囲内に設定して行うことが好ましく、軟化点〜軟化点よりも100℃高い温度の範囲内に設定して行うことがより好ましい。   The glass substrate which concerns on this invention is manufactured by extending | stretching in the length direction of the formed protrusion and groove | channel with respect to the glass base material in which said uneven | corrugated shape was formed. The stretching temperature is appropriately changed depending on the material of the glass base material, and is set within a temperature range of 500 ° C. higher than the softening point to the softening point. It is preferable to set the temperature within the range of 200 ° C. higher than the softening point to the softening point, and more preferable to set the temperature within the range of 100 ° C. higher than the softening point.

例えば、ガラス母材が石英ガラスの場合には、軟化点が1580℃程度であるので、約1680℃程度にて延伸を行うことが好ましい。あるいは、ガラス母材がホウ珪酸ガラスの場合には、軟化点が約815℃であるので、約915℃にて延伸を行うことが好ましい。
より軟化点に近い温度で延伸を行うことで、ガラス母材の凹凸形状を製造されるガラス基板に相似形状で残すことができる。
For example, when the glass base material is quartz glass, since the softening point is about 1580 ° C., the stretching is preferably performed at about 1680 ° C. Alternatively, when the glass base material is borosilicate glass, since the softening point is about 815 ° C., it is preferable to perform stretching at about 915 ° C.
By performing stretching at a temperature closer to the softening point, the uneven shape of the glass base material can be left in a similar shape on the glass substrate to be manufactured.

このように製造したガラス基板では、ガラス母材に凹凸形状を形成した後、延伸を行うので、ガラス母材の形状を縮小した形状のガラス基板が形成される。このため、ガラス基板の表面粗さがガラス母材よりも小さくなる。また、リドロー法を用いて連続的に製造することができるので、ガラス基板を安価に製造することができる。
ガラス基板は、厚さが0.3mm以下であることが好ましい。厚さが0.3mm以下であれば、柔軟性があるので大きく変形させることができる(フレキシブル性)。
In the glass substrate manufactured in this way, since an uneven shape is formed on the glass base material and then stretched, a glass substrate having a reduced shape of the glass base material is formed. For this reason, the surface roughness of a glass substrate becomes smaller than a glass base material. Moreover, since it can manufacture continuously using the redraw method, a glass substrate can be manufactured cheaply.
The glass substrate preferably has a thickness of 0.3 mm or less. If the thickness is 0.3 mm or less, it is flexible and can be greatly deformed (flexibility).

製造されるガラス基板の凹凸形状は、突条と条溝とのピッチが200nm〜10μmであり、突条の頂部と条溝の底部との段差が2μm以下であることが好ましい。ピッチが200nm〜10μmで段差が2μm以下であると、太陽電池用基板においては、ガラス基板の凹凸形状により入射光を散乱させることができ、光の利用効率が高まる。また、発光体やディスプレイにおいては、有機EL素子等の発光素子から放出される光が凹凸構造により散乱され、外部へ放出される効率が高まる。   In the concavo-convex shape of the manufactured glass substrate, the pitch between the ridge and the groove is preferably 200 nm to 10 μm, and the step between the top of the ridge and the bottom of the groove is preferably 2 μm or less. When the pitch is 200 nm to 10 μm and the step is 2 μm or less, in the solar cell substrate, incident light can be scattered by the uneven shape of the glass substrate, and the light utilization efficiency is increased. Moreover, in a light-emitting body and a display, the light emitted from light emitting elements, such as an organic EL element, is scattered by a concavo-convex structure, and the efficiency of discharge | released outside increases.

製造されるガラス基板は、観察領域1μm以下において、Ra(算術平均粗さ:JIS B0601−1994)が2nm以下であることが好ましい。Raが2nm以下であると、太陽電池用基板として用いる場合に、半導体薄膜のカバレッジが良好となり、変換効率が向上する。また、電極パターニングにおいてレーザー光を用いる場合にも、レーザー光の散乱を抑制することができる。また、有機EL素子用基板として用いる場合には、電流のリークやショート、ダークスポットの発生を防止することができる。
以下、本発明を実施例によりさらに説明する。
The manufactured glass substrate preferably has an Ra (arithmetic mean roughness: JIS B0601-1994) of 2 nm or less in an observation region of 1 μm 2 or less. When Ra is 2 nm or less, when used as a solar cell substrate, the coverage of the semiconductor thin film is improved, and the conversion efficiency is improved. Moreover, also when using a laser beam in electrode patterning, scattering of a laser beam can be suppressed. Further, when used as a substrate for an organic EL element, it is possible to prevent current leakage, short circuit, and dark spots.
Hereinafter, the present invention will be further described by examples.

テンパックスフロート(ショットAG社登録商標)ガラスからなるガラス母材(幅75mm、長さ525mm、厚さ1.5mm)に対し、サンドブラストにより一方の面に幅30μmピッチ、深さ2.5μmの凹凸形状を形成した。その後、炉温915℃、線速1m/minで延伸を行った。延伸時の引き落とし率は1/5で、延伸後のガラス基板の幅は15mm、厚さは0.3mmであった。尚、引き落とし率を変えることで、基板厚さや基板表面に形成される凹凸形状のピッチを任意に変えることができるが、基板厚さを0.3mm以下とすればフレキシブルなガラス基板とすることができる。凹凸形状のピッチは可視光の波長に相当する400nm〜800nmが好ましいが、200nm〜10μmでも光の利用効率を高めることができる。
次に、基板表面に形成された凹凸形状のピッチをSEMで計測した。また、延伸後のガラス基板に形成された凹凸形状の深さ、及び表面粗さをAFMで計測した。
A glass base material (75 mm in width, 525 mm in length, 1.5 mm in thickness) made of Tempax Float (registered trademark of Shot AG), with an uneven surface with a width of 30 μm and a depth of 2.5 μm on one surface by sandblasting A shape was formed. Thereafter, stretching was performed at a furnace temperature of 915 ° C. and a linear velocity of 1 m / min. The drawing rate during stretching was 1/5, the width of the glass substrate after stretching was 15 mm, and the thickness was 0.3 mm. In addition, by changing the withdrawal rate, the substrate thickness and the pitch of the concavo-convex shape formed on the substrate surface can be arbitrarily changed. However, if the substrate thickness is 0.3 mm or less, a flexible glass substrate can be obtained. it can. The concave / convex pitch is preferably 400 nm to 800 nm, which corresponds to the wavelength of visible light, but the light use efficiency can be increased even at 200 nm to 10 μm.
Next, the uneven pitch formed on the substrate surface was measured by SEM. Moreover, the depth of the uneven | corrugated shape formed in the glass substrate after extending | stretching, and the surface roughness were measured by AFM.

図1はガラス母材のSEM写真であり、図2は図1の拡大写真である。図1、図2に示すように、ガラス母材に凹凸形状が形成されていることがわかる。
図3は延伸後のガラス基板の走査型電子顕微鏡(SEM)写真であり、図4は図3の一部拡大図である。図3、図4に示すように、延伸後のガラス基板においても、ガラス母材に形成された凹凸形状が縮小された状態で保持されていることがわかる。本実施例においては、突条と条溝との周期構造のピッチが6.4μm、突条の頂部と前記条溝の底部との段差が0.5μmの凹凸形状が形成された。
FIG. 1 is an SEM photograph of a glass base material, and FIG. 2 is an enlarged photograph of FIG. As shown in FIGS. 1 and 2, it can be seen that an uneven shape is formed on the glass base material.
FIG. 3 is a scanning electron microscope (SEM) photograph of the glass substrate after stretching, and FIG. 4 is a partially enlarged view of FIG. As shown in FIG. 3 and FIG. 4, it can be seen that the uneven shape formed on the glass base material is held in a reduced state even in the stretched glass substrate. In the present example, a concavo-convex shape was formed in which the pitch of the periodic structure between the ridges and the grooves was 6.4 μm, and the step between the top of the ridges and the bottom of the grooves was 0.5 μm.

図5〜図7は延伸後のガラス基板の原子間力顕微鏡(AFM)による観察像であり、図8は延伸後のガラス基板の原子間力顕微鏡(AFM)により構成した3次元画像である。なお、図5、図8では30μm×30μmの範囲を示しており、図6では500nm×500nmの範囲、図7では100nm×100nmの範囲を示している。
各領域における表面粗さは、以下の通りであった。
5 to 7 are observation images of the stretched glass substrate by an atomic force microscope (AFM), and FIG. 8 is a three-dimensional image formed by the atomic force microscope (AFM) of the stretched glass substrate. 5 and 8 show a range of 30 μm × 30 μm, FIG. 6 shows a range of 500 nm × 500 nm, and FIG. 7 shows a range of 100 nm × 100 nm.
The surface roughness in each region was as follows.

図5、図8に示す30μm×30μmの範囲(面積900μm)においては、Ra(算術平均粗さ)が208.675[nm]、Ry(最大高さ:JIS B0601−1994)が1.161[μm]、Rz(十点平均粗さ:JIS B0601−1994)が769.289[nm]、Rms(二乗平均荒さ:JIS B0601−1994)が236.936[nm]、Rp(最大山高さ:JIS B0601−1994)が660.074[nm]、Rv(最大谷深さ:JIS B0601−1994)が500.943[nm]であった。 In the range of 30 μm × 30 μm shown in FIGS. 5 and 8 (area 900 μm 2 ), Ra (arithmetic mean roughness) is 208.675 [nm] and Ry (maximum height: JIS B0601-1994) is 1.161. [Μm], Rz (ten-point average roughness: JIS B0601-1994) is 769.289 [nm], Rms (root mean square roughness: JIS B0601-1994) is 236.936 [nm], Rp (maximum peak height: JIS B0601-1994) was 660.074 [nm], and Rv (maximum valley depth: JIS B0601-1994) was 500.943 [nm].

図5のAに示す20μm×20μmの範囲(面積400μm)においては、Raが209.867[nm]、Ryが1.179[μm]、Rzが543.942[nm]、Rmsが239.387[nm]、Rpが652.482[nm]、Rvが528.468[nm]であった。 In the range of 20 μm × 20 μm (area 400 μm 2 ) shown in FIG. 5A, Ra is 209.867 [nm], Ry is 1.179 [μm], Rz is 543.942 [nm], and Rms is 239. It was 387 [nm], Rp was 652.482 [nm], and Rv was 528.468 [nm].

図5のBに示す10μm×10μmの範囲(面積100μm)においては、Raが203.624[nm]、Ryが786.288[nm]、Rzが237.094[nm]、Rmsが237.846[nm]、Rpが303.444[nm]、Rvが482.844[nm]であった。 In the range of 10 μm × 10 μm (area 100 μm 2 ) shown in FIG. 5B, Ra is 203.624 [nm], Ry is 786.288 [nm], Rz is 237.094 [nm], and Rms is 237. It was 846 [nm], Rp was 303.444 [nm], and Rv was 482.844 [nm].

図6に示す500nm×500nmの範囲(面積250000nm)においては、Raが0.778[nm]、Ryが7.659[nm]、Rzが7.386[nm]、Rmsが0.994[nm]、Rpが3.783[nm]、Rvが3.876[nm]であった。 In the range of 500 nm × 500 nm shown in FIG. 6 (area 250,000 nm 2 ), Ra is 0.778 [nm], Ry is 7.659 [nm], Rz is 7.386 [nm], and Rms is 0.994 [ nm], Rp was 3.783 [nm], and Rv was 3.876 [nm].

図7に示す100nm×100nmの範囲(面積10000nm)においては、Raが0.351[nm]、Ryが3.984[nm]、Rzが3.670[nm]、Rmsが0.455[nm]、Rpが1.901[nm]、Rvが2.083[nm]であった。 In the range of 100 nm × 100 nm shown in FIG. 7 (area 10000 nm 2 ), Ra is 0.351 [nm], Ry is 3.984 [nm], Rz is 3.670 [nm], and Rms is 0.455 [ nm], Rp was 1.901 [nm], and Rv was 2.083 [nm].

以上示したとおり、本発明によれば、突条の頂部と条溝の底部との段差が2μm以下であり、1μm×1μmの範囲においてRaが2[nm]以下となるガラス基板を得ることができる。
次に、実施例1のガラス基板、市販の平坦なガラス基板(比較例3)、平坦なガラス基板にテクスチャ構造の透明電極を設けた基板(比較例4)の全光線透過率、散乱光線透過率、ヘイズ率(=散乱光線透過率/全光線透過率×100)を測定した。結果を図10〜12に示す。
実施例1のガラス基板では、比較例3、4よりも全波長において散乱光線透過率が上昇しており、可視光波長領域においてヘイズ率が上昇している。このため、光の利用効率の改善が見込まれる。
As described above, according to the present invention, it is possible to obtain a glass substrate in which the step between the top of the protrusion and the bottom of the groove is 2 μm or less, and Ra is 2 [nm] or less in the range of 1 μm × 1 μm. it can.
Next, the total light transmittance and scattered light transmission of the glass substrate of Example 1, a commercially available flat glass substrate (Comparative Example 3), and a substrate (Comparative Example 4) in which a transparent electrode having a texture structure is provided on the flat glass substrate. Rate, haze ratio (= scattered light transmittance / total light transmittance × 100). The results are shown in FIGS.
In the glass substrate of Example 1, the scattered light transmittance is higher in all wavelengths than in Comparative Examples 3 and 4, and the haze ratio is increased in the visible light wavelength region. For this reason, improvement of the light utilization efficiency is expected.

〔カバレッジ特性の評価〕
実施例1のガラス基板、サンドブラストでテクスチャ構造を作製した基板(比較例1)、粗研磨で作製したテクスチャ構造の基板(比較例2)の表面にプラズマCVDで薄膜シリコン層を成膜し、そのカバレッジ特性を評価した。成膜時の基板温度は200℃、膜厚は50nmであった。その結果、比較例1、2ではミクロ領域における表面粗さが大きいために薄膜シリコン層が基板表面を完全に覆うことができず、一部ガラス基板が露出している部分が見られた。
[Evaluation of coverage characteristics]
A thin film silicon layer was formed by plasma CVD on the surface of the glass substrate of Example 1, a substrate having a texture structure produced by sandblasting (Comparative Example 1), and a textured substrate produced by rough polishing (Comparative Example 2). Coverage characteristics were evaluated. The substrate temperature during film formation was 200 ° C., and the film thickness was 50 nm. As a result, in Comparative Examples 1 and 2, since the surface roughness in the micro region was large, the thin film silicon layer could not completely cover the substrate surface, and a portion where the glass substrate was partially exposed was seen.

それに対して、実施例1の場合、マクロ領域では表面粗さが大きいものの、ミクロ領域では表面粗さが小さいことから薄膜シリコン層がガラス基板表面を完全に覆うことができていることが確認できた。すなわち、比較例1、2のようにミクロ領域における表面粗さが大きい基板を用いて薄膜太陽電池を作製した場合、素子内にショートパスが発生し光電変換効率が大幅に低下する。しかし、実施例1の場合、ミクロ領域における表面粗さが小さいことから、ごく薄い半導体膜を作製した場合でも基板表面を完全に覆うことができ、その結果基板上に作製した薄膜太陽電池素子の内部にショートパスができないことから光電変換効率の低下が発生しない。
このように、本発明に係るガラス基板の製造方法では、従来の製造方法では成し得なかったミクロ領域の低表面粗さを安価でかつ容易に作製することができる。
On the other hand, in the case of Example 1, although the surface roughness is large in the macro region, the surface roughness is small in the micro region, so that it can be confirmed that the thin film silicon layer can completely cover the glass substrate surface. It was. That is, when a thin film solar cell is manufactured using a substrate having a large surface roughness in the micro region as in Comparative Examples 1 and 2, a short path is generated in the element, and the photoelectric conversion efficiency is greatly reduced. However, in the case of Example 1, since the surface roughness in the micro region is small, even when a very thin semiconductor film is produced, the substrate surface can be completely covered. As a result, the thin film solar cell element produced on the substrate can be covered. Since there is no short path inside, there is no decrease in photoelectric conversion efficiency.
As described above, in the method for manufacturing a glass substrate according to the present invention, a low surface roughness in a micro region that cannot be achieved by a conventional manufacturing method can be easily manufactured at low cost.

〔太陽電池〕
図9は本発明に係るガラス基板11を用いた太陽電池10を示す図である。以下、太陽電池10の作製方法について説明する。
まず、上述した製造方法によって作製したガラス基板11の少なくとも凹凸形状が形成された一方の面に透明電極12を形成する。透明電極12としては一般的なITO(Indium Tin Oxide)、ZnO(Zinc Oxide)、SnO(Tin Oxide)やそれらにドーパントを添加したものが用いられる。本実施例ではドーパントとしてGaを含むZnOを200nm作製した。
[Solar cell]
FIG. 9 is a diagram showing a solar cell 10 using the glass substrate 11 according to the present invention. Hereinafter, a method for manufacturing the solar cell 10 will be described.
First, the transparent electrode 12 is formed on at least one surface of the glass substrate 11 produced by the manufacturing method described above, on which at least the uneven shape is formed. As the transparent electrode 12, general ITO (Indium Tin Oxide), ZnO (Zinc Oxide), SnO 2 (Tin Oxide), and those obtained by adding a dopant to them are used. In this example, 200 nm of ZnO containing Ga as a dopant was manufactured.

次に、作製した透明電極12の上に半導体層13を堆積させる。堆積方法としてはプラズマCVD、熱CVDなど一般的に用いられる方法を適用することができる。また用途に応じて、半導体層13として多結晶シリコン薄膜、微結晶シリコン薄膜、非晶質シリコン薄膜、CIS系化合物半導体薄膜、色素増感型半導体層、有機半導体薄膜などの光電変換機能を有する材料を用いることができる。本実施例ではプラズマCVDにより厚さ合計500nmのp−i−n非晶質シリコン薄膜を形成した。   Next, the semiconductor layer 13 is deposited on the produced transparent electrode 12. As a deposition method, a generally used method such as plasma CVD or thermal CVD can be applied. Depending on the application, the semiconductor layer 13 may be a material having a photoelectric conversion function, such as a polycrystalline silicon thin film, a microcrystalline silicon thin film, an amorphous silicon thin film, a CIS compound semiconductor thin film, a dye-sensitized semiconductor layer, or an organic semiconductor thin film. Can be used. In this example, a p-i-n amorphous silicon thin film having a total thickness of 500 nm was formed by plasma CVD.

次に、AgやAlなどの薄膜をスパッタリングなどによって成膜し、透明電極12の対電極14として作製する。本実施例では厚さ200nmのAg膜を形成した。また、各層を形成した後にレーザスクライブ法を用いて堆積された各層を選択的に除去し、隣接する構造と隔離するための溝を形成することにより一つの基板の中に集積構造を設け、取り出し電圧を上げることも可能である。以上の工程によって太陽電池10を作製する。   Next, a thin film such as Ag or Al is formed by sputtering or the like to produce the counter electrode 14 of the transparent electrode 12. In this example, an Ag film having a thickness of 200 nm was formed. In addition, after each layer is formed, each layer deposited by using a laser scribing method is selectively removed, and an integrated structure is provided in one substrate by forming a groove for isolation from an adjacent structure. It is also possible to increase the voltage. The solar cell 10 is produced through the above steps.

本発明に係る実施例1のガラス基板、市販の平坦なガラス基板(比較例3)、平坦なガラス基板にテクスチャ構造の透明電極を設けた基板(比較例4)の3種類の基板を用いて、以上の手順により5mm四方の太陽電池セルを作製し、作製した太陽電池セルの短絡電流値を測定したところ、比較例3の基板を用いたセルでは11.2mA/cm2、比較例4の基板を用いたセルでは12.8mA/cm2、実施例1の基板を用いたセルでは13.7mA/cm2となった。実施例1の基板を用いた太陽電池セルでは、比較例3、比較例4の基板を用いたセルに比べて大きい短絡電流値が得られており、本発明に係るガラス基板では従来のガラス基板に比べて光の利用効率が改善されていることが分かる。   Using three types of substrates, the glass substrate of Example 1 according to the present invention, a commercially available flat glass substrate (Comparative Example 3), and a substrate (Comparative Example 4) in which a transparent electrode having a texture structure is provided on a flat glass substrate. The solar cell of 5 mm square was prepared by the above procedure, and the short-circuit current value of the produced solar cell was measured. The cell using the substrate of Comparative Example 3 was 11.2 mA / cm 2 and the substrate of Comparative Example 4 The cell using 12.8 mA / cm 2 for the cell using 1 and 13.7 mA / cm 2 for the cell using the substrate of Example 1. In the solar cell using the substrate of Example 1, a large short-circuit current value was obtained as compared with the cells using the substrates of Comparative Examples 3 and 4, and the glass substrate according to the present invention is a conventional glass substrate. It can be seen that the light use efficiency is improved compared to

〔有機EL素子〕
図13は本発明に係るガラス基板21を用いたボトムエミッション構造の有機EL素子20Aを示す断面図であり、図14は図13のXIV部の拡大図である。以下、有機EL素子20Aの作製方法について説明する。まず、上述した製造方法によって作製したガラス基板21の凹凸形状が形成された側とは反対の平坦な面に透明電極22を形成する。透明電極22としては一般的なITO(Indium Tin Oxide)、ZnO(Zinc Oxide)、SnO(Tin Oxide)やそれらにドーパントを添加したものが用いられる。本実施例では、ITOセラミックターゲット(In:SnO=90重量%:10重量%)から、DCスパッタリング法を用いて、厚み150nmのITO透明膜からなる陽極を形成した。その後、中性洗剤、脱イオン水、アセトン、イソプロピルアルコールを用い、順次超音波洗浄を行った後、紫外線オゾン方式で基板洗浄を行った。
[Organic EL device]
FIG. 13 is a cross-sectional view showing an organic EL element 20A having a bottom emission structure using the glass substrate 21 according to the present invention, and FIG. 14 is an enlarged view of the XIV portion of FIG. Hereinafter, a method for producing the organic EL element 20A will be described. First, the transparent electrode 22 is formed on the flat surface opposite to the side on which the concavo-convex shape of the glass substrate 21 produced by the manufacturing method described above is formed. As the transparent electrode 22, general ITO (Indium Tin Oxide), ZnO (Zinc Oxide), SnO 2 (Tin Oxide), and those obtained by adding a dopant to them are used. In this example, an anode made of an ITO transparent film having a thickness of 150 nm was formed from an ITO ceramic target (In 2 O 3 : SnO 2 = 90 wt%: 10 wt%) using a DC sputtering method. Thereafter, ultrasonic cleaning was sequentially performed using a neutral detergent, deionized water, acetone, and isopropyl alcohol, and then the substrate was cleaned by an ultraviolet ozone method.

次に、透明電極22上に、抵抗加熱式真空蒸着装置内のモリブデン製ボートに配置したN,N'-Di(1-naphthyl)-N,N'-diphenylbenzidine(α−NPD)と、別のモリブデン製加工ボートに配置したTris Aluminum(Alq3)を介して、真空チャンバー内を1×10−4Paの減圧状態として、厚み60nmのα−NPD膜からなる正孔輸送層23を形成した後、その上に厚み65nmのAlq3膜からなる発光層24を形成した。次に、真空チャンバー内を2×10−4Paの減圧状態として真空蒸着により、厚み100nmのAlからなる陰極25を形成して、緑色(主波長513nm)に発光する有機EL素子20Aを作成した。 Next, N, N′-Di (1-naphthyl) -N, N′-diphenylbenzidine (α-NPD) placed on a transparent boat 22 in a molybdenum boat in a resistance heating vacuum deposition apparatus, and another After forming the hole transport layer 23 made of an α-NPD film having a thickness of 60 nm with Trix Aluminum (Alq3) arranged in a molybdenum processing boat, the vacuum chamber is in a reduced pressure state of 1 × 10 −4 Pa, A light emitting layer 24 made of an Alq3 film having a thickness of 65 nm was formed thereon. Next, the cathode 25 made of Al with a thickness of 100 nm was formed by vacuum deposition with the inside of the vacuum chamber at a reduced pressure of 2 × 10 −4 Pa, and an organic EL element 20A that emits green light (main wavelength 513 nm) was created. .

本発明に係る実施例1のガラス基板、市販の平坦なガラス基板(比較例3)を用いて、上記の手順により5mm四方の有機EL素子を作製した。これらの有機EL素子に6Vの電圧を印加した際の正面輝度を測定したところ、比較例3の基板を用いた素子では1300cd/m、実施例1の基板を用いた素子では1400cd/mであった。実施例1の基板を用いた有機EL素子では、比較例3の基板を用いた素子に比べて高い輝度が得られており、本発明に係るガラス基板では従来のガラス基板に比べて光の取出し効率が改善されていることが分かる。 Using the glass substrate of Example 1 according to the present invention and a commercially available flat glass substrate (Comparative Example 3), a 5 mm square organic EL device was produced by the above procedure. When the front luminance when a voltage of 6 V was applied to these organic EL devices was measured, the device using the substrate of Comparative Example 3 was 1300 cd / m 2 , and the device using the substrate of Example 1 was 1400 cd / m 2. Met. The organic EL device using the substrate of Example 1 has higher luminance than the device using the substrate of Comparative Example 3, and the glass substrate according to the present invention extracts light compared to the conventional glass substrate. It can be seen that the efficiency is improved.

尚、本実施例ではボトムエミッション構造の有機EL素子20Aを作製したが、トップエミッション構造の有機EL素子に適用してもよい。図15はトップエミッション構造の有機EL素子20Bを示す断面図であり、図16は図15のXVI部の拡大図である。トップエミッション構造の有機EL素子20Bは、図15に示すように、平坦なガラス基板26の一方の面に、陰極25、発光層24、正孔輸送層23、透明電極22が順に形成されている。ガラス基板26の陰極25、発光層24、正孔輸送層23、透明電極22の積層体が形成された面の外周部に接着層27が設けられ、接着層27の上部に封止材28が設けられることで積層体が封止される。この封止材28に本発明に係るガラス基板を用いることで、ボトムエミッション構造の有機EL素子20Aと同様に光の取出し効率を改善することができる。   In addition, although the organic EL element 20A of the bottom emission structure was produced in the present Example, you may apply to the organic EL element of a top emission structure. FIG. 15 is a cross-sectional view showing an organic EL element 20B having a top emission structure, and FIG. 16 is an enlarged view of the XVI portion of FIG. As shown in FIG. 15, the organic EL element 20 </ b> B having a top emission structure has a cathode 25, a light emitting layer 24, a hole transport layer 23, and a transparent electrode 22 formed in this order on one surface of a flat glass substrate 26. . An adhesive layer 27 is provided on the outer periphery of the surface of the glass substrate 26 on which the laminate of the cathode 25, the light emitting layer 24, the hole transport layer 23, and the transparent electrode 22 is formed, and the sealing material 28 is provided on the adhesive layer 27. By providing, the laminated body is sealed. By using the glass substrate according to the present invention for the sealing material 28, the light extraction efficiency can be improved in the same manner as the organic EL element 20A having the bottom emission structure.

このように、本発明に係るガラス基板を用いて作製された太陽電池は、従来の薄膜系太陽電池よりも高い光電変換効率とすることができる。また、本発明に係るガラス基板を用いて作製された有機EL素子は、従来の有機EL素子よりも高い光取出し効率とすることができる。   Thus, the solar cell produced using the glass substrate according to the present invention can have higher photoelectric conversion efficiency than the conventional thin film solar cell. Moreover, the organic EL element produced using the glass substrate which concerns on this invention can be set as the light extraction efficiency higher than the conventional organic EL element.

10 太陽電池
11 ガラス基板
11a 突条
11b 条溝
12 透明電極
13 半導体層
14 対電極
20 有機EL素子
21、26 ガラス基板
22 透明電極
23 正孔輸送層
24 発光層
25 陰極
27 接着層
28 封止材
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Glass substrate 11a Projection 11b Strip 12 Transparent electrode 13 Semiconductor layer 14 Counter electrode 20 Organic EL element 21, 26 Glass substrate 22 Transparent electrode 23 Hole transport layer 24 Light emitting layer 25 Cathode 27 Adhesive layer 28 Sealing material

Claims (7)

少なくとも一面の長手方向に、突条と条溝との周期的な繰り返し構造を有するガラス基板であって、
波長300nm〜800nmのヘイズ率が30%以上であることを特徴とするガラス基板。
A glass substrate having a periodic repeating structure of protrusions and grooves in the longitudinal direction of at least one surface,
A glass substrate having a haze ratio of 30% or more at a wavelength of 300 nm to 800 nm.
少なくとも一面の長手方向に、突条と条溝との周期的な繰り返し構造を有するガラス基板であって、前記突条と条溝とのピッチが200nm〜10μm、前記突条の頂部と前記条溝の底部との段差が2μm以下であることを特徴とするガラス基板。   A glass substrate having a periodic repeating structure of ridges and grooves in a longitudinal direction of at least one surface, wherein a pitch between the ridges and grooves is 200 nm to 10 μm, and the tops of the ridges and the grooves A glass substrate having a step difference of 2 μm or less from the bottom of the glass substrate. 観察領域1μm以下において、前記突条の頂部と前記条溝の底部との間の算術平均粗さ(Ra)は、2nm以下であることを特徴とする請求項1または2に記載のガラス基板。 3. The glass substrate according to claim 1, wherein an arithmetic average roughness (Ra) between the top of the protrusion and the bottom of the groove is 2 nm or less in an observation region of 1 μm 2 or less. . 前記ガラス基板は厚さが0.3mm以下であることを特徴とする請求項1〜3のいずれか一項に記載のガラス基板。   The glass substrate according to any one of claims 1 to 3, wherein the glass substrate has a thickness of 0.3 mm or less. 請求項1〜4のいずれか一項に記載のガラス基板を用いたことを特徴とする太陽電池。   The solar cell using the glass substrate as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載のガラス基板を、基板または封止材に用いたことを特徴とする有機EL素子。   An organic EL device comprising the glass substrate according to any one of claims 1 to 4 as a substrate or a sealing material. 請求項1〜4のいずれか一項に記載のガラス基板を製造する製造方法であって、ガラス母材の少なくとも一面に、突条と条溝との周期的な繰り返し構造を形成し、次に、前記ガラス母材を加熱して前記突条及び前記条溝の長さ方向に延伸することを特徴とするガラス基板の製造方法。   It is a manufacturing method which manufactures the glass substrate as described in any one of Claims 1-4, Comprising: At least one surface of a glass base material forms the cyclic | annular repeating structure of a protrusion and a groove | channel, and then The glass base material is heated and stretched in the length direction of the protrusions and the grooves.
JP2009246011A 2009-10-27 2009-10-27 Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate Pending JP2011096367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246011A JP2011096367A (en) 2009-10-27 2009-10-27 Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246011A JP2011096367A (en) 2009-10-27 2009-10-27 Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate

Publications (1)

Publication Number Publication Date
JP2011096367A true JP2011096367A (en) 2011-05-12

Family

ID=44113100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246011A Pending JP2011096367A (en) 2009-10-27 2009-10-27 Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate

Country Status (1)

Country Link
JP (1) JP2011096367A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123093A1 (en) * 2013-02-08 2014-08-14 Jx日鉱日石エネルギー株式会社 Roller device using suction roller, and production method for member having uneven structure
WO2014131610A1 (en) * 2013-02-27 2014-09-04 Agc Glass Europe Textured glass sheet having straight patterns
WO2015029455A1 (en) 2013-09-02 2015-03-05 日本板硝子株式会社 Method for producing glass plate and glass plate
KR101765008B1 (en) 2016-04-29 2017-08-04 선문대학교 산학협력단 Panel for solar cell and method for manufacturing thereof
CN108565351A (en) * 2018-04-17 2018-09-21 深圳市华星光电技术有限公司 OLED display and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011811A (en) * 2003-06-20 2005-01-13 Sharp Corp Light-emitting device
JP2006179189A (en) * 2004-12-20 2006-07-06 Mitsubishi Electric Corp Dye-sensitized solar cell
WO2007097454A1 (en) * 2006-02-27 2007-08-30 Zeon Corporation Film having fine uneven shape and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011811A (en) * 2003-06-20 2005-01-13 Sharp Corp Light-emitting device
JP2006179189A (en) * 2004-12-20 2006-07-06 Mitsubishi Electric Corp Dye-sensitized solar cell
WO2007097454A1 (en) * 2006-02-27 2007-08-30 Zeon Corporation Film having fine uneven shape and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123093A1 (en) * 2013-02-08 2014-08-14 Jx日鉱日石エネルギー株式会社 Roller device using suction roller, and production method for member having uneven structure
JP5995997B2 (en) * 2013-02-08 2016-09-21 Jxエネルギー株式会社 Roll device, method for producing member having concavo-convex structure, and method for producing organic EL element
WO2014131610A1 (en) * 2013-02-27 2014-09-04 Agc Glass Europe Textured glass sheet having straight patterns
CN105008301A (en) * 2013-02-27 2015-10-28 旭硝子欧洲玻璃公司 Textured glass sheet having straight patterns
BE1024032B1 (en) * 2013-02-27 2017-10-31 Agc Glass Europe TEXTURE GLASS SHEET WITH RECTIFIED PATTERNS
WO2015029455A1 (en) 2013-09-02 2015-03-05 日本板硝子株式会社 Method for producing glass plate and glass plate
KR101765008B1 (en) 2016-04-29 2017-08-04 선문대학교 산학협력단 Panel for solar cell and method for manufacturing thereof
CN108565351A (en) * 2018-04-17 2018-09-21 深圳市华星光电技术有限公司 OLED display and preparation method thereof

Similar Documents

Publication Publication Date Title
US8298852B2 (en) Thin film type solar cell and method for manufacturing the same
US9960373B2 (en) Substrate for photoelectric device and photoelectric device comprising same
US9786849B2 (en) Electrically conductive OLED carrier, OLED incorporating said carrier, and its manufacture
TWI404217B (en) Thin film type solar cell and method for manufacturing the same
US10181566B2 (en) Electrically conductive OLED carrier, OLED incorporating said carrier, and its manufacture
KR101942092B1 (en) Method Of Fabricating Organic Light Emitting Device
JP2011096367A (en) Glass substrate, solar cell, organic el element, and manufacturing method of glass substrate
US20130032206A1 (en) Solar cell
KR100818270B1 (en) Organic electroluminescence device and method of manufacturing the same
JP6384003B2 (en) METAL OXIDE THIN FILM SUBSTRATE, ITS MANUFACTURING METHOD, PHOTOBATTERY INCLUDING THE SAME, AND ORGANIC LIGHT EMITTING DEVICE
KR20090098244A (en) Method of manufacturing photoelectric device
JP2015191787A (en) Substrate for organic electroluminescent element, organic electroluminescent element, illuminating device, and display device
US20110290309A1 (en) Solar Cell and Method for Manufacturing the Same
KR101421026B1 (en) Light extraction layer substrate for oled and method of fabricating thereof
JP5538375B2 (en) Thin film solar cell and manufacturing method thereof
KR101333529B1 (en) Oxide thin film substrate, method of fabricating thereof, photovoltaic and oled including the same
TW201327862A (en) Conductive substrate and fabricating method thereof, and solar cell
US20180083161A1 (en) Direct texture transparent conductive oxide served as electrode or intermediate layer for photovoltaic and display applications
KR101092695B1 (en) Preparation Method of Textured Glass for a Thin Film Solar Cell and a Transparent Substrate
KR101033286B1 (en) Thin film type Solar Cell and Method for manufacturing the same
CN100373655C (en) Organic luminescent display and manufacturing method thereof
KR101073832B1 (en) Method for manufacturing thin film type Solar Cell
KR101053782B1 (en) Thin film type solar cell and manufacturing method thereof
KR100973676B1 (en) Thin film type Solar Cell and Method for manufacturing the same
KR101203917B1 (en) Flexible thin film type Solar Cell and Method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001