JP2011094999A - Ultrasonic intensity distribution measuring method - Google Patents

Ultrasonic intensity distribution measuring method Download PDF

Info

Publication number
JP2011094999A
JP2011094999A JP2009246652A JP2009246652A JP2011094999A JP 2011094999 A JP2011094999 A JP 2011094999A JP 2009246652 A JP2009246652 A JP 2009246652A JP 2009246652 A JP2009246652 A JP 2009246652A JP 2011094999 A JP2011094999 A JP 2011094999A
Authority
JP
Japan
Prior art keywords
ultrasonic
intensity distribution
measurement
sound pressure
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246652A
Other languages
Japanese (ja)
Other versions
JP5279681B2 (en
Inventor
Katsumi Saruwatari
克己 猿渡
Takayuki Kumakura
隆幸 熊倉
Tatsuyoshi Nakajima
達芳 中島
So Kuriyama
奏 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Ono Sokki Co Ltd
Original Assignee
Toyota Motor Corp
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ono Sokki Co Ltd filed Critical Toyota Motor Corp
Priority to JP2009246652A priority Critical patent/JP5279681B2/en
Publication of JP2011094999A publication Critical patent/JP2011094999A/en
Application granted granted Critical
Publication of JP5279681B2 publication Critical patent/JP5279681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic intensity distribution measuring method, for measuring an ultrasonic intensity distribution within a measured space, capable of measuring an effective ultrasonic intensity distribution from transmitting an ultrasonic wave to receiving the ultrasonic wave reflected at points within a measured space in a system of obtaining a received signal by transmitting the an ultrasonic wave within the measured space and receiving a reflected ultrasonic wave. <P>SOLUTION: In the ultrasonic intensity distribution measuring method, a first sound pressure within the measured space is obtained by transmitting an ultrasonic wave into a measured space from a first vibrator used for transmitting the ultrasonic wave and receiving the ultrasonic wave by an ultrasonic sensor disposed within the measured space, a second sound pressure is obtained by transmitting an ultrasonic wave into the measured space from a second vibrator used essentially for receiving the ultrasonic wave and receiving the ultrasonic wave by an ultrasonic sensor disposed within the measured space, and the effective ultrasonic intensity distribution within the measured space is obtained using the first and the second sound pressures. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被計測空間内の超音波強度分布を計測する超音波強度分布計測方法に関する。   The present invention relates to an ultrasonic intensity distribution measuring method for measuring an ultrasonic intensity distribution in a measurement space.

様々な分野において、許可された者以外の者の立入りが禁止されている空間内に不審者が侵入したことを検知して警報を発するなど、様々な安全対策が求められている。例えば、停止中の自動車内に超音波送信機から超音波を送信し超音波受信機で反射超音波を受信して超音波のドプラシフトを検出することにより不審者の侵入を検出するシステムが考えられている。この場合に、自動車の車室内にはシートやその他の様々な物が存在しており、このため超音波が複雑に反射して車室内の超音波強度分布は一様又は滑らかな変化にはならず、車室内で複雑な強度分布を持つ。このためその車室内にどの程度の強度の超音波を送信すればよいか、あるいは受信感度をどの程度に設定すればよいか不明となる。さらには、送信強度や受信感度の如何によらず死角となる領域が存在するときはその領域を認識して死角を最小とするように車室内の設計変更等を行なうことも重要である。   In various fields, various safety measures are required, such as detecting that a suspicious person has entered a space where entry of persons other than authorized persons is prohibited and issuing an alarm. For example, a system that detects the intrusion of a suspicious person by transmitting ultrasonic waves from an ultrasonic transmitter into a stopped vehicle, receiving reflected ultrasonic waves by an ultrasonic receiver, and detecting ultrasonic Doppler shift can be considered. ing. In this case, there are seats and various other objects in the passenger compartment of the automobile, so that the ultrasonic waves are reflected in a complicated manner and the ultrasonic intensity distribution in the passenger compartment does not change uniformly or smoothly. It has a complex intensity distribution in the passenger compartment. For this reason, it is unclear how much intensity of ultrasonic waves should be transmitted to the passenger compartment or how much reception sensitivity should be set. Furthermore, when there is a blind spot area regardless of transmission intensity and reception sensitivity, it is also important to change the design of the vehicle interior so that the blind spot is recognized and the blind spot is minimized.

ここで、車室内の超音波の強度分布を測定するにあたり、超音波送信機から超音波を送信させ、車室内の各ポイントに超音波マイクロホンを順次に配置してその超音波マイクロホンでの受信信号の強度から車室内の超音波強度分布を求めることが考えられる。しかしながら、この場合、超音波受信機の指向性を無視することになり、超音波送信機で超音波を送信して超音波受信機で反射超音波を受信するまでのトータルの実効的な強度分布を求めることはできない。   Here, when measuring the intensity distribution of ultrasonic waves in the vehicle interior, ultrasonic waves are transmitted from the ultrasonic transmitter, and ultrasonic microphones are sequentially placed at each point in the vehicle interior, and signals received by the ultrasonic microphones are received. It is conceivable to obtain the ultrasonic intensity distribution in the passenger compartment from the intensity of the vehicle. However, in this case, the directivity of the ultrasonic receiver is ignored, and the total effective intensity distribution until the ultrasonic wave is transmitted by the ultrasonic transmitter and the reflected ultrasonic wave is received by the ultrasonic receiver. Cannot be asked.

また、別の手段として、上記の超音波マイクロホンに代えて車室内に超音波反射体を置き、その超音波反射体を順次移動させながら超音波送信機から超音波を送信し超音波受信機で反射超音波を受信してその受信強度を調べることが考えられる。しかしこの場合、その超音波反射体のみから超音波が反射する訳ではなく、車室の壁面や、車室内のシートやその他の置き物からも反射するため、その超音波反射体を置いたポイントのみの強度を測定することはできない。   As another means, an ultrasonic reflector is placed in the passenger compartment instead of the ultrasonic microphone described above, and ultrasonic waves are transmitted from the ultrasonic transmitter while sequentially moving the ultrasonic reflector. It is conceivable to receive reflected ultrasonic waves and check the received intensity. However, in this case, the ultrasonic wave is not reflected only from the ultrasonic reflector, but also reflected from the wall surface of the passenger compartment, the seat in the passenger compartment, and other objects, so only the point where the ultrasonic reflector is placed. It is not possible to measure the intensity.

本発明は、上記事情に鑑み、被計測空間内に超音波を送信し反射超音波を受信して受信信号を得るシステムにおける、被計測空間内の、超音波の送信から各反射ポイントで反射した超音波の受信に至るまでの実効的な超音波強度分布を計測する超音波強度分布計測方法を提供することを目的とする。   In view of the above circumstances, the present invention reflects the reflected wave at each reflection point from the transmission of the ultrasonic wave in the measured space in the system that transmits the ultrasonic wave into the measured space and receives the reflected ultrasonic wave to obtain the received signal. It is an object of the present invention to provide an ultrasonic intensity distribution measuring method for measuring an effective ultrasonic intensity distribution up to reception of ultrasonic waves.

上記目的を達成する本発明の超音波強度分布計測方法は、被計測空間内に超音波を送信する第1の振動子と、被計測空間内で反射して戻ってきた超音波を受信して受信信号を得る第2の振動子と、上記受信信号に基づいて被計測空間内における移動体の有無を検出する移動体検出部とを備えた移動体検出装置を稼動させたときの、被計測空間内の実効的な超音波強度分布を計測する超音波強度分布計測方法であって、
上記第1の振動子から前記被計測空間内に超音波を送信させその第1の振動子から第1の基準距離離れた第1の基準点と被計測空間内の複数の計測点それぞれに超音波センサを配置し超音波センサに超音波を受信させて第1の基準点の音圧である第1の基準音圧および複数の計測点それぞれの音圧である複数の第1の計測音圧を求める第1ステップと、
上記第2の振動子から被計測空間内に超音波を送信させ第2の振動子から第2の基準距離離れた第2の基準点と被計測空間内の複数の計測点それぞれに超音波センサを配置し超音波センサに超音波を受信させて第2の基準点の音圧である第2の基準音圧および複数の計測点それぞれの音圧である複数の第2の計測音圧を求める第2ステップと、
上記第1ステップで求められた第1の基準音圧に対する複数の計測点それぞれの複数の第1の計測音圧それぞれの第1の比率と、上記第2ステップで求められた第2の基準音圧に対する複数の計測点の複数の第2の計測音圧それぞれの第2の比率とに基づいて、被計測空間内の実効的な超音波強度分布を求める第3ステップとを有することを特徴とする。
The ultrasonic intensity distribution measuring method of the present invention that achieves the above object includes: a first transducer that transmits ultrasonic waves in a measurement space; and an ultrasonic wave that is reflected and returned in the measurement space. Measurement target when operating a moving body detection apparatus including a second vibrator that obtains a reception signal and a moving body detection unit that detects the presence or absence of a moving body in the measurement space based on the reception signal. An ultrasonic intensity distribution measuring method for measuring an effective ultrasonic intensity distribution in a space,
An ultrasonic wave is transmitted from the first transducer into the measurement space, and is superposed on a first reference point that is a first reference distance away from the first transducer and a plurality of measurement points in the measurement space. A first reference sound pressure that is a sound pressure at a first reference point and a plurality of first measurement sound pressures that are sound pressures at a plurality of measurement points by arranging a sound wave sensor and causing the ultrasonic sensor to receive ultrasonic waves A first step for determining
An ultrasonic sensor is transmitted from the second vibrator into the measurement space, and is sent to a second reference point that is a second reference distance away from the second vibrator and a plurality of measurement points in the measurement space. And the ultrasonic sensor receives the ultrasonic wave to obtain the second reference sound pressure that is the sound pressure of the second reference point and the plurality of second measurement sound pressures that are the sound pressures of the plurality of measurement points, respectively. The second step;
The first ratio of each of the plurality of first measured sound pressures at each of the plurality of measurement points with respect to the first reference sound pressure obtained in the first step, and the second reference sound obtained in the second step And a third step of obtaining an effective ultrasonic intensity distribution in the measurement space based on the second ratio of each of the plurality of second measurement sound pressures at the plurality of measurement points with respect to the pressure. To do.

本発明の超音波強度分布計測方法は、本来は、超音波受信用として用いられる第2の振動子を超音波送信用として用いることで実効的な超音波強度分布を計測するものである。第1の振動子から超音波を送信して超音波センサで受信したときの受信強度と第2の振動子から超音波を送信して超音波センサで受信したときの受信強度とから、超音波センサを配置したポイントの実効的な強度分布を求めることができ、それを同時に又は順次に被計測空間内の各ポイントで行なうことにより、被計測空間全域に亘る実効的な超音波強度分布を計測することができる。   The ultrasonic intensity distribution measuring method of the present invention measures an effective ultrasonic intensity distribution by using a second transducer that is originally used for ultrasonic reception for ultrasonic transmission. From the received intensity when the ultrasonic wave is transmitted from the first vibrator and received by the ultrasonic sensor and the received intensity when the ultrasonic wave is transmitted from the second vibrator and received by the ultrasonic sensor, the ultrasonic wave The effective intensity distribution of the point where the sensor is placed can be obtained, and the effective ultrasonic intensity distribution over the entire measurement space can be measured by performing it simultaneously or sequentially at each point in the measurement space. can do.

ここで、本発明の超音波強度分布計測方法において、上記第1ステップが前記超音波センサで超音波を受信して得た受信信号から計測対象の周波数の超音波に起因する信号成分を抽出しその信号成分に基づいて第1の基準音圧および複数の第1の計測音圧を求めるステップであり、
上記第2ステップが超音波センサで超音波を受信して得た受信信号から計測対象の周波数の超音波に起因する信号成分を抽出しその信号成分に基づいて第2の基準音圧および複数の第2の計測音圧を求めるステップであることが好ましい。
Here, in the ultrasonic intensity distribution measuring method of the present invention, the first step extracts a signal component caused by the ultrasonic wave of the frequency to be measured from the received signal obtained by receiving the ultrasonic wave by the ultrasonic sensor. Obtaining a first reference sound pressure and a plurality of first measured sound pressures based on the signal component;
The second step extracts a signal component resulting from the ultrasonic wave of the frequency to be measured from the received signal obtained by receiving the ultrasonic wave with the ultrasonic sensor, and based on the signal component, the second reference sound pressure and the plurality of sound components are extracted. It is preferable that it is a step which calculates | requires a 2nd measurement sound pressure.

不審者侵入時に特定の周波数の超音波に基づくドプラシフトを検出するシステムの場合、超音波センサで受信して得た超音波のうちその周波数成分のみを抽出しその周波数成分のみに基づく超音波強度分布を計測することが好ましい。   In the case of a system that detects a Doppler shift based on an ultrasonic wave of a specific frequency when a suspicious person enters, only the frequency component is extracted from the ultrasonic wave received by the ultrasonic sensor, and the ultrasonic intensity distribution based only on that frequency component Is preferably measured.

ここで、本発明の超音波強度分布計測方法は、典型的には、自動車の車室を被計測空間とするものである。   Here, the ultrasonic intensity distribution measuring method of the present invention typically uses a vehicle cabin as a space to be measured.

以上説明したように、本発明によれば被計測空間内の実効的な超音波強度分布を計測することができる。   As described above, according to the present invention, an effective ultrasonic intensity distribution in the measurement space can be measured.

本発明の第1実施形態の超音波強度分布計測方法を示す模式図である。It is a schematic diagram which shows the ultrasonic intensity distribution measuring method of 1st Embodiment of this invention. 車室内を横から見て示した図である。It is the figure which looked and showed the vehicle interior from the side. 車室内を上から見て示した図である。It is the figure which showed the vehicle interior from the top. 第1の振動子から発せられた超音波の周波数分布(A)および第2の振動子から発せられた超音波の周波数分布(B)を示す図である。It is a figure which shows the frequency distribution (A) of the ultrasonic wave emitted from the 1st vibrator, and the frequency distribution (B) of the ultrasonic wave emitted from the 2nd vibrator. 車室内の送信側のみの超音波強度分布を示す図である。It is a figure which shows the ultrasonic intensity distribution only of the transmission side in a vehicle interior. 車室内の本来は受信に使用される側の超音波強度分布を示す図である。It is a figure which shows the ultrasonic intensity distribution of the side originally used for reception in a vehicle interior. 送信側と受信側との双方を合わせたときの超音波強度分布を示す図である。It is a figure which shows ultrasonic intensity distribution when both the transmission side and the receiving side are match | combined.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の第1実施形態の超音波強度分布計測方法を示す模式図である。   FIG. 1 is a schematic diagram showing an ultrasonic intensity distribution measuring method according to the first embodiment of the present invention.

被計測空間10を区画する壁面11には、この被計測空間10内に超音波を送信する第1の振動子12と、被計測空間10内で反射して戻ってきた超音波を受信する第2の振動子13が固定されている。また被計測空間10の内部には、様々な反射物体14が存在する。被計測空間10内に不審者等の移動物体が存在すると、その移動物体からの反射超音波はドプラシフトにより周波数が変化する。そこで、第2の振動子13で受信して得た信号からドプラシフトした成分を抽出することにより被計測空間内に侵入者等の移動物体が存在するか否かが検出される。   The wall surface 11 that partitions the measurement space 10 includes a first vibrator 12 that transmits ultrasonic waves in the measurement space 10 and a first ultrasonic wave that is reflected and returned in the measurement space 10. Two vibrators 13 are fixed. Various reflective objects 14 exist inside the space to be measured 10. When a moving object such as a suspicious person is present in the measured space 10, the frequency of reflected ultrasonic waves from the moving object changes due to Doppler shift. Therefore, it is detected whether or not a moving object such as an intruder exists in the measured space by extracting a Doppler shifted component from the signal received by the second vibrator 13.

侵入者等の検出の場面についての説明はこの程度とし、ここでは被計測空間10内の実効的な超音波強度分布の計測方法を説明する。   The description of the scene of detecting an intruder or the like is about this level, and here, an effective ultrasonic intensity distribution measurement method in the measurement target space 10 will be described.

図1には、コンピュータ等で実現した処理回路が示されている。   FIG. 1 shows a processing circuit realized by a computer or the like.

この処理回路20は、送信制御部21、受信部22、演算部23、表示部24、およびそれらの各部を制御する制御部25から構成されている。   The processing circuit 20 includes a transmission control unit 21, a reception unit 22, a calculation unit 23, a display unit 24, and a control unit 25 that controls these units.

ここでは、被計測空間10内に超音波マイクロホン31を持ち込み、被計測空間内で順次移動させながら以下の通りのシーケンスで被計測空間内の各ポイントの超音波強度を計測する。この場合において、第2の振動子13は、侵入者を検出する場面では反射超音波の受信素子として利用されるが、ここでは、この第2の振動子13も、第1の振動子12と同様、超音波送信素子として利用する。   Here, the ultrasonic microphone 31 is brought into the measurement space 10, and the ultrasonic intensity at each point in the measurement space is measured in the following sequence while sequentially moving in the measurement space. In this case, the second vibrator 13 is used as a reflected ultrasonic wave receiving element in a scene where an intruder is detected. Here, the second vibrator 13 is also connected to the first vibrator 12. Similarly, it is used as an ultrasonic transmission element.

先ず、超音波マイクロホン31を第1の振動子12から単位距離(例えば100mm)だけ離れた第1の基準点31Aに置いて送信制御部21に第1の振動子12からの超音波の送信を指示させて第1の振動子12から超音波を送信させ、超音波マイクロホン31でピックアップし受信部22で受信信号を生成する。その生成された受信信号を演算部23に入力し演算部23でその受信信号に基づいて第1の基準音圧P10を求める。 First, the ultrasonic microphone 31 is placed at a first reference point 31A that is a unit distance (for example, 100 mm) away from the first transducer 12, and the transmission control unit 21 transmits ultrasonic waves from the first transducer 12. The ultrasonic wave is transmitted from the first vibrator 12 in response to the instruction, picked up by the ultrasonic microphone 31, and the reception unit 22 generates a reception signal. As the generated received signal inputted to the arithmetic unit 23 obtains the first reference sound pressure P 10 based on the received signal in the operation unit 23.

次に同様にして、超音波マイクロホン31を第2の振動子から単位距離(例えば100mm)だけ離れた第2の基準点31Bに置いて送信制御部21に第2の振動子13からの超音波の送信を指示させて第2の振動子13から超音波を送信させ、超音波マイクロホン31でピックアップし受信部22で受信信号を得て演算部23でその受信信号に基づく第2の基準音圧P20を求める。 Next, in the same manner, the ultrasonic microphone 31 is placed at the second reference point 31B separated from the second transducer by a unit distance (for example, 100 mm), and the ultrasonic wave from the second transducer 13 is sent to the transmission control unit 21. To transmit ultrasonic waves from the second vibrator 13, picked up by the ultrasonic microphone 31, obtains a reception signal by the reception unit 22, and calculates a second reference sound pressure based on the reception signal by the calculation unit 23. determine the P 20.

その後超音波マイクロホン31を被計測空間内の各ポイントに移動させ、各ポイントごとに第1の振動子12から超音波を送信させて超音波マイクロホン31でピックアップしてそのポイントの第1の計測音圧P1i(iは計測ポイントの番号)を求め、それに引き続いて第2の振動子13から超音波を送信させ超音波マイクロホン31でピックアップしてそのポイントの第2の計測音圧P2i(iは計測ポイントの番号)を求める。これを各計測ポイントごとに繰り返す。 Thereafter, the ultrasonic microphone 31 is moved to each point in the space to be measured, and an ultrasonic wave is transmitted from the first vibrator 12 for each point and picked up by the ultrasonic microphone 31, and the first measurement sound at that point is picked up. The pressure P 1i (i is the number of the measurement point) is obtained, and subsequently, an ultrasonic wave is transmitted from the second vibrator 13 and picked up by the ultrasonic microphone 31 and the second measurement sound pressure P 2i (i of the point). Is the number of the measurement point). This is repeated for each measurement point.

演算部23では、このようにして求められた第1の基準音圧P10、第2の基準音圧P20、各計測ポイントごとの第1の計測音圧P1iおよび第2の計測音圧P2iに基づいて、各計測ポイントiごとの超音波減衰率rを以下の式に従って算出する。 The arithmetic unit 23, a first reference sound pressure P 10 obtained in this manner, the second reference sound pressure P 20, the first measurement sound pressure P 1i and the second measurement sound pressure for each measurement point Based on P 2i , the ultrasonic attenuation rate r i for each measurement point i is calculated according to the following equation.

Figure 2011094999
Figure 2011094999

このようにして、実使用時の送信側の第1の振動子12から超音波を発し超音波マイクロホン31でピックアップしたときの減衰率r1i=P1i/P10と、実使用時には受信を担う第2の振動子13から超音波を発し超音波マイクロホン31でピックアップしたときの減衰率r2i=P2i/P20を求め、それらを乗算することにより、第1の振動子12から発した超音波が計測ポイントに置かれた反射体で反射して第2の振動子13に戻ってきた超音波を第2の振動子13で受信したときの減衰率が求められる。この減衰率rを各計測ポイントごとに算出することにより、被計測空間10内の実効的な超音波強度分布が求められる。実際には、反射体の反射率によっても減衰率は異なるが、ここでは、被計測空間内の相対的な超音波強度分布を求めれば足り、以上の計測法で十分である。尚、ここでは、上記(1)式に基づいて減衰率rを算出することを示したが、これは一例である。例えばdB表現の場合は割り算は引き算に、乗算は足し算となり見かけ上の式は異なることになるが本質的には上記(1)式と同等である。 In this way, the attenuation rate r 1i = P 1i / P 10 when ultrasonic waves are emitted from the first transducer 12 on the transmission side during actual use and picked up by the ultrasonic microphone 31, and reception is performed during actual use. When the ultrasonic wave is emitted from the second vibrator 13 and picked up by the ultrasonic microphone 31, the attenuation rate r 2i = P 2i / P 20 is obtained and multiplied by them to obtain the supersonic wave emitted from the first vibrator 12. The attenuation rate when the second transducer 13 receives the ultrasonic wave reflected by the reflector placed at the measurement point and returned to the second transducer 13 is obtained. By calculating the attenuation rate r i for each measurement point, an effective ultrasonic intensity distribution in the measured space 10 is obtained. Actually, although the attenuation rate varies depending on the reflectance of the reflector, it is sufficient to obtain the relative ultrasonic intensity distribution in the measurement space, and the above measurement method is sufficient. Here, the calculation of the attenuation rate r i based on the above equation (1) is shown, but this is an example. For example, in the case of dB expression, division is subtraction, multiplication is addition, and the apparent expression is different, but it is essentially the same as the above expression (1).

仮に、実使用時と同様にして第1の振動子12からは超音波を送信し超音波マイクロホン31で受信して減衰率r1iを求め、今度は超音波マイクロホン31の代わりに超音波送信機をその計測ポイントiにおいて超音波を送信して第2の振動子13で受信して減衰率r2iを求めることも一応考えられるが、超音波送信機は一般にある程度狭い指向性を持ち、したがって超音波マイクロホン31に代えて超音波送信機を置いて超音波を送信する構成にすると、その超音波送信機の指向性に起因して不正確な計測となってしまうおそれがある。これに対し超音波マイクロホン31は十分に広い指向性を持つものが存在し、第1および第2の振動子12,13の双方を超音波送信素子として利用する上記の計測法の方が高精度の計測が可能となる。 As in actual use, an ultrasonic wave is transmitted from the first vibrator 12 and received by the ultrasonic microphone 31 to obtain the attenuation rate r 1i . This time, an ultrasonic transmitter is used instead of the ultrasonic microphone 31. It is also conceivable that the ultrasonic transducer is transmitted at the measurement point i and received by the second vibrator 13 to obtain the attenuation rate r 2i , but the ultrasonic transmitter generally has a somewhat narrow directivity, and therefore If an ultrasonic transmitter is placed in place of the sonic microphone 31 to transmit ultrasonic waves, there is a risk of inaccurate measurement due to the directivity of the ultrasonic transmitter. On the other hand, some ultrasonic microphones 31 have sufficiently wide directivity, and the above measurement method using both the first and second vibrators 12 and 13 as ultrasonic transmission elements has higher accuracy. Can be measured.

次に、自動車の車室内を被計測空間とする第2実施形態について説明する。   Next, a description will be given of a second embodiment in which a vehicle interior is a measurement target space.

図2は、車室内を横から見て示した図、図3は、車室内を上から見て示した図である。尚、図2,図3では、超音波は複数のビーム形状に示されている。   2 is a diagram showing the interior of the vehicle as viewed from the side, and FIG. 3 is a diagram of the interior of the vehicle as viewed from above. 2 and 3, the ultrasonic waves are shown in a plurality of beam shapes.

車室100内の運転席と助手席との中央の天井部分に、超音波音源として用いられる第1振動子と超音波受信機として用いられる第2振動子が並んで配置されモジュール化された超音波モジュール101が設置されている。   A superstructure in which a first vibrator used as an ultrasonic sound source and a second vibrator used as an ultrasonic receiver are arranged side by side in a central ceiling portion of a driver seat and a passenger seat in the passenger compartment 100 and modularized. A sound wave module 101 is installed.

この超音波モジュール101は、車室内のあらゆる方向に向けて超音波を送信し、反射超音波を受信し、受信信号に基づいて超音波のドプラシフト量を計算し、侵入者の有無を判定し、侵入者が存在する旨判定したときは警報音を発する構成となっている。   The ultrasonic module 101 transmits ultrasonic waves in all directions in the vehicle interior, receives reflected ultrasonic waves, calculates the ultrasonic Doppler shift amount based on the received signal, determines the presence or absence of an intruder, When it is determined that there is an intruder, a warning sound is generated.

ここでは、前述の第1実施形態と同様、超音波音源として用いられる振動子だけでなく本来は超音波受信機として用いられる振動子も超音波音源として用い、前述の第1の実施形態と同様の計測法により車室100内の各計測ポイントについて減衰率が求められる。この減衰率は送信側の減衰率と、本来は受信側となる側の減衰率との積である((1)式参照)。尚、ここに示す第2実施形態では、超音波マイクロホン31を横に4本並べ縦に4本並べた合計16本使い、16の計測ポイントについて同時に計測を行なっている。その16本の超音波マイクロホン31を上下および前後に移動させながら、車室100内の全ての計測ポイントについて計測を行なっている。   Here, similarly to the first embodiment described above, not only the transducer used as the ultrasonic sound source but also the transducer originally used as the ultrasonic receiver is used as the ultrasonic sound source, and is the same as in the first embodiment. The attenuation rate is obtained for each measurement point in the passenger compartment 100 by the above measurement method. This attenuation factor is the product of the attenuation factor on the transmission side and the attenuation factor on the side that is essentially the reception side (see equation (1)). In the second embodiment shown here, a total of 16 ultrasonic microphones 31 are arranged side by side and four are arranged vertically, and 16 measurement points are simultaneously measured. The measurement is performed for all measurement points in the passenger compartment 100 while moving the 16 ultrasonic microphones 31 up and down and back and forth.

図4は、第1の振動子から発せられた超音波の周波数分布(A)および第2の振動子から発せられた超音波の周波数分布(B)を示す図である。   FIG. 4 is a diagram showing the frequency distribution (A) of ultrasonic waves emitted from the first vibrator and the frequency distribution (B) of ultrasonic waves emitted from the second vibrator.

いずれも40kHzの周波数に大きなピークを持つ。実際の侵入者検出の場面で40kHzの超音波を利用している。そこで、ここでは、フーリエ変換により40kHzを中心とした狭い帯域の信号のみを抽出し、その抽出した40kHzの周波数の超音波の音圧を求め、車室内の超音波強度分布を求めている。このように実際に使用される周波数の信号のみを抽出し、その周波数の信号に基づいて超音波強度分布を求めることにより、実際に即した超音波強度分布が求められる。   Both have a large peak at a frequency of 40 kHz. 40kHz ultrasonic waves are used in the actual intruder detection scene. Therefore, here, only a narrow-band signal centered on 40 kHz is extracted by Fourier transform, the sound pressure of the extracted ultrasonic wave having a frequency of 40 kHz is obtained, and the ultrasonic intensity distribution in the vehicle interior is obtained. In this way, by extracting only a signal having a frequency that is actually used and obtaining an ultrasonic intensity distribution based on the signal having the frequency, an ultrasonic intensity distribution that matches the actual frequency can be obtained.

図5は、車室内の送信側のみの超音波強度分布を示す図、図6は車室内の本来は受信に使用される側の超音波強度分布を示す図、図7は、送信側と受信側との双方を合わせたときの(すなわち、(1)式に従った)超音波強度分布を示す図である。   FIG. 5 is a diagram showing the ultrasonic intensity distribution on the transmission side only in the vehicle interior, FIG. 6 is a diagram showing the ultrasonic intensity distribution on the side originally used for reception in the vehicle interior, and FIG. It is a figure which shows ultrasonic intensity distribution when the both sides are match | combined (namely, according to (1) Formula).

超音波強度分布は送信側(図5)と受信側(図6)とではかなりの相違点があり、それらを統合した図7も図5,図6とは分布が異なっていることが分かる。   The ultrasonic intensity distribution is considerably different between the transmitting side (FIG. 5) and the receiving side (FIG. 6), and it can be seen that FIG. 7, which integrates them, is different from FIGS.

このように、上記の各実施形態では、本来は受信側として使用される振動子から超音波を送信させることにより、被計測空間内の実効的な超音波強度分布を高精度に求めている。この超音波強度分布を、侵入者警報システムや被計測空間内のレイアウトなどの最適設計に反映させることができる。   As described above, in each of the above-described embodiments, an effective ultrasonic intensity distribution in the measurement target space is obtained with high accuracy by transmitting ultrasonic waves from a transducer that is originally used as a receiving side. This ultrasonic intensity distribution can be reflected in an optimal design such as an intruder warning system and a layout in the measurement target space.

10 被計測空間
11 壁面
12,13 振動子
14 反射物体
20 処理回路
21 送信制御部
22 受信部
23 演算部
24 表示部
25 制御部
31 超音波マイクロホン
31A 基準点
100 車室
101 超音波モジュール
DESCRIPTION OF SYMBOLS 10 Measurement space 11 Wall surface 12, 13 Vibrator 14 Reflecting object 20 Processing circuit 21 Transmission control part 22 Reception part 23 Calculation part 24 Display part 25 Control part 31 Ultrasonic microphone 31A Reference point 100 Car interior 101 Ultrasonic module

Claims (3)

被計測空間内に超音波を送信する第1の振動子と、前記被計測空間内で反射して戻ってきた超音波を受信して受信信号を得る第2の振動子と、前記受信信号に基づいて前記被計測空間内における移動体の有無を検出する移動体検出部とを備えた移動体検出装置を稼動させたときの、前記被計測空間内の実効的な超音波強度分布を計測する超音波強度分布計測方法であって、
前記第1の振動子から前記被計測空間内に超音波を送信させ該第1の振動子から第1の基準距離離れた第1の基準点と該被計測空間内の複数の計測点それぞれに超音波センサを配置し該超音波センサに超音波を受信させて該第1の基準点の音圧である第1の基準音圧および該複数の計測点それぞれの音圧である複数の第1の計測音圧を求める第1ステップと、
前記第2の振動子から前記被計測空間内に超音波を送信させ該第2の振動子から第2の基準距離離れた第2の基準点と該被計測空間内の前記複数の計測点それぞれに超音波センサを配置し該超音波センサに超音波を受信させて該第2の基準点の音圧である第2の基準音圧および該複数の計測点それぞれの音圧である複数の第2の計測音圧を求める第2ステップと、
前記第1ステップで求められた前記第1の基準音圧に対する前記複数の計測点それぞれの前記複数の第1の計測音圧それぞれの第1の比率と、前記第2ステップで求められた前記第2の基準音圧に対する前記複数の計測点の前記複数の第2の計測音圧それぞれの第2の比率とに基づいて、前記被計測空間内の実効的な超音波強度分布を求める第3ステップとを有することを特徴とする超音波強度分布計測方法。
A first transducer that transmits ultrasonic waves into the measurement space; a second transducer that receives the ultrasonic waves reflected back within the measurement space and obtains reception signals; and An effective ultrasonic intensity distribution in the measurement space is measured when a mobile body detection device including a mobile body detection unit that detects the presence or absence of the mobile body in the measurement space is operated. An ultrasonic intensity distribution measuring method,
An ultrasonic wave is transmitted from the first transducer into the measurement space, and a first reference point that is a first reference distance away from the first transducer and a plurality of measurement points in the measurement space. An ultrasonic sensor is disposed, and the ultrasonic sensor receives ultrasonic waves. A first reference sound pressure that is a sound pressure of the first reference point and a plurality of first that is a sound pressure of each of the plurality of measurement points. A first step for obtaining a measured sound pressure of
An ultrasonic wave is transmitted from the second transducer into the measurement space, and a second reference point that is a second reference distance away from the second transducer and each of the plurality of measurement points in the measurement space. An ultrasonic sensor is disposed on the second sensor, and the ultrasonic sensor receives ultrasonic waves. The second reference sound pressure, which is the sound pressure of the second reference point, and a plurality of first pressures, each of which is the sound pressure of each of the plurality of measurement points. A second step for obtaining a measured sound pressure of 2;
A first ratio of each of the plurality of first measured sound pressures at each of the plurality of measurement points with respect to the first reference sound pressure obtained at the first step, and the first ratio obtained at the second step. A third step of obtaining an effective ultrasonic intensity distribution in the measurement target space based on a second ratio of each of the plurality of second measurement sound pressures at the plurality of measurement points with respect to a reference sound pressure of two; And an ultrasonic intensity distribution measuring method.
前記第1ステップが前記超音波センサで超音波を受信して得た受信信号から計測対象の周波数の超音波に起因する信号成分を抽出し該信号成分に基づいて前記第1の基準音圧および前記複数の第1の計測音圧を求めるステップであり、
前記第2ステップが前記超音波センサで超音波を受信して得た受信信号から計測対象の周波数の超音波に起因する信号成分を抽出し該信号成分に基づいて前記第2の基準音圧および前記複数の第2の計測音圧を求めるステップであることを特徴とする請求項1記載の超音波強度分布計測方法。
The first step extracts a signal component resulting from the ultrasonic wave of the frequency to be measured from the received signal obtained by receiving the ultrasonic wave with the ultrasonic sensor, and based on the signal component, the first reference sound pressure and Obtaining the plurality of first measured sound pressures;
The second step extracts a signal component resulting from the ultrasonic wave of the frequency to be measured from the received signal obtained by receiving the ultrasonic wave with the ultrasonic sensor, and based on the signal component, the second reference sound pressure and The ultrasonic intensity distribution measuring method according to claim 1, wherein the step is a step of obtaining the plurality of second measured sound pressures.
当該超音波強度分布計測方法が、自動車の車室を前記被計測空間とするものであることを特徴とする請求項1又は2記載の超音波強度分布計測方法。   3. The ultrasonic intensity distribution measuring method according to claim 1, wherein the ultrasonic intensity distribution measuring method uses a vehicle compartment as the measurement space.
JP2009246652A 2009-10-27 2009-10-27 Ultrasonic intensity distribution measurement method Expired - Fee Related JP5279681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246652A JP5279681B2 (en) 2009-10-27 2009-10-27 Ultrasonic intensity distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246652A JP5279681B2 (en) 2009-10-27 2009-10-27 Ultrasonic intensity distribution measurement method

Publications (2)

Publication Number Publication Date
JP2011094999A true JP2011094999A (en) 2011-05-12
JP5279681B2 JP5279681B2 (en) 2013-09-04

Family

ID=44112092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246652A Expired - Fee Related JP5279681B2 (en) 2009-10-27 2009-10-27 Ultrasonic intensity distribution measurement method

Country Status (1)

Country Link
JP (1) JP5279681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633631A (en) * 2017-08-01 2018-01-26 深圳市盛路物联通讯技术有限公司 A kind of border monitoring method with barrier, and control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160563A (en) * 1996-11-27 1998-06-19 Mitsubishi Electric Corp Metallic foreign matter detecting device and vibration generator for gas isolator
JPH11148857A (en) * 1997-11-14 1999-06-02 Ono Sokki Co Ltd Reference sound device
JP2001134850A (en) * 1999-11-09 2001-05-18 Fujitsu Ten Ltd Invasion detector
JP2002365127A (en) * 2001-06-06 2002-12-18 Mitsubishi Heavy Ind Ltd Method and device for estimating acoustic power level of sound source
JP2006214740A (en) * 2005-02-01 2006-08-17 Ono Sokki Co Ltd Acoustic measurement system
JP2006311202A (en) * 2005-04-28 2006-11-09 Kenwood Corp Acoustic measuring apparatus
JP2008116344A (en) * 2006-11-06 2008-05-22 Ono Sokki Co Ltd Signal analyzer, calculation program and calculation processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160563A (en) * 1996-11-27 1998-06-19 Mitsubishi Electric Corp Metallic foreign matter detecting device and vibration generator for gas isolator
JPH11148857A (en) * 1997-11-14 1999-06-02 Ono Sokki Co Ltd Reference sound device
JP2001134850A (en) * 1999-11-09 2001-05-18 Fujitsu Ten Ltd Invasion detector
JP2002365127A (en) * 2001-06-06 2002-12-18 Mitsubishi Heavy Ind Ltd Method and device for estimating acoustic power level of sound source
JP2006214740A (en) * 2005-02-01 2006-08-17 Ono Sokki Co Ltd Acoustic measurement system
JP2006311202A (en) * 2005-04-28 2006-11-09 Kenwood Corp Acoustic measuring apparatus
JP2008116344A (en) * 2006-11-06 2008-05-22 Ono Sokki Co Ltd Signal analyzer, calculation program and calculation processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633631A (en) * 2017-08-01 2018-01-26 深圳市盛路物联通讯技术有限公司 A kind of border monitoring method with barrier, and control device
CN107633631B (en) * 2017-08-01 2020-03-10 深圳市盛路物联通讯技术有限公司 Boundary monitoring method with obstacle and control equipment

Also Published As

Publication number Publication date
JP5279681B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
KR101716590B1 (en) Method for the improved activation of ultrasonic sensors, driver assistance device and motor vehicle
US9250315B2 (en) Collision avoidance system and method
US9747917B2 (en) Position directed acoustic array and beamforming methods
US20170176594A1 (en) Obstacle detection device
CN105549020B (en) Object test equipment
US10006999B2 (en) Driver assistance system for detecting an object in the surroundings of a vehicle
US20160003943A1 (en) Obstacle detection device for vehicle and obstacle detection system for vehicle
JP4258328B2 (en) Two-frequency Doppler distance measuring device and detection system provided with the device
WO2006137871A3 (en) Ground vehicle collision prevention systems and methods
KR101819967B1 (en) Method for detecting object of automobile
CN110007308A (en) Ultrasonic sensor and vehicle control system
CN114945840A (en) Contact detection by means of an ultrasonic sensor system
KR20000022785A (en) Parking assistant for a motor vehicle
JP2016080649A (en) Object detector
CN108674362A (en) Anti- rearward collision early warning locking device when a kind of automobile door opening
CN109515359A (en) Ultrasonic noise in vehicle&#39;s passenger compartment is eliminated
JP5279681B2 (en) Ultrasonic intensity distribution measurement method
US7224809B2 (en) Method for the acoustic localization of persons in an area of detection
KR20180039942A (en) Apparatus and method for driving ultrasonic sensor
JP3517520B2 (en) Safe driving support system and safe driving support method
KR20150044482A (en) Device for parking assist of vehicle and method thereof
KR102302883B1 (en) Apparatus and method for detecting obstruction in a near field for vehicle using ultrasonics wave
GB2510262A (en) Environment sensor system which evaluates interfering sound sources
KR101246732B1 (en) A device for detecting malfuction of underwater camera and the method using thereof
KR20130067648A (en) System for sensing crush of a vehicle and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees