JP2011094523A - Cooling water passage structure in cylinder head of internal combustion engine - Google Patents

Cooling water passage structure in cylinder head of internal combustion engine Download PDF

Info

Publication number
JP2011094523A
JP2011094523A JP2009248441A JP2009248441A JP2011094523A JP 2011094523 A JP2011094523 A JP 2011094523A JP 2009248441 A JP2009248441 A JP 2009248441A JP 2009248441 A JP2009248441 A JP 2009248441A JP 2011094523 A JP2011094523 A JP 2011094523A
Authority
JP
Japan
Prior art keywords
cooling water
water passage
passage
cylinder head
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009248441A
Other languages
Japanese (ja)
Other versions
JP5323641B2 (en
Inventor
Goichi Katayama
吾一 片山
Yoshihiro Fujiyoshi
美広 藤吉
Hiroshi Tajima
寛 但馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009248441A priority Critical patent/JP5323641B2/en
Publication of JP2011094523A publication Critical patent/JP2011094523A/en
Application granted granted Critical
Publication of JP5323641B2 publication Critical patent/JP5323641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling water passage structure in the cylinder head of an internal combustion engine, efficiently cooling the vicinity of a combustion chamber. <P>SOLUTION: A first cooling water passage 21 is formed inside of the side of the exhaust port 13 of the cylinder head 3, and also an exhaust-side second cooling water passage 32 is formed in a position closer to the combustion chamber 11 than the first cooling water passage 21 inside the cylinder head 3. The first cooling water passage 21 is made to communicate with the exhaust-side second cooling water passage 32 through a communication passage 41, and cooling water is made to flow from the side of the first cooling water passage 21 to the side of the exhaust-side second cooling water passage 32. The communication passage 41 is formed to be narrower than the first cooling water passage 21 and exhaust-side second cooling water passage 32, and also the axis 41X of the communication passage is arranged to be directed to the vicinity of the center of the combustion chamber 11. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ディーゼルエンジンに好適な内燃機関のシリンダヘッド内冷却水通路構造に係り、シリンダヘッドを効率的に冷却する技術に関する。   The present invention relates to a cooling water passage structure in a cylinder head of an internal combustion engine suitable for a diesel engine, and relates to a technique for efficiently cooling the cylinder head.

ディーゼルエンジンでは、高い圧縮比を実現するための燃焼室形状などに起因して吸排気バルブがほぼ直立状態で配置されるため、燃焼室の中央部近傍に臨むように燃料噴射弁が配置される直接噴射式の場合、シリンダヘッドの燃料噴射弁周りに部材が密集し、冷却水通路スペースに大きな制約が生じる。一方、直接噴射式ディーゼルエンジンではその燃焼形態のために、シリンダヘッドの受熱条件が燃焼室近傍ほど厳しくなる。したがって、シリンダヘッドの内部に冷却水通路を形成して燃焼室近傍を積極的に冷却する必要がある。   In a diesel engine, the intake and exhaust valves are arranged in an almost upright state due to the shape of the combustion chamber for realizing a high compression ratio. Therefore, the fuel injection valve is arranged to face the vicinity of the center of the combustion chamber. In the case of the direct injection type, the members are densely packed around the fuel injection valve of the cylinder head, and the cooling water passage space is greatly restricted. On the other hand, in the direct injection type diesel engine, the heat receiving condition of the cylinder head becomes severer in the vicinity of the combustion chamber due to the combustion mode. Therefore, it is necessary to actively cool the vicinity of the combustion chamber by forming a cooling water passage inside the cylinder head.

そして、このような部材配置とされたエンジンにおいて、燃焼噴射弁の周辺で高い冷却性能を得るために、シリンダヘッドの側面から吸気弁および排気弁の各弁座間を通って燃料噴射弁に指向する冷却水導通路を形成し、この冷却水導通路の基端側をシリンダブロック側の冷却水通路に連通させるとともに、その先端側をシリンダヘッド側の冷却水通路に連通させることで、シリンダブロック側から供給される低温の冷却水を燃焼噴射弁の周辺に直接的に導いた発明が提案されている(特許文献1参照)。   In the engine having such a member arrangement, in order to obtain high cooling performance around the combustion injection valve, the engine is directed from the side surface of the cylinder head to the fuel injection valve through the valve seats of the intake valve and the exhaust valve. A cooling water passage is formed, and the base end side of the cooling water passage is communicated with the cooling water passage on the cylinder block side, and the tip end side thereof is communicated with the cooling water passage on the cylinder head side. An invention has been proposed in which low-temperature cooling water supplied from is directly led to the periphery of a combustion injection valve (see Patent Document 1).

また、多気筒ガソリンエンジンにおけるシリンダヘッドの冷却水通路構造において、燃焼室周辺および排気ポート等の最も受熱条件の厳しい部位を効率良く冷却するために、気筒ごとに冷却水を気筒配列方向と直角方向(横方向)へ流す第1冷却水通路と、絞り通路を介して第1冷却水通路と接続され、絞り通路から流入する冷却水を排気ポートに沿ってカムシャフト側(上方)へ導く第2冷却水通路とでウォータージャケットを構成した発明が提案されている(特許文献2参照)。   Also, in the cooling water passage structure of the cylinder head in a multi-cylinder gasoline engine, in order to efficiently cool the parts having the most severe heat receiving conditions such as the periphery of the combustion chamber and the exhaust port, the cooling water is perpendicular to the cylinder arrangement direction for each cylinder. A first cooling water passage that flows in the (lateral direction), and a second cooling water passage that is connected to the first cooling water passage through the throttle passage, and guides the cooling water flowing from the throttle passage to the camshaft side (upward) along the exhaust port. An invention in which a water jacket is configured with a cooling water passage has been proposed (see Patent Document 2).

特開2000−130162号公報JP 2000-130162 A 特開2008−190497号公報JP 2008-190497 A

しかしながら、特許文献1の発明では、シリンダブロック側の冷却水通路からシリンダヘッド側の冷却水通路へ冷却水を流通させる複数の冷却水接続通路に加えて更に冷却水導通路を形成しているため、冷却水導通路を流れる冷却水量が少なく、燃焼室近傍の冷却効果が低い。また、特許文献1の発明は、気筒ごとに吸気バルブおよび排気バルブを各1つ備えた2バルブ式のエンジンに適用しているが、4バルブ式のエンジンに適用した場合、冷却水導通路が細くなって圧力損失が大きくなってしまうため、冷却効果が低下する。   However, in the invention of Patent Document 1, in addition to a plurality of cooling water connection passages for circulating cooling water from the cooling water passage on the cylinder block side to the cooling water passage on the cylinder head side, a cooling water conduction path is further formed. The amount of cooling water flowing through the cooling water passage is small, and the cooling effect in the vicinity of the combustion chamber is low. The invention of Patent Document 1 is applied to a two-valve engine provided with one intake valve and one exhaust valve for each cylinder. However, when applied to a four-valve engine, the cooling water passage is provided. Since it becomes thin and a pressure loss becomes large, a cooling effect falls.

一方、特許文献2の発明では、第1冷却水通路を燃焼室の周辺に配置することができるが、点火プラブがあるために(直接噴射式ディーゼルエンジンでは、燃料噴射弁があるために)第1冷却水通路を燃焼室の中央部に配置することはできず、受熱条件の最も厳しい燃焼室近傍で効果的な冷却が行われない。また、絞り通路は、シリンダヘッドにおける横方向への流速を高める機能を果たすが、燃焼室近傍を積極的に冷却するものではない。さらに、絞り通路からの噴流が第2冷却水通路内で排気ポートに沿って流れるため、噴流による熱伝達が有効利用されず、冷却効果が低い。   On the other hand, in the invention of Patent Document 2, the first cooling water passage can be arranged around the combustion chamber. However, since there is an ignition plug (in the direct injection diesel engine, there is a fuel injection valve) One cooling water passage cannot be disposed in the center of the combustion chamber, and effective cooling is not performed in the vicinity of the combustion chamber having the strictest heat receiving conditions. The throttle passage functions to increase the flow rate in the lateral direction of the cylinder head, but does not actively cool the vicinity of the combustion chamber. Further, since the jet flow from the throttle passage flows along the exhaust port in the second cooling water passage, heat transfer by the jet flow is not effectively used and the cooling effect is low.

本発明は、このような従来技術に課せられた問題点を解消するべく案出されたものであり、その主な目的は、燃焼室近傍を効率的に冷却することのできる内燃機関のシリンダヘッド内冷却水通路構造を提供することにある。   The present invention has been devised to solve such problems imposed on the prior art, and a main object thereof is a cylinder head of an internal combustion engine capable of efficiently cooling the vicinity of the combustion chamber. An internal cooling water passage structure is provided.

このような課題を解決するために、第1の発明に係る内燃機関(E)のシリンダヘッド内冷却水通路構造は、シリンダヘッド(3)の内部に形成された第1冷却水通路(21)と、シリンダヘッド(3)の内部における第1冷却水通路(21)よりも燃焼室(11)に近い位置に形成された第2冷却水通路(排気側第2冷却水通路32)と、第1冷却水通路(21)と第2冷却水通路(32)とを連通させ、冷却水を第1冷却水通路(21)側から第2冷却水通路(32)側へ流通させる連通路(41)とを有し、連通路(41)は、第1冷却水通路(21)および第2冷却水通路(32)よりも細く、その軸線(41X)が燃焼室(11)を指向するように形成されたことを特徴とする。   In order to solve such a problem, a cooling water passage structure in the cylinder head of the internal combustion engine (E) according to the first invention includes a first cooling water passage (21) formed inside the cylinder head (3). A second cooling water passage (exhaust-side second cooling water passage 32) formed closer to the combustion chamber (11) than the first cooling water passage (21) inside the cylinder head (3), The 1st cooling water channel | path (21) and the 2nd cooling water channel | path (32) are connected, and the communicating channel | path (41) which distribute | circulates cooling water from the 1st cooling water channel | path (21) side to the 2nd cooling water channel | path (32) side The communication passage (41) is narrower than the first cooling water passage (21) and the second cooling water passage (32), and its axis (41X) is directed to the combustion chamber (11). It is formed.

この発明によれば、第1冷却水通路を流れる冷却水は、連通路を通過することで燃焼室へ向く噴流となって第2冷却水通路へ流入する。そして、第2冷却水通路が燃焼室に近い位置に形成されるため、受熱が大きい燃焼室近傍が衝突噴流冷却の原理によって高い熱伝達率をもって効率的に冷却される。   According to this invention, the cooling water flowing through the first cooling water passage flows into the second cooling water passage as a jet directed to the combustion chamber by passing through the communication passage. Since the second cooling water passage is formed at a position close to the combustion chamber, the vicinity of the combustion chamber having a large heat reception is efficiently cooled with a high heat transfer rate by the principle of collision jet cooling.

また、第2の発明は、第1の発明に係る内燃機関(E)のシリンダヘッド内冷却水通路構造において、連通路の軸線(41X)が燃焼室(11)の中央部付近を指向することを特徴とする。   Further, according to the second invention, in the cooling water passage structure in the cylinder head of the internal combustion engine (E) according to the first invention, the axis (41X) of the communication passage is directed near the central portion of the combustion chamber (11). It is characterized by.

この発明によれば、受熱が大きな燃焼室の中央部近傍を冷却することで、シリンダヘッド全体としての冷却効果を高めることができる。   According to the present invention, the cooling effect of the entire cylinder head can be enhanced by cooling the vicinity of the central portion of the combustion chamber having a large heat reception.

また、第3の発明は、第1または第2の発明に係る内燃機関(E)のシリンダヘッド内冷却水通路構造において、第2冷却水通路(32)は、連通路(41)から噴出した冷却水の噴流に対向する衝突面(32w)を有することを特徴とする。   Moreover, 3rd invention is the cooling water channel | path structure in the cylinder head of the internal combustion engine (E) based on 1st or 2nd invention, and the 2nd cooling water channel | path (32) ejected from the communicating path (41). It has a collision surface (32w) facing the jet of cooling water.

この発明によれば、連通路からの噴流は衝突面に衝突して大きく乱れ、冷却水が同量であってもその熱伝達率が大きくなる。したがって、噴流が第2冷却水通路の壁面に小さな角度をもって衝突する場合に比べて燃焼室近傍をより効率的に冷却することができる。   According to the present invention, the jet flow from the communication path collides with the collision surface and is greatly disturbed, and the heat transfer coefficient is increased even if the amount of cooling water is the same. Therefore, the vicinity of the combustion chamber can be cooled more efficiently than when the jet collides with the wall surface of the second cooling water passage at a small angle.

また、第4の発明は、第1〜第3の発明に係る内燃機関(E)のシリンダヘッド内冷却水通路構造において、内燃機関(E)が複数の気筒(シリンダ4)を備えるとともに、連通路(41)が気筒(4)ごとに複数形成され、第1冷却水通路(21)の上流側に連通する少なくとも1つの連通路(41a)が、第1冷却水通路(21)の下流側に連通する少なくとも1つの連通路(41b、41cまたは41d)よりも細いことを特徴とする。   According to a fourth aspect of the present invention, in the cylinder head cooling water passage structure of the internal combustion engine (E) according to the first to third aspects of the invention, the internal combustion engine (E) includes a plurality of cylinders (cylinders 4). A plurality of passages (41) are formed for each cylinder (4), and at least one communication passage (41a) communicating with the upstream side of the first cooling water passage (21) is located downstream of the first cooling water passage (21). It is characterized by being narrower than at least one communication path (41b, 41c, or 41d) communicating with.

連通路における水圧および冷却水流量は、流路抵抗によって第1冷却水通路の下流側ほど小さくなる。そこで、この発明によれば、第1冷却水通路の上流側に位置する連通路を第1冷却水通路の下流側に位置する連通路よりも細くすることで、各連通路における冷却水流量を同等にして各気筒の燃焼室近傍を同等に冷却することができる。   The water pressure and cooling water flow rate in the communication path become smaller toward the downstream side of the first cooling water path due to the flow path resistance. Therefore, according to the present invention, the flow rate of the cooling water in each communication passage is reduced by making the communication passage located upstream of the first cooling water passage thinner than the communication passage located downstream of the first cooling water passage. It is possible to equally cool the vicinity of the combustion chamber of each cylinder.

このように、本発明によれば、燃焼室近傍を効率的に冷却することのできる内燃機関のシリンダヘッド内冷却水通路構造を提供することができる。   Thus, according to the present invention, it is possible to provide a cooling water passage structure in a cylinder head of an internal combustion engine that can efficiently cool the vicinity of the combustion chamber.

実施形態に係る内燃機関の燃焼室中央を通る要部断面図である。It is principal part sectional drawing which passes along the combustion chamber center of the internal combustion engine which concerns on embodiment. 図1中のII−II断面図ある。It is II-II sectional drawing in FIG. 図2中のIII−III断面図ある。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図1中のIV−IV断面図ある。It is IV-IV sectional drawing in FIG. 図1中のV−V断面図ある。It is VV sectional drawing in FIG. 実施形態に係る内燃機関の冷却水構造の模式図である。It is a mimetic diagram of a cooling water structure of an internal-combustion engine concerning an embodiment. 変形実施例に係る内燃機関の燃焼室中央を通る要部断面図である。It is principal part sectional drawing which passes along the combustion chamber center of the internal combustion engine which concerns on a modified example.

以下、添付の図面に示された一実施形態を参照して本発明に係るシリンダヘッド内冷却水通路構造について詳細に説明する。本実施形態では、本発明が直列4気筒のディーゼルエンジン(以下、単にエンジンEと記す)に適用されており、図1は、エンジンEの燃焼室11の中央を通る要部断面を示している。また、説明にあたり、エンジンEがシリンダ軸4Xを鉛直にして配置された状態を基準にして上下の方向を定めるものとする。   Hereinafter, a cylinder head cooling water passage structure according to the present invention will be described in detail with reference to an embodiment shown in the accompanying drawings. In the present embodiment, the present invention is applied to an in-line four-cylinder diesel engine (hereinafter simply referred to as engine E), and FIG. 1 shows a cross-section of the main part passing through the center of the combustion chamber 11 of engine E. . In the description, it is assumed that the vertical direction is determined with reference to the state where the engine E is arranged with the cylinder shaft 4X vertical.

図1に示すように、エンジンEは、シリンダブロック1と、シリンダブロック1の上部にガスケット2を介して締結されたシリンダヘッド3と、シリンダブロック1の内部に形成されたシリンダ4に摺動自在に嵌合するピストン5とを備えており、ピストン5の往復運動によって、ピストン5に連結されたコネクティングロッド6を介して図示外のクランクシャフトが回転駆動される。シリンダヘッド3には、各シリンダ4に対して2本の吸気バルブ7および2本の排気バルブ8が設けられており、これら吸排気バルブ7,8は、シリンダヘッド3の上方に設けられてクランクシャフトに連結された図示外のカムシャフトおよびロッカアームを介して開閉駆動される。ピストン5の頂面5aの中央部には、シリンダ軸4Xを中心にしたリエントラント型のキャビティ5bが凹設されて燃焼室11を構成しており、燃焼室11の上面を画成するシリンダヘッド3のシリンダ軸4X上には、噴射口が燃焼室11の中央に臨むように燃料噴射弁9が取り付けられている。また、シリンダヘッド3には、冷間始動時の燃料の自己着火を補助する補助熱源として、グロープラグ10がその先端側の発熱部10aを燃焼室11に突出させる態様で燃料噴射弁9に対して斜めに取り付けられている。   As shown in FIG. 1, the engine E is slidable on a cylinder block 1, a cylinder head 3 fastened to the top of the cylinder block 1 via a gasket 2, and a cylinder 4 formed inside the cylinder block 1. The crankshaft (not shown) is rotationally driven through the connecting rod 6 connected to the piston 5 by the reciprocating motion of the piston 5. The cylinder head 3 is provided with two intake valves 7 and two exhaust valves 8 for each cylinder 4. These intake and exhaust valves 7, 8 are provided above the cylinder head 3 and cranked. It is opened / closed via a camshaft and a rocker arm (not shown) connected to the shaft. A reentrant cavity 5b centered on the cylinder shaft 4X is recessed at the center of the top surface 5a of the piston 5 to form a combustion chamber 11, and the cylinder head 3 defining the upper surface of the combustion chamber 11 A fuel injection valve 9 is mounted on the cylinder shaft 4X so that the injection port faces the center of the combustion chamber 11. The cylinder head 3 has a glow plug 10 as an auxiliary heat source for assisting the self-ignition of the fuel at the time of cold start with respect to the fuel injection valve 9 in such a manner that the heat generating portion 10a on the tip side protrudes into the combustion chamber 11. It is attached diagonally.

図示は省略するが、エンジンEの燃料タンク内には低圧ポンプが設けられており、低圧ポンプから圧送された燃料が高圧ポンプに供給され、さらに、高圧ポンプから圧送された燃料がコモンレールに供給される。コモンレールで蓄圧された高圧の燃料は燃料噴射弁9に供給され、エンジンECUによって燃料噴射弁9が開弁駆動されることにより、所定量の高圧の燃料噴霧が所定のタイミングで燃焼室11に噴射される。   Although not shown in the figure, a low pressure pump is provided in the fuel tank of the engine E, the fuel pumped from the low pressure pump is supplied to the high pressure pump, and the fuel pumped from the high pressure pump is supplied to the common rail. The The high-pressure fuel accumulated in the common rail is supplied to the fuel injection valve 9, and the fuel injection valve 9 is driven to open by the engine ECU, whereby a predetermined amount of high-pressure fuel spray is injected into the combustion chamber 11 at a predetermined timing. Is done.

図3に示すように、シリンダヘッド3には、図示外の吸気マニホルドが接続する吸気ポート12、および図示外の排気マニホルドが接続する排気ポート13が形成され、これら吸気ポート12および排気ポート13の燃焼室11との接続部には、吸気バルブ7および排気バルブ8がそれぞれ着座するバルブシート14,15が設けられている。吸気バルブ7および排気バルブ8は、各バルブステム7a,8aがシリンダ軸4Xと平行となるように配置されており、閉弁状態においてバルブヘッド7b,8bの下端面がシリンダヘッド3の下面3aと同一の位置となる。一方、ピストン5は、圧縮上死点でその頂面5aがシリンダブロック1の上面とほぼ同一の位置となる。したがって、燃焼室11を囲むように環状に形成されたピストン5の頂面5aは、バルブリセスが形成されずに平坦面となっている。そして、圧縮上死点において、ピストン5の頂面5aとシリンダヘッド3の下面3aとの間に略ガスケット2の厚さに相当するスキッシュ16が形成される。   As shown in FIG. 3, the cylinder head 3 is formed with an intake port 12 to which an intake manifold (not shown) is connected, and an exhaust port 13 to which an exhaust manifold (not shown) is connected. Valve seats 14 and 15 on which the intake valve 7 and the exhaust valve 8 are respectively seated are provided at the connection with the combustion chamber 11. The intake valve 7 and the exhaust valve 8 are arranged so that the valve stems 7a and 8a are parallel to the cylinder shaft 4X, and the lower end surfaces of the valve heads 7b and 8b are in contact with the lower surface 3a of the cylinder head 3 in the closed state. It becomes the same position. On the other hand, the top surface 5 a of the piston 5 is at the same position as the top surface of the cylinder block 1 at the compression top dead center. Therefore, the top surface 5a of the piston 5 formed in an annular shape so as to surround the combustion chamber 11 is a flat surface without forming a valve recess. Then, at the compression top dead center, a squish 16 substantially corresponding to the thickness of the gasket 2 is formed between the top surface 5 a of the piston 5 and the lower surface 3 a of the cylinder head 3.

図1、図3および図4に示すように、シリンダヘッド3における排気ポート13側の上部から中央部にわたる部分には、排気ポート13や排気バルブ8を避けてシリンダ列方向に延在する第1冷却水通路21が形成されている。第1冷却水通路21におけるシリンダ列方向の一端には、図5および図6に示すように、第2冷却水導入通路52が接続されており、ウォーターポンプ50から冷却水配管を通って送給される冷却水が、シリンダブロック1に形成された第1冷却水導入通路51および第2冷却水導入通路52を介して第1冷却水通路21に流入する。なお、図6は、シリンダブロック1およびシリンダヘッド3の内部に形成された冷却水通路を抜き出したうえで分解して示した模式図であり、ハッチングを施した部分は、冷却水通路の断面であることを示している。   As shown in FIGS. 1, 3, and 4, a portion extending from the upper part to the central part on the exhaust port 13 side in the cylinder head 3 avoids the exhaust port 13 and the exhaust valve 8 and extends in the cylinder row direction. A cooling water passage 21 is formed. As shown in FIGS. 5 and 6, a second cooling water introduction passage 52 is connected to one end of the first cooling water passage 21 in the cylinder row direction, and is fed from the water pump 50 through the cooling water piping. The cooling water to be supplied flows into the first cooling water passage 21 through the first cooling water introduction passage 51 and the second cooling water introduction passage 52 formed in the cylinder block 1. FIG. 6 is a schematic view in which the cooling water passage formed inside the cylinder block 1 and the cylinder head 3 is extracted and disassembled, and the hatched portion is a cross section of the cooling water passage. It shows that there is.

また、図1、図3および図5に示すように、シリンダヘッド3における排気ポート13側の下部から中央部にわたる部分には、同様に排気ポート13や排気バルブ8を避けてシリンダ列方向に延在する排気側第2冷却水通路32が形成され、シリンダヘッド3における吸気ポート12側の下部から中央部にわたる部分には、吸気ポート12や吸気バルブ7、グロープラグ10を避けてシリンダ列方向に延在する吸気側第2冷却水通路33が形成されている。図2および図6に示すように、排気側第2冷却水通路32および吸気側第2冷却水通路33は、シリンダ4間に形成された中央第2冷却水通路34を介して連通している。そして、これら排気側第2冷却水通路32、吸気側第2冷却水通路33および中央第2冷却水通路34によって第2冷却水通路31が構成される。   Further, as shown in FIGS. 1, 3 and 5, the portion extending from the lower part to the center part on the exhaust port 13 side in the cylinder head 3 is similarly extended in the cylinder row direction while avoiding the exhaust port 13 and the exhaust valve 8. An existing exhaust-side second cooling water passage 32 is formed, and in the portion extending from the lower part of the cylinder head 3 on the intake port 12 side to the center part, the intake port 12, the intake valve 7, and the glow plug 10 are avoided in the cylinder row direction. An extending intake side second cooling water passage 33 is formed. As shown in FIGS. 2 and 6, the exhaust side second cooling water passage 32 and the intake side second cooling water passage 33 communicate with each other via a central second cooling water passage 34 formed between the cylinders 4. . The exhaust-side second cooling water passage 32, the intake-side second cooling water passage 33, and the central second cooling water passage 34 constitute a second cooling water passage 31.

図5に示すように、排気側第2冷却水通路32は、各シリンダ4の2本の排気バルブ8間に形成された第1バルブ間通路部32aと、隣接する吸気バルブ7および排気バルブ8間にそれぞれ形成された2本の第2バルブ間通路部32bとを有しており、これら3本のバルブ間通路部32a,32bがY字状の三叉分岐部を形成している。そして、2本の第2バルブ間通路部32bは、燃料噴射弁9の排気ポート13側を取り囲むように湾曲している。   As shown in FIG. 5, the exhaust-side second cooling water passage 32 includes a first inter-valve passage portion 32 a formed between the two exhaust valves 8 of each cylinder 4, and the adjacent intake valve 7 and exhaust valve 8. There are two second inter-valve passage portions 32b formed between them, and these three inter-valve passage portions 32a and 32b form a Y-shaped three-pronged branch portion. The two second inter-valve passage portions 32 b are curved so as to surround the exhaust port 13 side of the fuel injection valve 9.

図1に示すように、第1冷却水通路21と排気側第2冷却水通路32とは、シリンダ4ごとに形成された計4つの連通路41を介して互いに連通している。各連通路41は、シリンダヘッド3の上面3bに開口して第1冷却水通路21に至る加工用孔18に仮想線で示すドリル19を挿入し、ドリル19を燃焼室11の中央部近傍に指向させて回転駆動して第1冷却水通路21および排気側第2冷却水通路32間の肉壁を貫通することによって穿設される。これにより、連通路41は、その軸線41Xが燃焼室11の中央部近傍を指向するように形成される。また、連通路41の断面は第1冷却水通路21および排気側第2冷却水通路32の各断面積(水流方向に直交する断面積)よりも小さくなっている。即ち、連通路41は第1冷却水通路21および排気側第2冷却水通路32よりも細く形成される。なお、加工用孔18は、連通路41を穿設した後、栓20で閉塞される。   As shown in FIG. 1, the first cooling water passage 21 and the exhaust-side second cooling water passage 32 communicate with each other via a total of four communication passages 41 formed for each cylinder 4. Each communication passage 41 is opened in the upper surface 3 b of the cylinder head 3 and a drill 19 indicated by an imaginary line is inserted into the processing hole 18 reaching the first cooling water passage 21, and the drill 19 is placed near the center of the combustion chamber 11. It is drilled by being driven to rotate and penetrating through the wall between the first cooling water passage 21 and the exhaust side second cooling water passage 32. Thereby, the communication path 41 is formed such that the axis 41 </ b> X is directed near the center of the combustion chamber 11. Further, the cross section of the communication passage 41 is smaller than each cross sectional area (cross sectional area perpendicular to the water flow direction) of the first cooling water passage 21 and the exhaust side second cooling water passage 32. That is, the communication passage 41 is formed narrower than the first cooling water passage 21 and the exhaust side second cooling water passage 32. The processing hole 18 is closed by the plug 20 after the communication passage 41 is formed.

そして、連通路41が燃料噴射弁9に沿って湾曲する第2バルブ間通路部32bの接続部(湾曲中央部)に対応する位置に形成されることにより、排気側第2冷却水通路32における三叉分岐部には、連通路41から噴出した冷却水の噴流に対向し、冷却水が略垂直に衝突する衝突面32wが形成される。   The communication passage 41 is formed at a position corresponding to the connecting portion (curved center portion) of the second inter-valve passage portion 32b that is curved along the fuel injection valve 9, so that the exhaust passage side second cooling water passage 32 has A collision surface 32w is formed at the trifurcated branch portion so as to face the jet of cooling water ejected from the communication passage 41 and the cooling water collides substantially vertically.

また、図4に示すように、連通路41は、第2冷却水導入通路52が接続する第1冷却水通路21の上流側から順に4つ(41a,41b,41c,41d)形成されており、上流側ほどその断面積が小さくなっている。つまり、各連通路41a,41b,41c,41dの断面積をそれぞれAa,Ab,Ac,Adとすると、下式(1)の関係が成り立つ。
Aa<Ab<Ac<Ad ・・・(1)
ここで、連通路41はドリル加工されるため、ドリル径を変えることで各連通路41a〜41dの径を容易に異なる大きさに形成することができる。
In addition, as shown in FIG. 4, the communication passage 41 is formed with four (41a, 41b, 41c, 41d) in order from the upstream side of the first cooling water passage 21 to which the second cooling water introduction passage 52 is connected. The cross-sectional area is smaller toward the upstream side. That is, when the cross-sectional areas of the communication passages 41a, 41b, 41c, and 41d are respectively Aa, Ab, Ac, and Ad, the relationship of the following expression (1) is established.
Aa <Ab <Ac <Ad (1)
Here, since the communication path 41 is drilled, the diameters of the communication paths 41a to 41d can be easily formed in different sizes by changing the drill diameter.

一方、シリンダブロック1の内部には、図1や図6に示すように、4つのシリンダ4を取り囲むようにシリンダ壁冷却水通路53が形成されている。そして、第2冷却水通路31とシリンダ壁冷却水通路53とは、図3、図5および図6に示すように、各シリンダ4の周囲に形成された複数の接続路54を介して互いに連通している。接続路54は、シリンダヘッド3の下面3aに開口して第2冷却水通路31に至る空洞部とガスケット2に形成された貫通孔とによって構成される。そして、シリンダ壁冷却水通路53は、図示しないサーモスタットを経てラジエータやウォーターポンプ50へと連通する。   On the other hand, inside the cylinder block 1, as shown in FIGS. 1 and 6, a cylinder wall cooling water passage 53 is formed so as to surround the four cylinders 4. The second cooling water passage 31 and the cylinder wall cooling water passage 53 communicate with each other through a plurality of connection paths 54 formed around each cylinder 4 as shown in FIGS. 3, 5, and 6. is doing. The connection path 54 is configured by a hollow portion that opens to the lower surface 3 a of the cylinder head 3 and reaches the second cooling water passage 31 and a through hole formed in the gasket 2. The cylinder wall cooling water passage 53 communicates with the radiator and the water pump 50 through a thermostat (not shown).

このように構成された冷却水通路構造によれば、図6に示すように、ウォーターポンプ50によって送給された冷却水は、シリンダブロック1およびシリンダヘッド3の内部に形成された第1冷却水導入通路51および第2冷却水導入通路52を通って第1冷却水通路21の一端(上流側)に供給され、第1冷却水通路21を他端側(下流側)へ流通するとともに、連通路41を通って排気側第2冷却水通路32へ流入する。この際、各連通路41a〜41dが第1冷却水通路21および排気側第2冷却水通路32よりも細く形成されているため、連通路41を通る冷却水は、噴流となって排気側第2冷却水通路32へ流入する。さらに、第1冷却水通路21を下流側へ流通する際の流路抵抗により、連通路41における水圧は上流側(41a側)ほど高いが、連通路41の断面積が上流側(41a側)ほど小さくなっているため、各連通路41a〜41dにおける冷却水量が同等となり、各シリンダ4を均等に冷却することができる。   According to the cooling water passage structure configured as described above, as shown in FIG. 6, the cooling water fed by the water pump 50 is the first cooling water formed inside the cylinder block 1 and the cylinder head 3. The first cooling water passage 21 is supplied to one end (upstream side) of the first cooling water passage 21 through the introduction passage 51 and the second cooling water introduction passage 52, and flows through the first cooling water passage 21 to the other end side (downstream side). It flows into the exhaust side second cooling water passage 32 through the passage 41. At this time, since the communication passages 41a to 41d are formed narrower than the first cooling water passage 21 and the exhaust side second cooling water passage 32, the cooling water passing through the communication passage 41 becomes a jet and becomes the exhaust side first. 2 flows into the cooling water passage 32. Further, due to the flow resistance when flowing through the first cooling water passage 21 downstream, the water pressure in the communication passage 41 is higher on the upstream side (41a side), but the cross-sectional area of the communication passage 41 is upstream (41a side). Therefore, the amount of cooling water in each of the communication passages 41a to 41d is equal, and each cylinder 4 can be cooled uniformly.

連通路41を通過することで噴流となった冷却水は、図1および図5を併せて参照すると、連通路41の軸線41Xに沿って排気側第2冷却水通路32に噴射され、当該軸線41Xに略直交する三叉分岐部の衝突面32wに略垂直に衝突して流れを乱し、第1バルブ間通路部32aおよび2つの第2バルブ間通路部32bへと流通する。これにより、シリンダヘッド3において受熱が大きい燃焼室11近傍部位の全体が衝突噴流冷却の原理によって高い熱伝達率をもって効率的に冷却されるとともに、高温度の排気ガスの熱が伝達する排気ポート13の周辺部位も、乱流となって高速で流通する冷却水によって効率的に冷却される。   The cooling water that has been jetted by passing through the communication passage 41 is injected into the exhaust-side second cooling water passage 32 along the axis 41X of the communication passage 41 when referring to FIGS. It collides substantially perpendicularly to the collision surface 32w of the three-pronged branch portion substantially orthogonal to 41X, disturbs the flow, and flows to the first inter-valve passage portion 32a and the two second inter-valve passage portions 32b. As a result, the entire portion of the cylinder head 3 in the vicinity of the combustion chamber 11 receiving a large amount of heat is efficiently cooled with a high heat transfer rate by the principle of collision jet cooling, and the exhaust port 13 through which the heat of the high-temperature exhaust gas is transmitted. The peripheral part of the slab is also efficiently cooled by cooling water that circulates at high speed.

バルブ間通路部32a,32bを通過した冷却水の一部は、排気側第2冷却水通路32に開口する接続路54を通ってシリンダ壁冷却水通路53へと流入し、他の一部は、中央第2冷却水通路34を通って吸気側第2冷却水通路33へ流入してシリンダヘッド3の吸気側部分を冷却した後、吸気側第2冷却水通路33に開口する接続路54を通ってシリンダ壁冷却水通路53へと流入する。そして、冷却水は、シリンダブロック1を冷却した後、サーモスタットに連通する冷却水配管へ排出される。   Part of the cooling water that has passed through the inter-valve passage portions 32a and 32b flows into the cylinder wall cooling water passage 53 through the connection passage 54 that opens to the exhaust side second cooling water passage 32, and the other part. Then, after flowing into the intake side second cooling water passage 33 through the central second cooling water passage 34 and cooling the intake side portion of the cylinder head 3, a connection path 54 opened to the intake side second cooling water passage 33 is provided. And flows into the cylinder wall cooling water passage 53. And after cooling the cylinder block 1, a cooling water is discharged | emitted to the cooling water piping connected to a thermostat.

<変形実施例>
次に、上記実施形態の変形実施例について図7を参照しながら説明する。なお、上記実施形態と同一の部材および同一の機能を有する部位には同一の符号を付し、上記実施形態と異なる点のみを説明する。図示するように、本変形実施例においては、第1冷却水通路21と排気側第2冷却水通路32とを連通する連通路41が、その軸線41Xをシリンダ軸線4Xと略平行にして、且つ燃焼室11の側端部付近を指向して形成されている。なお、本実施例では、連通路41はドリル加工ではなく、中子によって鋳造時に第1冷却水通路21や第2冷却水通路31と同時に形成される。そして、シリンダヘッド3の排気側第2冷却水通路32を画成する下壁部分が、連通路41から噴出した冷却水の噴流に対向し、冷却水が略垂直に衝突する衝突面32wとなっている。
<Modified Example>
Next, a modified example of the above embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part which has the same member and the same function as the said embodiment, and only a different point from the said embodiment is demonstrated. As shown in the figure, in this modified embodiment, the communication passage 41 that communicates the first cooling water passage 21 and the exhaust side second cooling water passage 32 has its axis 41X substantially parallel to the cylinder axis 4X, and It is formed in the vicinity of the side end of the combustion chamber 11. In the present embodiment, the communication passage 41 is not drilled but formed simultaneously with the first cooling water passage 21 and the second cooling water passage 31 during casting by a core. The lower wall portion defining the exhaust side second cooling water passage 32 of the cylinder head 3 faces the jet of cooling water ejected from the communication passage 41, and becomes a collision surface 32w where the cooling water collides substantially vertically. ing.

このように構成された冷却水通路構造によれば、第1冷却水通路21を流通する冷却水は、連通路41を流通する際にその軸線41Xに沿う噴流となって排気側第2冷却水通路32へ流入し、衝突面32wに略垂直に衝突してその流れを乱す。そして、燃焼室11を画成するシリンダヘッド3の下壁部分に衝突面32wが配置されるため、シリンダヘッド3において受熱が大きい燃焼室11近傍部位が衝突噴流冷却の原理によって高い熱伝達率をもって効率的に冷却される。また、連通路41が排気側に形成されているため、シリンダヘッド3において排気ガスの熱を受けやすい排気ポート13側の燃焼室11近傍部位が噴流によって冷却され、シリンダヘッド3が効率的に冷却される。   According to the cooling water passage structure thus configured, the cooling water flowing through the first cooling water passage 21 becomes a jet along the axis 41X when flowing through the communication passage 41, and the exhaust side second cooling water. It flows into the passage 32 and collides with the collision surface 32w substantially perpendicularly to disturb the flow. And since the collision surface 32w is arrange | positioned in the lower wall part of the cylinder head 3 which defines the combustion chamber 11, the combustion chamber 11 vicinity site | part with a large heat receiving in the cylinder head 3 has a high heat transfer rate by the principle of collision jet cooling. It is cooled efficiently. In addition, since the communication passage 41 is formed on the exhaust side, the portion near the combustion chamber 11 on the exhaust port 13 side that is susceptible to the heat of the exhaust gas in the cylinder head 3 is cooled by the jet, and the cylinder head 3 is efficiently cooled. Is done.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態では、本発明に係るシリンダヘッド内冷却水通路構造を直列4気筒直接噴射式ディーゼルエンジンに適用しているが、V型や水平対向型エンジン、4気筒以外の多気筒エンジンや単気筒エンジン、予燃焼室式或いは渦室式ディーゼルエンジン、ガソリンエンジンやアルコール燃料エンジン等、異なる種類の内燃機関に適用することができる。また、上記実施形態では、第1冷却水通路21をシリンダヘッド3の排気ポート13側に配置し、連通路41によって第1冷却水通路21を排気側第2冷却水通路32に連通させているが、第1冷却水通路21を吸気ポート12側にも形成し、第1冷却水通路21を吸気側第2冷却水通路33に連通させるように連通路41を形成してもよい。また、上記実施形態では、4つの連通路41a〜41dについて、第1冷却水通路21の上流側ほど小断面としているが、例えば、上流側の1つまたは2つの連通路(41aまたは、41aおよび41b)のみを下流側の連通路(41c或いは41d)よりも小断面とする形態等、異なる態様で連通路41の断面積を異ならせてもよい。この他、各部材や部位の具体的構成や配置など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。   Although the description of the specific embodiment is finished as described above, the present invention is not limited to the above embodiment and can be widely modified. For example, in the above embodiment, the coolant passage structure in the cylinder head according to the present invention is applied to an in-line four-cylinder direct injection diesel engine. The present invention can be applied to different types of internal combustion engines such as a single cylinder engine, a pre-combustion chamber type or vortex chamber type diesel engine, a gasoline engine, and an alcohol fuel engine. In the above embodiment, the first cooling water passage 21 is disposed on the exhaust port 13 side of the cylinder head 3, and the first cooling water passage 21 is communicated with the exhaust side second cooling water passage 32 by the communication passage 41. However, the first cooling water passage 21 may also be formed on the intake port 12 side, and the communication passage 41 may be formed so that the first cooling water passage 21 communicates with the intake side second cooling water passage 33. In the above embodiment, the four communication paths 41a to 41d have a smaller cross section toward the upstream side of the first cooling water path 21, but for example, one or two communication paths (41a or 41a and 41a The cross-sectional area of the communication path 41 may be different in different modes, such as a mode in which only 41b) has a smaller cross section than the downstream communication path (41c or 41d). In addition, the specific configuration and arrangement of each member and part can be appropriately changed as long as they do not depart from the spirit of the present invention.

3 シリンダヘッド
4 シリンダ(気筒)
11 燃焼室
21 第1冷却水通路
31 第2冷却水通路
32 排気側第2冷却水通路
32w 衝突面
41a,41b,41c,41d 連通路
41X 軸線
E エンジン
3 Cylinder head 4 Cylinder
DESCRIPTION OF SYMBOLS 11 Combustion chamber 21 1st cooling water path 31 2nd cooling water path 32 Exhaust side 2nd cooling water path 32w Colliding surface 41a, 41b, 41c, 41d Communication path 41X Axis E Engine

Claims (4)

内燃機関のシリンダヘッド内冷却水通路構造であって、
シリンダヘッドの内部に形成された第1冷却水通路と、
シリンダヘッドの内部における前記第1冷却水通路よりも燃焼室に近い位置に形成された第2冷却水通路と、
前記第1冷却水通路と前記第2冷却水通路とを連通させ、冷却水を前記第1冷却水通路側から前記第2冷却水通路側へ流通させる連通路と、
を有し、
前記連通路は、前記第1冷却水通路および前記第2冷却水通路よりも細く、その軸線が前記燃焼室を指向するように形成されたことを特徴とする内燃機関のシリンダヘッド内冷却水通路構造。
A cooling water passage structure in a cylinder head of an internal combustion engine,
A first cooling water passage formed inside the cylinder head;
A second cooling water passage formed in a position closer to the combustion chamber than the first cooling water passage inside the cylinder head;
A communication passage for communicating the first cooling water passage and the second cooling water passage, and for circulating the cooling water from the first cooling water passage side to the second cooling water passage side;
Have
Cylinder head cooling water passage for an internal combustion engine, wherein the communication passage is narrower than the first cooling water passage and the second cooling water passage, and its axis is directed to the combustion chamber. Construction.
前記連通路の軸線が前記燃焼室の中央部付近を志向することを特徴とする、請求項1に記載の内燃機関のシリンダヘッド内冷却水通路構造。   2. The cooling water passage structure in the cylinder head of the internal combustion engine according to claim 1, wherein an axis of the communication passage is oriented near a central portion of the combustion chamber. 前記第2冷却水通路は、前記連通路から噴出した冷却水の噴流に対向する衝突面を有することを特徴とする、請求項1または請求項2に記載の内燃機関のシリンダヘッド内冷却水通路構造。   3. The cooling water passage in the cylinder head of the internal combustion engine according to claim 1, wherein the second cooling water passage has a collision surface facing a jet of cooling water ejected from the communication passage. 4. Construction. 前記内燃機関が複数の気筒を備えるとともに、前記連通路が気筒ごとに複数形成され、
前記第1冷却水通路の上流側に連通する少なくとも1つの連通路が、前記第1冷却水通路の下流側に連通する少なくとも1つの連通路よりも細いことを特徴とする、請求項1〜請求項3のいずれか一項に記載の内燃機関のシリンダヘッド内冷却水通路構造。
The internal combustion engine includes a plurality of cylinders, and a plurality of the communication paths are formed for each cylinder.
The at least one communication passage communicating with the upstream side of the first cooling water passage is narrower than the at least one communication passage communicating with the downstream side of the first cooling water passage. Item 4. The cooling water passage structure in the cylinder head of the internal combustion engine according to any one of Items 3 to 4.
JP2009248441A 2009-10-29 2009-10-29 Cooling water passage structure in cylinder head of internal combustion engine Expired - Fee Related JP5323641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248441A JP5323641B2 (en) 2009-10-29 2009-10-29 Cooling water passage structure in cylinder head of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248441A JP5323641B2 (en) 2009-10-29 2009-10-29 Cooling water passage structure in cylinder head of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011094523A true JP2011094523A (en) 2011-05-12
JP5323641B2 JP5323641B2 (en) 2013-10-23

Family

ID=44111715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248441A Expired - Fee Related JP5323641B2 (en) 2009-10-29 2009-10-29 Cooling water passage structure in cylinder head of internal combustion engine

Country Status (1)

Country Link
JP (1) JP5323641B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140128518A (en) * 2013-04-26 2014-11-06 현대중공업 주식회사 Water jacket structure for cylinder head of dual fuel engine
WO2016075522A1 (en) * 2014-11-13 2016-05-19 Toyota Jidosha Kabushiki Kaisha Cylinder head of multi-cylinder engine
JP2016094872A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
EP3232041A1 (en) * 2016-04-14 2017-10-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder head for vehicle engine
JP2017193970A (en) * 2016-04-18 2017-10-26 トヨタ自動車株式会社 cylinder head
EP3409934A1 (en) * 2017-05-29 2018-12-05 Hyundai Motor Company Water jacket for cylinder head
WO2023127206A1 (en) * 2021-12-27 2023-07-06 いすゞ自動車株式会社 Flow channel structure and cylinder block

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936987Y1 (en) * 1971-06-15 1974-10-09
JP2003184644A (en) * 2001-12-20 2003-07-03 Isuzu Motors Ltd Cooling water passage structure for cylinder head
JP2005048676A (en) * 2003-07-30 2005-02-24 Toyota Industries Corp Cylinder head for internal combustion engine
JP2009041510A (en) * 2007-08-10 2009-02-26 Mazda Motor Corp Cooling device for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936987Y1 (en) * 1971-06-15 1974-10-09
JP2003184644A (en) * 2001-12-20 2003-07-03 Isuzu Motors Ltd Cooling water passage structure for cylinder head
JP2005048676A (en) * 2003-07-30 2005-02-24 Toyota Industries Corp Cylinder head for internal combustion engine
JP2009041510A (en) * 2007-08-10 2009-02-26 Mazda Motor Corp Cooling device for engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140128518A (en) * 2013-04-26 2014-11-06 현대중공업 주식회사 Water jacket structure for cylinder head of dual fuel engine
KR102032569B1 (en) * 2013-04-26 2019-10-16 한국조선해양 주식회사 Water jacket structure for cylinder head of dual fuel engine
WO2016075522A1 (en) * 2014-11-13 2016-05-19 Toyota Jidosha Kabushiki Kaisha Cylinder head of multi-cylinder engine
JP2016094873A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
JP2016094872A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
US10738680B2 (en) 2014-11-13 2020-08-11 Toyota Jidosha Kabushiki Kaisha Cylinder head of multi-cylinder engine
EP3232041A1 (en) * 2016-04-14 2017-10-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder head for vehicle engine
US10227947B2 (en) 2016-04-14 2019-03-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cylinder head for vehicle engine
JP2017193970A (en) * 2016-04-18 2017-10-26 トヨタ自動車株式会社 cylinder head
EP3409934A1 (en) * 2017-05-29 2018-12-05 Hyundai Motor Company Water jacket for cylinder head
US10330042B2 (en) 2017-05-29 2019-06-25 Hyundai Motor Company Water jacket for cylinder head
WO2023127206A1 (en) * 2021-12-27 2023-07-06 いすゞ自動車株式会社 Flow channel structure and cylinder block

Also Published As

Publication number Publication date
JP5323641B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5323641B2 (en) Cooling water passage structure in cylinder head of internal combustion engine
US7849683B2 (en) Multiple-cylinder internal combustion engine having cylinder head provided with centralized exhaust passageway
WO2008018572A2 (en) Internal combustion engine
JP2007051601A (en) Cooling structure of cylinder head
JP2000310157A (en) Cylinder head structure for multiple cylinder engine
JP2009062836A (en) Cylinder head of internal combustion engine
JP2008075508A (en) Water-cooled engine
JP2018184939A (en) Cooling structure of internal combustion engine
JP2016094871A (en) Cylinder block
JP6062312B2 (en) Cylinder block cooling structure
JP2009215922A5 (en)
JP2001234807A (en) Cylinder head
JP2009216029A (en) Cooling device of internal combustion engine
JP2000329001A (en) Cylinder head structure for diesel engine
JP2001050106A (en) Cylinder head structure of internal combustion engine
JP7474206B2 (en) Cylinder head of an internal combustion engine
JP4344647B2 (en) Cooling structure of open deck cylinder block
JP2008150969A (en) Internal combustion engine
JP2018091343A (en) Intake port structure of internal combustion engine
JP2022121228A (en) internal combustion engine
US20240141818A1 (en) Cylinder head water jacket design
JP5130825B2 (en) Cylinder head of internal combustion engine
JP2009047025A (en) Cylinder head of internal combustion engine
KR102394997B1 (en) Internal combustion engine
JP2007231896A (en) Direct injection type engine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees